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AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY
WITH OPTIMAL CONVERGENCE RATES˚

P. BRINGMANN: , C. CARSTENSEN: , AND G. STARKE;

Abstract. Adaptive mesh-refining is of particular importance in computational mechanics and
established here for the lowest-order locking-free least-squares finite element scheme which solely
employs conforming P1 approximations for the displacement and lowest-order Raviart–Thomas
approximations for the stress variables. This forms a competitive discretization in particular in three-
dimensional linear elasticity with traction boundary conditions although the stress approximation
does not satisfy the symmetry condition exactly. The paper introduces an adaptive mesh-refining
algorithm based on separate marking and exact solve with some novel explicit a posteriori error
estimator and proves optimal convergence rates. The point is robustness in the sense that the crucial
input parameters Θ for the Dörfler marking and κ for the separate marking as well as the equivalence
constants in the asymptotic convergence rates do not degenerate as the Lamé parameter λ tends to 8.
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1. Introduction. Quasi-optimality of an adaptive first-order system least-squares
finite element method (LS-FEM) was invented for the two-dimensional (2D) Poisson
model problem in [12] and exploited for the Stokes equations in [8]. This paper extends
those results to the first-order system least-squares formulation of linear elasticity [9]
in three dimensions.

Numerical experiments show optimal behavior of an adaptive algorithm with least-
squares formulations driven by the local contributions of the least-squares functional,
e.g., in [13] for the Poisson model problem. However, this approach does not fit into
the known mathematical techniques to guarantee optimal convergence rates [10, 15].
The affirmative result in [13] requires the bulk parameter Θ to be close to one while
the known optimality [10] follows exclusively for Θ sufficiently small. An alternative
a posteriori error estimator is therefore derived in this paper for the framework of the
axioms of adaptivity and separate marking in [15].

More information on the history of least-squares finite element schemes may be
found in [3] and on the mathematical foundation of adaptive algorithms in [10].

The polyhedral boundary BΩ of the bounded Lipschitz domain Ω Ă R3 is split into
some compact part ΓD Ă BΩ with positive surface measure |ΓD| ą 0 and the relatively
open complement ΓN – BΩzΓD ‰ H. Throughout this paper, ΓD is supposed to belong
exclusively to one of the connectivity components of BΩ for an immediate application
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of the exact sequence property in Proposition 2.3 below. This is no restriction if BΩ is
connected. The 2D case is simpler and more easy to derive as in [8] and, hence, shall
not be discussed explicitly in this paper. The pure Dirichlet problem may be included
with the additional condition

ş

Ω
trσ dx “ 0 on the stress variables and is omitted for

ease of notation.
Given f P L2pΩ;R3q and g P L2pΓN;R3q, the first-order system formulation of

linear elasticity for σ P Hpdiv,Ω;R3ˆ3q and u P H1pΩ;R3q reads

C´1σ ´ εpuq “ 0 and f ` divσ “ 0 in Ω,

u “ 0 on ΓD, and σν “ g on ΓN.
(1.1)

The isotropic material law with Lamé parameters λ, µ ą 0 is the linear operator
C : R3ˆ3 Ñ R3ˆ3 (also viewed as a fourth-order tensor) with CE “ 2µE`λptrEqI3ˆ3

for all E P R3ˆ3 and

(1.2) C´1τ –
1

2µ

ˆ

τ ´
λ

3λ` 2µ
ptr τ q I3ˆ3

˙

for τ P R3ˆ3.

Note that C and C´1 map S – R3ˆ3
sym into itself. Recall that (1.2) remains meaningful

in the incompressible limit λ Ñ 8 as it tends to 1{p2µq dev with the dev τ “
τ ´ ptrτ q{3 I3ˆ3. The weak spaces for the stress σ and the displacement u read

Σg – tτ P Hpdiv,Ω;R3ˆ3q : τ ¨ ν “ g on ΓNu,

V – tv P H1pΩ;R3q : v “ 0 on ΓDu.
(1.3)

The unique solution pσ,uq P Σg ˆ V to (1.1) minimizes the functional

(1.4) LSpf ; τ ,vq –
›

›f ` div τ
›

›

2

L2pΩq
`
›

›C´1τ ´ εpvq
›

›

2

L2pΩq

among all pτ ,vq P Σg ˆ V [9, Thm. 3.1]. Given the piecewise constant approximation
g0 of g, the LS-FEM seeks minimizers pσLS,uLSq P Σg0pT q ˆApT q of this functional
in the Raviart–Thomas and Courant finite element function spaces

(1.5) Σg0pT q – RT0pT ;R3ˆ3q XΣg0 and V pT q – P1pT ;R3q X V .

The local contributions of the functional LS provide a reliable and efficient built-in
a posteriori error estimator. This paper introduces a novel error estimator η with the
volume contributions on each tetrahedron T

ˇ

ˇT
ˇ

ˇ

2{3›
› div symC´1σLS

›

›

2

L2pT q
`
ˇ

ˇT
ˇ

ˇ

2{3›
› curlC´2σLS

›

›

2

L2pT q

and the interior side contributions, for the face F P FpT q X FpΩq with jump r ‚ sF
across F ,

ˇ

ˇT
ˇ

ˇ

1{3›
›rsymC´1σLS ´ εpuLSqsFνF

›

›

2

L2pF q

`
ˇ

ˇT
ˇ

ˇ

1{3›
›rC´1pC´1σLS ´ εpuLSqqsF ˆ νF

›

›

2

L2pF q

plus additional contributions on the boundary faces which involve Neumann boundary
data oscillations. In contrast to the built-in estimator, the novel explicit residual-based
a posteriori error estimator η requires an exact solve of the discrete equations.
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The least-squares functional LS contains the data error µ2pT q – }f ´Π0f}
2
L2pΩq

between f and its piecewise constant best-approximation Π0f . This error contribution
is not monitored by the novel estimator η and, therefore, a separate marking strategy
is required with a quasi-optimal data approximation algorithm for the reduction of
µ2pT q.

The resulting adaptive algorithm is quasi-optimal in terms of the nonlinear ap-
proximation class As of all pu,fq P Aˆ L2pΩ;R3q with a finite seminorm

ˇ

ˇpu,fq
ˇ

ˇ

2

As
– sup

NPN
N2sEpu,f , Nq ă 8

with the L2 projection g0 onto P0pFpΓNq;R3q of g with respect to T P TpNq in the
best possible error

Epu,f , Nq – min
T PTpNq

min
pτLS,vLSqPΣg0 pT qˆV pT q

`

LSpf ; τLS,vLSq ` osc2pg,FpΓNqq
˘

.

The extension of the analysis from [12, 8] for 2D to 3D encounters divergence-free
lowest-order Raviart–Thomas finite element functions as curls of Nédélec functions of
the first kind. The related stability and quasi-interpolation of the latter are established
with the commuting diagram property from [23]. This paper is restricted to the lowest-
order discretization for ease of presentation. Nevertheless, all results in section 2 also
hold for all polynomial degrees k ě 1 and the higher-order discrete quasi-interpolation
for Nédélec functions from [28] enables the generalization of the proof of discrete
reliability Theorem 5.1. For further details on discrete quasi-interpolation of Nédélec
functions, the authors refer to [18, 19] and the references therein.

The remaining parts of the paper are organized as follows. Section 2 provides some
preliminaries and notation employed in this paper. Section 3 presents the first-order
system least-squares formulation of linear elasticity as well as some super approximation
of the equilibrium residual in the stress-based finite element discretization. The main
contribution of this paper is a new adaptive algorithm with optimal convergence rates
in section 4 and three crucial parameters, which are all independent of the value of the
Lamé parameter λ and independent of the mesh-sizes and solely depend on the initial
triangulation T0. The proof of quasi-optimal convergence is based on the axioms of
adaptivity in the form of [15] and the proof of the quasi-orthogonality (A4) conclude
the section. The main technical ingredient for discrete reliability (A3) in section 5
relies on the relation to auxiliary mixed formulations of intermediate problems.

Standard notation of Sobolev and Lebesgue spaces such as HkpΩq, Hpcurl,Ωq,
Hpdiv,Ωq, and L2pΩq and the corresponding spaces of vector- or matrix-valued
functions HkpΩ;R3q, HkpΩ;R3ˆ3q, Hpcurl,Ω;R3ˆ3q, Hpdiv,Ω;R3ˆ3q, L2pΩ;R3q, and
L2pΩ;R3ˆ3q apply throughout the paper. Appropriate subscripts indicate the norms of
the subspaces of H1pΩ;R3q, Hpdiv,Ω;R3ˆ3q, Hpcurl,Ω,R3ˆ3q, and L2pΩ;R3q. Let

x ‚ , ‚ yBΩ denote the duality pairing of rH1{2pΓq – tv|Γ : v P H1pΩq with v “
0 on BΩzΓu and its dual H´1{2pΓq, which extends the L2 scalar product on some
measurable subset Γ Ă BΩ. Let ~ ‚~ – | ‚ |H1pΩq “ }D ‚ }L2pΩq abbreviate the H1-

seminorm. For a, b P R3 and M,N P R3ˆ3, a ¨ b – aJb and M : N – trpMJNq
abbreviate the Euclidian scalar products in R3 and R3ˆ3.

Throughout the paper, A À B abbreviates the relation A ď CB with a generic
constant C ą 0, which solely depends on the material parameter µ and shape-regularity
of the underlying triangulations and so only on T0 and the newest-vertex bisection
(NVB) [26]. Especially, those constants are independent of the Lamé parameter λ ą 0;
A « B abbreviates A À B À A.
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2. Preliminaries. To reduce the technical descriptions, the exposition in this
paper keeps to the most important case of three spatial dimensions and |ΓD| and
|ΓN| ą 0. Let Ω Ď R3 denote a polyhedral Lipschitz domain with boundary BΩ
(and outer unit normal vector ν P L8pBΩ;R3q) partitioned into the closed Dirichlet
boundary ΓD Ă Γj Ă BΩ included in exactly one of the connectivity components
Γ1, . . . ,ΓJ of BΩ with positive surface measure |ΓD| ą 0 and the remaining (relatively
open) Neumann boundary ΓN – BΩzΓD ‰ H.

2.1. Triangulations. Let T denote a regular triangulation of Ω into tetrahedra
and let T resolve the decomposition of the boundary into ΓD and ΓN (cf. [16, sect. 3.2]).
Let F denote the set of faces subordinated to ΓD and ΓN in that FpΓDq – tF P F :
F Ď ΓDu and FpΓNq – tF P F : F Ď sΓNu partition the set FpBΩq of faces on the
boundary BΩ.

Given an initial shape-regular triangulation T0 into closed tetrahedra of the poly-
hedral Lipschitz domain Ω with some initial condition [26, sect. 4, (a)–(b)] on the
refinement edges, the set of admissible triangulations

T – tT` regular triangulation of Ω into closed tetrahedra :

D` P N0 DT0, T1, . . . , T` successive one-level refinements in the sense

that Tj`1 is a one-level refinement of Tj for j “ 0, 1, . . . , `´ 1u

follows from the NVB rules [26, sect. 2] for three dimensions.
With the counting measure | ‚ | and the cardinality |T | of T P T, let

TpNq – tT P T :
ˇ

ˇT
ˇ

ˇ´
ˇ

ˇT0

ˇ

ˇ ď Nu for any N P N0.

All admissible triangulations are shape-regular in the sense that for each T P
Ť

T –

tK : DT P T, K P T u, the radius ρpT q of the largest inscribed sphere and the diameter
diampT q of T are uniformly bounded by a constant C0 ą 0 which solely depends on
the initial triangulation T0; cf. [1, 26] for details on mesh-refining.

2.2. Finite element function spaces. Recall the definition of the spaces Σg
and V from (1.3) as well as Σg0pT q and V pT q from (1.5). Let P0pT q (resp., P0pT ;R3q

or P0pT ;R3ˆ3q) denote the space of piecewise constants (resp., for vector- or matrix-
valued functions). The piecewise constant averages f0 – Π0f P P0pT q coincide with
the orthogonal projection of an L2 function f onto P0pT q and analogously for every
component of vector- or matrix-valued functions. Let id : Ω Ñ R3 denote the identity
mapping.

The discrete approximation of rowwise Hpdivq functions in Σ0 employs the space
of rowwise Raviart–Thomas functions [7, 5, 4]

RT0pT q –
 

qRT P Hpdiv,Ωq : @T P T DaT P P0pT ;R3q DbT P P0pT q,

qJRT

ˇ

ˇ

T
“ aT ` bT id

(

,

RT0pT ;R3ˆ3q –
 

τRT “ pτjkqj,k“1,...,3 P Hpdiv,Ω;R3ˆ3q :

@j “ 1, 2, 3, pτj1, τj2, τj3q P RT0pT q
(

.

The rowwise Nédélec functions of the first kind [21, 22, 20] read

N0pT q –
 

βN P Hpcurl,Ωq : @T P T DaT , bT P P0pT ;R3q,

βJN
ˇ

ˇ

T
“ aT ` bT ˆ id

(

,

N0pT ;R3ˆ3q –
 

βN “ pβjkqj,k“1,...,3 P Hpcurl,Ω;R3ˆ3q :

@j “ 1, 2, 3, pβj1,βj2,βj3q P N0pT q
(

.
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2.3. Approximation of Neumann boundary data. Let H´1{2pΓN;R3q de-

note the dual space of the trace space rH1{2pΓN;R3q – γνpV q with the normal trace
operator γν acting on ΓN equipped with the norm

›

›g
›

›

H´1{2pΓNq
– sup

vPV zt0u

ż

ΓN

g ¨ v ds
M

›

›v
›

›

H1pΩq
.

Given a regular triangulation T P T with the set of Neumann boundary faces
FpΓNq, approximate inhomogeneous boundary values g P L2pΓN;R3q by the L2 best-
approximation g0 – Π0g in P0pFpΓNq;R3q with the L2 orthogonality

g ´ g0 K P0pFpΓNq;R3q.

For any face F P FpΓNq of area |F | and diameter hF , let sωF P T denote the unique
tetrahedron with F P FpsωF q of volume |ωF | and diameter hωF

– diampωF q and

osc2pg,FpΓNqq –
ÿ

FPFpΓNq

ˇ

ˇωF

ˇ

ˇ

1{3›
›g ´ g0

›

›

2

L2pF q
.

Lemma 2.1. It holds that }g ´ g0}H´1{2pΓNq
À oscpg,FpΓNqq.

Proof. Since H´1{2pΓNq is the dual space to rH1{2pΓNq endowed with the minimal
extension norm, it suffices for any v P V with norm }v}H1pΩq “ 1 to prove

(2.1)

ż

ΓN

pg ´ g0q ¨ v ds ď C1 oscpg,FpΓNqq.

Given such a v, let vF – ´
ş

ωF
vpxqdx be the average of v in the face-patch ωF (i.e.,

the interior of the one tetrahedron with face F ) of F P FpΓNq with diameter hωF
so

that a Poincaré inequality with Payne–Weinberger constant reads

(2.2)
›

›v ´ vF
›

›

L2pωF q
ď
hωF

π

›

›Dv
›

›

L2pωF q
.

Since ´
ş

ΓN
pg ´ g0qds “ 0, it follows for the left-hand side in (2.1) that

ż

ΓN

pg ´ g0q ¨ v ds “
ÿ

FPFpΓNq

ż

F

pg ´ g0q ¨ pv ´ vF qds

ď
ÿ

FPFpΓNq

ˇ

ˇωF

ˇ

ˇ

1{6›
›g ´ g0

›

›

L2pF q

ˇ

ˇωF

ˇ

ˇ

´1{6›
›v ´ vF

›

›

L2pF q

ď oscpg,FpΓNqq

d

ÿ

FPFpΓNq

ˇ

ˇωF

ˇ

ˇ

´1{3›
›v ´ vF

›

›

2

L2pF q
.(2.3)

The trace identity for f – |v ´ vF |
2 P H1pωF q on sωF — convtF, PF u reads [11,

Lem. 2.1]

ˇ

ˇF
ˇ

ˇ

´1›
›v ´ vF

›

›

2

L2pF q
“ ´

ż

F

fpxqds “ ´

ż

ωF

fpxqdx`
1

3
´

ż

ωF

px´ PF q ¨∇ fpxqdx

“
ˇ

ˇωF

ˇ

ˇ

´1›
›v ´ vF

›

›

2

L2pωF q
` 2

hωF

3|ωF |

›

›v ´ vF
›

›

L2pωF q

›

›Dv
›

›

L2pωF q
.
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This and (2.2) prove

›

›v ´ vF
›

›

2

L2pF q
ď
|F |h2

ωF

π|ωF |
p1{π ` 2{3q

›

›Dv
›

›

2

L2pωF q
.

With the uniformly bounded constant

C2
1 –

4

π

´2

3
`

1

π

¯

max
FPFpΓNq

ˇ

ˇF
ˇ

ˇh2
ωF

ˇ

ˇωF

ˇ

ˇ

´4{3
À 1,

the weighted sum of all those contributions reads
ÿ

FPFpΓNq

ˇ

ˇωF

ˇ

ˇ

´1{3›
›v ´ vF

›

›

2

L2pF q
ď C2

1{4
ÿ

FPFpΓNq

›

›Dv
›

›

2

L2pωF q
.

The finite overlap of the family pωF : F P FpΓNqq shows that the last term is
ď C2

1}Dv}L2pΩq ď C2
1 . The combination with (2.3) concludes the proof of (2.1).

Lemma 2.2. There exists some constant CN « 1, which solely depends on the
geometry of Ω, ΓD, and ΓN, such that for any given g P L2pΓN;R3q Ď H´1{2pΓN;R3q

with L2 best-approximation g0 – Π0g P P0pFpΓNq;R3q, there exists some extension
τ P Hpdiv,Ω;R3ˆ3q with

(2.4) τν “ g ´ g0 on ΓN and
›

›τ
›

›

Hpdiv,Ωq
ď CN oscpg,FpΓNqq.

If g P P0p pFpΓNq;R3q for some admissible refinement pT of T , then τ in (2.4) can be

found in RT0ppT ;R3ˆ3q.

Proof. Let τ P Hpdiv,Ω;R3ˆ3q and v P H1pΩ;R3q solve

(2.5) ´ div τ “ 0 and Dv “ τ in Ω, v “ 0 on ΓD, and τν “ g ´ g0 on ΓN.

The stability of the boundary value problem leads to
›

›τ
›

›

Hpdiv,Ωq
“
›

›Dv
›

›

L2pΩq
À
›

›g ´ g0

›

›

H´1{2pΓNq
.

This and Lemma 2.1 conclude the proof of (2.4).

For g P P0p pFpΓNq;R3q, let pτRT P RT0ppT ;R3ˆ3q denote the mixed finite element
solution to the boundary value problem (2.5).

2.4. Auxiliary problem. Given f P L2pΩ;R3q and g P L2pΩ;R3q, let z P V ”

H1
DpΩ;R3q denote the unique solution to

´∆ z “ f in Ω and
Bz

Bν
“ g on ΓN.

Since f P L2pΩ;R3q and g P L2pΩ;R3q, the reduced elliptic regularity [17] implies
τ – D z P HspΩ;R3ˆ3q for some s ą 0 and

›

›τ
›

›

Hpdiv,Ωq
ď CpΩ,ΓNq

`
›

›f
›

›

L2pΩq
`
›

›g
›

›

H´1{2pΓNq

˘

.

Let τ0 – IFτ P RT0pT ;R3ˆ3q denote the Fortin interpolation of τ from [4, eq. (2.5.26)].
Then it holds that ´ div τ0 “ ´Π0 div τ “ Π0f and

(2.6)
›

›τ0

›

›

Hpdiv,Ωq
À
›

›τ
›

›

Hpdiv,Ωq
À
`
›

›f
›

›

L2pΩq
`
›

›g
›

›

H´1{2pΓNq

˘

.

Moreover, for all F P FpΓNq [4, eq. (2.5.10), p. 107],

τ0 νF “ Π0,F pτ νF q “ g0.
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2.5. Divergence-free Raviart–Thomas functions. In the notation of [20,
p. 37], let Γ0, . . . ,ΓJ denote all connectivity components of BΩ and recall that ΓD Ď Γj

for exactly one Γj of the connectivity components.

Proposition 2.3. Given ρRT P RT0pT q with divρRT “ 0 and ρRT ¨ ν “ 0 on
ΓN, there exists βN P N0pT q with curlβN “ ρRT and

(2.7)
›

›βN

›

›

Hpcurl,Ωq
À
›

›ρRT

›

›

L2pΩq
.

The proof of the proposition employs the following function spaces:

HpΩ,div “ 0q – tq P Hpdiv,Ωq : div q “ 0 in Ωu,

H0pΩ,div “ 0q – tq P HpΩ,div “ 0q : q ¨ ν “ 0 on BΩu,

H0pcurl,Ωq – tv P Hpcurl,Ωq : ν ˆ v “ 0 on BΩu.

Remark 2.4 (curlH0pcurl,Ωq Ď H0pΩ,div “ 0q). For any v P H0pcurl,Ωq and
w P C8pΩq, curlv P HpΩ,div “ 0q and Green’s formulas for the gradient and the curl
imply

ż

BΩ

w curlv ¨ ν ds “

ż

Ω

∇w ¨ curlv dx “

ż

BΩ

∇w ¨ pν ˆ vqdx “ 0.

This is the weak form of pcurlvq ¨ ν “ 0 on BΩ; written curlv P H0pΩ,div “ 0q.

Proof of Proposition 2.3. Step 1. The assumption ΓD Ď Γj for some fixed index
j P t1, . . . , Ju implies Γk Ď ΓN for every k “ 0, . . . , J with k ‰ j. Consequently,
ş

Γk
ρRT ¨ ν ds “ 0. Since divρRT “ 0 a.e. in Ω implies

ş

BΩ
ρRT ¨ ν ds “ 0, it follows

that
ż

Γk

ρRT ¨ ν ds “ 0 @ k “ 1, . . . , J.

Let pρ P Hpdiv, pΩq denote the extension of ρRT to some large ball pΩ, which includes Ω,

with pρ “ ρRT on Ω, div pρ “ 0 on pΩ, and pρ ¨ ν “ 0 on BpΩ. Following [20, pp. 38, 46],
the design of pρ is via some Laplace Neumann problem [20, (N), p. 38] with Neumann
data ρRT ¨ ν on ΓD and ρRT ¨ ν ” 0 on ΓN. This ensures standard estimates on a
neighborhood of pΩzΩ, in particular }pρ}L2ppΩq À }ρRT}L2pΩq.

Step 2. Since H1 – Hpcurl, pΩqXH0ppΩ,div “ 0q is a closed subspace of Hpcurl, pΩq

and since H2 – H0ppΩ,div “ 0q is a closed subspace of Hpdiv, pΩq, the linear map
curl : H1 Ñ H2 is bounded between the Hilbert spaces H1 and H2. Theorem I.3.5
from [20] asserts that curl : H1 Ñ H2 is injective and surjective (as the ball pΩ
is simply connected). As a bounded bijection between Hilbert spaces, the inverse
curl´1 : H2 Ñ H1 is bounded as well. This leads to a generic constant C ą 0 with

(2.8)
›

› curl´1 v
›

›

Hpcurl,pΩq
ď C

›

›v
›

›

Hpdiv,pΩq
for any v P H2 ” HppΩ,div “ 0q.

Hence, given pρ in the ball pΩ with pρ ¨ν “ 0 along BpΩ, i.e., pρ P H2, there exists a pβ P H1

with

curl pβ “ pρ, div pβ “ 0, pβ ¨ ν “ 0 on BpΩ, and
›

› pβ
›

›

Hpcurl,pΩq
À
›

›

pρ
›

›

Hpdiv,pΩq
“
›

›

pρ
›

›

L2ppΩq
À
›

›ρRT

›

›

L2pΩq
.

(2.9)

Step 3. Let βN – ΠNppβ
ˇ

ˇ

Ω
q P N0pΩq denote the projection ΠN of pβ from [23,

Thm. 7] as part of the commuting diagram property of the quasi-interpolation operators
from [23] of Figure 2.1. This and the projection property of ΠRT read
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Hpcurl,Ωq Hpdiv,Ωq

N0pT q RT0pT q

curl

curl

ΠN ΠRT

Fig. 2.1. Commuting diagram property of Schöberl quasi-interpolation operators.

curlβN “ curl ΠNppβ
ˇ

ˇ

Ω
q “ ΠRTρRT “ ρRT.

The L2 stability of ΠN [23, Thm. 8] plus (2.9) yield

›

›βN

›

›

L2pΩq
À
›

› pβ
›

›

L2pΩq
ď
›

› pβ
›

›

Hpcurl,pΩq
À

›

›ρRT

›

›

L2pΩq
.

This and } curlβN}L2pΩq “ }ρRT}L2pΩq conclude the proof.

Remark 2.5. The authors conjecture that the result from Proposition 2.3 can be
generalized to higher polynomial degrees. Given ρRT P RTkpT q with divρRT “ 0, the
existence of a vector potential βN P NkpT q with curlβN “ ρRT is well-known in the
context of exact sequences of finite element function spaces [4, subsect. 2.5.6, p. 116].
However, the L2 stability (2.7) is not straightforward. The commuting and L2 stable
higher-order Nédélec quasi-interpolation operator from [18, Thm. 6.5] generalizes the
Schöberl quasi-interpolation ΠN in the proof at hand.

3. Stress-based finite element discretization. Recall the definition of the
spaces Σg and V from (1.3) as well as Σg0pT q and V pT q from (1.5). The minimization
of the least-squares functional (1.4) is equivalent to the variational problem

(3.1)

ż

Ω

div σ ¨ div τ dx`

ż

Ω

pC´1σ ´ εpuqq : pC´1τ ´ εpvqqdx “ ´

ż

Ω

f ¨ div τ dx

for all pτ ,vq P Σ0 ˆ V . The equivalence of the homogeneous least-squares functional
with the associated norm on Σ0 ˆ V implies the uniqueness of the solution to (3.1).

Proposition 3.1 (see [9, Thm. 3.1]). Any pτ ,vq P Σ0 ˆ V satisfies

LSp0; τ ,vq «
›

›τ
›

›

2

Hpdiv,Ωq
`
›

›εpvq
›

›

2

L2pΩq
.

The first-order system least-squares finite element approximation reads as follows:
Minimize (1.4) among all pτ ,vq P Σg0pT q ˆ V pT q. Since div ΣpT q “ P0pT ;R3q,
we may replace f by f0 “ Π0f in the discrete version of (3.1): Seek pσLS,uLSq P

Σg0pT q ˆ V pT q with

ż

Ω

div σLS ¨ div τ0 dx`

ż

Ω

pC´1σLS ´ εpuLSqq : pC´1τ0 ´ εpv0qqdx

“ ´

ż

Ω

f0 ¨ div τ0 dx @ pτ0,v0q P ΣpT q ˆ V pT q.
(3.2)

The following proposition controls the compatibility of the traction boundary
conditions with Lemma 2.2. Let pσLS,uLSq (resp., ppσLS, puLSq) solve the discrete
problem (3.2) with respect to the regular triangulation T P T (resp., some admissible

refinement pT P T of T ).
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Proposition 3.2. The universal constant Cosc – maxt1, 1{p4µ2quCN with CN

from Lemma 2.2 and any positive ε satisfy

p1´ εqLSpf ; pσLS, puLSq ` LSp0; pσLS ´ σLS, puLS ´ uLSq

ď LSpf ;σLS,uLSq ` Cosc{ε osc2ppg0,FpΓNqq.

Proof. Elementary algebra proves

LSpf ; pσLS, puLSq ´ LSpf ;σLS,uLSq

“ ´
›

›divppσLS ´ σLSq
›

›

2

L2pΩq
´
›

›C´1ppσLS ´ σLSq ´ εppuLS ´ uLSq
›

›

2

L2pΩq

` 2

ż

Ω

pf ` div pσLSq ¨ divppσLS ´ σLSqdx

` 2

ż

Ω

pC´1
pσLS ´ εppuLSqq : pC´1ppσLS ´ σLSq ´ εppuLS ´ uLSqqdx.

Given the extension pτRT P RT0ppT ;R3ˆ3q from Lemma 2.2 with pτRTν “ pg0 ´ g0,

the function pσLS ´ σLS ´ pτRT P Σ0ppT q is an admissible test function in the dis-

crete equations (3.2) with respect to the refined triangulation pT . This, the Cauchy–
Schwarz inequality, the Young inequality with respect to parameter 0 ă ε ă 1, and
}C´1τ }L2pΩq ď 1{p2µq }τ }L2pΩq imply

LSpf ; pσLS, puLSq ´ LSpf ;σLS,uLSq

`
›

›divppσLS ´ σLSq
›

›

2

L2pΩq
`
›

›C´1ppσLS ´ σLSq ´ εppuLS ´ uLSq
›

›

2

L2pΩq

“ 2

ż

Ω

pf ` div pσLSq ¨ div pτRT dx` 2

ż

Ω

pC´1
pσLS ´ εppuLSqq : C´1

pτRT dx

ď 2
›

›f ` div pσLS

›

›

L2pΩq

›

›div pτRT

›

›

L2pΩq
` 1{µ

›

›C´1
pσLS ´ εppuLSq

›

›

L2pΩq

›

›

pτRT

›

›

L2pΩq

ď εLSpf ; pσLS, puLSq `maxt1, 1{p4µ2qu{ε
›

›

pτRT

›

›

2

Hpdiv,Ωq
.

This and Lemma 2.2 conclude the proof with Cosc – maxt1, 1{p4µ2qu pC2
N.

Let prσg0 , rug0q P Σg0 ˆ V denote the corresponding solution to the continuous
problem (1.1) with boundary values g0 instead of g. Then, the ellipticity result from
Proposition 3.1 implies, for any pτ0,v0q P Σg0pT q ˆ V pT q, that

(3.3) LSpf ; τ0,v0q «
›

›

rσg0 ´ τ0

›

›

2

Hpdiv,Ωq
`
›

›εprug0 ´ v0q
›

›

2

L2pΩq
.

In order to study of the approximation behavior of the first-order system LS-FEM
(3.2), define the sets

SpL2pΩ;R3qq – tf P L2pΩ;R3q : }f}L2pΩq “ 1u,

Q0pT ,fq – tτ0 P Σg0pT q : Π0f ` div τ0 “ 0u.

The quantities

ρ0pT q – sup
fPSpL2pΩ;R3qq

inf
τPQ0pT ,fq

›

›C´1prσg0 ´ τ q
›

›

L2pΩq
,

ξ0pT q – sup
fPSpL2pΩ;R3qq

inf
vPV pT q

›

›εprug0 ´ vq
›

›

L2pΩq

(3.4)
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represent distances of certain finite element spaces to prσg0 , rug0q and depend on the
regularity of the solution and on the way the triangulation is adapted.

The following result and its proof are motivated by the investigations in [6] about
the supercloseness of first-order system least-squares approximations to those produced
by mixed methods of saddle-point type.

Theorem 3.3. It holds that

(3.5)
›

› divσLS `Π0f
›

›

2

L2pΩq
À pρ0pT q ` ξpT qq2 LSpf ;σLS,uLSq.

Proof. Step 1. Recall f0 “ Π0f and divσLS P P0pT ;R3q. Let prσg0 , rug0q P Σg0ˆV
solve (1.1) with boundary values g0 replacing g and define the sphere

SpP0pT ;R3qq – tq0 P P0pT ;R3q : }q0}L2pΩq “ 1u.

For any z0 P P0pT ;R3q, determine Ξ P Σ0 and η P V via the auxiliary boundary
value problem

(3.6) div Ξ “ z0 and C´1Ξ´ εpηq “ 0 in Ω.

Step 2. Let Ξ0 P Σ0pT q with div Ξ0 “ z0 “ div Ξ and η0 P V pT q. Since
divpΞ0 ´Ξq “ 0, the continuous equation (3.1) with the test functions τ ” Ξ0 ´Ξ
and v ” η0 ´ η implies

(3.7)

ż

Ω

pC´1
rσg0 ´ εprug0qq : pC´1pΞ0 ´Ξq ´ εpη0 ´ ηqqdx “ 0.

The continuous equation (3.1) with τ ” Ξ0 and v ” η0 reads
ż

Ω

div rσg0 ¨ div Ξ0 dx`

ż

Ω

pC´1
rσg0 ´ εprug0qq : pC´1Ξ0 ´ εpη0qq dx

“ ´

ż

Ω

f ¨ div Ξ0 dx.

The discrete equation (3.2) with τ0 ” Ξ0 and v0 ” η0 reads

´

ż

Ω

divσLS ¨ div Ξ0 dx´

ż

Ω

pC´1σLS ´ εpuLSqq : pC´1Ξ0 ´ εpη0qqdx

“ ´

ż

Ω

Π0f ¨ div Ξ0 dx.

The sum of the last and second to last displayed formulas plus the L2 orthogonality,
(3.7), the second equation in (3.6), and div Ξ0 “ z0 P P0pT ;R3q lead to

ż

Ω

divprσg0 ´ σLSq ¨ z0 dx

“ ´

ż

Ω

pC´1σLS ´ εpuLSqq : pC´1pΞ´Ξ0q ´ εpη ´ η0qqdx.

(3.8)

Step 3. Since divσLS `Π0f P P0pT ;R3q,

›

›div σLS `Π0f
›

›

L2pΩq
“ sup
z0PSpP0pT ;R3qq

ż

Ω

pdivσLS ` fq ¨ z0 dx

“ sup
z0PSpP0pT ;R3qq

ż

Ω

div pσLS ´ rσg0q ¨ z0 dx.
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The combination with (3.8) leads to
›

›divσLS `Π0f
›

›

L2pΩq

ď
›

›C´1σLS ´ εpuLSq
›

›

L2pΩq
sup

z0PSpP0pT ;R3
qq

pΞ,ηq with (3.6)

›

›C´1pΞ´Ξ0q ´ εpη ´ η0q
›

›

L2pΩq

ď LSpf ;σLS,uLSq
1{2 sup

z0PSpP0pT ;R3
qq

pΞ,ηq with (3.6)

´

›

›C´1pΞ´Ξ0q
›

›

L2pΩq
`
›

›εpη ´ η0q
›

›

L2pΩq

¯

.

Recall that Ξ0 P Σ0pT q with div Ξ0 “ z0 and η0 P V pT q are arbitrary, to conclude
the proof of (3.5).

4. Quasi-optimal adaptive algorithm.

4.1. Alternative a posteriori error estimator. Let pσLS,uLSq solve the dis-
crete equations (3.2) and let η2pT q –

ř

TPT η
2pT , T q denote the alternative a posteriori

error estimator with

η2pT , T q –
ˇ

ˇT
ˇ

ˇ

2{3›
›div symC´1σLS

›

›

2

L2pT q
`
ˇ

ˇT
ˇ

ˇ

2{3›
› curlC´2σLS

›

›

2

L2pT q

`
ˇ

ˇT
ˇ

ˇ

1{3 ÿ

FPFpT qzFpΓDq

›

›rsymC´1σLS ´ εpuLSqsFνF
›

›

2

L2pF q

`
ˇ

ˇT
ˇ

ˇ

1{3 ÿ

FPFpT qzFpΓNq

›

›rC´1pC´1σLS ´ εpuLSqqsF ˆ νF
›

›

2

L2pF q

`
ˇ

ˇT
ˇ

ˇ

1{3 ÿ

FPFpT qXFpΓNq

›

›g ´ g0

›

›

2

L2pF q
.

(4.1)

All the terms in the estimator (4.1) except the last one appear nonstandard in the scaling
with the compliance tensor. They do, however, arise naturally from the treatment of
the least-squares formulation in section 5.

4.2. Efficiency. The discrete test function technology due to Verfürth [27] leads
to local efficiency of the estimator η from (4.1) in the following sense.

Theorem 4.1 (efficiency). It holds that

η2pT q `
›

›f ´Π0f
›

›

2

L2pΩq
À LSpf ;σLS,uLSq ` osc2pg,FpΓNqq.

Proof. The corresponding arguments from [12] and [8] can be adopted immediately
and further details are omitted.

4.3. Adaptive algorithm (ALS-FEM).
Input: Initial regular triangulation T0 with refinement edges of the polyhedral domain
Ω into closed tetrahedra and parameters 0 ă θ ď 1, 0 ă ρ ă 1, 0 ă κ ă 8.
for any level ` “ 0, 1, 2, . . . do

Solve LS-FEM (3.2) with respect to regular triangulation T` with solution pσ`,u`q

and the piecewise constant best-approximation f` – Π`f on T`.
Compute η`pT q – ηpT`, T q from (4.1) for all T P T` and set η2

` – η2pT`q.
if CASE A }f ´ f`}

2
L2pΩq ď κη2

` then

Select a subset M` Ď T` of (almost) minimal cardinality |M`| with

θη2
` ď η2

` pM`q –
ÿ

TPM`

η2
` pT q.
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Compute smallest regular refinement T``1 of T` with M` Ď T`zT``1 by NVB.
else (CASE B κη2

` ă }f ´ f`}
2
L2pΩq)

Compute an admissible refinement T``1 of T` with (almost) minimal cardi-
nality |T``1| and }f ´ f``1}L2pΩq ď ρ}f ´ f`}L2pΩq. fi od

Output: Sequence of discrete solutions pσ`,u`q`PN0 and meshes pT`q`PN0 .

Remark 4.2 (Case B). The thresholding second algorithm (TSA) of [2, sect. 5]
is one possible realization of an optimal refinement in Case B of ALS-FEM. Any
other (quasi-)optimal algorithm for the data error reduction may be employed in the
algorithm and in the analysis.

4.4. Quasi-optimal convergence. The main result of this paper involves, for
any given 0 ă s ă 8, the notion of approximation classes As which consist of all pairs
pu,fq P Aˆ L2pΩ;R3q such that

ˇ

ˇpu,fq
ˇ

ˇ

2

As
– sup

NPN
N2sEpu,f , Nq ă 8

with the best possible error

Epu,f , Nq – min
T PTpNq

min
pτLS,vLSqPΣg0 pT qˆVg0 pT q

`

LSpf ; τLS,vLSq ` osc2pg,FpΓNqq
˘

.

Theorem 4.3. There exists a maximal bulk parameter 0 ă θ0 ă 1 and maximal
separation parameter 0 ă κ0 ă 8 which depend exclusively on T0 such that for all
0 ă θ ď θ0, for all 0 ă κ ď κ0, for all 0 ă ρ ă 1, and for all 0 ă s ă 8, the output
pσ`,u`q` of ALS-FEM with pu,fq P As satisfies

sup
`PN

`
ˇ

ˇT`
ˇ

ˇ´
ˇ

ˇT0

ˇ

ˇ

˘s`
LSpf ;σ`,u`q ` osc2pg,F`pΓNqq

˘1{2
ď Cqopt

ˇ

ˇpu,fq
ˇ

ˇ

As
.

The constant Cqopt ă 8 depends only on the initial mesh T0 the constant s and the
parameters ρ, θ, and κ; all the parameters κ0, θ0, and Cqopt are λ-independent.

The proof of the converse inequality “Á” is discussed in [15, Thm. 2.1.b] with
arguments applicable to the situation at hand.

4.5. Axioms of adaptivity. This section summarizes the convergence analysis of
[15] based on the axioms (A1)–(A4), (B1)–(B2), and (QM) for the proof of Theorem 4.3.

The axioms (A1)–(A3) and (B2) concern an admissible refinement pT P T of an arbitrary
triangulation T P T and the associated discrete solutions ppσLS, puLSq and pσLS,uLSq

to the discrete equations (3.2) in the definition of the distance

δ2ppT , T q –
›

› divppσLS ´ σLSq
›

›

2

L2pΩq

`
›

›C´1ppσLS ´ σLSq ´ εppuLS ´ uLSq
›

›

2

L2pΩq
` osc2ppg0,FpΓNqq.

(4.2)

For any subset M Ď T , let η2pT ,Mq –
ř

TPM η2pT , T q abbreviate the sum over the
corresponding error estimator contributions from (4.1). In particular, η2pT q – η2pT , T q.
Let µpT q – }f ´Π0f}L2pΩq with the L2 projection Π0 on P0pT ;R3q.

Theorem 4.4 (stability and reduction). It holds that

|ηppT , T X pT q ´ ηpT , T X pT q| ď Λ1δppT , T q,(A1)

ηppT , pT zT q ď ρ2ηpT , T zpT q ` Λ2δppT , T q.(A2)
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Proof. The proofs of (A1)–(A2) are straightforward from [10, 8, 12].

The proof of the discrete reliability DR Ď T with T zpT Ď R, |R| À |T zpT |, and

(A3) δ2ppT , T q ď Λ3pη
2pT ,Rq ` µ2pT qq ` pΛ3η

2ppT q

is postponed to section 5.
The quasi-orthogonality concerns the outcome pT`q`PN0

of the algorithm ALS-FEM.

(A4)
8
ÿ

k“`

δ2pTk`1, Tkq ď Λ4pη
2pT`q ` µ2pT`qq

follows directly from (A1)–(A2), the following theorem, and [15, Thm. 3.1].

Theorem 4.5 (quasi-orthogonality with ε ą 0). For any sequence of successive
admissible refinements T0, T1, ¨ ¨ ¨ P T and all positive ε, there exists a generic constant
Λ4pεq « 1 with

``m
ÿ

k“`

`

δ2pTk`1, Tkq ´ εLSpf ;σk,ukq
˘

ď Λ4pεq
`

η2pT`q `
›

›f ´ f`
›

›

2

L2pΩq

˘

.

Proof. For all k “ `, . . . , ``m and positive ε, Proposition 3.2 proves

p1´ εqLSpf ;σk`1,uk`1q ` LSp0;σk`1 ´ σk,uk`1 ´ ukq

ď LSpf ;σk,ukq ` Cosc{ε osc2pgk`1,FkpΓNqq.

The orthogonality of the boundary data oscillations leads to

osc2pgk`1,FkpΓNqq ` osc2pg,Fk`1pΓNqq ď osc2pg,FkpΓNqq.

Consequently,

δ2pTk`1, Tkq ´ εLSpf ;σk`1,uk`1q

ď LSpf ;σk,ukq ´ LSpf ;σk`1,uk`1q

` p1` Cosc{εq
`

osc2pg,FkpΓNqq ´ osc2pg,Fk`1pΓNqq
˘

.

The telescoping sum over all k “ `, . . . , ``m and the reliability from Corollary 5.2
conclude the proof with Λ4pεq – 1` Crel ` Cosc{ε.

The subsequent assumptions (B1)–(B2) transfer directly from [15] to the situation
at hand in three components for the TSA plus completion (called Approx in [14]).

(B1) Rate s data approximation. @Tol ą 0, TTol – ApproxpTol, µpKq : K P

T0q P T satisfies |TTol| ´ |T0| ď Λ5Tol´1{p2sq and µ2pTTolq ď Tol.

(B2) Quasi-monotonicity of µ. µppT q ď Λ6µpT q.
Since pΛ3 may be large, the following result is required and proven explicitly.

Theorem 4.6 (quasi-monotonicity of η ` µ). It holds that

(QM) ηppT q ` µppT q ď Λ7pηpT q ` µpT qq.

Proof. The efficiency from subsection 4.2 plus Proposition 3.2 and the reliability
from Corollary 5.2 prove (QM).
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5. Discrete reliability. Let pT P T denote an admissible refinement of T P T with
respective discrete solutions ppσLS, puLSq and pσLS,uLSq to (3.2). Recall the definition

of δppT , T q from (4.2). Let R – tK P T : DK 1 P T zpT , K XK 1 ‰ Hu be one layer of

simplices around and including T zpT . This set satisfies |R| À |T zpT |.
Theorem 5.1 (discrete reliability). It holds that

(5.1) δ2ppT , T q À η2pT ,Rq `
›

›f ´ f0

›

›

2

L2pΩq
` LSpf ; pσLS, puLSq.

The discrete reliability and the plain convergence of the LS-FEM imply reliability
of the error estimator ηpT q in the following sense.

Corollary 5.2 (reliability). For any admissible triangulation T P T with dis-
crete solutions pσLS,uLSq P Σg0pT q ˆ V pT q to (3.2), it holds that

(5.2) LSpf ;σLS,uLSq ď Crel

`

η2pT q `
›

›f ´ f0

›

›

2

L2pΩq

˘

.

Proof. The proof of [8, Cor. 4.4] relies on the discrete reliability (5.1) with pT
replaced by successive uniform refinements of T and applies literally to the situation
at hand. The convergence of the LS-FEM in the limit as the maximal mesh-sizes tend
to zero proves (5.2).

Proof of (A3). The combination of the estimate (5.1) with (5.2) and |R| À |T zpT |
proves (A3) from subsection 4.5.

The remaining part of this section is devoted to the proof of Theorem 5.1 and
utilizes the abbreviations

δ – pσLS ´ σLS and e – puLS ´ uLS.

Three intermediate solutions to the auxiliary problem from subsection 2.4 are
important. Let τRT P Σ0pT q and pτ˚RT P Σ0pT q satisfy

div τRT “ div pτ˚RT “ Π0 div δ.

Let pτRT P RT0pT ;R3ˆ3q satisfy

div pτRT “ div δ and pτRT ν “ pg0 ´ g0 on ΓN.

The stability estimate (2.6) and Lemma 2.1 lead to
›

›τRT

›

›

Hpdiv,Ωq
`
›

›

pτ˚RT

›

›

Hpdiv,Ωq
À
›

›Π0 div δ
›

›

L2pΩq
and

›

›

pτRT

›

›

Hpdiv,Ωq
À
›

› div δ
›

›

L2pΩq
` oscppg0,FpΓNqq.

(5.3)

The analysis of δ2ppT , T q departs with elementary algebra.

Lemma 5.3. There exists some pβN P N0ppT ;R3ˆ3q with

›

›pβN

›

›

L2pΩq
À
›

›δ
›

›

Hpdiv,Ωq
` oscppg0,FpΓNqq and

LSp0; δ, eq “
›

›p1´Π0qdiv pσLS

›

›

2

L2pΩq

`

ż

Ω

pC´1δ ´ εpeqq : pC´1ppτRT ´ pτ˚RTqq dx

`

ż

Ω

pC´1σLS ´ εpuLSqq : pεpeq ´ C´1 curl pβNqdx.

(5.4)
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Proof. Step 1. Since div τRT “ div δ, the discrete equations (3.2) with respect to
the triangulation T and the test functions τLS “ τRT and vLS “ 0 read

(5.5)

ż

Ω

pf0 ` divσLSq ¨ div δ dx`

ż

Ω

pC´1σLS ´ εpuLSqq : C´1τRT dx “ 0.

The same arguments with respect to pT , τLS “ δ ` pτ˚RT ´ pτRT, and vLS “ e show

ż

Ω

p pf0 ` div pσLSq ¨Π0 div δ dx

`

ż

Ω

pC´1
pσLS ´ εppuLSqq : pC´1pδ ` pτ˚RT ´ pτRTq ´ εpeqqdx “ 0.

(5.6)

The summation of (5.5) and LSp0; δ, eq leads to

LSp0; δ, eq “
›

› div δ
›

›

2

L2pΩq
`

ż

Ω

pC´1
pσLS ´ εppuLSqq : pC´1δ ´ εpeqqdx

`

ż

Ω

pf0 ` divσLSq ¨ div δ dx

´

ż

Ω

pC´1σLS ´ εpuLSqq : pC´1pδ ´ τRTq ´ εpeqq dx.

(5.7)

Step 2. Since ρRT – δ ´ pτRT ` pτ˚RT ´ τRT P Σ0ppT q is divergence-free with

ρRTν “ 0 on ΓN, Proposition 2.3 yields existence of some pβN P N0ppT ;Rnˆnq with

ρRT “ curl pβN in Ω, curl pβN ¨ ν “ 0 on ΓN, and
›

›βN

›

›

L2pΩq
À
›

›ρRT

›

›

L2pΩq
.

This, the triangle inequality, and the stability estimates (5.3) imply

›

›βN

›

›

L2pΩq
À
›

›ρRT

›

›

L2pΩq
ď
›

›δ
›

›

L2pΩq
`
›

›

pτRT ´ pτ˚RT

›

›

L2pΩq
`
›

›τRT

›

›

L2pΩq

À
›

›δ
›

›

L2pΩq
`
›

›p1´Π0qdiv δ
›

›

L2pΩq
`
›

›Π0 div δ
›

›

L2pΩq
` oscppg0,FpΓNqq

À
›

›δ
›

›

Hpdiv,Ωq
` oscppg0,FpΓNqq.

Step 3. The split C´1pδ´τRTq “ C´1ρRT´C´1ppτ˚RT´pτRTq, elementary algebra,
and (5.7) prove

LSp0; δ, eq “
›

› div δ
›

›

2

L2pΩq
`

ż

Ω

pC´1
pσLS ´ εppuLSqq : pC´1pδ ` pτ˚RT ´ pτRTq ´ εpeqqdx

`

ż

Ω

pf0 ` divσLSq ¨ div δ dx`

ż

Ω

pC´1σLS ´ εpuLSqq : pεpeq ´ C´1ρRTqdx

`

ż

Ω

pC´1δ ´ εpeqq : C´1ppτRT ´ pτ˚RTqdx.

The equation (5.6) plus elementary algebra with the L2 orthogonal projection Π0

conclude the proof.
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Lemma 5.4. It holds that
ż

Ω

pC´1σLS ´ εpuLSqq : C´1 curlβN dx

ď C1

`
›

›δ
›

›

Hpdiv,Ωq
` oscppg0,FpΓNqq

˘

˜

ÿ

TPR

˜

ˇ

ˇT
ˇ

ˇ

2{3›
› curlC´2σLS

›

›

2

L2pT q

`
ÿ

FPFpT q

ˇ

ˇT
ˇ

ˇ

1{3›
›rC´1pC´1σLS ´ εpuLSqqsF ˆ ν

›

›

2

L2pF q

¸¸1{2

.

Proof. The operator IN : N0ppT ;R3ˆ3q Ñ N0pT ;R3ˆ3q satisfies [28, Thm. 4.1]

(5.8) p1´ INqpβN “ 0 on any K P R and
›

›IN
pβN

›

›

Hpcurl,Ωq
À
›

› pβN

›

›

Hpcurl,Ωq
.

The quasi-interpolation operator SN : Hpcurl,Ω;R3ˆ3q Ñ N0pT ;R3ˆ3q from [24,
Thm. 1] allows for a split (5.9) and a local approximation error estimate (5.10)

(5.9) p1´ SNqp1´ INqpβN “ ∇φ` z

for some φ P H1
DpΩq and z P H1

DpΩ;R3q and for every K P T with ΩK –
Ť

tT P T :
T XK ‰ Hu that

(5.10)
›

›h´1
0 z

›

›

L2pKq
`
›

›D z
›

›

L2pKq
À
›

› curlp1´ INqpβN

›

›

L2pΩKq
.

Since curl pβN P RT0pT ;R3ˆ3q is divergence-free, the discrete equations (3.2) imply

ż

Ω

pC´1σLS ´ εpuLSqq : C´1 curl pβN dx

“

ż

Ω

C´1pC´1σLS ´ εpuLSqq : curlp1´ SNqp1´ INqpβN dx.

The combination of the locality (5.8) of IN [28, Thm. 4.1(1)] and the local estimate (5.10)
proves, for any K P R and any F P FpKq, z ” 0 in K and z ” 0 on F in the sense of
traces. This, (5.9) and an integration by parts result in

ż

Ω

C´1pC´1σLS ´ εpuLSqq : curlp1´ SNqp1´ INqpβN dx

“
ÿ

TPT

ż

T

C´1pC´1σLS ´ εpuLSqq : curlz dx

“
ÿ

TPT

ż

T

curlC´2σLS : z dx

`
ÿ

FPFzFpΓDq

ż

F

rC´1pC´1σLS ´ εpuLSqq ˆ νsF : z ds

“
ÿ

TPR

ż

T

curlC´2σLS : z dx

`
ÿ

FPFpRqzFpΓDq

ż

F

rC´1pC´1σLS ´ εpuLSqq ˆ νsF : z ds.
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A Cauchy–Schwarz inequality and (5.10) prove, for every T P R,

ż

T

curlC´2σLS : z dx

ď
›

›hT curlC´2σLS

›

›

L2pT q

›

›h´1
T z

›

›

L2pT q

À
›

›hT curlC´2σLS

›

›

L2pT q

›

› curlp1´ INqpβN

›

›

L2pΩT q
.

A Cauchy–Schwarz inequality, a trace inequality, and (5.10) show, for every F P

FpRqzFpΓDq, that

ż

F

rC´1pC´1σLS ´ εpuLSqq ˆ νsF : z ds

À
›

›h
1{2
T rC´1pC´1σLS ´ εpuLSqq ˆ νsF

›

›

L2pF q

›

› curlp1´ INqpβN

›

›

L2pΩT q
.

The bounded overlap of the patches pΩT : T P Rq, the stability estimate (5.8), and
(5.4) conclude the proof.

Remark 5.5. The quasi-interpolation operator IN has been established for arbitrary
polynomial degrees in [28, Thm. 4.1] and allows for the generalization of Lemma 5.4
to higher-order discretizations.

Proof of Theorem 5.1. Step 1. Since g0|K “ pg0|K for all K P pT X T ,

(5.11) osc2ppg0,FpΓNqq “
ÿ

FPFpT z pT q

ˇ

ˇ

sωF

ˇ

ˇ

›

›

pg0 ´ g0

›

›

2

L2pF q
ď η2pT ,Rq.

Step 2. Step 1 and the stability estimate (2.6) yield a generic constant C2 « 1
with

›

›C´1ppτRT ´ pτ˚RTq
›

›

L2pΩq
ď C2

`
›

›p1´Π0qdiv δ
›

›

L2pΩq
` ηpT ,Rq

˘

.

This, Lemma 5.3, the Cauchy–Schwarz inequality, and the upper bound }C´1δ ´
εpeq}L2pΩq ď LSp0; δ, eq1{2 imply

LSp0; δ, eq ď
›

›p1´Π0qdiv δ
›

›

2

L2pΩq

` C2LSp0; δ, eq1{2
`
›

›p1´Π0qdiv δ
›

›

L2pΩq
` ηpT ,Rq

˘

`

ż

Ω

pC´1σLS ´ εpuLSqq : pεpeq ´ C´1 curl pβNqdx.

(5.12)

Step 3. Let J e P V pT ;R3q denote the Scott–Zhang quasi-interpolation of e. For
every node z P N in the construction of the quasi-interpolation [25, sect. 2], choose

E P Epωzq such that E P E X pE , whenever possible. This ensures for the error function

(5.13) p1´ J qe ” 0 on T zpT ,

i.e., p1´ J qe vanishes on any triangle T P T X pT and on any of its faces F P FpT q
in the sense of traces. The first-order approximation property [25, eq. (4.3)] and the
stability property [25, Thm. 3.1] read

(5.14)
ˇ

ˇT
ˇ

ˇ

´1{2›
›p1´ J qe

›

›

L2pT q
`
›

›Dp1´ J qe
›

›

L2pT q
À
›

›D e
›

›

L2pΩT q
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z

(a) Nodal patch ωz

T

(b) Enlarged triangle patch ΩT

Fig. 5.1. Patches.

for the enlarged triangle patch ΩT –
Ť

zPN pT q ωz of Figure 5.1. The discrete equa-

tions (3.2) imply
ż

Ω

pC´1σLS ´ εpuLSqq : εpJ eqdx “ 0.

This, an integration by parts, and (5.13) prove

ż

Ω

pC´1σLS ´ εpuLSqq : εpeqdx

“

ż

Ω

pC´1σLS ´ εpuLSqq : εpp1´ J qeqdx

“

ż

Ω

psymC´1σLS ´ εpuLSqq : Dp1´ J qe dx

“
ÿ

TPT

ż

T

pdiv symC´1σLSq ¨ p1´ J qe dx

`
ÿ

FPFzFpΓDq

ż

F

rpsymC´1σLS ´ εpuLSqq ¨ νF sF p1´ J qe ds

“
ÿ

TPT z pT

ż

T

pdiv symC´1σLSq ¨ p1´ J qe dx

`
ÿ

FPFpT z pT qzFpΓDq

ż

F

rpsymC´1σLS ´ εpuLSqqνF sF ¨ p1´ J qeds.

A Cauchy–Schwarz inequality followed by approximation and stability properties of
the quasi-interpolation from (5.14) prove, for every T P T zpT , that

ż

T

pdiv symC´1σLSq ¨ p1´ J qe dx

ď
›

›hT div symC´1σLS

›

›

L2pT q

›

›h´1
T p1´ J qe

›

›

L2pT q

À
›

›hT div symC´1σLS

›

›

L2pT q

›

›D e
›

›

L2pΩT q
.
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A Cauchy–Schwarz inequality, a trace inequality, and (5.14) show, for every F P

FpT zpT qzFpΓDq, that

ż

F

rpsymC´1σLS ´ εpuLSqqνsF ¨ p1´ J qe ds

À
›

›h
1{2
T rpsymC´1σLS ´ εpuLSqqνsF

›

›

L2pF q

›

›D e
›

›

L2pΩT q
.

The bounded overlap of the patches pΩT : T P T zpT q in the two previously displayed

formulas and the estimate ~e~2 À LSp0; δ, eq ` osc2ppg0,FpΓNqq “ δ2ppT , T q show

ż

Ω

pC´1σLS ´ εpuLSqq : εpeqdx

ď C3δppT , T q

˜

ÿ

TPT z pT

˜

ˇ

ˇT
ˇ

ˇ

2{3›
›div symC´1σLS

›

›

2

L2pT q

`
ÿ

FPFpT qXFpΩq

ˇ

ˇT
ˇ

ˇ

1{3›
›rpsymC´1σLS ´ εpuLSqqνsF

›

›

2

L2pF q

¸¸1{2

.

(5.15)

Step 4. The triangle and Young inequalities and the L2 orthogonality of Π0

prove

1

2

›

›p1´Π0qdiv pσLS

›

›

2

L2pΩq
ď
›

›f ´Π0f
›

›

2

L2pΩq
`
›

›p1´Π0qpf ` div pσLSq
›

›

2

L2pΩq

ď
›

›f ´Π0f
›

›

2

L2pΩq
` LSpf ; pσLS, puLSq.

Step 5. The combination of (5.12) with Lemma 5.4 and Step 3 reads

LSp0; δ, eq ď
›

›p1´Π0qdiv δ
›

›

2

L2pΩq
` C1

´

›

›δ
›

›

Hpdiv,Ωq
` oscppg0,FpΓNqq

¯

ˆ

˜

ÿ

TPR

˜

ˇ

ˇT
ˇ

ˇ

2{3›
› curlC´2σLS

›

›

2

L2pT q

`
ÿ

FPFpT q

ˇ

ˇT
ˇ

ˇ

1{3›
›rC´1pC´1σLS ´ εpuLSqqsF ˆ ν

›

›

2

L2pF q

¸¸1{2

` C2LSp0; δ, eq1{2
`
›

›p1´Π0qdiv δ
›

›

L2pΩq
` ηpT ,Rq

˘

` C3δppT , T q

˜

ÿ

TPT z pT

˜

ˇ

ˇT
ˇ

ˇ

2{3›
›div symC´1σLS

›

›

2

L2pT q

`
ÿ

FPFpT qXFpΩq

ˇ

ˇT
ˇ

ˇ

1{3›
›rpsymC´1σLS ´ εpuLSqqνsF

›

›

2

L2pF q

¸¸1{2

.

Steps 1 and 4 plus some standard rearrangements with the Young inequality conclude
the proof.
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