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AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY
WITH OPTIMAL CONVERGENCE RATES*

P. BRINGMANNT, C. CARSTENSENT, AND G. STARKE*

Abstract. Adaptive mesh-refining is of particular importance in computational mechanics and
established here for the lowest-order locking-free least-squares finite element scheme which solely
employs conforming P; approximations for the displacement and lowest-order Raviart—Thomas
approximations for the stress variables. This forms a competitive discretization in particular in three-
dimensional linear elasticity with traction boundary conditions although the stress approximation
does not satisfy the symmetry condition exactly. The paper introduces an adaptive mesh-refining
algorithm based on separate marking and exact solve with some novel explicit a posteriori error
estimator and proves optimal convergence rates. The point is robustness in the sense that the crucial
input parameters © for the Dérfler marking and x for the separate marking as well as the equivalence
constants in the asymptotic convergence rates do not degenerate as the Lamé parameter A\ tends to oo.
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1. Introduction. Quasi-optimality of an adaptive first-order system least-squares
finite element method (LS-FEM) was invented for the two-dimensional (2D) Poisson
model problem in [12] and exploited for the Stokes equations in [8]. This paper extends
those results to the first-order system least-squares formulation of linear elasticity [9]
in three dimensions.

Numerical experiments show optimal behavior of an adaptive algorithm with least-
squares formulations driven by the local contributions of the least-squares functional,
e.g., in [13] for the Poisson model problem. However, this approach does not fit into
the known mathematical techniques to guarantee optimal convergence rates [10, 15].
The affirmative result in [13] requires the bulk parameter © to be close to one while
the known optimality [10] follows exclusively for © sufficiently small. An alternative
a posteriori error estimator is therefore derived in this paper for the framework of the
axioms of adaptivity and separate marking in [15].

More information on the history of least-squares finite element schemes may be
found in [3] and on the mathematical foundation of adaptive algorithms in [10].

The polyhedral boundary 02 of the bounded Lipschitz domain < R3 is split into
some compact part I'p < Q2 with positive surface measure |I'p| > 0 and the relatively
open complement I'y :== dQ\I'p # . Throughout this paper, I'p is supposed to belong
exclusively to one of the connectivity components of 0f) for an immediate application
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of the exact sequence property in Proposition 2.3 below. This is no restriction if 0f2 is
connected. The 2D case is simpler and more easy to derive as in [8] and, hence, shall
not be discussed explicitly in this paper. The pure Dirichlet problem may be included
with the additional condition SQ trodx = 0 on the stress variables and is omitted for
ease of notation.

Given f € L?(Q;R3) and g € L?(I'y;R?), the first-order system formulation of
linear elasticity for o € H(div, Q;R**3) and u € H'(Q;R3) reads

Clo—e(u)=0 and f+dive=0 in(,

(1.1)
=0 onIp, and ev =g only.

The isotropic material law with Lamé parameters A, u > 0 is the linear operator
C : R3*3 — R3*3 (also viewed as a fourth-order tensor) with CE = 2uE + )\ (trE) I343
for all E e R3*3 and

1
'ZM(T‘M

Note that C and C™' map S = RZ%? into itself. Recall that (1.2) remains meaningful
in the incompressible limit A — o0 as it tends to 1/(2u) dev with the devr =

7T — (tr7)/3 Isx3. The weak spaces for the stress o and the displacement w read

(1.2) Cctr (trT) I3X3> for 7 e R3*3.

3g={Te€ H(div, ;R**3) : 7. v = g on I'y},

13) Vi={ve H(Q;R?) :v=0o0nTIp}.

The unique solution (o, u) € ¥4 x V' to (1.1) minimizes the functional

. . . 2 -1 2
(1.4) LS(f;T,v) = ||f + d1VTHL2(Q) + H(C T — €(U)HL2(Q)
among all (7,v) € ¥y x V'[9, Thm. 3.1]. Given the piecewise constant approximation
go of g, the LS-FEM seeks minimizers (oLs, urs) € Xg,(7) % A(T) of this functional
in the Raviart—-Thomas and Courant finite element function spaces

(1.5) 200 (T) = RTH(T;R**3*) n 2y, and V(T):= P (T;R¥) V.

The local contributions of the functional LS provide a reliable and efficient built-in
a posteriori error estimator. This paper introduces a novel error estimator n with the
volume contributions on each tetrahedron T'

2/3|

’T‘2/3||divsymC_1ULSHiz + 7| |Cur1C_QGLS”2LQ(T)

(T)
and the interior side contributions, for the face F' € F(T) n F(Q2) with jump [«]r
across F',

71" |[sym €l ovs — e(urs) pvr e )

+ ‘T|1/3H [CY(CloLs — e(urs))]F ¥ VFH;(F)
plus additional contributions on the boundary faces which involve Neumann boundary

data oscillations. In contrast to the built-in estimator, the novel explicit residual-based
a posteriori error estimator 7 requires an exact solve of the discrete equations.
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The least-squares functional LS contains the data error p?(T) = || f — o f| 7. @
between f and its piecewise constant best-approximation ITg f. This error contribution
is not monitored by the novel estimator n and, therefore, a separate marking strategy
is required with a quasi-optimal data approximation algorithm for the reduction of
1*(T).

The resulting adaptive algorithm is quasi-optimal in terms of the nonlinear ap-
proximation class A;s of all (u, f) € A x L*(Q;R?) with a finite seminorm

|(u, £)|°, = sup N*E(u, f,N) < »
s NeN

with the L? projection go onto Py(F(I'x);R?) of g with respect to T € T(N) in the
best possible error
— mi ; ) 2
E(u,f,N) = Trer%rl(rzl\f) (TLS,'ULS)EIZIDI;?(T)XV(T) (LS(f;7us, vis) + osc®(g, F(I'n))).

The extension of the analysis from [12, 8] for 2D to 3D encounters divergence-free
lowest-order Raviart—Thomas finite element functions as curls of Nédélec functions of
the first kind. The related stability and quasi-interpolation of the latter are established
with the commuting diagram property from [23]. This paper is restricted to the lowest-
order discretization for ease of presentation. Nevertheless, all results in section 2 also
hold for all polynomial degrees k > 1 and the higher-order discrete quasi-interpolation
for Nédélec functions from [28] enables the generalization of the proof of discrete
reliability Theorem 5.1. For further details on discrete quasi-interpolation of Nédélec
functions, the authors refer to [18, 19] and the references therein.

The remaining parts of the paper are organized as follows. Section 2 provides some
preliminaries and notation employed in this paper. Section 3 presents the first-order
system least-squares formulation of linear elasticity as well as some super approximation
of the equilibrium residual in the stress-based finite element discretization. The main
contribution of this paper is a new adaptive algorithm with optimal convergence rates
in section 4 and three crucial parameters, which are all independent of the value of the
Lamé parameter A and independent of the mesh-sizes and solely depend on the initial
triangulation 7y. The proof of quasi-optimal convergence is based on the axioms of
adaptivity in the form of [15] and the proof of the quasi-orthogonality (A4) conclude
the section. The main technical ingredient for discrete reliability (A3) in section 5
relies on the relation to auxiliary mixed formulations of intermediate problems.

Standard notation of Sobolev and Lebesgue spaces such as H*(Q), H(curl, (),
H(div,Q), and L%(2) and the corresponding spaces of vector- or matrix-valued
functions H*(Q;R?), H*(Q; R3*3), H(curl, Q; R3*3), H(div, Q; R3*3), L2(Q;R?), and
L?(Q; R3*3) apply throughout the paper. Appropriate subscripts indicate the norms of
the subspaces of H(;R?), H(div, Q;R3*3), H(curl, Q,R3*3), and L?(Q;R3). Let
(s, %Yq denote the duality pairing of HY2(T) = {v|p : v € H'(Q) withv =
0 on IQ\T'} and its dual H~'/2(T), which extends the L? scalar product on some
measurable subset I' < 0Q. Let || o || == | |p1(q) = |D ¢|12(q) abbreviate the H'-
seminorm. For a,b € R* and M, N € R**3 a-b:=a'band M : N = tr(M"N)
abbreviate the Euclidian scalar products in R3 and R3*3.

Throughout the paper, A < B abbreviates the relation A < CB with a generic
constant C' > 0, which solely depends on the material parameter u and shape-regularity
of the underlying triangulations and so only on 7y and the newest-vertex bisection
(NVB) [26]. Especially, those constants are independent of the Lamé parameter A > 0;
A ~ B abbreviates A < B < A.
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2. Preliminaries. To reduce the technical descriptions, the exposition in this
paper keeps to the most important case of three spatial dimensions and |I'p| and
x| > 0. Let © < R? denote a polyhedral Lipschitz domain with boundary 09
(and outer unit normal vector v € L®(99Q;R3)) partitioned into the closed Dirichlet
boundary I'p < I'; < 09 included in exactly one of the connectivity components
Iq,...,T; of 0Q with positive surface measure |I'p| > 0 and the remaining (relatively
open) Neumann boundary I'y = d\I'p # .

2.1. Triangulations. Let 7 denote a regular triangulation of € into tetrahedra
and let T resolve the decomposition of the boundary into I'p and I'y (cf. [16, sect. 3.2]).
Let F denote the set of faces subordinated to I'p and I'y in that F(I'p) = {F € F :
F c T'p} and F(I'y) = {F € F : F c I'y} partition the set F(0Q) of faces on the
boundary 052.

Given an initial shape-regular triangulation 7q into closed tetrahedra of the poly-
hedral Lipschitz domain © with some initial condition [26, sect. 4, (a)—(b)] on the
refinement edges, the set of admissible triangulations

T := {7, regular triangulation of  into closed tetrahedra :
3¢ € Ng 379, T1, ..., T¢ successive one-level refinements in the sense
that T;41 is a one-level refinement of 7; for j = 0,1,...,¢—1}
follows from the NVB rules [26, sect. 2] for three dimensions.
With the counting measure |« | and the cardinality |7| of 7 € T, let
T(N)={T €T : |T|—|To| <N} forany N €Ny.

All admissible triangulations are shape-regular in the sense that for each T'e [T =
{K : 3T €T, K € T}, the radius p(T) of the largest inscribed sphere and the diameter
diam(T") of T" are uniformly bounded by a constant Cp > 0 which solely depends on
the initial triangulation 7p; cf. [1, 26] for details on mesh-refining.

2.2. Finite element function spaces. Recall the definition of the spaces X
and V from (1.3) as well as X, (7T) and V(T from (1.5). Let Py(T) (resp., Py(T;RR?)
or Py(T;R3*3)) denote the space of piecewise constants (resp., for vector- or matrix-
valued functions). The piecewise constant averages fo = Ilof € Py(T) coincide with
the orthogonal projection of an L? function f onto Py(7) and analogously for every
component of vector- or matrix-valued functions. Let id : Q — R? denote the identity
mapping.

The discrete approximation of rowwise H(div) functions in g employs the space
of rowwise Raviart-Thomas functions [7, 5, 4]

RTH(T) = {qrr € H(div,Q) : VT € T Jar € Po(T;R*) Ibr € Py(T),

qu|T =ar + brid },

RTy(T;R*?) = {mrr = (Tji)jh=1,....3 € H(div, G R**?)
Vj=1,2,3, (151,72, Tj3) € RTo(T)}.
The rowwise Nédélec functions of the first kind [21, 22, 20] read
No(T) = {Bx € H(cwrl, Q) : YT € T 3ar,br € By(T;R%),
Bx |, = ar +br xid},
No(T;R**%) == {Bx = (Bjk)jk=1,....3 € H(curl, Q; R**?) -
Vi =1,2,3, (Bj1.8j2, Bjs) € No(T)}.



432 P. BRINGMANN, C. CARSTENSEN, AND G. STARKE

2.3. Approximation of Neumann boundary data. Let H~Y?(I'y;R3) de-
note the dual space of the trace space H'/?(I'y;R?) = ~, (V) with the normal trace
operator 7, acting on I'y equipped with the norm

ol = | g -wds /ol

Given a regular triangulation 7 € T with the set of Neumann boundary faces
F(T'x), approximate inhomogeneous boundary values g € L?(I'x; R?) by the L? best-
approximation gg = Ilpg in Py(F(I'x); R?) with the L? orthogonality

g—go L Py(F(I'n); R?).

For any face F' € F(I'y) of area |F'| and diameter hp, let wp € T denote the unique
tetrahedron with F € F(wp) of volume |wp| and diameter hy,, = diam(wg) and

osc2 (g, F(On) = Y |wrl"*|g — g0l 12 -
FeF(I'y)

LEMMA 2.1. It holds that g — go| g-1/2(ry) < 0sc(g, F(I'n)).

Proof. Since H=Y/2(I'y) is the dual space to HY/2(I'y) endowed with the minimal
extension norm, it suffices for any v € V' with norm |[v| g1 (q) = 1 to prove

(2.1) L (g —g0) - vds < Cyosc(g, F(I'n)).

Given such a v, let vp = SwF v(z) dz be the average of v in the face-patch wp (i.e.,
the interior of the one tetrahedron with face F') of F' € F(I'y) with diameter hy,, so
that a Poincaré inequality with Payne—Weinberger constant reads

h

(2.2) Jv— UFHLz(wF) S %H D”HLz(wp)'

Since SFN (g — go) ds = 0, it follows for the left-hand side in (2.1) that

fFN<g—go>-vds— ) )L<g—go>-<v—w>ds

FeF(xn
1/6 —1/6
< Z jwr| g — 90‘|L2(F)|WF| Jv— 'UFHL2(F)
FeF(Tn)
—1/3 2
(2.3) < osc(g, F(I'n)) Z wr| |v— ”FHL2(F)'
FeF(Tn)

The trace identity for f = |v — vr|? € H'(wr) on Wrp = conv{F, Pr} reads [11,

Lem. 2.1]

(z)dz + %J[ (x — Pp)-V f(z)dx

wWF

F[ o= velfage, = ), ) ds =

WF

= !wFFle - "’Fuiz(w) + 23‘:;‘ v - ”FHLmJF)” D'”Hm(w)'
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This and (2.2) prove
|F|h2,

Tlwr|

o= vrliagey < o2 (/m+2/3)[ Dol e,

With the uniformly bounded constant

4,2 1 —4/3
Ct= 25+ 7) pam WP for " 5 1,

the weighted sum of all those contributions reads

> lwr[ o —vrlfay <CHa Y, Do
FeF(T'x) FeF(Ix)

(wr)’

The finite overlap of the family (wgp : F € F(I'x)) shows that the last term is
< C?| D 2(q) < Cf. The combination with (2.3) concludes the proof of (2.1). 0O

LEMMA 2.2. There exists some constant Cn ~ 1, which solely depends on the
geometry of Q, T'p, and T'x, such that for any given g € L*(Tx;R?) € H™V/2(I'y; R?)
with L? best-approzimation go = Ipg € Po(F(I'n);R3), there exists some extension
T € H(div, Q; R3*3) with

(2.4) Tv=g—go onI'n and ) S Cn osc(g, F(T'n)).

”THH(div,Q
Ifge Po(}/:(I‘N);R3) for some admissible refinement T of T, then T in (2.4) can be
found in RTo(T;R3*3).

Proof. Let T € H(div,Q;R3*3) and v € H}(Q;R?) solve
(25) —divr=0and Dv=7inQ, v=0onIp, and 7v =g—goon I'y.

The stability of the boundary value problem leads to

HTHH(div,Q) = HD”Hm(m <|g *QOHH—U?(FN)'

This and Lemma 2.1 conclude the proof of (2.4).
For g € Py(F(T'n); R?), let Trr € RTo(T;R3*3) denote the mixed finite element
solution to the boundary value problem (2.5). |

2.4. Auxiliary problem. Given f e L?(Q;R?) and g€ L*(;R?), let ze V =
HL(2;R3) denote the unique solution to

—Az=f inQ and a—z:g on I'y.
ov

Since f € L?(Q;R3) and g € L*(2;R?), the reduced elliptic regularity [17] implies
7:=Dze H*(Q;R3*3) for some s > 0 and

HTHH(div,Q) S C(Q’FN)(Hme(Q) + “gHHfl/?(rN))'

Let 19 = ZpT € RTy(T;R?**3) denote the Fortin interpolation of 7 from [4, eq. (2.5.26)].
Then it holds that —div 1y = —IIgdivT = Il f and

(2.6) I70] rav.y = 17 oy S IFl 2oy + 191 5-12000))-
Moreover, for all F € F(I'x) [4, eq. (2.5.10), p. 107],

Tovr = Iy p(T vE) = go.
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2.5. Divergence-free Raviart—Thomas functions. In the notation of [20,
p. 37, let T'y,...,T'; denote all connectivity components of 0§ and recall that I'n < T';
for exactly one I'; of the connectivity components.

PROPOSITION 2.3. Given prr € RTo(T) with divprr = 0 and prr -v = 0 on
I'n, there exists Bn € No(T) with curl By = prr and

(2.7) H'BNHH(curl,Q) S ”/’RTHLz(Q)'
The proof of the proposition employs the following function spaces:

H(Q,div=0) = {qg € H(div,Q) : divg = 0 in Q},
Hy(Q,div=0) :={qe H(Q,div=0) : ¢ -v =0 on 00},
Hy(curl, Q) :=={v e H(cur,Q) : v x v =0 on 09Q}.

Remark 2.4 (curl Hy(curl,Q) € Hy(92,div = 0)). For any v € Hy(curl, Q) and
w e C®(Q), curlv € H(Q,div = 0) and Green’s formulas for the gradient and the curl
imply

J wcurlv-uds=JVw-curlvdx=J Vw- (v xwv)de=0.
o0 Q o0

This is the weak form of (curlw) - v = 0 on 0€; written curlv € Hy(£2, div = 0).

Proof of Proposition 2.3. Step 1. The assumption I'p < I'; for some fixed index
je{l,...,J} implies I'y < T'y for every k = 0,...,J with &k # j. Consequently,
Srk prr - vds = 0. Since div prr = 0 a.e. in Q implies {,, prr - vds = 0, it follows
that

J prr-vds=0 Vk=1,...,J
T

Let p € H(div, ﬁ) denote the extension of pgrr to some large ball Q, which includes €2,
with p = prr on Q, divp =0 on €, and p- v = 0 on 9. Following [20, pp. 38, 46],
the design of p is via some Laplace Neumann problem [20, (N), p. 38] with Neumann
data pgrr - v on ED and prr - v = 0 on I'y. This ensures standard estimates on a
neighborhood of O\, in particular HﬁHLZ(ﬁ) < lorrllze(o)-

Step 2. Since Hy = H(curl,Q) n Hy(, div = 0) is a closed subspace of H(curl, Q)
and since Hy = Ho(ﬁ,div = 0) is a closed subspace of H(div,@), the linear map
curl : Hy — Hs is bounded between the Hilbert spaces H; and Hy. Theorem I.3.§
from [20] asserts that curl : Hy — Hs is injective and surjective (as the ball
is simply connected). As a bounded bijection between Hilbert spaces, the inverse
curl ™' : Hy — H; is bounded as well. This leads to a generic constant C' > 0 with

(2.8) |curl™ ’UHH( <Clv for any v € Hy = H(Q,div = 0).

curl,Q) HH(div,SAZ)

Hence, given p in the ball Q with p-v = 0 along 09, i.e., p € Ha, there exists a B € H;
with

2.9) crlB=p, divB=0, B-vr=0 ond), and

. HféHH(curl,ﬁ) S HﬁHH(div,ﬁ) = Hﬁ”m(ﬁ) S HPRTHLZ(Q)'

Step 3. Let By = HN(5|Q) € No(Q) denote the projection IIx of B from [23,
Thm. 7] as part of the commuting diagram property of the quasi-interpolation operators
from [23] of Figure 2.1. This and the projection property of IIgr read
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H(curl, Q) _eul | H(div, )

HNB
curl

No(T) ———— RTo(T)

h IIrT

Fia. 2.1. Commuting diagram property of Schoberl quasi-interpolation operators.

curl By = CUﬂHN(mQ) = Ilgrprr = PRI
The L? stability of IIx [23, Thm. 8] plus (2.9) yield

HﬁNHm(Q) S HéﬂLz(Q) < HB\HH(curl,ﬁ) S HPRTHLz(Q)'

This and || curl Bx| 22(q) = |PrT|L2(0) conclude the proof. 0

Remark 2.5. The authors conjecture that the result from Proposition 2.3 can be
generalized to higher polynomial degrees. Given prr € RTy(T) with div prr = 0, the
existence of a vector potential By € Ni(T) with curl By = pgrr is well-known in the
context of exact sequences of finite element function spaces [4, subsect. 2.5.6, p. 116].
However, the L? stability (2.7) is not straightforward. The commuting and L? stable
higher-order Nédélec quasi-interpolation operator from [18, Thm. 6.5] generalizes the
Schoberl quasi-interpolation Ily in the proof at hand.

3. Stress-based finite element discretization. Recall the definition of the
spaces g and V' from (1.3) as well as Xg,(7) and V(T) from (1.5). The minimization
of the least-squares functional (1.4) is equivalent to the variational problem

(3.1) JQ div o - div 7dz + JQ((C_IU —e(u): (Cr'r —¢g(w))de = — JQ f-divrdz

for all (7,v) € X x V. The equivalence of the homogeneous least-squares functional
with the associated norm on Xg x V' implies the uniqueness of the solution to (3.1).

PROPOSITION 3.1 (see [9, Thm. 3.1]). Any (7,v) € o x V satisfies

2 2
LS(0;1,v) ~ HTHH(div,Q) + HE('U)HL“‘(Q)'

The first-order system least-squares finite element approximation reads as follows:
Minimize (1.4) among all (7,v) € X4 (T) x V(T). Since divE(T) = Py(T;R3),
we may replace f by fo = IIof in the discrete version of (3.1): Seek (oLs,urs) €
g, (T) x V(T) with

f div o1, - div 179 dz + J (Crors —e(urs)) : (C 1y — e(wp)) dz

(3.2) @ @

= —f fo-divrodz V (10,v0) € X(T) x V(T).
Q

The following proposition controls the compatibility of the traction boundary
conditions with Lemma 2.2. Let (oLs,urs) (resp., (Ls,ULs)) solve the discrete
problem (3.2) with respect to the regular triangulation 7 € T (resp., some admissible
refinement 7 € T of T).
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PROPOSITION 3.2. The universal constant Cog. = max{1,1/(4u?)}Cn with Cx
from Lemma 2.2 and any positive € satisfy
(1 —¢)LS(f;0Ls, uLs) + LS(0;01Ls — ovs, s — urs)
< LS(f;01s,urs) + Cose/e 05¢*(go, F(T'n)).

Proof. Elementary algebra proves

LS(f;ous,urs) — LS(f;oLs, urs)

= —H div(&Ls - O'Ls)HiQ(Q) - H(Cil(a'LS - O'LS) - E(aLS - ULS)HQLQ(Q)

+ QJ (f + div a'Ls) : diV(a'LS — O'LS) dx
Q

+ QJ‘ ((C_la'LS — E(ﬁLs)) : (C_I(E'Ls - ULS) — E(ﬁLs — uLs))de‘.
Q

Given the extension Tgrr € RT0(7A'; R3*3) from Lemma 2.2 with Trrv = go — go,
the function 61s — oLs — Trr € Xo(7T) is an admissible test function in the dis-
crete equations (3.2) with respect to the refined triangulation 7. This, the Cauchy—

Schwarz inequality, the Young inequality with respect to parameter 0 < ¢ < 1, and
IC 7 L2) < 1/(20) [ 7] L2(q) imply
LS(f;ous,uLs) — LS(f; oLs, urs)
PN 2 1A ~ 2
+ | div(eLs — O'Ls)HLz(Q) +]cC Y6Ls — ous) — e(tins — uLS)HL2(Q)

e 2J (f + diVa'Ls) 'diV?RT d,T + QJ\ (C_l?rLs — E(’aLs)) : (C_l‘/I'\RT d$
Q Q

< 2Hf + div aLSHL?(Q) H div ?RTHLQ(Q) +1/p “Cfl&LS - E(ﬁLS)HL2(Q)H’?RT“L%Q)

~ A ~ 42
< eLS(f;6Ls, tirg) + max{l,1/(4u?)}/e HTRTHH(div,Q)'

This and Lemma 2.2 conclude the proof with Cpg. = max{l, 1/(4/1,2)}6%. d

Let (9°,u9°) € 3g, x V denote the corresponding solution to the continuous
problem (1.1) with boundary values gg instead of g. Then, the ellipticity result from
Proposition 3.1 implies, for any (19, vg) € 3g,(7) x V(T), that

(3.3) LS(f;70,v0) = H&yo — TOHiI(diV,Q) + He(ﬁgﬂ — UO)HiQ(Q).

In order to study of the approximation behavior of the first-order system LS-FEM
(3.2), define the sets
S(LA(R%) = {f € L2 R%) : | f] L2 = 1),
Q()(T, f) = {To € EQO(T) : Hof + diVTo = O}

The quantities

T) = su inf c (9% — 1 ,
polT) fes(Le(@ura)) TeQo(TF) e Nize)

T):= sup inf |le(ud® —wv
o) = suwp -l e iz
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represent distances of certain finite element spaces to (90, 49°) and depend on the
regularity of the solution and on the way the triangulation is adapted.

The following result and its proof are motivated by the investigations in [6] about
the supercloseness of first-order system least-squares approximations to those produced
by mixed methods of saddle-point type.

THEOREM 3.3. It holds that
(3.5) | divors + Tof|}2 g, < (po(T) + E(T)) LS(f; s, urs).

Proof. Step 1. Recall fo = IIof and div ors € Po(T;R3). Let (690, 49°) € 4 xV
solve (1.1) with boundary values go replacing g and define the sphere

S(Po(T;R?)) = {qo € Po(T;R?) : |lqo]r2(0) = 1}-

For any zg € Py(T;R3), determine E € Xg and € V via the auxiliary boundary
value problem

(3.6) divE=2, and C'E—¢(n)=0 inQ.

Step 2. Let By € Xo(7T) with div Eg = 29 = div E and ng € V(7). Since
div(Zp — E) = 0, the continuous equation (3.1) with the test functions 7 =55 — 2
and v = 1y — n implies

(3.7) | (iam @) (€80 - =) - elm - m)do — .
Q
The continuous equation (3.1) with 7 = Eq and v = 1 reads

f dived° - divEgdz + J (C71a9 —g(w9°)) : (CT'Eg — e(mp)) dz
Q Q

= —J f-divEydz.
Q
The discrete equation (3.2) with 79 = E¢ and vg = 1o reads

— J divorg - divEgde — J ((C_IO'LS — €(uLs)) : (C_lao — E(’r]o)) dx
Q Q

= —J Hof . diVEO dx.
Q

The sum of the last and second to last displayed formulas plus the L? orthogonality,
(3.7), the second equation in (3.6), and divEy = zg € Py(T;R3) lead to

JQ div(e9° — o1s) - zo dx
(3.8)
=— JQ((C_lo'LS —e(urs)) : (CTHE - Eg) —e(n —no)) dz.

Step 3. Since div ors + Iy f € Po(T;R3),

H div ors + HofHLQ(Q) = eS(iu%)T o) Jﬂ(div oLs + f) - zodx
Z0 0 5

= sup J- div (oLs — 09°) - zp da.
ZQES(Po(T;R3)) Q
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The combination with (3.8) leads to

| divors + HOfHL2(Q)

[

< “(Cflo'LS — E(uLS)HL2(Q) S(iu%)T o) ”(C*l(
2Zo€ ol/;

(E,n) with (3.6)

<LS(f;‘TLSa’u'LS)l/2 sup 5 (H(Cfl(Efao)ng(Q) + He(nino)H[g(Q))
20€S(Po(T;R))
(8,m) with (3.6)

- EO) - 5(77 - nO)HLz(Q)

Recall that Eg € 3o (T) with div Eg = 29 and 1y € V(T) are arbitrary, to conclude
the proof of (3.5). 0

4. Quasi-optimal adaptive algorithm.

4.1. Alternative a posteriori error estimator. Let (oLs, urs) solve the dis-
crete equations (3.2) and let n*(T) = Y pc7 n*(T, T) denote the alternative a posteriori
error estimator with

772(7, T) = |T|2/3H divsym(C_laLs”iQ(T) + |T|2/3H curl (C_zo'LsHiz(T)
+ |T\l/3 Z H [symC oL — E(ULS)]FVFHiz(F)
FeF(T)\F(T'p)
4.1
( ) + ’T‘l/g 2 H[Cil(CilULs — E(uLs))]F X VF”i,Q(F)
FeF(T)\F(I'n)
1/3 2
+7] DI Ay
FeF(T)nF(I'x)

All the terms in the estimator (4.1) except the last one appear nonstandard in the scaling
with the compliance tensor. They do, however, arise naturally from the treatment of
the least-squares formulation in section 5.

4.2. Efficiency. The discrete test function technology due to Verfiirth [27] leads
to local efficiency of the estimator 7 from (4.1) in the following sense.

THEOREM 4.1 (efficiency). It holds that
2
772(7-) + ”f - HOfHL2(Q) < LS(f;o-LSauLS) + OSCQ(Q,‘F(FN))'

Proof. The corresponding arguments from [12] and [8] can be adopted immediately
and further details are omitted. |

4.3. Adaptive algorithm (ALS-FEM).
Input: Initial regular triangulation 7y with refinement edges of the polyhedral domain
Q into closed tetrahedra and parameters 0 <0 < 1,0 < p < 1,0 < kK < 0.
for any level £ =0,1,2,... do

Solve LS-FEM (3.2) with respect to regular triangulation 7; with solution (o, us)

and the piecewise constant best-approximation f, := I, f on 7.

Compute n(T) == (T, T) from (4.1) for all T € Ty and set 7 = n*(Tr).

if CASE A |f — ng%Z(Q) < kn7 then

Select a subset M, € Ty of (almost) minimal cardinality |M,| with

On <mi(Mq) = > ni(T).
TeM;
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Compute smallest regular refinement Ty of Tp with M, € T;\Tz4+1 by NVB.
else (CASE B s} < |f — fZH%%Q))
Compute an admissible refinement 7y 1 of Ty with (almost) minimal cardi-
nality |Teq1| and [ f — for1lz2) < plf — felr2@)- fi od
Output: Sequence of discrete solutions (o7, w¢)ren, and meshes (7¢)een, -

Remark 4.2 (Case B). The thresholding second algorithm (TSA) of [2, sect. 5]
is one possible realization of an optimal refinement in Case B of ALS-FEM. Any
other (quasi-)optimal algorithm for the data error reduction may be employed in the
algorithm and in the analysis.

4.4. Quasi-optimal convergence. The main result of this paper involves, for
any given 0 < s < o0, the notion of approximation classes Ay which consist of all pairs
(u, f) € A x L?(Q;R3) such that

|(u, £)|°, = sup N*E(u, f,N) < o

NeN
with the best possible error
E(u, f,N):= mi i LS(f; T, + osc?(g, F(Tx))).
(, £, V) Tgﬂlr?zlw<m,vLS>e§glir(lT)ngo<T>( (fimus, vs) + osc(g, F(I))

THEOREM 4.3. There exists a maximal bulk parameter 0 < 0y < 1 and mazimal
separation parameter 0 < kg < 00 which depend exclusively on Ty such that for all
0 <0 <0, for all0 < k < kg, for all0 < p <1, and for all 0 < s < 0, the output
(o¢,up)e of ALS-FEM with (u, f) € As satisfies

2

sup (172] = |T])" (LS (£ 0, ue) + 05¢*(g. Fo(T))) ' < Coopt|(, )] -

The constant Cqopt < 0 depends only on the initial mesh Ty the constant s and the
parameters p, 0, and k; all the parameters ko, Oy, and Cyopy are A-independent.

The proof of the converse inequality “2” is discussed in [15, Thm. 2.1.b] with
arguments applicable to the situation at hand.

4.5. Axioms of adaptivity. This section summarizes the convergence analysis of
[15] based on the axioms (A1)-(A4), (B1)-(B2), and (QM) for the proof of Theorem 4.3.
The axioms (A1)-(A3) and (B2) concern an admissible refinement 7 € T of an arbitrary
triangulation 7 € T and the associated discrete solutions (s, urs) and (oLs, uLs)
to the discrete equations (3.2) in the definition of the distance

w2 (T, T) = | div(rs — o1s) 2 )
. + H(C_l(a'Ls —org) —e(tuLs — ’U/LS)HiQ(Q) + osc2(§0,]-'(FN)).

For any subset M < T, let n*(T, M) == Y7\, n*(T,T) abbreviate the sum over the
corresponding error estimator contributions from (4.1). In particular, n?(7T) = n*(T,T).
Let u(T) = | f — o f|r2(q) with the L? projection ILy on Py(7T;R?).

THEOREM 4.4 (stability and reduction). It holds that
(A1) (T, T AnT)=n(T, T nT)| < AT, T),
(A2) (T, TNT) < pan(T, T\T) + Aa6 (T T).
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Proof. The proofs of (A1)-(A2) are straightforward from [10, 8, 12]. |
The proof of the discrete reliability IR < T with T\T < R, |R| < [T\T], and

(A3) ST, T) < As(*(T,R) + 1(T)) + Asn(T)

is postponed to section 5.
The quasi-orthogonality concerns the outcome (7¢)sen, of the algorithm ALS-FEM.

(A4) Z (Tisrs Tie) < Aa(?(Te) + 12 (Te))

follows directly from (A1)-(A2), the following theorem, and [15, Thm. 3.1].

THEOREM 4.5 (quasi-orthogonality with € > 0). For any sequence of successive
admissible refinements To, T1,--- € T and all positive e, there exists a generic constant

Ay(e) = 1 with

+m

Z (62(77€+1777€) - aLS(f;ak,uk)) < A4(5) (772(72) + Hf - f@”iz(g))

k=/{

Proof. For all k =/,...,¢+ m and positive ¢, Proposition 3.2 proves

(1 —&)LS(f; 0541, upr1) + LS(0;0041 — Ok, Upr1 — up)
< LS(f; 0k, up) + Cosc/e osc2(gk+1,]-"k(FN)).

The orthogonality of the boundary data oscillations leads to

05¢?(gry1, Fr(I'n)) + 0sc?(g, Fry1(Tn)) < osc?(g, Fu(T'x)).

Consequently,

6*(Tig1, Tr) — eLS(f; Oky1, ry1)
< LS(fion,uk) — LS(f; 0511, Uky1)
+(1+ Cosc/s)(oscz(g,fk(FN)) — osc2(g,}"k+1(FN))).

The telescoping sum over all k = ¢,...,¢ + m and the reliability from Corollary 5.2
conclude the proof with Ay(g) == 1+ Ciel + Cosc/c. O

The subsequent assumptions (B1)—(B2) transfer directly from [15] to the situation
at hand in three components for the TSA plus completion (called APPROX in [14]).
(B1) Rate s data approximation. VTol > 0, T, = APPROX(Tol, u(K) : K €
7o) € T satisfies |Tro1| — | To| < AsTol 3 and 12 (T11) < Tol.
(B2) Quasi-monotonicity of p. (7)< Agu(T).
Since /A\g may be large, the following result is required and proven explicitly.

THEOREM 4.6 (quasi-monotonicity of n + u). It holds that

QM) n(T) + w(T) < Ar(n(T) + w(T)).

Proof. The efficiency from subsection 4.2 plus Proposition 3.2 and the reliability
from Corollary 5.2 prove (QM). d
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5. Discrete reliability. Let 7 € T denote an admissible refinement of 7 € T with
respective discrete solutions (oLs, tLs) and (oLs, urs) to (3.2). Recall the definition
of 6(7A', T) from (4.2). Let R={KeT : 3K’ € ’7'\7A', K n K’ # ¢} be one layer of
simplices around and including T\f' This set satisfies |R| < \T\ﬂ

THEOREM 5.1 (discrete reliability). It holds that

(5.1) P(T.T) S A (T R) + | f — ol rary + LS(F; Grs, ins)-

(D)

The discrete reliability and the plain convergence of the LS-FEM imply reliability
of the error estimator n(7) in the following sense.

COROLLARY 5.2 (reliability). For any admissible triangulation T € T with dis-
crete solutions (ors,urs) € Xg,(T) x V(T) to (3.2), it holds that

(5.2) LS(f;ous,urs) < Cra(n*(T) + || f — foHiz(Q))-

Proof. The proof of [8, Cor. 4.4] relies on the discrete reliability (5.1) with T
replaced by successive uniform refinements of 7 and applies literally to the situation
at hand. The convergence of the LS-FEM in the limit as the maximal mesh-sizes tend
to zero proves (5.2). O

Proof of (A3). The combination of the estimate (5.1) with (5.2) and |R| < [T\ T]|
proves (A3) from subsection 4.5. 0

The remaining part of this section is devoted to the proof of Theorem 5.1 and
utilizes the abbreviations

0 =013 —oLs and e:=ULs — ULS.

Three intermediate solutions to the auxiliary problem from subsection 2.4 are
important. Let Trr € 3o(7) and T € Xo(T) satisfy

divrrr = div 7y = I div 4.
Let Trr € RTo(T;R3*3) satisfy
divTrr =divd and Trrv =go—go onIy.
The stability estimate (2.6) and Lemma 2.1 lead to

(5.3) HTRTHH(div,Q) + H:’:l;tTHH(div,Q) < Mo div‘s”Lz‘(Q) and
' H?RTHH(diV,Q) < diV‘s”L’z(Q) + osc(go, F(I'n)).

The analysis of 62(’%, T) departs with elementary algebra.
LEMMA 5.3. There exists some By € No(’?\'; R3*3) with

HBNHB(Q) S H(SHH(diV,Q) + osc(go, F(I'n))  and
LS(0;8,€) = (1 — Tho) div G| ;2

(5.4) ; L(C*é —e(e)) : (C™ (Fur — Fip)) da

+ J ((C710'Ls —e(urg)) : (e(e) — c! curl@N) dz.
Q
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Proof. Step 1. Since div g = div d, the discrete equations (3.2) with respect to
the triangulation 7 and the test functions 7,5 = Trr and vrs = 0 read

(5.5) f (fo + div O'LS) -divddx + f ((C_lo'Ls — E(uLs)) : (C_lTRT dx = 0.
Q Q

The same arguments with respect to T, 7.5 = 8 + Tjip — Trr, and vr,g = e show

f (fo + divers) - T div & da

(5.6) @

+ f (C_1&LS — E(’aLs)) : (C_1(6 + ?gT — ?RT) — s(e)) dx = 0.
Q

The summation of (5.5) and LS(0; 4, e) leads to

L5(0;6,e) = | div 6”12(52) +f (C'6Ls —e(tips)) : (C16 —e(e))dx
Q
(5.7) + J (fo+divors) - divddz
Q

- L(C_l%s ~e(urs)) : (C(6 — 7ar) — e(e)) do.

A~

Step 2. Since prr = 0 — Trr + Tpyr — Trr € Xo(7) is divergence-free with
prrv = 0 on 'y, Proposition 2.3 yields existence of some By € No(7T;R™*™) with

PRT = curl@N in Q, curl,@N -v=0 only, and HIGNHL2(Q) S HpRT||L2(Q).
This, the triangle inequality, and the stability estimates (5.3) imply

185] 120y = lorr 200y <6200y + [TRT = T 120 + [ 787 2
<620 + (1 = THo) div 8], ) + [Modiv ], ) + 0sc(go, F(I'n))
S HJHH(div,Q) + 0s¢(go, F(I'n))-

(®) )

Step 3. The split C*(d —7rr) = C'prr —C~ (T — Trr), elementary algebra,
and (5.7) prove

LS(O;&,E) = H le(SHiQ(Q) + J (C’IGLS — E(ﬁLs)) : ((Cfl(é + :’-\I:T — ?RT) — e(e)) dx
Q
+ f (fo+divors) - divddz + J (Clops — e(urs)) : (e(e) — C ' prr) dz
Q Q

+ J (C7'6 —e(e)) : CH(Frr — Tiip) da.
Q

The equation (5.6) plus elementary algebra with the L? orthogonal projection ITj
conclude the proof. O
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LEMMA 5.4. It holds that

J (Clops — e(urg)) : C ' curl By da
Q

< Cl(H(SHH(div,Q) + o0sc(go, F(I'n))) ( Z <|T’2/3‘ curl C%org H;(T)

TeR

1/2
+ 2 }T‘1/3H “loLs —e(uLs))]r x V”L?(F))) :

FeF(T)
Proof. The operator I : No(T;R3*3) — No(T;R3*3) satisfies [28, Thm. 4.1]
(58) (1 - IN)’@N =0 on any KeR and HIN'BN”H(curI,Q) S ”ﬁNHH(curl,Q)'

The quasi-interpolation operator Sy : H(curl, Q; R3*3) — No(T;R3*3) from [24,
Thm. 1] allows for a split (5.9) and a local approximation error estimate (5.10)

(5.9) (1-S)(1-IN)Bx=Vo+2

for some ¢ € HE () and z € HL(Q;R3) and for every K € T with Qp = (J{T €T :
T ~n K # ¢} that

(5.10) HhEleLzu«) +| DZ”L?(K) < | eurl(1 _IN)ﬁAN”m(QK)'
Since curl BN € RT,(T;R3*3) is divergence-free, the discrete equations (3.2) imply
JQ((CAULS —e(upg)) : Cteurl By da
_ L C Y (C ors — e(urs)) : curl(l — Sn)(1 — Zn)Bx d.

The combination of the locality (5.8) of Zy [28, Thm. 4.1(1)] and the local estimate (5.10)
proves, for any K € R and any F'€ F(K), z=01in K and z =0 on F in the sense of
traces. This, (5.9) and an integration by parts result in

f CHCloLs — e(urg)) : curl(1 — Sx)(1 — IN)ﬁAN dx
Q

= Z J CHCloLs — e(urg)) : curl zdx

TeT VT
= 2 J curl C201g : zdx
TeT
+ Z J HCloLs — e(urs)) x v]F @ zds
FeF\F(Tp)
= Z J curlC%0pg : zdz
TeR YT

+ Z f [CH(Clops — e(urs)) x V]F : zds.
FeF(R\F(Tp)  F
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A Cauchy—Schwarz inequality and (5.10) prove, for every T € R,

f curl C %o1g : zdz
T

< [hr curlC 201 ”L?(T) Hhi—"leL2(T)

< |hr curlC_ZaLs”Lz(T) | curl(1 — IN)BNHLQ(QT).

A Cauchy-Schwarz inequality, a trace inequality, and (5.10) show, for every F €
FRN\F(p), that

f [CHC'oLs —e(urs)) x v]p : 2ds
F
< W2 C ors — eluns)) x v]e] o | el — Tx)Bx] -

The bounded overlap of the patches (Qr : T € R), the stability estimate (5.8), and
(5.4) conclude the proof. 0

Remark 5.5. The quasi-interpolation operator Zx has been established for arbitrary
polynomial degrees in [28, Thm. 4.1] and allows for the generalization of Lemma 5.4
to higher-order discretizations.

Proof of Theorem 5.1. Step 1. Since go|x = go|x for all K € T A T,

(5.11) osc?(go, F(TN)) = Z or||go — QoHiz(F) <} (T, R).
FeF(T\T)

Step 2. Step 1 and the stability estimate (2.6) yield a generic constant Co ~ 1
with
H(C_l(?RT — ?;{T)HLZ(Q) < Cy (H(l — Ho) div 6“L2(Q) + 77(T, R))

This, Lemma 5.3, the Cauchy—Schwarz inequality, and the upper bound |C~1§ —
e(e)|r2(q) < LS(0;8,e)/? imply

LS(0;4,e) < (1 — o) div 8] 1

(5.12) +CoL5(0;6,€)"([[(1 = o) div 8o ) + n(T, R))

(@)
+ J (Cows — (uws)) : (e(e) — C " curl By) da.
Q

Step 3. Let Je € V(T;R3) denote the Scott—Zhang quasi-interpolation of e. For
every node z € A in the construction of the quasi-interpolation [25, sect. 2], choose

E € &(w.) such that E€ & n &, whenever possible. This ensures for the error function
(5.13) (1-J)e=0 onT\T,
i.e., (1 — J)e vanishes on any triangle T € T 7 and on any of its faces F € F(T)

in the sense of traces. The first-order approximation property [25, eq. (4.3)] and the
stability property [25, Thm. 3.1] read

G14) (TP = Del oy + DA = Del gy, < [Del oy
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(a) Nodal patch w, (b) Enlarged triangle patch Qp

F1ac. 5.1. Patches.
for the enlarged triangle patch Qp = UzeN(T) w, of Figure 5.1. The discrete equa-
tions (3.2) imply

JQ((C_lo'LS —e(urg)) : e(Je)dz = 0.

This, an integration by parts, and (5.13) prove

L(«:—lm ~ e(urg)) : e(e) da

_ L(c*m ~ elurs)) : (1 — T)e) dz

= Jﬂ(sym Clors —e(urs)) : D(1 — J)edx
= :I;TJT(div symC  org) - (1 — J)eds

+ Z f [(sym(Cflo'Lg — E(’U,Ls)) . VF]F (1 — J)e ds
FeRA\F(p) ¥

= Z J (divsym C'org) - (1 — J)edx
~JT
TeT\T

+ 2 J [(symC lors — e(urs))vrlr - (1 — J)eds.
FeF(M\T\F(Tp) ~

A Cauchy-Schwarz inequality followed by approximation and stability properties of
the quasi-interpolation from (5.14) prove, for every T e T\T, that

J (divsym Ctoys) - (1 — J)edx
T
< |hr diVSymC_laLSHm(T) |nzt (1~ ‘7)8HL2(T)

< | hr div Sym(CAULSHL‘Z(T) |D 6HL2(QT)'
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A Cauchy-Schwarz inequality, a trace inequality, and (5.14) show, for every F €
F(M\T)\F(Tp), that
J [(symC tops — e(urs))v]r - (1 — J)eds
F

< Hh%F/Q[(Sym Clows — E(ULS))V]FHLQ(F) ” De”L?(QT)'

The bounded overlap of the patches (Qr : T € 7'\7@) in the two previously displayed
formulas and the estimate [|e[|? < LS(0;4,e) + osc?(go, F(I'n)) = 6%(T,T) show

L(c—lm — e(urs)) : e(e) do

<oga<%,r>( 5 (|T|2/3|divsymc—lmﬁzm
(5.15) gt

1/2
+ Z ’T‘l/gn[(sym(c_lULs —E(ULS))V]FH2L2(F)>> ‘
FeF(T)nF(Q)

Step 4. The triangle and Young inequalities and the L? orthogonality of IT,
prove

1 ~ P
§H(1 —Iy) diVULSHiz(Q) <|f- HOfHZL?(Q) + (1= Tho)(f + leULS)HiZ(Q)

<|f- HOin,?(Q) + LS(f;0Ls,uLs)-

Step 5. The combination of (5.12) with Lemma 5.4 and Step 3 reads
L8(0;6,€) < (1~ o) div8[7. ) + C1 (18] 1 ) + 05¢(G0 F(T1))

X ( Z <T|2/3| curlC_QaLsHiz(T)

TeR

1/2
+ 2 |T}1/3H (C oLs — e(urs))]r x VHL2(F ))

FeF(T)

+ C2L5(0:8, €)' ([[(1 — Tho) div 8] o ) +0(TR))

+cga<ﬁf>< 5 (mw|divsym@—1m|;m
TeT\7A’

1/2
+ ) |T\”‘°’U[<sym<clm’=‘<“LS””]F”?2<F>>>'
FeF(T)nF(Q)

Steps 1 and 4 plus some standard rearrangements with the Young inequality conclude
the proof. ]
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