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Chapter 3
On Evolutionary Γ -Convergence
for Gradient Systems

Alexander Mielke

In memory of Eduard, Waldemar, and Elli Mielke.

Abstract In these notes we discuss general approaches for rigorously deriving limits
of generalized gradient flows. Our point of view is that a generalized gradient system
is defined in terms of two functionals, namely the energy functional Eε and the
dissipation potential Rε or the associated dissipation distance. We assume that the
functionals depend on a small parameter and that the associated gradient systems
have solutions uε. We investigate the question under which conditions the limits u of
(subsequences of) the solutions uε are solutions of the gradient system generated by
the Γ -limits E0 and R0. Here the choice of the right topology will be crucial as well
as additional structural conditions. We cover classical gradient systems, where Rε is
quadratic, and rate-independent systems as well as the passage from classical gradient
to rate-independent systems. Various examples, such as periodic homogenization, are
used to illustrate the abstract concepts and results.

3.1 Introduction

This work is devoted to the study of evolutionary systems of the form u̇ = V ε(u),
u(0) = u0

ε depending on a small parameter ε, which may arise as a microscopic
length scale. The aim is to find effective equations such that any suitable limit u of
solutions uε satisfies the effective model u̇ = V 0(u). We are interested in cases where
the dependence on the parameter is singular, i.e. the dependence ε → V ε(v) is not
continuous, but we still hope that the solutions uε have a limit. Thus, our results on
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188 A. Mielke

microscopic system ε → 0 macroscopic system
u̇ε = Vε (uε ) u̇ = V 0(u)

initial state u0
ε

upscaling−−−−−→
ε

u0

time evolution ↓ ↓
time t > 0 uε (t) = Sε (t,u0

ε )
upscaling−−−−−→

ε
u(t) = S0(t,u0)

Fig. 3.1 Illustration of upscaling and semigroup convergence, if Mε = id

evolutionary Γ -convergence can be seen as singular limits in the sense of [19]. As
in the case of static Γ -convergence, the aim is to derive effective limit equations that
still capture the main effects of the original model with 0 < ε � 1, but are simple
in the sense that they do not longer include the small scales, and hence are easier to
analyze or to solve numerically.

We emphasize that the justification of such multiscale limits corresponds to
showing that it is possible to interchange the time evolution uε(0) � uε(t) =
Sε(t, uε(0)) with the limit in ε → 0. More precisely, we have to show that the dia-
gram in Fig. 3.1 commutes, i.e. we have to prove that

lim
ε→0

Mε ◦ Sε(t, ·) = S0(t, lim
ε→0

Mε(·)), (3.1.1)

where Mε denotes a suitable upscaling operator, which in most of our cases is simply
given by id. In the latter case we say that the evolution equations u̇ = V ε(u) semi-
group converges to u̇ = V 0(u). In principle the justification of this limiting process
can be done directly on the (partial) differential equation u̇ε = V ε(uε).

However, in this work we will concentrate on special evolutionary systems,
namely generalized gradient system (X,E ,R). This triple consist of a state space
X containing the states u, which is usually a Banach space X , a closed subset, or
even a metric space. The driving functional E : X → R := R ∪ {∞} is usually a
(free) energy or the negative of an entropy. The function R : X × X → [0,∞] is
called dissipation potential, which means that R(u, ·) is lower semicontinuous (lsc),
proper, and convex and thatR(u, 0) = 0. Here ∂u̇R(u, u̇) gives the dissipative force,
while −DE (u) is the potential restoring force. Using the dual dissipation potential
R∗(u, ξ) (cf. Sect. 3.2.3) we can write the gradient flow induced by (X,E ,R) in
three equivalent forms

0 = ∂u̇R(u, u̇)+ DE (u) force balance, Biot’s equation

u̇ = ∂ξR
∗(u,−DE (u)) rate equation, Onsager system

R(u, u̇)+R∗(u,−DE (u)) = −〈DE (u), u̇〉 power balance

IfR(u, ·) is quadratic, i.e.R(u, v) = 1
2 〈G(u)v, v〉 andR∗(u, ξ) = 1

2 〈ξ, K(u)ξ 〉with
K = G

−1, we call (X,E ,R) a classical gradient system , and the evolution equations
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3 On Evolutionary Γ -Convergence for Gradient Systems 189

read

u̇ = V (u) = −K(u)DE (u) ⇐⇒ 0 = G(u)u̇ + DE (u). (3.1.2)

The focus of this work is to derive sufficient conditions for semigroup convergence
for the special class of evolutionary systems that are induced by generalized gradient
systems. The emphasis is on methods that fully exploit the gradient structure. In
particular, it is desirable to derive sufficient conditions on the convergence of the pair
(Eε,Rε) to effective functionals (E0,R0) such that (X,Eε,Rε) semigroup converges
to (X,E0,R0) in the sense of (3.1.1) with Mε = id.

We also emphasize that there is a rich literature on semigroup convergence for
general evolutionary systems u̇ + Aε(u) = 0 that often use that Aε is defined via
a maximal monotone operator on a fixed Banach space X (see e.g. [11, Theo-
rem 3.18], [4, Theorem 3.74], and the discussion in [72]), which includes classical
gradient systems Gu̇ = −DEε(u) if the dissipation potentialRε(u, v)= 1

2 〈Gε(u)v, v〉
is independent of u and ε. Note that writing the system in the form u̇ + Aε(u) = 0
with Aε(u) = Kε(u)DEε(u) the monotonicity for all ε ∈ [0, 1] is lost if working with
a fixed Hilbert-space norm.

For gradient systems it is also important to keep track of the energies Eε(uε(t))
along the solutions and to control their convergence in the limit ε → 0. In analogy
to the notion of static Γ -convergence (cf. [8, 14] or Sect. 3.2.2) we then follow the
naming suggested in [69] and speak of evolutionary Γ -convergence for gradient
system.

More precisely, we introduce two notions of evolutionary Γ -convergence depend-
ing of whether we need control of the energy at the initial time or not. We define the
statements

S(t) = “
(

uε(t)→ u(t)
)
” and E(t) = “

(
Eε(uε(t))→ E0(u(t))

)
”.

Then, semigroup convergence simply means “S(0) =⇒ ∀ t > 0 : S(t)”. For gradi-
ent systems we will use the following two definitions for evolutionary
Γ -convergence:

E-convergence, written (X,Eε,Rε)
E→ (X,E0,R0) :

S(0) =⇒ ∀ t > 0 : S(t) and E(t);
well-prepared E-convergence, written (X,Eε,Rε)

pE→ (X,E0,R0) :
S(0) and E(0) =⇒ ∀ t > 0 : S(t) and E(t).

Here the letter “E” stands for both ‘E’volutionary as well as ‘E’nergy convergence.
In the second definition the assumptions S(0) and E(0) at t = 0 are called well-
‘P’reparedness of the initial conditions. Clearly, well-prepared E-convergence is
implied by the stronger E-convergence, since the latter has a weaker assumptions at

t = 0, whereas the conclusions for t > 0 are the same. We also use the notations
E
⇀
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190 A. Mielke

and
pE
⇀ if the convergences in S(0) and S(t) is replaced by the weak convergence

in X .
In Sect. 3.2 we give preparatory work including the basic modeling ideas of

gradient systems (Sect. 3.2.1), basic facts about and a few examples for weak and
strong Γ -convergence, Mosco and continuous convergence including the relations
with the Legendre transform (Sects. 3.2.2 and 3.2.3), and finally some examples of
gradient systems that are used to illustrate the abstract theory in this work or that
highlight the development of the general field (Sects. 3.2.5–3.2.8).

The main Sects. 3.3–3.5 are devoted to the question, which types of conver-
gences Eε � E0 and Rε � R0 are sufficient to guarantee that the gradient system
(X,Eε,Rε) evolutionary Γ -converges to the limit system (X,E0,R0). In Sect. 3.3
we will discuss convergence results based on the energy-dissipation principle (EDP),
also called De Giorgi’s (R,R∗) formulation:

Eε(uε(T ))+
T∫

0

Rε(uε, u̇ε)+R∗
ε

(
uε,−DEε(uε)

)
dt = Eε(uε(0)). (3.1.3)

This formulation was the starting point of the fundamental paper [69], see also
[71], where the crucial conditions for well-prepared E-convergence are given by
suitable liminf estimates for Rε and R∗

ε (·,−DEε(·)), respectively. We formulate a
corresponding result on evolutionary Γ -convergence in Theorem 3.3.3 and present
the more restrictive Theorem 3.3.2, which is based on Mosco convergence and was
developed in [72, Theorem 7.2]:

Eε
M−→ E0 and Ψε

M−→ Ψ0 =⇒ (X,Eε, Ψε)
pE→(X,E0, Ψ0).

We continue to use the notation Ψε for the special case of dissipation potentials Rε

that do not depend on the state variable u, i.e. Rε(u, v) = Ψε(v). Such Rε are also
called translation invariant.

The result in [72] is based on a version of the Brézis-Ekeland principle that
strongly uses that the translation invariance and the convexity of the energies E (t, ·).
We present the approach developed in [51] which is based on the EDP (3.1.3) and
works for general dissipation potentials Rε.

These abstract convergence results are applied to various examples in Sect. 3.3.5,
in particular, to periodic homogenization of parabolic equations, to Tartar’s ODE
example u̇(t, x) = −a(x/ε)u(t, x), and to the passage from a wiggly-energy system
with small viscous dissipation to a rate-independent hysteresis model.

In Sect. 3.4 we show that under certain conditions the differential form of gra-
dient systems is equivalent to an evolutionary variational inequality (EVI) that is
formulated solely in terms of u, E , and R, and does not contain any derivatives, i.e.
u̇ and ∂E do not occur. In the case of convex energies Eε and a translation invariant,
quadratic dissipation potential Rε(u, v) = Ψε(v) := 1

2 〈Gεv, v〉 it takes the simple
form of the Integrated Evolutionary Variational Estimate (IEVE)λ=0:
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∀ s < t, w ∈ X : Ψε(u(t)− w)− Ψε(u(s)− w) ≤ (t − s)
(
Eε(w)− Eε(u(t)

)
.

(3.1.4)

This formulation is a variant of Bénilan’s integral solutions (cf. in [6]) for the Banach-
space setting R(u, v) = 1

2‖v‖2
X , while the setting of metric spaces (Q,D) is dis-

cussed extensively in [2, 70], see Sect. 3.4.3 for the general form of the IEVE for
geodesically λ-convex gradient systems on a geodesic space (Q,D). Since only the
functionals (but not their derivatives) appear, the IEVE formulation is particularly
useful for passing to the limit ε → 0. However, it again relies on a uniform convex-
ity condition and is restricted to the case of classical, but possibly metric gradient
systems. A simplified variant of the general result on E-convergence from [70] is
given in Theorem 3.4.3:

Dε
C−→ D0 and Eε

Γ−→ E0 =⇒ (Q,Eε,Dε)
E→(Q,E0,D0),

where
C−→ means continuous convergence, see (3.2.7). We emphasize that this

E-convergence does not need well-preparedness of the initial conditions.
The final Sect. 3.5 is devoted to rate-independent systems (X,Eε,Rε), which are

a special case of generalized gradient flows where the dissipation potential is pos-
itively homogenous of degree 1 in the rate, i.e. ∀ γ > 0, u, v ∈ X : Rε(u, γ v) =
γRε(u, v). As in the case of classical gradient systems, the dissipation potential
generates a dissipation distance D : X × X → [0,∞] leading to an energetic rate-
independent system (X,E ,D). In fact, one does not need a Banach-space structure
and can work on general topological spaces Q with a suitable metric D . A function
u : [0, T ] → Q is called energetic solution for (X,Eε,Dε) if (S) and (E) hold:

(S) Eε(t, u(t)) ≤ Eε(t, w)+Dε(u(t), w) for all t ∈ [0, T ] and w ∈ Q, (3.1.5)

(E) Eε(T, u(T ))+ DissDε
(u, [0, T ]) = Eε(0, u(0))+

T∫
0

∂sEε(s, u(s))ds (3.1.6)

with DissDε
(u, [0, T ]) = sup

∑N
j=1 Dε(u(t j−1), u(t j )), where the supremum is taken

over all N ∈ N and all partitions 0 = t0 < t1 < · · · < tN−1 < tN = T . Again, we
have a derivative-free formulation such that evolutionary Γ -convergence can be
easily connected to Γ -convergence of the energies Eε and of the dissipation distances
Dε. We present some simplified versions of the results in [37, 55]. Theorem 3.5.1
reads

Dε

C
⇀ D0 and Eε

Γ
⇀ E0 =⇒ (Q,Eε,Dε)

pE
⇀(Q,E0,D0).

If the energy is quadratic, i.e. Eε(t, u) = 1
2 〈Aεu, u〉 − 〈
ε(t), u〉, and Dε(u1, u2) =

Ψε(u2 − u1) on a Hilbert space H , we can weaken the convergence for Ψε slightly
(cf. Theorem 3.5.2):
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Ψε
C−→ Ψ0, Ψε

Γ
⇀ Ψ0, and Eε

Γ
⇀ E0 =⇒ (H,Eε, Ψε)

pE
⇀(H,E0, Ψ0).

As we see from the above results, it is often necessary to have the rather strong
Mosco convergence to establish the desired E-convergence of the whole gradient
flow. At first glance, such a result looks quite restrictive; however, we made the
experience that a proper understanding of the properties (like microstructure or sharp
interfaces) of the solutions of (X,Eε,Rε) is needed even in more direct approaches.
Using that knowledge it is often possible to find a suitable blowup or unfolding of
the microstructure that turns the usual Γ -convergence into Mosco convergence. A
typical example is that of replacing homogenization by two-scale homogenization,
as was done in [58] for rate-independent elastoplasticity.

Throughout this survey, we try to give the main themes and to highlight the
principal approaches. Hence, we are not always able to give the full details or the
optimal results. Moreover, we may not always list all the implicit assumptions, so in
any case of doubt the original papers should be consulted.

3.2 Gradient Systems and Γ -Convergence

We first define our notion of gradient systems in the sense of modeling. Then, we
recall the main definitions for (static) Γ -convergence and discuss a few properties
needed especially for the evolutionary context, such as the relation to Legendre trans-
forms. The definitions of evolutionary Γ -convergence are discussed in Sect. 3.2.4,
and finally we give some examples that will be used later to highlight different aspects
of the theory.

3.2.1 Gradient Systems from the Modeling Point of View

To begin with, we start from the case that the state space is a smooth (finite-
dimensional) manifold X such that at each state u ∈X the tangent space TuX
and its dual space T∗uX = (TuX )∗, the so-called co-tangent space, are well defined.
For the modeling it is important to distinguish the states u, the rates or velocities
v = u̇ ∈ TuX , and the (thermodynamically conjugate) forces ξ ∈ T∗uX . We denote
by 〈ξ, v〉 the dual pairing between T∗uX and TuX . By TX we denote the tangent
bundle ∪u∈X (u, TuX ).

A gradient system is a triple (X ,E ,R) with a state space X as above, a smooth
energy functional E : [0, T ] ×X → R, and a dissipation potential R : TX →
[0,∞], i.e.R depends on the state u and the rate u̇. A functionR is called dissipation
potential, if for all u ∈X , the function R(u, ·) : TuX → [0,∞] is convex, lower
semicontinuous, and satisfies R(u, 0) = 0.

We consider ξ = DuE (t, u) ∈ TuX ∗ as (the negative of) the potential restoring
force generated by the energy E , while ∂tE (t, u) ∈ R will be called the power of
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the external forces. The partial derivative η = Du̇R(u, u̇) ∈ T∗uX is the dissipative
force induced by the changes of u. The induced evolution of the gradient system
(X ,E ,R) is now given in terms of the force balance also called Biot equation (see
e.g. [7, Eq. (2.14)])

0 = Du̇R(u(t), u̇(t))+ DuE (t, u(t)) ∈ T∗u X . (3.2.1)

In the simplest case the dissipation potential is a quadratic form R(u, v) =
1
2 〈G(u)v, v〉 giving a linear constitutive law η = G(u)u̇, which is usually called
viscous dissipation. We call these systems classical gradient systems and also write
(X ,E , G) or (X ,E , K). If R(u, ·) is nonquadratic we call (X ,E ,R) a gener-
alized gradient system. See [49] for a natural occurrence of generalized gradient
systems obtained via a large-deviation principle and Sect. 3.5 for rate-independent
systems, which are characterized by the fact that R(u, ·) is positively homogeneous
of degree 1, see (3.5.1).

In the classical case we can invert the operator G(u) and solve for u̇ to obtain a
rate equation, which we also call Onsager equation (cf. [62, Eq. (1.11)])

u̇(t) = −K(u(t))DuE (t, u(t)) ∈ Tu X, where K(u) = G(u)−1. (3.2.2)

We call K(u) the Onsager operator to honor Onsager’s seminal contributions to the
thermodynamics of dissipative processes, cf. [61, 62]. For systems that are always
close to local thermodynamic equilibrium, he derived that the relation u̇ = f (ξ)

between the thermodynamic driving force ξ and the rate must be linear, i.e. u̇ = Kξ

with a symmetric and positive semidefinite K, where “K = K
�” are his famous

reciprocal relations. In his setting ξ = DS (u) with S denoting the entropy.
In a more general setting, we use the dual dissipation potential R∗(u, ξ), which

reads R∗(u, ξ) = 1
2 〈ξ, K(u)ξ 〉 in the quadratic case and is defined in (3.2.13) for the

general case, to write the rate equation in the form

u̇(t) = DξR
∗(u(t),−DuE (t, u(t)

) ∈ Tu X . (3.2.3)

In principle, Eqs. (3.2.1) and (3.2.3) are equivalent, but depending on the context
one may prefer one over the other. For the gradient structures for time-continuous
discrete Markov chains (see [40]) or the reaction-diffusion systems (see [28, 44, 46])
it is crucial that R∗ (or the Onsager operator K(u)) is a sum of different dissipative
effects. Thus, K(u) is explicit, whereas G(u) or R(u, ·) are only implicitly defined.

An important feature in modeling is energy conservation, when taking the dissi-
pation properly into account. For this it is important to realize that the dissipation
potential is usually different from the dissipation functions Φ(u, u̇) or Φ∗(u, η),
where

Φ(u, u̇) = 〈Du̇R(u, u̇), u̇〉 and Φ∗(u, ξ) = 〈η, DξR
∗(u, ξ)〉.
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For quadratic functions we have Φ = 2R and Φ∗ = 2R∗, but in general there is no
such identity. Along solutions of (3.2.1) or (3.2.3) the chain rule gives

d

dt
E (t, u(t))− ∂tE (t, u(t)) = 〈DuE (t, u(t)), u̇(t)〉 = Φ(u(t), u̇(t)), (3.2.4a)

where Φ(u(t), u̇(t)) = Φ∗
(
u(t),−DuE (t, u(t)

)
= R(u(t), u̇(t))+R∗(u(t),−DuE (t, u(t)

)
.

(3.2.4b)

For the latter relation we refer to the Legendre-Fenchel equivalence discussed in
Proposition 3.2.2.

Integrating (3.2.4a), with Φ replaced by R +R∗ as in (3.2.4b), over t ∈ [0, T ]
we find a balance between the energies and the dissipation, namely

E (T, u(T ))+
T∫

0

R(u(t), u̇(t))+R∗(u(t),−DuE (t, u(t)
)
dt

= E (0, u(0))+
T∫

0

∂tE (t, u(t))dt for all T > 0.

(3.2.5)

At first sight it seems that this balance is just simply consequence of (3.2.1) or (3.2.3).
Observe that in the quadratic case one always has

R(u(t), u̇(t)) = R∗(u(t),−DuE (t, u(t)
)
,

hence the balance would be true also when replacingR +R∗ by 2(1− θ)R + 2θR∗
for any θ ∈ [0, 1]. However, only when writing the total dissipation in the special
form R +R∗ it can be shown that this balance is equivalent to (3.2.1) and (3.2.3),
see Theorem 3.3.1. Hence, we will use the term energy-dissipation principle (EDP),
whenever the specific choice R +R∗ is meant.

We emphasize here that each gradient system (X ,E ,R) has a well-defined
associated evolution equation u̇(t) = VE ,R(t, u(t)) := DξR∗(u(t),−DuE (t, u(t)

)
.

However, for one given evolution equation u̇(t) = VE ,R(t, u(t)) there may exist
many different gradient structures. So, the gradient structure is an additional infor-
mation which contains additional physical information on the model under investi-
gation.

Example 3.2.1 Here we show that ODEs may have several genuinely different gra-
dient structures. For the scalar linear ODE u̇ = −u =: V (u) we take any smooth,
convex φ : R → R with φ(0) = φ′(0) = 0 and φ′′(0) > 0. Then, E (u) = φ(u) and
K(u) = u

φ′(u)
> 0 defines a gradient structure (R,E , K) for u̇ = −u. A similar con-

struction also works for systems of ODEs. For example, consider

u̇1 = u2 − u1, u̇2 = −3u2,
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choose a uniformly convex φ and set E (u1, u2) = φ(u1)+ φ(u2)+ φ(−u1 − u2)

and R∗(u1, u2, ξ1, ξ2) =
u2 − u1

φ′(u2)− φ′(u1)

(
ξ2 − ξ1

)2 + 2u1 + u2

φ′(u1)− φ′(−u1 − u2)
ξ2

1 +
u1 + 2u2

φ′(u2)− φ′(−u1 − u2)
ξ2

2 .

See [40] for similar gradient structures for time-continuous Markov chains.

Of course, in general thermodynamical modeling we are interested in partial differ-
ential equations, where the above theory has to be generalized suitably. In particular,
the underlying space X may not be a smooth manifold but is usually a subset of
a Banach space X . Moreover, the functionals E and R will no longer be smooth
but may attain the value +∞. Hence, the derivatives DuE (t, u), DvR(u, v), and
DξR∗(u, ξ) must be generalized in a suitable way. We refer to Sect. 3.3.1 for a math-
ematical precise setup. The main point to be remembered is, that the state u, the rates
v = u̇, and the forces ξ lie in different spaces. Only for the rates and the forces we
have linear spaces and a duality pairing 〈ξ, u̇〉, which denotes a power.

Working with partial differential equations, we may proceed formally without
specifying a function space X , which is the typical approach in thermomechanical
modeling, see e.g. [44, 46, 57]. Functional derivatives can be interpreted as vari-
ational derivatives by assuming that all functions are sufficiently smooth. As an
example consider the PDE

u̇ = Δu in Ω ⊂ R
d , ∇u · ν = 0 on ∂Ω, (3.2.6)

where Ω is a smooth bounded domain in R
d . There are two simple quadratic gradient

structures, namely (L2(Ω),E0, K0) and (H1(Ω),E1, K1) with

E0(u) =
∫
Ω

u2

2
dx, K0ξ = −Δξ, E1(u) =

∫
Ω

1

2
|∇u|2 dx, K1ξ = ξ.

However, if we interpret (3.2.6) as a heat equation for the absolute temperature u of
a gas, we choose the entropy S for u̇ = +Kheat(u)DS (u) with

S (u) =
∫
Ω

log(u(x))dx and Kheat(u)ξ = − div
(
u2∇ξ

)
,

see [44, 46]. If (3.2.6) describes the diffusion of a density u, then the Wasserstein
gradient structure for the relative entropy H , found in [32, 63], is the right choice:

H (u) =
∫
Ω

u log u dx and KWass(u)ξ = − div(u∇ξ).
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Of course, the different choices of the gradient structures may influence the the-
ory of evolutionary Γ -convergence. In Sect. 3.3.5.2 we discuss the simple model
u̇(t, x) = −a( 1

ε
x)u(t, x) and show that different gradient structures lead to different

evolutionary Γ -limits, see Corollary 3.3.1.

3.2.2 Γ -Convergence for (Static) Functionals

We consider a reflexive Banach space X and functionals Jε : X → R∞. Strong
and weak convergence in X will be denoted by uk → u and vk ⇀ v, respectively.
We first introduce more classical notions of convergence of functionals, namely the

pointwise convergence Jε

pw−→J0 and the strong or weak continuous convergence
defined via

Jε
C−→J0, if uε → u ⇒ Jε(uε) →J0(u); (3.2.7a)

Jε

C
⇀ J0, if uε ⇀ u ⇒ Jε(uε) →J0(u). (3.2.7b)

In the context of minimization of functionals, the concept of Γ -convergence
is more natural, see Theorem 3.2.1. This convergence was originally called vari-
ational convergence or epi-graph convergence (cf. [4, 16]), but nowadays the term
Γ -convergence is more common and we refer to [8–10, 14] for further details.

Definition 3.2.1 (Γ and Mosco convergence) Let X be a reflexive Banach space.

We say that Jε weakly Γ -converges to J0 and write Jε

Γ
⇀ J0, if (G1w) and

(G2w) hold:
(G1w) uε ⇀ u =⇒ J0(u) ≤ lim inf

ε→0
Jε(uε) (liminf estimate)

(G2w) ∀ û ∃ (̂uε)ε: ûε ⇀ û and J0(̂u) = lim
ε→0

Jε(̂uε) (recovery seq. exist)

We say that Jε strongly Γ -converges to J0 and write Jε
Γ−→J0, if (G1s) and

(G2s) hold:
(G1s) uε → u =⇒ J0(u) ≤ lim inf

ε→0
Jε(uε) (liminf estimate)

(G2s) ∀ û ∃ (̂uε)ε: ûε → û and J0(̂u) = lim
ε→0

Jε(̂uε) (recovery seq. exist)

We say that Jε Mosco converges to J0 and write Jε
M−→J0, if Jε

Γ−→J0 and

Jε

Γ
⇀ J0.

Since all strongly converging sequences are also weakly converging we have the
implications (G1w) ⇒ (G1s) and (G2s) ⇒ (G2w). Hence, for Mosco convergence
one needs to check only (G1w) and (G2s). We will see in Lemma 3.2.2 that there are
simple quadratic functionals for which weak and strong Γ -limits exist, but they are
different.

The conditions (G2w) and (G2s) on the existence of recovery sequences is also
called “limsup estimate”. The recovery sequences are crucial since they capture the
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correct microscopic behavior that is needed to recover the correct (namely the lowest
possible) macroscopic energy J0(̂u).

Clearly, Continuous convergence is much stronger than Γ -convergence. We have
the following relations.

Lemma 3.2.1 Assume that X is a reflexive Banach space and Jε, Kε : X → R∞.

(a) Jε

Γ
⇀ J0 and Kε

C
⇀ K0 =⇒ Jε +Kε

Γ
⇀ J0 +K0

(b) Jε
Γ−→J0 and Kε

C−→ K0 =⇒ Jε +Kε
Γ−→J0 +K0

(c) Jε

C
⇀ J0 =⇒ Jε

M−→J0

(d) If (Jε)ε∈[0,1] is strongly equicontinuous, thenJε
Γ−→J0 impliesJε

C−→J0.

The origin for the definition of Γ -convergence, which is clearer in the original name
“variational convergence”, is the following convergence of minimizers, see [8, 14].

Theorem 3.2.1 (Convergence of minimizers) Assume Jε

Γ
⇀ J0 in X and that

inf J0 =: α0 > −∞. Moreover, assume that there exists a closed bounded set B ⊂
X such that Jε(u) ≤ α0 + 1 implies u ∈ B, then for every sequence (uεk )k∈N with
εk → 0 we have:

if uε ⇀ ũ and Jεk (uεk ) → α0, then J0(̃u) = α0.

In particular, if uε is a minimizer of Jε (i.e. Jε(uε) = inf X Jε), then any accumu-
lation point of (uε)ε∈]0,1[ is a minimizer of J0.

The following useful result seems to be folklore, but is not easy to find.

Proposition 3.2.1 (Γ -versus Mosco convergence) Assume that X and Z are reflex-
ive Banach spaces such that Z is compactly embedded in X , written Z � X . More-
over, assume that the functionals Jε are equicoercive in Z, i.e.

∀ J > 0 ∃ R > 0 ∀ ε > 0, u ∈ X : Jε(u) ≤ J ⇒ ‖u‖Z ≤ R : (3.2.8)

Then, Jε
M−→J0 in X is equivalent to Jε

Γ
⇀ J0 in Z.

Proof The equicoercivity is meant such that all Jε take the value +∞ on X \ Z.

“⇒” We start from Jε
M−→J0 in X . If uε ⇀ u in Z, then this also holds in X .

Hence, the liminf estimate follows. To construct a recovery sequence ûε ⇀ û in Z
for arbitrary û ∈ Z, we first assume J0(̂u) <∞. We choose the recovery sequence

ûε guaranteed by Jε
M−→J0 in X , i.e. we know ûε → û in X . The equicoerciv-

ity (3.2.8) and Jε(̂uε)→J0(̂u) <∞ imply ‖ûε‖Z ≤ R. Hence, ûε ⇀ û in Z by
reflexivity of Z. If J0(̂u) = ∞, we choose ûε = û giving ûε → û in Z. Hence, the
liminf estimate yields∞ =J0(̂u) ≤ lim infε→0 Jε(̂u), which shows that we have
a recovery sequence in Z.
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“⇐” Given Jε

Γ
⇀ J0 in Z, we take any sequence uε ⇀ u in X . If we have

lim infε→0 ‖uε‖Z = ∞, then the equicoercivity impliesJε(uε) →∞ and the liminf
estimate holds. If for some subsequence ‖uεk‖Z ≤ C , then uεk ⇀ u in Z, and the

liminf estimate follows from that ofJε

Γ
⇀ J0 in Z. For the construction of recovery

sequences, we can choose ûε = û if û ∈ X \ Z. If û ∈ Z we choose a recovery
sequence ûε ⇀ û in Z. By the compact embedding we have ûε → û in X and the
proof is finished. �

The following lemma presents a simple quadratic example in which the weak and
the strong Γ -limits exist but they are different. We define

Fε(w) =
∫
Ω

1

2
w(x) · A(1

ε
x
)
w(x)dx for w ∈ X = L2(Ω;Rm),

where Ω ⊂ R
d is a bounded Lipschitz domain and A ∈ L∞(Rd;Rm×m

sym ) is 1-periodic,
i.e. A(y + n) = A(y) for all y ∈ R

d and all n ∈ Z
d . Moreover, we assume that A is

uniformly positive definite, i.e. a|w|2 ≤ w · A(y)w ≤ a|w|2 for a > a > 0.

Lemma 3.2.2 Define the arithmetic and harmonic mean of A via

Aarith :=
∫

[0,1]d
A(y)dy and Aharm :=

( ∫
[0,1]d

A(y)−1 dy
)−1

and the two functionals

Farith(w) =
∫
Ω

1

2
w(x) · Aarithw(x)dx and Fharm(w) =

∫
Ω

1

2
w(x) · Aharmw(x)dx .

In X = L2(Ω;Rm) we have Fε

Γ
⇀ Fharm and Fε

C−→ Farith, which implies Fε
Γ−→

Farith.

Proof We first proveFε

Γ
⇀ Fharm. For the liminf estimate assume wε ⇀ w in L2(Ω).

Writing Aε(x) = A( 1
ε
x) we have

Fε(wε) = 1

2

∫
Ω

wε · Aεwε dx = (3.2.9)

= 1

2

∫
Ω

(wε − A
−1
ε Aharmw)·Aε(wε − A

−1
ε Aharmw)︸ ︷︷ ︸

≥0

(3.2.10)

+ 2 wε︸︷︷︸
⇀w

·Aharmw− Aharmw· A
−1
ε︸︷︷︸

∗
⇀A

−1
harm

Aharmwdx .

mielke@wias-berlin.de



3 On Evolutionary Γ -Convergence for Gradient Systems 199

Dropping the nonnegative term and taking the limit ε → 0 give the desired lower
estimate lim infε Fε(wε) ≥ 1

2

∫
Ω

0+ 2w·Aharmw− w·Aharmwdx = F0(w).
For the limsup-estimate we use the same reformulation of Fε as in (3.2.9). For

a given ŵ we choose ŵε = A
−1
ε Aharmŵ. Since by construction the first term in the

integral is 0 we find Fε(ŵε) = 1
2

∫
Ω

0+ 2A
−1
ε Aharmŵ·Aharmŵ− Aharmŵ·A−1

ε Aharm

ŵdx → Fharm(ŵ).
For strong continuous convergence take any wε → w in L2(Ω) and write

Fε(wε) = 1

2

∫
Ω

w· Aεw︸︷︷︸
⇀Aarithw

−2w·Aε (w− wε)︸ ︷︷ ︸
→0

+ (w− wε)︸ ︷︷ ︸
→0

·Aε(w− wε)dx (3.2.11)

→ Farith(w). (3.2.12)

This proves the strong continuous and hence the strong Γ -convergence. �

3.2.3 Prerequisites from Convex Analysis

For each u ∈ X , the dissipation potentials Rε(u, ·) : X → [0,∞] are always con-
vex, and lower semicontinuous (lsc). So we can apply the Legendre-Fenchel theory
for convex functionals Ψ : X → R∞, where we always assume that X is a reflex-
ive Banach space. The Legendre-Fenchel transform Ψ ∗ = Leg(Ψ ) : X∗ → R∞ is
defined via

Ψ ∗(ξ) := sup{〈ξ, v〉 − Ψ (v) | v ∈ X}, (3.2.13)

where 〈·, ·〉 is the natural dual pairing of X∗ and X , see [18, 66]. Clearly, Ψ ∗ is again
convex, lsc, and satisfies Ψ ∗(0) = 0. In particular, the dual dissipation potential R∗

ε

is defined via R∗
ε (u, ·) = Leg

(
Rε(u, ·)). Elementary examples are

Ψ (v) = 1

2
〈Gv, v〉 ⇐⇒ Ψ ∗(ξ) = 1

2
〈ξ, G

−1ξ 〉

Ψ (v) = 1

p
‖v‖p

X ⇐⇒ Ψ ∗(ξ) = 1

p∗
‖ξ‖p∗

X∗ , where 1 < p <∞ and p∗ = p

p − 1
.

The fundamental properties of the Legendre-Fenchel transform are the duality
relation Leg

(
LegΨ

) = Ψ or Ψ ∗∗ = Ψ and the Young-Fenchel estimate

∀ v ∈ X ∀ ξ ∈ X∗ : Ψ (v)+ Ψ ∗(ξ) ≥ 〈ξ, v〉. (3.2.14)
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To discuss the case of equality in this estimate we need the subdifferential of the
convex functional Ψ , which is defined via

∂Ψ (v) := { η ∈ X∗ | ∀w ∈ X : Ψ (w) ≥ Ψ (v)+ 〈η, w − v〉 } ⊂ X∗.

Note that ∂Ψ is set-valued and we will write ∂Ψ : X ⇒ X∗. However, if Ψ is
differentiable with Gateaux derivative DΨ (v), then ∂Ψ (v) = {DΨ (v)}.

The Fenchel equivalence characterizes equality in the Young-Fenchel estimate
(3.2.14).

Proposition 3.2.2 (Fenchel equivalence [20]) Let X be a reflexive Banach space
and Ψ : X → R∞ be proper, convex, and lsc. Then, we have

(i) ξ ∈ ∂Ψ (v) ⇐⇒ (ii) v ∈ ∂Ψ ∗(ξ) ⇐⇒ (iii) Ψ (v)+ Ψ ∗(ξ) = 〈ξ, v〉.

For a proof we refer to [18]. We emphasize that the relation (i) is a relation in dual
space X∗, (ii) is a relation in X , and (iii) is a relation in R.

A further fundamental property of the Legendre transform is related to its conti-
nuity with respect to weak or strong Γ -convergence. This result will be important
for studying E-convergence in Sect. 3.3.

Theorem 3.2.2 ([4, p. 271]) Let X be a reflexive Banach space and assume that all
Fε : X → [0,∞] are convex, lsc, and satisfy Fε(0) = 0. Then,

Fε

Γ
⇀ F ⇐⇒ F ∗

ε

Γ−→ F ∗ .

The duality and the switch between the weak and strong convergence appears natural,
because the definition of the Legendre transform involves the duality product 〈ξ, v〉.
A well-known result from linear functional analysis states that 〈ξε, vε〉 → 〈ξ, v〉 if
either vε ⇀ v and ξε → ξ or vice versa vε → v and ξε ⇀ ξ .

Under the assumptions of the above theorem the definition of Mosco convergence
gives the equivalences

Fε
M−→ F ⇐⇒ F ∗

ε

M−→ F ∗ ⇐⇒
(
Fε

Γ
⇀ F and F ∗

ε

Γ
⇀ F ∗

)
. (3.2.15)

Lemma 3.2.2 provides an interesting example for the application of Theorem 3.2.2.
In fact, we have F ∗

ε (ξ) = 1
2

∫
Ω

ξ ·A−1
ε ξ dx . Thus, the strong convergence for F ∗

ε

leads to an effective matrix arith(A−1) = harm(A)−1.
Another important tool of convex analysis is the weak-strong closedness of the

graphs of the subdifferentials ∂Eε : X ⇒ X∗ (which is in fact equivalent to Mosco
convergence).

Proposition 3.2.3 (Strong weak-closedness, [4, Theorem 3.66]) Assume that all

Eε : X → [0,∞] are lsc and convex and that Eε
M−→ E0. Then, we have
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uε → u, Eε(uε)→ e0 ∈ R,

∂Eε(uε) � ξε ⇀ ξ

}
=⇒ e0 = E0(u) and ξ ∈ ∂E0(u). (3.2.16)

The same conclusion holds under the assumptions uε ⇀ u and ∂Eε(uε) � ξε → ξ .

Proof The convexity of Eε gives Eε(w) ≥ Eε(uε)+ 〈ξε, w− uε〉 of all w ∈ X . For
fixed û the Mosco convergence provides a recovery sequence ûε with ûε → û,
Eε(̂uε) → E0(̂u). Hence, inserting w = ûε yields Eε(̂uε) ≥ Eε(uε)+ 〈ξε, ûε − uε〉.

Taking the limit ε → 0, all three terms converge (where we use weak-strong
continuity of the duality product 〈·, ·〉), and we obtain the relation E0(̂u) ≥ e0 +
〈ξ, û − u〉 and choosing û = u yields E0(u) ≥ e0. However, the liminf estimate
for uε ⇀ u gives e0 ≥ E0(u). Thus, e0 = E0(u) and we conclude ξ ∈ ∂E0(u) as
desired. �

3.2.4 Definitions for Γ -Convergence of Evolutionary Systems

According to Theorem 3.2.1 the definition of (static) Γ -convergence implies the
convergence of minimizers. If we interpret minimizers as “solutions of a static varia-
tional problem”, we may state that variational convergence implies that “the solutions
of variational problems converge”. We now define several versions of evolutionary
convergence in a similar way.

We start with semiflow convergence as was defined in (3.1.1). Assume that for
all ε ∈ [0, 1] the evolutionary systems u̇ε = V ε(uε) have for each u0

ε ∈ X at least
one solution uε : [0, T ] → X with uε(0) = u0

ε . We say that (X, V ε) strongly (or
weakly) semiflow-converge to (X, V 0), if uε(0)→ u0 (or uε(0) ⇀ u0) implies that
there exist a sequence εk → 0 and a solution u : [0, T ] → X of u̇ = V 0(u) with
u(0) = u0 such that uεk (t)→ u(t) (or uεk (t) ⇀ u(t)) for all t ∈ ]0, T ].

For gradient systems (X,Eε,Rε) we will use a special types of semiflow con-
vergence that includes the additional condition on energy convergence, which is the
reason why we include the symbol Γ in the name. Throughout this work we call
uε : [0, T ] → X a solution for the gradient system (X,Eε,Rε) if it satisfies the
gradient evolution 0 ∈ ∂u̇Rε(u, u̇)+ DEε(t, u(t)) in a suitable sense.

Definition 3.2.2 (Evolutionary Γ -convergence) For ε ∈ [0, 1] consider gradient
systems (X,Eε,Rε).

(A) We say (X,Eε,Rε) E-converges to (X,E0,R0) and write (X,Eε,Rε)
E→

(X,E0,R0), if

uε : [0, T ] → X
is sol. of (X,Eε,Rε)

and uε(0)→ u0

⎫⎬
⎭ =⇒

⎧⎪⎪⎨
⎪⎪⎩
∃ u sol. of (X,E0,R0)with u(0) = u0

and a subsequence εk → 0 :
∀ t ∈ ]0, T ] : uεk (t)→ u(t) and

Eε(uεk (t))→ E0(u(t)).

(3.2.17)
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(B) We say that (X,Eε,Rε) E-converges with well-prepared initial conditions to

(X,E0,R0), and shortly write (X,Eε,Rε)
pE→(X,E0,R0), if

uε : [0, T ] → X
is sol. of (X,Eε,Rε),

uε(0)→ u0, and
Eε(uε(0)) → E0(u0) <∞

⎫⎪⎪⎬
⎪⎪⎭ =⇒

⎧⎪⎪⎨
⎪⎪⎩
∃ u sol. of (X,E0,R0) with u(0) = u0

and a subsequence εk → 0 :
∀ t ∈ ]0, T ] : uεk (t)→ u(t) and

Eε(uεk (t))→ E0(u(t)).
(3.2.18)

(C) If all the strong convergences in (A) or (B) are replaced by weak convergences,

then we write
E
⇀ or

pE
⇀, respectively. Any of these four types of convergence is called

evolutionary Γ -convergence.

As in [69] we use the symbol Γ in the name “evolutionary Γ -convergence” to indicate

the relation to Γ -convergence for the energy. In fact, we typically expect thatEε
Γ−→ E0

is a necessary condition for evolutionary Γ -convergence. Then, the statement that
the energies Eε(uε(t)) converge to E0(u(t)) means that uε(t) is a recovery sequence
for u(t). If one asks this condition at the initial time t = 0, one speaks of well-
preparedness of the initial conditions, i.e. the initial conditions must be a recovery
sequence as well. This explains our name “well-prepared E-convergence”.

Note that E-convergence implies well-prepared E-convergence, since in the later
case the assumptions are stronger while the conclusions are the same. Often the
energy convergence improves the convergence uε(t) ⇀ u0(t) into strong conver-
gence or weak convergence in a better space.

The aim of these notes is to provide conditions for suitable convergences for
(Eε,Rε) towards a limiting pair (E0,R0) on a suitable space X such that evolutionary
Γ -convergence is guaranteed. We emphasize that separate convergence of the two
functionals will not be sufficient. It is important to realize that there has to be some
compatibility between the convergences Eε � E0 and Rε � R0. This will be the
topic of Sects. 3.3 and 3.4, while the rest of the present section introduces a few
examples that will be used later for applying the abstract theory.

3.2.5 An ODE Example

In the first example we discuss a linear ODE. Since the solutions and the Γ -limits can
be explicitly constructed we can check the validity of evolutionary Γ -convergence
without any abstract theory. In particular, we will show that in general it is not

enough to have separate Mosco convergences Eε
M−→ E0 and Ψε

M−→ Ψ0 to conclude
evolutionary Γ -convergence.

mielke@wias-berlin.de



3 On Evolutionary Γ -Convergence for Gradient Systems 203

For X = R
2 we consider the gradient system (R2,Eε, Ψε) with

Eε(u) = 1

2
u · Aεu = 1

2
u2

1 +
1

2ε2
(u2 − εu1)

2,

Ψε(v) = 1

2
u̇ ·Gεu̇ = 1

2
u̇2

1 +
1

2εβ
u̇2

2,

where Aε =
(

2 − 1
ε− 1

ε
1
ε2

)
and Gε =

(
1 0
0 1

εβ

)
.

The solution of the gradient evolution Gεu̇ε = −Aεuε with general initial conditions
u0

ε = (aε, bε)
� can be calculated explicitly for all ε > 0 and all β > 0.

Before discussing the question of the types of evolutionary convergence, we study
the convergence properties of the functionals Eε and Ψε. Because the weak and the
strong topology coincide on R

2, Γ -convergence equals Mosco convergence. In fact,
we have

Eε
M−→ E0 : u �→

{
1
2 u2

1 for u2 = 0,

∞ otherwise,
and Ψε

M−→ Ψ0 : v �→
{

1
2 v2

1 for v2 = 0,

∞ otherwise.

We also mention that Eε

pw→ Epw = 2E0 � E0, but neither Eε nor Ψε converge
continuously. Finally we consider well-preparedness of initial conditions, namely
(aε, bε) → (a, b) and Eε(aε, bε)→ E0(a, b) <∞, which implies

b = 0 and bε = εa + o(ε) for ε → 0. (3.2.19)

The general solutions can be calculated explicitly. With δε = εβ−2/2 the matrix
G
−1
ε Aε has the eigenvaluesμ1 = 1+ δε −

(
1+ δ2

ε

)1/2
andμ2=1+ δε +

(
1+ δ2

ε

)1/2
,

and we obtain

uε(t) = ε(μ2−2)a+b
ε(μ2−μ1)

e−μ1t

(
1

ε(2− μ1)

)
+ b+ε(μ1−2)a

ε(μ2−μ1)
e−μ2t

( −1

ε(μ2 − 2)

)
.

In the case β ∈ ]0, 2[ we have δε →∞, μ1 → 1, μ2 →∞, and hence for t > 0
we have e−μ2t → 0 faster than O(εk) for all k ∈ N. This fact leads to the convergences

uε(t)→ a e−t

(
1

0

)
and Eε(uε(t))→ a2

2
e−2t .

Thus, we conclude (R2,Eε, Ψε)
E→(R2,E0, Ψ0) for β ∈ ]0, 2[.

For β > 2 we have δε → 0, μ1 → 0, and μ2 → 2. For bε → b �= 0 the solu-
tions are unbounded and Eε(uε(t))→∞ for t ∈ [0, Tb[ for some T (b) > 0. So we
consider the case bε/ε → b̂ for some b̂ ∈ R and find the limits

uε(t)→
( b̂

2
+ (

a − b̂

2

)
e−2t

)(1

0

)
, Eε(uε(t))→ b̂2

4
+ (

a − b̂

2

)2
e−4t .
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Note that well-prepared initial conditions require b̂ = a, while the case b̂ = 0 implies
semigroup convergence to the solutions of the gradient system (R2,Epw, Ψ0), but we
do not have evolutionary Γ -convergence.

For the crossover case β = 2 the assumption bε/ε → b̂ leads to

uε(t)→
(

w(t)

0

)
with w(t) = 1

2
√

5

((√
5− 1)a + 2b̂

)
e−μ1t + (

(
√

5+ 1)a − 2b̂
)
e−μ2t

)
,

where μ1,2 = (3±√5)/2. Assuming b̂ = 0 we obtain the linear evolution w(t) =
B(t)w(0), where Ḃ(t)/B(t) is not constant. Hence, the limit evolution cannot be
described by an autonomous equation ẇ = V (w), so we do not have semigroup
convergence.

Remark 3.2.1 (Scaling changes evolutionary convergence) We note that a rescaling
of the variables may change the convergence behavior dramatically. E.g. using z =
(z1, z2) = (u1, u2/ε), we obtain

Ẽε(z) = F (z) := 1

2
z2

1 +
1

2
(z2 − z1)

2 and Ψ̃ε(ż) = 1

2
ż2

1 +
ε2−β

2
ż2

2,

where Ẽε is independent of ε and hence continuously converging to F . For β > 2

we obtain (R2,F , Ψε)
E→(R2,F , Ψ0).

The alternative scaling w = (u1, ε
−β/2u2) makes the dissipation distance ε-

independent:

E ε(w) = 1

2
w2

1 +
1

2

(
w1 − εβ/2−1w2

)2
and Ψ (ẇ) = 1

2
|ẇ|2.

For β ≥ 2 we have the continuous convergence E ε
C−→ E 0 : w �→ w2

1, while for

β ∈ ]0, 2[ we have E ε
M−→ E0. In all cases we have (R2,E ε, Ψ )

E→(R2,E 0, Ψ ) cf.
Theorem 3.3.2.

An important conclusion of this remark is that linear transformations, here scal-
ings, may change the convergence behavior dramatically.

3.2.6 Homogenization of a 1D Parabolic Equation

Our main guiding example for the different levels of the theory will be the homoge-
nization of a simple parabolic equation, since for this case it is possible to do all the
calculation by hand. We emphasize that the theory works equally well for any space
dimension, of course then the calculations are no longer explicit.

On the domain Ω = ]0, 
[ for t > 0 we consider the parabolic equation
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c(
x

ε
)u̇(t, x) = (

a(
x

ε
)ux (t, x)

)
x − b(

x

ε
)u(t, x), ux (t, 0) = 0 = ux (t, 
).

(3.2.20)

Here the coefficient functions a, b, c ∈ L∞(R) are 1-periodic and are bounded from
below by a positive constant c0 > 0. Choosing X = L2(Ω) this equation is induced
by the gradient system (X,Eε, Ψε) with

Eε(u) = 1

2

∫
Ω

a(
x

ε
)ux (x)2 + b(

x

ε
)u(x)2 dx and Ψε(v) = 1

2

∫
Ω

c(
x

ε
)v(x)2 dx,

(3.2.21)

if the derivatives of Ψε and Eε are calculated in the duality pairing of X = L2(Ω).
We are interested in the question of evolutionary Γ -convergence and expect that

in the limit ε → 0 we find effective functionals

Eeff(u) = 1

2

∫
Ω

aeffux (x)2 + beffu
2 dx and Ψeff(v) = 1

2

∫
Ω

ceffv
2 dx,

where the main task remains to determine the effective coefficients aeff, beff, and ceff.
Moreover, when taking the Γ -limits of Eε and Ψε in (3.2.21) there is major issue in
choosing a suitable topology.

The natural function space for the dissipation functionals Ψε is X = L2(Ω), which

we will call the dissipation space. According to Lemma 3.2.2 we have Ψε

Γ
⇀ Ψharm

and Ψε
Γ−→ Ψarith in L2(Ω), where ceff = charm and ceff = carith, respectively.

Similarly, we can study the energy functionals in their natural space Z = H1(Ω),
i.e. the energy space. Using the compact embedding of H1(Ω) � L2(Ω), we find

Eε

Γ
⇀ Eharm : u �→ 1

2

∫
Ω

aharmu2
x + barithu2 dx in Z = H1(Ω),

Eε
Γ−→ Earith : u �→ 1

2

∫
Ω

aarith u2
x + barithu2 dx in Z = H1(Ω).

For later use we prepare the following result which has an obvious extension to
general elliptic homogenization problems, see [14, Chaps. 24, 25] and [9, Sect. 5].

Proposition 3.2.4 Consider the functionals Eε : L2(Ω)→ [0,∞] as in (3.2.21),

which are set to∞ for u ∈ L2(Ω)\H1(Ω). Then, Eε
M−→ Eharm in L2(Ω).

Proof For the liminf estimate in the weak L2 topology consider uε ⇀ u in L2(Ω)

with α := lim inf Eε(uε). For α = ∞ there is nothing to be shown. For α <∞ the
uniform coercivity of Eε in H1(Ω) implies uε ⇀ u in H1. Now using uε → u and
∇uε ⇀ ∇u in L2(Ω) together with Lemma 3.2.2 give Eharm(u) ≤ lim inf Eε(uε) as
desired.
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Table 3.1 Possible effective coefficients in 1D homogenization

Topology aeff beff ceff

L2 weak aharm barith charm

L2 strong aharm barith carith

H1 weak aharm barith carith

H1 strong aarith barith carith

For the limsup estimate in the strong L2 topology we construct a recovery sequence
that converges weakly in H1(Ω) and hence strongly in L2(Ω). Here we use that
the domain Ω is one-dimensional: for a given û we simply define ûε such that
∇ûε(x) = aharm∇û(x)/a( 1

ε
x) and ûε(0) = û(0). �

We leave the question concerning the evolutionary Γ -convergence with the proper
effective coefficients open until Sects. 3.3.2 and 3.4.2. At this moment we observe
that we have several choices for the topology that lead to different Γ -limits, see
Table 3.1. This fact is our motivation to derive mathematical theories giving us guid-
ance for choosing the correct topology via suitable compatibility conditions of the
two convergences.

3.2.7 Tartar’s Model Equation

In [73, 74] a more general version of following example is considered:

u̇ε(t, x) = −aε(x)uε(t, x)+ f (t, x), t > 0, x ∈ Ω, uε(0, x) = u0
ε(x). (3.2.22)

It is shown there that for u0
ε = 0 and (aε)ε∈(0,1) bounded in L∞(Ω) one can pass to

the nonlocal limit equation

u̇0(t, x) = −a0(x)u0(t, x)+ f (t, x)+
t∫

0

K 0(x, t − s)u0(s, x)ds,

where the memory kernel K 0 is determined from the sequence aε alone (via its Young
measure).

This model serves three purposes: it shows that (i) simple Γ -convergence in the
weak or the strong topology is not sufficient for evolutionary convergence, (ii) that
there can be quite different gradient structures, and (iii) that we may obtain different
effective equations when doing pE-convergence for different gradient structures, see
Corollary 3.3.1.

(i) The simplest gradient structure is the one in L2(Ω), namely (L2(Ω),Eε, Ψε)

with
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Eε(u) =
∫
Ω

aε

2
u2 dx and Ψε(v) =

∫
Ω

1

2
v2 dx,

Assuming that aε(x) = a( 1
ε
x) with a nontrivial 1-periodic a ∈ L∞(R), we have

Eε
E→Earith and Eε

E
⇀Eharm but no Mosco convergence, see Lemma 3.2.2. Since

the explicit solution is given by uε(t, x) = e−aε(x)t uε(0, x) we see that evolutionary
Γ -convergence does not hold (not even semigroup convergence).

In [10, Exercise 7.2.5] this gradient structure for Tartar’s model was studied via
time-incremental minimization, i.e. for a fixed time step τ one solves iteratively

uτ
k = argmin{ Eε(u)+ 1

τ
Ψε(u − uτ

k−1) | u ∈ L2(Ω) }.

Taking first the limit ε → 0 for fixed τ and then the limit τ → 0, the convergence to
the effective equation u̇ = −aharmu.

(ii) Under the assumption u0(x) > 0, we can introduce further gradient structures
by considering u as the density of a measure on Ω . Choosing X := M+(Ω), the set
of nonnegative measures on Ω , we define the functionals

Ẽε(u) =
∫
Ω

bε(x)du(x) and R̃∗
ε (u, ξ) = 1

2

∫
Ω

aε

bε

ξ 2 du(x),

where now aε and bε are assumed to be positive continuous functions on Ω . The
dual dissipation potential R̃∗

ε defines the state-dependent Onsager operator

K̃ε(u)ξ := DξR
∗
ε (u, ξ) = aε

bε

u ξ.

Using DẼε(u) = bε we easily find the linear gradient flow u̇ = −K̃ε(u)DẼε(u) =
−aεu.

(iii) In Sect. 3.3.5.2 we will discuss pE-convergence and highlight that different
choices of bε, which do not change the gradient flow equation, lead to different Γ -
limits. In particular, we will emphasize the role of the well-preparedness Ẽε(uε(0)) →
Ẽ0(u(0)).

3.2.8 Further Examples of Gradient Systems

Here we discuss some additional gradient systems, which highlight that generally
both, the energy and the dissipation potential, may depend on the small parameter ε.
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3.2.8.1 Interfaces as Limits of Thin Bulk Layers

This example shows that E-convergence can be used for dimension reduction, in
particular for deriving new interface models. We consider a bulk material in Ω =
]−1, 1[ where a layer of width ε around 0 is filled with a material of having quite
different material coefficients, that scale suitably with ε. The parabolic equation is
given by

γε(x)u̇ = (
Aε(x)ux

)
x − ∂u F(x, u) in Ω, ux (t,−1) = 0 = ux (t, 1).

For the coefficients we assume the scalings

(γε(x), Aε(x)) =
{

(c , α) for |x | > ε/2,

(ρ/ε , βε) for |x | < ε/2.

For Eε(u) = ∫
Ω

Aε

2 u2
x + Fε(x, u)dx and Ψε(v) =

∫
Ω

γε

2 v2 dx we find the Γ -limits

E0(u) =
∫
Ω∗

α

2
u2

x + F(x, u)dx + β

2

(
u(0−)− u(0+)

)2
and

Ψ0(v) =
∫
Ω∗

c

2
v2 dx + ρ

2
v(0)2,

where Ω∗ = ]−1, 0[ ∪ ]0, 1[. Hence, the limit functionals consist of two integral
terms as well as a point contribution at the interface x = 0. These extra terms at
x = 0 determine the effective properties of the limiting sharp interface. We refer to
[28, 35, 36] and Sect. 3.3.5.1 for more details in this direction.

3.2.8.2 Ginzburg-Landau Vortices

This gradient system is included for historical reasons: the fundamental paper [69] is
the first that develops a method for using the gradient structure for establishing evo-
lutionary Γ -convergence, see Sect. 3.3.3 for the abstract approach and [10, Chap. 10]
for a short survey. The gradient system (L2(Ω),Eε, Ψε) is given by Ginzburg-Landau
functional for the order parameter ψ : Ω → C in the form

Eε(ψ) =
∫

Ω

1

2
|∇ψ |2 + 1

ε2
(1− |ψ |2)2 dx − nπ |log ε|

and Ψε(v) = 1
2| log ε| ‖v‖2

2. Well-prepared solutions ψε(t) are then well approximated

by simple vortices with positions xi (t) ∈ R
2, i = 1, .., n. The evolutionary Γ -limit

induces an ODE for the evolution of the vortex positions xi (t).
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3.2.8.3 Slow and Fast Chemical Reactions

This example describes a gradient system where the energy E is independent of ε, but
Rε is state-dependent and strongly dependent on ε. In [44] it is shown that general
reaction systems for concentrations c1, ..., cI > 0 with R reactions of mass-action
type can be written as a gradient system on Q = ]0,∞[I if the reactions satisfy the
detailed-balance condition for some concentration vector w = (w1, . . . , wI ) ∈ Q.
We then have

ċ = −
R∑

r=1

κr

( cαr

wαr − cβr

wβr

) (
αr − βr

)
= −K(c)DE (c),

where the vectors αr ,βr ∈ N
I
0 contain the stoichiometric coefficients for the r th

reaction and cγ denotes the monomial
∏I

1 cγi

i . The gradient structure (Q,E ,Rε) is
given via Λ(a, b) = (a − b)/(log a − log b) > 0 in the form

E (c) =
I∑

i=1

(
ci log(ci/wi )− ci + wi

)
and

R∗
ε (c, ξ) = 1

2

R∑
r=1

κrΛ
(

cαr

wαr , cβr

wβr

)((
αr − βr) · ξ)2

.

This defines Kε via R∗
ε (c, ξ) = 1

2 〈Kε(c)ξ , ξ 〉.
Often the reaction coefficients κr have quite different magnitudes, i.e. some reac-

tions are very fast while others are slow. Assuming kr = ρr/ε for r = 1, . . . , Rfast

and κr = O(1) for r > Rfast leads to a decomposition Rε = 1
ε
Rfast +Rslow and a

Mosco limit R∗
0 (c, ξ) = Rslow(c, ξ) if R∗

fast(c, ξ) = 0 and +∞ otherwise. In par-
ticular, this is a case where the limit gradient system is only defined on a nonlinear
submanifold of Q, namely the one defined by cαr

wαr = cβr

wβr for r = 1, . . . , Rfast.

3.3 pE-Convergence via the Energy-Dissipation Principle

In this section we discuss formulations that are based on the differential formula-
tions involving derivatives such as u̇(t), DE , Du̇R(u, u̇), or DξR∗(u,−DE (u)). In
Sect. 3.4 we will see that under certain structural assumptions such relations can be
replaced by evolutionary variational inequalities only involving u(t), E (w), and a
dissipation distance D(u(t), w), i.e. derivatives are not required.
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3.3.1 Four Equivalent Formulations via Legendre Transform

We now convert the formal modeling ideas in Sect. 3.2.1 into exact mathematical
statements by working in a reflexive Banach space X . We consider generalized gra-
dient systems (X,E ,R) with time-dependent energy functionals E : [0, T ]×X →
R∞. Then, by Fenchel’s equivalence in Proposition 3.2.2 the following three formula-
tions are equivalent, but have different physical interpretations. They are formulated
in terms of the dissipation potential R, the dual dissipation potential R∗, or in terms
of an extremum principle involving both:

Force balance in X∗ Biot equation [7]

(FB) 0 ∈ ∂u̇R(u(t), u̇(t))+ DE (t, u(t)) ∈ X∗ for a.a. t ∈ [0, T ].

Rate equation in X Onsager equation [62]

(RE) u̇(t) ∈ ∂ξR∗(u(t),−DE (t, u(t))) ∈ X for a.a. t ∈ [0, T ].

Power balance in R De Giorgi’s (R,R∗) formulation [17]

(PB) R(u(t), u̇(t))+R∗(u(t),−DE (t, u(t))) = −〈DE (t, u(t)), u̇(t)〉.
Before returning to the general situation, we highlight the three different cases for
the classical viscous dissipation, i.e. R(u, v) = 1

2 〈Gv, v〉 and R∗(u, ξ) = 1
2 〈ξ, Kξ 〉

with K = G
−1. Then, we have

(FB) Gu̇ = −DE (u)

(RE) u̇ = −KDE (u) = −∇GE (u)

(PB)
1

2
〈Gu̇, u̇〉 + 1

2
〈DE (u), KDE (u)〉 = −〈DE (u), u̇〉,

where (RE) can be seen as a “gradient evolution”, because∇G is the gradient operator.
The Young-Fenchel estimate (3.2.14) states that ≥ in (PB) always holds. Hence,

in limit passages it will be sufficient to control the opposite estimate. Moreover, it is
advantageous to use the integrated form. For this we employ a version of the chain
rule. Indeed, it will be sufficient to have a chain-rule estimate in terms of a suitable
notion of a set-valued subdifferential ∂̃E for the functional E , see (3.3.2) for the
Fréchet subdifferential or [67] for a general theory. As before ∂̃E (t, u) denotes a
differential for the function E (t, ·) : X → R∞ for fixed t , while ∂tE (t, u) denotes
the partial derivative limh→0

1
h

(
E (t + h, u)− E (t, u)

)
, which is always assumed to

exist.

Definition 3.3.1 (Abstract chain rule) We say that the triple (X,E , ∂̃E ) satisfies
the chain rule if for all p ≥ 1 the following holds. If u ∈ W1,p([0, T ]; X) and
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ξ ∈ Lp∗([0, T ]; X∗) with ξ(t) ∈ ∂̃E (t, u(t)) a.e. in [0, T ], then t �→ E (t, u(t)) is
absolutely continuous and

d

dt
E (t, u(t)) = 〈ξ(t), u̇(t)〉 + ∂tE (t, u(t)) a.e. in [0, T ]. (3.3.1)

We refer to [51, 67] for a general treatments of such abstract chain rule. In particular,
the chain rule holds for λ-convex functionals, i.e. u �→ E (t, u)− λ

2‖u‖2
X is convex,

and ∂̃E denotes the Fréchet subdifferential

∂̃E (u) := { ξ ∈ X∗ | E (u + w) ≥ E (u)+ 〈ξ, w〉 + o(‖w‖) for w → 0 }. (3.3.2)

Theorem 3.3.1 (Upper energy-dissipation estimate) Assume that (X,E , ∂̃E ) sat-
isfies the chain rule (3.3.1). Furthermore, assume that u ∈ W1,p([0, T ]; X) and
ξ ∈ Lp∗([0, T ]; X∗) with ξ(t) ∈ ∂̃E (t, u(t)) a.e. in [0, T ]. Then, u solves (FB), (RE),
or (PB) if and only if the Upper Energy-Dissipation Estimate (UEDE) holds:

UEDE:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E (T, u(T ))+
T∫

0

R(u(t), u̇(t))+R∗(u(t),−ξ(t))dt

≤ E (0, u(0))+
T∫

0

∂tE (t, u(t))dt.

Then, the UEDE is equivalent to the energy-dissipation principle (EDP)

EDP:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E (T, u(T ))+
T∫

0

(
R(u(t), u̇(t))+R∗(u(t),−ξ(t))dt

= E (0, u(0))+
T∫

0

∂tE (t, u(t))dt.

Proof By the Fenchel equivalence (FB), (RE), and (PB) are equivalent, where now
DE (t, u(t)) is replaced by ξ(t). Integrating (PB) and using the chain rule (3.3.1)
provide the EDP and hence the UEDE. For the opposite implication we start from
the Young-Fenchel estimate (3.2.14) and obtain the following chain of estimates:

T∫
0

−〈ξ(t), u̇(t)〉dt
YF≤

T∫
0

R(u, u̇)+R∗(u,−ξ)dt
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UEDE≤ E (0, u(0))+
T∫

0

∂tE (t, u)dt − E (T, u(T )) =
T∫

0

∂tE (t, u)− d

dt
E (t, u)dt

CR=
T∫

0

−〈ξ(t), u̇(t)〉dt.

Thus, we conclude that all the above estimates must be equalities. Moreover, using

the Young-Fenchel estimate again with the first estimate
YF≤ being an equality, we

see that (PB) has to hold a.e. in [0, T ]. For the last conclusion we simply use that
g(t) ≤ h(t) and

∫ T
0 g dt = ∫ T

0 h dt imply that g(t) = h(t) a.e. Hence, the proof is
complete. �

We remark that the UEDE relates the final energy E (T, u(T )) plus the dissi-
pated energy

∫ T
0 R +R∗ dt to the initial energy E (0, u(0)) plus the external work∫ T

0 ∂sE (s, u)ds, which arises via time-dependence of the system. The main impor-
tance of the UEDE is that the final and the dissipated energies only need to have a
good upper bound. Hence, in passing to a Γ -limit it will be sufficient to have good
liminf estimates for these terms, while the right-hand side can be controlled by the
well-preparedness of the initial conditions and proper assumptions on the work of
the external forces. In fact, we will mostly assume E (t, u) = F (u)− 〈
(t), u〉, so
it will be easy to control the linear term − ∫ T

0 〈
̇, u〉dt = ∫ T
0 ∂tE (t, u(t))dt .

3.3.2 pE-Convergence Obtained from Mosco Convergence

We now provide a first general result on pE-convergence for an ε-dependent family
of gradient systems (X,Eε,Rε) that is based on the UEDE

Eε(uε(T ))+
T∫

0

Rε(uε, u̇ε)+R∗
ε (uε,−DEε(uε))dt ≤ Eε(uε(0)).

The proof presented here is a simplified version of the Mosco-convergence theory
developed in [51]. In fact, the results there (cf. Theorem 4.8) are more general, while
we present a version which displays the general structure more clearly by restricting
to the case that Eε is independent of time and that Rε is translation invariant, i.e.
Rε(u, v) = Ψε(v). Thus, the restricted results corresponds to [72, Theorem 7.2] for
variational doubly nonlinear equations with convex energies E (t, ·), which can be
reformulated via a Brézis-Ekeland principle, i.e. u solves 0 ∈ ∂Ψ (u̇)+ DF (u)−

(t) if and only if there exists ξ(t) ∈ ∂E (t, u(t) such that (u, ξ) minimizes I with
I (u, ξ) = 0, where I is given by
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I (u, ξ) =
⎛
⎝ T∫

0

Ψ (u̇)+ Ψ ∗(−ξ)− ∂tE (t, u)dt + E (T, u(t))− E (0, u0)

⎞
⎠
+

+
T∫

0

E (t, u)+ E ∗(t, ξ)− 〈ξ, u〉dt + ‖u(0)− u0‖2
X ,

where (a)+ = max{a, 0} andE ∗(, ·) is the Fenchel-Legendre transform of the convex
function E (t, ·). A more restrictive result for Hilbert spaces X with the constant
dissipation potential Ψε(v) = 1

2‖v‖2
X has already been obtained in [4, Theorem 3.74].

Theorem 3.3.2 (Mosco convergence implies pE-convergence) Let X be a reflexive
Banach space and let c, C, λcx > 0, p > 1 be such that Eε(·)+ λcx‖ · ‖2

X is convex
and that the dissipation potentials satisfy the coercivity assumption

∀ v ∈ X, ξ ∈ X∗ : Ψε(v) ≥ c‖v‖p
X − C, Ψ ∗

ε (ξ) ≥ c‖ξ‖p∗
X∗ − C. (3.3.3)

Moreover, assume that Z is compactly embedded into X such that the energies are
uniformly Z-coercive, cf. (3.2.8). Then, we have

(
Eε

M−→ E0 and Ψε
M−→ Ψ0 in X

) =⇒ (X,Eε, Ψε)
pE→(X,E0, Ψ0).

In this result the convergence of the two functionals is rather strong, namely Mosco
convergence. At first glance, there seems to be no compatibility condition between
the two convergences. However, the necessary compatibility reduces to the fact that

the Mosco convergences Eε
M−→ E0 and Ψε

M−→ Ψ0 occur in the same topology, namely
in the dynamic function space X . Here the uniform coercivity of Ψε and Ψ ∗

ε is crucial.
The proof of Theorem 3.3.2 relies on two important arguments, namely a lower

semicontinuity result of Ioffe type (cf. [30]) and the strong-weak closedness of the
graphs of ∂̃Eε.

Proposition 3.3.1 (Lower semicontinuity, e.g. [51, Theorem A.2]) Assume that all

Jε : X → R∞ are proper, lsc, and convex and that Jε

Γ
⇀ J0 in X , then

wε ⇀ w ∈ Lp([0, T ], X) =⇒
T∫

0

J0(w(t))dt ≤ lim inf
ε→0

T∫
0

Jε(wε(t))dt.

Definition 3.3.2 (Strong-weak closedness) The triples (X,Eε, ∂̃Eε)ε∈[0,1] satisfies
the strong-weak closedness of the graph of ∂̃E , if the following holds:

If

{
uε → u in X, Eε(uε)→ e0 ∈ R,

ξε ∈ ∂̃Eε(uε), ξε ⇀ ξ in X∗,

}
then ξ ∈ ∂̃E0(u) and E0(u) = e0. (3.3.4)

mielke@wias-berlin.de



214 A. Mielke

Proposition 3.2.3 shows that strong-weak closedness holds if allEε are lsc and convex
and the convex subdifferential is used. The assumption of convexity of Eε(·)+ λcx‖ ·
‖2

X , which is also called uniform λcx convexity, provides the same result for the
Fréchet subdifferential defined in (3.3.2), see [51, 67].
Sketch of proof of Theorem 3.3.2 We only give the main arguments of the proof
and refer to [51, Theorem 4.8] for the details. We start from a family of solutions
uε : [0, T ] → X of (X,Eε, Ψε) and want to show that an accumulation point u is a
solution of the limit system (X,E0, Ψ0).
Step 1 The well-preparedness of the initial condition gives Eε(uε(0)) ≤ C . Since
the solutions uε satisfy the EDP, we obtain the uniform bounds Eε(uε(t)) ≤ C ,∫ T

0 Ψε(u̇ε)dt ≤ C , and
∫ T

0 Ψ ∗
ε (−ξε)dt ≤ C , where ξε(t) ∈ ∂̃E (uε(t)) a.e. The coer-

civity of Eε, Ψε, and Ψ ∗
ε implies the uniform a priori bounds:

‖uε‖L∞([0,T ];Z) + ‖uε‖W1,p([0,T ];X) + ‖ξε‖Lp([0,T ];X∗) ≤ C.

Step 2 Using the reflexivity of X and the compact embedding of Z into X , we can
extract a convergent subsequence (not relabeled) giving

uε ⇀ u in W1,p([0, T ]; X),

ξε ⇀ ξ in Lp([0, T ]; X∗),
∀ t ∈ [0, T ] : uε(t) ⇀ u(t) in Z.

Step 3 Following (3.2.15), Ψε
M−→ Ψ0 provides the weak Γ -convergences Ψε

Γ
⇀ Ψ0

and Ψ ∗
ε

Γ
⇀ Ψ ∗

0 . Hence we can apply Proposition 3.3.1 to obtain lower semicontinuity
of the dissipation:

T∫
0

Ψ0(u̇)+ Ψ ∗
0 (ξ)dt ≤ lim inf

ε→0

T∫
0

Ψε(u̇ε)+ Ψ ∗
ε (ξε)dt.

Step 4 Next we use the strong-weak closedness to conclude that the two limit functions
u and ξ are related. Using a Banach-space valued Young measure ν generated by
a suitable subsequence of (ξε), the strong-weak closedness implies that for a.a. t ∈
[0, T ] the support of ν(t) is concentrated in ∂̃E0(u(t)) a.e. in [0, T ]. Assuming
additionally that ∂̃E0 is single-valued (see the proof of [51, Theorem 4.4] for the
general case) we conclude ξε(t)→ ξ(t) and hence ξ(t) ∈ ∂̃E0(u(t)) a.e.
Step 5 We now pass to the limit ε → 0 in the EDP. Note that the right-hand side
converges because of the well-preparedness of the initial data. From uε(T )→ u(T )

in X and Eε
M−→ E0 we find E0(u(T )) ≤ lim infε→0 Eε(uε(T )). Now using the weak

convergence of uε and ξε we can apply the lsc result of Proposition 3.3.1 to conclude
the UEDE
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E0(u(T ))+
T∫

0

Ψ0(u̇)+ Ψ ∗
0 (ξ)dt ≤ E0(u(0)) with ξ(t) ∈ ∂̃E0(u(t)),

where we used the well-preparedness of the initial data to obtain E0(u(0)) on the left-
hand side. Since the uniform λ-convexity is preserved under Mosco convergence,
the limit system (X,E0, Ψ0) satisfies the chain rule, and Theorem 3.3.1 is applicable.
Thus, u is a solution of (X,E0, Ψ0).
Step 6 It remains to show the energy convergence Eε(uε(t))→ E0(u(t)) for all t . For
this we can repeat the derivation of the above UEDE on the interval [0, t] where the
energy term and the dissipation term satisfy a liminf estimate separately. However,
using the chain rule estimate on this interval, we know that the UEDE is in fact an
equality and we conclude that in both liminf estimates we must have a limit:

Eε(uε(t))→ E0(u(t)) and

t∫
0

Ψε(u̇ε(t))+ Ψ ∗
ε (ξε(t))dt →

t∫
0

Ψ0(u̇(t))+ Ψ ∗
0 (ξ(t))dt

for all t . Thus, pE-convergence is established. �
We now discuss the applicability of the above result to our major examples. Note

that the dissipation potentials Ψε determine the choice of the dynamic space X , while
the energy space Z will be determined by Eε.

ODE model on X = R2 from Sect. 3.2.5

Here X = R
2 is the only possible choice, and because in finite dimensions weak and

strong convergence coincide we have Eε
M−→ E0 and Ψε

M−→ Ψ0. However, Ψε(v) =
1
2 (v2

1 + v2
2/ε

β) gives the dual dissipation potential Ψ ∗
ε (ξ) = 1

2 (ξ 2
1 + εβξ 2

2 ). Thus, we
have uniform coercivity of Ψε and Ψ ∗

ε only for the case β = 0, where Theorem 3.3.2
is applicable.

Moreover, the uniform-coercivity assumption guides us to a proper choice for the
rescaling. Using w = (u1, ε

−β/2u2) we obtain the gradient system (R2,E ε, Ψ ) with

E ε(w) = 1

2
w2

1 +
1

2

(
w1 − εβ/2−1w2

)2
and Ψ (ẇ) = 1

2
|ẇ|2.

Obviously, we have uniform coercivity of Ψ and Ψ ∗, while uniform coercivity of
E ε only holds for β ≤ 2. Thus, Theorem 3.3.2 is only applicable to (R2,E ε, Ψ ) for
β ≥ 2. However, the same strategy of proof shows that pE-convergence also holds
for β ∈ [0, 1[.
1D homogenization from Sect. 3.2.6

We have Ω = ]0, 
[, aε(x) = a(x/ε), bε(x) = b(x/ε), and cε(x) = c(x/ε) with
upper and lower positive bounds. Since the dissipation potentials are given via
Ψε(v) = 1

2

∫
Ω

cεv2 dx and Ψ ∗
ε (ξ) = 1

2

∫
Ω

1/cε ξ 2 dx , we have uniform coercivity of
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the dissipation in X = L2(Ω). The energies Eε(u) = 1
2

∫ 


0 aεu2
x + bεu2dx are convex

and uniformly coercive in Z = H1(Ω), which is compactly embedded in X .

By Proposition 3.2.4 we know Eε
M−→ Eharm in X . Lemma 3.2.2 gives Ψε

Γ
⇀ Ψharm

and Ψε
Γ−→ Ψarith. Thus, we have Mosco convergence if and only if cε is constant.

In that case, Theorem 3.3.2 applies, and we conclude pE-convergence, i.e. the
solution of cu̇ = (aεux )x − bεu converge to the solutions of the effective equation
cu̇ = (aharmux )x − barithu.

The case of an oscillating cε will be covered in Sect. 3.4.2.

Tartar’s model from Sect. 3.2.7

We emphasize that even in the case of constant Ψε = Ψ0 it is not sufficient to have

Eε

Γ
⇀ E0 or Eε

Γ−→ E0 in X . This is seen by considering Tartar’s example of Sect. 3.2.7
on the Hilbert space L2(Ω) with Ψε = Ψ0 : v �→ 1

2‖v‖2
2 and the energy functionals

Eε(u) = ∫
Ω

aε

2 u2dx . Then, according to Lemma 3.2.2 the weak and the strong Γ -limit
exist and are different. However, none of them characterizes the limit dynamics.

3.3.3 The Sandier-Serfaty Approach to pE-Convergence

The approach of Sandier and Serfaty (cf. [69, 71]) is more general than the previous
result using Mosco convergence, because it directly imposes assumptions on the
liminf estimates for the two dissipation terms in the EDP. For this, we now even allow
that the dissipation potentials depend on u (in a mild way), but restrict, for simplicity,
to the case that the subdifferential is at most single-valued, i.e. ∂Eε(u) = {DEε(u)}
or ∅.

If uε → u in X, vε ⇀ v in X, and Eε(uε) ≤ C, then

R0(u, v) ≤ lim inf
ε→0

Rε(uε, vε) and (3.3.5a)

R∗
0 (u,−DE0(u)) ≤ lim inf

ε→0
R∗

ε (uε,−DEε(uε)). (3.3.5b)

Clearly, the strong-weak closedness of the graph of (∂Eε)ε∈[0,1] and the Mosco conver-

gence Ψε
M−→ Ψ0 imposed in Theorem 3.3.2 imply these two assumptions. In particu-

lar, condition (3.3.5b) implicitly imposes a closedness of the graph of the differential
DEε.

Theorem 3.3.3 (Sandier-Serfaty [69, 71]) Let X and Z be reflexive Banach spaces
with compact embedding Z � X . Assume that (X,Eε,Rε) satisfy the chain rule
(3.3.1) and that there are c, C > 0 and p > 1 such that

∀ u, v ∈ X ∀ ε ∈ [0, 1] : Rε(u, v) ≥ c‖v‖p
X − C, Eε(u) ≥ c‖u‖Z − C.

Then, Eε
Γ−→ E0 in X and (3.3.5) imply (X,Eε,Rε)

pE→(X,E0,R0).
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Proof We follow the steps in the proof of Theorem 3.3.2. Consider a family uε of solu-
tions with well-prepared initial conditions. The EDP and the well-preparedness of the
initial conditions provide the a priori bounds ‖uε‖L∞([0,T ];Z) + ‖uε‖W1,p([0,T ];X) ≤ C .
The compact embedding Z � X allows us to extract a subsequence (not relabeled)
such that

uε ⇀ u in W1,p([0, T ]; X) and ∀ t ∈ [0, T ] : uε(t) ⇀ u(t) in Z.

Combining a generalization of Ioffe’s lsc result in Proposition 3.3.1, assumption
(3.3.5a), the strong convergence uε(t)→ u(t) in X , and the weak convergence u̇ε ⇀

u in Lp([0, T ]; X) yields

T∫
0

R0(u(t), u̇(t))dt ≤ lim inf
ε→0

T∫
0

Rε(uε(t), u̇ε(t))dt.

Similarly, assumption (3.3.5b) and Fatou’s lemma give

T∫
0

R∗
0 (u(t),−DE0(u(t)))dt ≤ lim inf

ε→0

T∫
0

Rε(uε(t),−DEε(uε(t)))dt.

Using uε(T ) → u(T ), Eε
Γ−→ E0 in X , and the well-preparedness of the initial data

yield

E0(u(T ))+
T∫

0

R0(u(t), u̇(t))+R∗
0 (u(t),−DE0(u(t)))dt ≤ E0(u(0)).

Since the gradient system (X,E0,R0) satisfies the chain-rule estimate (3.3.1), the
proof can be completed as for Theorem 3.3.2. �

For applications of this result in a situation where the Mosco convergence of Theorem
3.3.2 does not hold we refer to [36, 47, 69]. In [5] this method is used to show that the
solutions of u̇ = (

W ′(u)− ε2uxx
)

xx converge to the solutions of the Stefan problem,
which is the H−1-gradient flow for the functional E0(u) = ∫

Ω
W ∗∗(u)dx , where W ∗∗

is the lsc convex envelope of W .
In [34] a family of Cahn-Hilliard systems are considered as the gradient systems

(X,Eε,R) with X = (H 1
av(Ω)∗,

Eε(u) =
∫
Ω

ε

2
|∇u|2 + 1

ε
W (u)dx, and R∗(ξ) =

∫
Ω

1

2
|∇ξ |2 dx,
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where W is a double-well potential, e.g. W (u) = 1
4 (u2 − 1)2. Using the well-known

Γ -convergence of Eε to the perimeter functional E0 it is shown in [34, Theorem 1.3]
that under suitable assumptions on the initial data there exists a time T > 0 such
that the solutions uε : [0, T ] → X converge to the solutions u : [0, T ] → X of the
Mullins-Sekerka system, which is given by the limitng gradient system (X,Eε,R).

3.3.4 More General Results on pE-Convergence Using
the EDP

In fact, the energy-dissipation formulation via (R,R∗) is even more flexible. We do
not even need an independent bound for each of the terms

∫ T
0 Rε dt and

∫ T
0 R∗

ε dt .

Moreover, in passing to the liminf for the total dissipation
∫ T

0 Rε +R∗
ε dt we may

even give up the special dual form R +R∗ of the integrand. This idea, which was
applied successfully in [3, 38, 45, 49], can be summarized as follows.

We define the functional Jε : W1,1([0, T ]; X)→ [0,∞] via

Jε(u) :=
T∫

0

Rε(u, u̇)+R∗
ε (u,−DEε(u))dt,

and we have to find a sufficiently good lower bound for the Γ -liminf, namely

(i) uε(·) ⇀ u(·) in W1,1([0, T ]; X) =⇒
T∫

0

M0(u(t), u̇(t))dt ≤ lim inf
ε→0

Jε(uε),

where the integrandM0 does not need to be of the formR0 +R∗
0 . Hence, finding the

best (i.e. largest)M0 is nothing else than finding the (static) Γ -limit of the functionals
Jε. It suffices to find (X,E0,R0) and M0 such that

(ii) Eε
Γ
⇀ E0;

(iii) M0(u, v) ≥ −〈DE0(u), v〉;
(iv) the chain rule (3.1) holds for (X,E0,R0);
(v) M0(u, v) = −〈DE0(u), v〉 =⇒ R0(u, v)+R∗

0 (u,−DE0(u)) = −〈DE0(u), v〉.

As before, we can start from the EDP Eε(uε(T ))+Jε(uε) = Eε(uε(0)). Using the
well-preparedness of the initial datum, (i), and (ii) we pass to the limit and obtain
the UEDE

E0(u(T ))+
T∫

0

M0(u(t), u̇(t))dt ≤ E0(u(0)).
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Now using the (iii) and the chain rule (iv) we find

E0(u(0))
(iv)= E0(u(T ))−

T∫
0

〈DE (u(t)), u̇(t)〉dt

(iii)≤ E0(u(T ))+
T∫

0

M0(u(t), u̇(t))dt ≤ E0(u(0)).

Thus, we conclude that we must have equality in (iii) for almost all t ∈ [0, T ], such
that we can use (v) to conclude that u is a solution for (X,E0,R0).

Section 3.3.5.3 summarizes the results of [45], which show that the above strategy
can even be applied to justify the passage from small viscous dissipation (i.e.Rε(u, ·)
is quadratic) to a limit problem with large rate-independent dissipation (i.e. R0(u, ·)
is positively homogeneous of degree 1, see Sect. 3.5.1), like dry friction.

In fact, under a slight and natural strengthening of the conditions (i) to (v), it is pos-
sible to contruct R0 directly from M0. Indeed, assume that M0(u, ·) is additionally
even, convex, and lsc, then it is immeadiate that RM defined via

RM (u, v) :=M0(u, v)−M0(u, 0)

is a dissipation potential. Moreover, using property (iii) we find the estimate

R∗
M (u,−DE0(u)) = sup

v∈X

(
〈−DE0(u), v〉 −M0(u, v)+M0(u, 0)

)
≤M0(u, 0).

Thus, we find the desired UEDE E0(u(T ))+ ∫ T
0 RM +R∗

M dt ≤ E0(u(0)). We
emphasize that the choice RM in (iv) and (v) is admissible, but not unique. In
particular, it may be possible to find simpler R0 as is the case in the application
discussed in Sect. 3.3.5.3.

3.3.5 Applications for pE-Convergence Based on the EDP

We treat three different applications of the abstract approaches described above,
which rely on calculating the Γ -limit J0 of the functionals Jε(u) = ∫ T

0 R(u, u̇)+
R(u,−DE (u)) dt . The first two are based on the Sandier-Serfaty approach of
Sect. 3.3.3, while the third uses the generalization of Sect. 3.3.4.
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3.3.5.1 Dimension Reduction

The theory of evolutionary Γ -convergence was applied to cases of dimension reduc-
tion in [35, 36]. There, the passage from a thin bulk layer to hypersurface was
considered. Dimension reduction is also relevant for the modeling of delamina-
tion via thin damage layers (cf. [54]), for elastoplastic behavior of plates (cf. [37]),
or for the modeling of electronically active interfaces in thin-film photovoltaics
(cf. [27, 28]).

We treat the following simplified diffusion model with Ω = ]−1, 1[ ⊂ R
1:

ut = (Aε(x)ux )x for t > 0, x ∈ Ω, ux (t,±1) = 0, (3.3.6)

where the diffusion coefficient Aε equals 1 for |x | > ε/2 and αε for |x | ≤ ε/2.
While the system can be written as a L2-gradient flow with quadratic energy (see
Sect. 3.2.8.1), here we use the logarithmic entropy that is physically more relevant
for diffusion, see [32, 44, 63]. Thus, we consider the gradient system (Q,E ,Rε)

with state space Q = { u ∈ L1(Ω) | u > 0,
∫
Ω

u(x)dx = 1 }, ε-independent energy
functional E (u) = ∫

Ω
u log u − u dx , and the dual dissipation potential R∗

ε (u, ξ) =
1
2

∫
Ω

Aεuξ 2
x dx . Using

Kε(u)ξ = DξR
∗
ε (u, ξ) = −(u Aεξx

)
x and DE (u) = log u,

we see that u̇ = −Kε(u)DE (u) = (
u Aε(log u)x

)
x = (Aεux )x is the diffusion equa-

tion (3.3.6).
The EDP takes the form E (uε(T ))+Jε(uε) = E (uε(0)) with Jε(u) =

T∫
0

Rε(u, u̇)+R∗
ε (u,−DEε(u))dt =

T∫
0

∫
Ω

( 1

2u Aε

( x∫
−1

u̇ dy
)2 + Aε

2u
u2

x

)
dx dt.

We note that Jε is a convex functional over the space-time domain Ω × [0, T ]
depending on ε via the coefficient Aε. The calculation of the Γ -limit of Jε can be
done with classical methods, see [35, Sect. 3.2], and for uε ⇀ u one finds

J0(u) :=
T∫

0

R0(u, u̇)+ M(u)dt ≤ lim inf
ε→0

Jε(uε), where

R0(u, v) =
0∫

−1

1

2u

⎛
⎝ x∫
−1

vdy

⎞
⎠

2

dx + (
∫ 1

0 vdy)2

2αΛ(u(0−), u(0+))
+

1∫
0

1

2u

⎛
⎝ 1∫

x

vdy

⎞
⎠

2

dx,
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M(u) =
0∫

−1

u2
x

2u
dx + α(u(0−)− u(0+))2

2Λ(u(0−), u(0+))
+

1∫
0

u2
x

2u
dx

with Λ(a, b) = a−b
log a−log b > 0, see Sect. 3.2.8.3.

Since E does not depend on ε, we have E0 = E , and one can check R0(u, v)+
M(u) ≥ −〈DE (u), v〉 = − ∫

Ω
(log u)v dx , which is condition (iii) for M0 in

Sect. 3.3.4. Since v was arbitrary we have R∗=(u,−DE (u)) ≤ M(u) and conclude

E (u(T ))+
T∫

0

R0(u, u̇)+R∗
0 (u,−DE (u))dt ≤ E (u(T ))+J0(u)

Jε

Γ−→J0≤
uε(·)⇀u(·)

lim inf
ε→0

E (uε(T ))+Jε(uε)
EDPε= lim

ε→0
Eε(uε(0))

wellpr.= E (u(0)).

Invoking the chain rule again, we find that u is a solution of the gradient system
(Q,E ,R0), cf. Theorem 3.3.1. The associated PDE is given by classical diffusion
in the two bulk parts ]−1, 0[ and ]0, 1[ and a transmission condition at the interface
x = 0:

u̇ = uxx for x ∈ ]0, 1[,
0 = ux (0+)+ α(u(0+)−u(0−)) for x = 0+,

0 = ux (0−)+ α(u(0−)− u(0+)) for x = 0−,

u̇ = uxx for x ∈ ]−1, 0[.

We refer to [28, 35, 36] for more details concerning gradient structures for reaction-
diffusion systems with nontrivial interface conditions.

3.3.5.2 pE-Convergence = Homogenization for Tartar’s Model

This example highlights the fact that a gradient structure is an additional information
for a given evolution equation. In particular, choosing different gradient structures we
may obtain different limiting evolution equations via evolutionary Γ -convergence.

We consider a bounded open domain Ω ⊂ R
d and the damped parametrized ODE

u̇(t, x) = −aε(x)u(t, x), u(0, x) = u0(x) ≥ 0. (3.3.7)

Here we will interprete u(t, ·) ∈ L1+(Ω) as a density of a measure and assume that
the absorption coefficient aε has the form aε(x) = A(x, 1

ε
x), where A is continuous

on Ω × R
d and 1-periodic in the second argument, i.e. A(x, y + k) = A(x, y) for

all k ∈ Z
d .
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As indicated in Sect. 3.2.7 we use the gradient structure (M+(Ω),Eε,RH
ε ) with

Eε(x) =
∫

∂Ω

bε(x)du(x) and RH ∗
ε (u, ξ) = 1

2

∫
Ω

aε(x)

bε(x)
ξ(x)2 du(x),

where bε is again assumed in the form bε(x) = B(x, 1
ε
x). In particular, the energy

functional is linear, but the dual dissipation potential depends on u, so we are not
using the Hilbert-space structure of L2(Ω) as in [73, 74]. As in [39, 48] we call RH ∗

ε

the dual Hellinger-dissipation potential, because it gives rise to a weighted Hellinger
distance between nonnegative measures.

We equip M+(Ω) with the weak* convergence and find the Γ -limit of Eε via

Eε

Γ ∗
⇀ E0 : u �→

∫
Ω

b0(x)du(x) with b0(x) := min{ B(x, y) | y ∈ R
d },

where uε

∗
⇀ u denotes weak* convergence in M+, i.e.

∫
φduε →

∫
φdu for all

φ ∈ C(Ω). For the proof of the liminf estimate simply note bε(x) ≥ b0(x), which
implies Eε(u) ≤ E0(u) for all u. Since E0 is weakly* continuous the liminf estimate
follows.

For a given û we have to find a recovery sequence ûε such that ûε

∗
⇀ û and

Eε(̂uε) → E0(u). We do the construction as follows. For positive ε decompose Ω

into finitely many sets of the form Qk,ε = ε(k + [0, 1[d) ∩Ω with k ∈ Kε := { k ∈
Z

d | Qk,ε �= ∅ }. Denote by yk,ε the point in Qk,ε which minimizes bε. Then, define
the functions

ûε =
∑
k∈Kε

∫
Qk,ε

dû(y) δyk,ε
and obtain ûε

∗
⇀ û.

Moreover, using bε(yk,ε) ≤ b0(yk,ε) we have Eε(̂uε) ≤ E0(̂uε) and conclude the lim-
sup estimate. Finally we prove the pE-convergence using the EDP. For ε > 0 the
solutions satisfy

Eε(uε(T ))+
T∫

0

∫
Ω

( bε

2aε

u̇2
ε

uε

+ 1

2
aεbεuε

)
dx dt = Eε(uε(0)).

To pass to the limit ε → 0 we define the two functions

g0(x) := min{ B(x, y)/A(x, y) | y ∈ R
d } and

h0(x) := min{ B(x, y)A(x, y) | y ∈ R
d }. (3.3.8)

Using the well-preparedness of the initial condition on the right-hand side and the
liminf estimates any pointwise weak* limit u(t) of uε(t) satisfies
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E0(u(T ))+
T∫

0

M0(u(t), u̇(t))dt ≤ E0(u(0)) with M0(u, v) =
∫
Ω

g0

2

v2

u
+ h0

2
udx .

To show this, we first estimate bε/aε ≥ g0 and aεbε ≥ h0 and then use that the
integrand is jointly convex in (u, u̇) such that weak lsc follows.

To complete the proof of pE-convergence we have to prove that M0(u, v) ≥
−〈DE0(u), v〉 (cf. (iii) in Sect. 3.3.4), which means

g0v2

2u
+ h0u

2
≥ −b0v for all u > 0 and v ∈ R.

Since this condition is equivalent to g0h0 ≥ b2
0 and since the chain rule holds, we

obtain the following result.

Proposition 3.3.2 Consider the gradient systems (M+(Ω),Eε,RH
ε ) for ε > 0 and

the functions b0, g0, and h0 as given in (3.3.8). Define

E0(u) :=
∫
Ω

b0(x)du(x) and R∗
0 (u, ξ) :=

∫
Ω

h0(x)

2b0(x)2
ξ(x)2 du(x)

and assume g0h0 ≥ b2
0, then (M+(Ω),Eε,Rε)

pE
⇀∗ (M+(Ω),E0,R0) and the lim-

iting equation reads u̇ = − k0
b0

u = − b0
g0

u.

We emphasize that this result is in contrast, but not in contradiction, to the results in
[73, 74]. There, the solutions uε(t, ·) converge weakly in L2(Ω). However, this does

not fit to our well-preparedness asking uε(t)
∗

⇀ u(t) in M+(Ω) and Eε(uε(t))→
E0(u(t)), which requires a concentration at the minimizing points of B(x, ·).

More importantly, this provides an example where for the same equation u̇ =
−aεu we have two different gradient structures that produce two different evolution-
ary Γ -limits having different effective equations.

Corollary 3.3.1 (Different gradient structures lead to different limit equations)
Equation (3.3.7) has the two gradient structures (M+(Ω),E ( j)

ε ,R( j)
ε ), j = 1 and 2,

with

E (1)
ε (u) =

∫
Ω

aε du, R(1) ∗
ε (u, ξ) =

∫
Ω

1

2
ξ 2 du,

E (2)
ε (u) =

∫
Ω

1

aε

du, R(2) ∗
ε (u, ξ) =

∫
Ω

a2
ε

2
ξ 2 du.
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Setting amin(x) := min{A(x, y) | y ∈ R
d } and amax(x) := max{A(x, y) | y ∈ R

d },

E (1)
0 (u) =

∫
Ω

amin du, R(1) ∗
0 (u, ξ) =

∫
Ω

1

2
ξ 2 du,

E (2)
0 (u) =

∫
Ω

1

amax
du, R(2) ∗

0 (u, ξ) =
∫
Ω

a2
max

2
ξ 2 du,

we obtain the evolutionary Γ -convergences

(M+(Ω),E ( j)
ε ,R( j)

ε )
pE
⇀∗ (M+(Ω),E ( j)

0 ,R( j)
0 ) for j = 1 and 2,

which give rise to the two different effective limit equations:

(M+(Ω),E (1)
0 ,R(1)

0 ) : u̇(t, x) = −amin(x)u(t, x)

(M+(Ω),E (2)
0 ,R(2)

0 ) : u̇(t, x) = −amax(x)u(t, x).
(3.3.9)

Proof We simply apply Proposition 3.3.2. For j = 1 we choose bε = aε (or B = A),
then b0(x) = amin(x) := min{ A(x, y) | y ∈ R

d }, g0 = 1, and h0 = a2
min, such that

condition g0h0 ≥ b2
0 holds. Similarly, for j = 2 we choose bε = 1/aε, then b0 =

1/amax, g0(x) = 1/a2
max, and h0 = 1. �

Again, there is no contradiction between the two different limit equations. How-
ever, the choice of the energy functionals induces different conditions for the conver-
gence of well-prepared initial conditions. Since this well-preparedness is preserved
during the full evolution, we obtain truely different effective evolution equations.

The two different limit equations in (3.3.9) for Tartar’s model (3.3.7) show clearly,
that the choice of the gradient structure for given equation is an additional modeling
information that cannot be extracted from the equation alone.

3.3.5.3 From Viscous to Rate-Independent Friction

In this section we discuss evolutionary Γ -convergence, where we start form classical
gradient systems (X,Eε, Ψε) with quadratic Ψε and obtain a rate-independent gen-
eralized gradient system (X,E0, Ψ0) with Ψ0(v) = ρ|v|, cf. Sect. 3.5.1. In particular,

we emphasize that in this case Ψε
C−→ 0 while Ψ0 �= 0. To analyze the evolutionary

Γ -limit via the EDP we use that the functionalJε(u)= ∫ T
0 Ψε(u̇)+ Ψ ∗

ε (−DEε(u))dt
may lead to a more general J0, as was discussed in Sect. 3.3.4.

First investigations concerning the derivation of dry friction from viscous models
can be found in [64], see Fig. 3.2. The work was re-initiated in [31] and further
investigated by [59, 65] to understand hysteresis in materials. Here we summarize
the analytical approach in [45] based on the EDP. The main interest is to establish
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ELL

ε (t,u)

D ε (t,u)

u

Fig. 3.2 Left Prandtl’s Gedankenmodell [64]: a microscopically wiggly energy landscape gives
rise to macroscopic dry friction. Right Wiggly energy and its derivative

the evolutionary Γ -convergence (R,Eε, Ψε)
pE→(R,E0, Ψ0) where Ψε(v) = εα

2 v2 is a
small viscous (i.e. quadratic) dissipation potential while the limit friction Ψ0(v) =
ρ|v| is homogeneous of degree 1, giving Coulomb’s rate-independent friction law
ξ = ρSign(v). Moreover, the friction coefficient ρ > 0 will depend on the size of
the wiggles in the wiggly energy landscape Eε(t, ·).

We consider the time-dependent gradient system (R,Eε, Ψε) with

Eε(t, u) = E0(t, u)+Wε(u) with

E0(t, u) := 1

2
u2 − 
(t)u and Wε(u) := ερ cos(u/ε).

Here the macroscopic part E0 is independent of ε and will be the Γ -limit of Eε. For

t ∈ R we have continuous and Mosco convergence:Eε
C−→ E0 andEε

M−→ E0. However,
the derivative

ξε = DuEε(t, u) = DuE0(t, u)+ DWε(u) = u − 
(t)− ρ sin(u/ε)

has fluctuations of fixed size ρ > 0 and period ε. Moreover, for each t ∈ R there are
many steady states, namely approximately ρ/ε, see Fig. 3.2. This explains the name
wiggly energy landscape.

The gradient system induces the ODE

εα u̇ = −DuEε(t, u) = −(u − 
(t)
)+ ρ sin(u/ε). (3.3.10)

A plot of a numerical simulation is depicted in Fig. 3.3, which shows that the solutions
uε converge for ε → 0 to a limit solution u that does not solve the naïve limit equation

0 = −DuE0(t, u(t)), which might be guessed from the limits Eε
C−→ E0 and Ψε

C−→ 0.
The limit passage can be achieved by using the EDP in the form

Eε(T, uε(T ))+
T∫

0

εα

2
u̇2
ε +

1

2εα
|DuEε(t, uε(t))|2 dt = Eε(0, uε(0))−

T∫
0


̇(t)uε(t)dt,
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2 4 6 8 10

1

2

3

4

5 u(t)

1 2 3 4 5

1

2

3

 t( )

 t( )

Fig. 3.3 Simulation of (3.3.10) for 
(t) = 2.1 sin(1.3t)+ 0.4 t , ρ = α = 1, and ε = 0.04

where the last term denotes the work of the external forces. The main difficulty in the
proof of evolutionary Γ -convergence is to find a liminf estimate for the dissipation
integral.

Proposition 3.3.3 ([45, Proposition 3.1]) If uε(t)→ u(t) and |uε(t)− uε(s)| ≤
C(εδ + |t − s|) for some δ > 0. Then,

lim inf
ε→0

T∫
0

εα

2
u̇2

ε +
1

2εα
|DuEε(t, uε(t))|2 dt ≥

T∫
0

M0(u(t), u̇(t), t)dt

with M0(u, v, t) = |v|K (
(t)− u)+ χ[−ρ,ρ](
(t)− u) and K (ξ) = 1
2π

∫ 2π

0 |ξ + ρ

cos y|dy, where χ[−ρ,ρ](ξ) = 0 for |ξ | ≤ ρ and∞ otherwise.

Since K (ξ) = |ξ | for |ξ | ≥ ρ and K (ξ) � |ξ | for |ξ | < ρ we find the desired relation
(iii) in Sect. 3.3.4, viz.

M0(u, v, t) ≥ |v| |
(t)− u| ≥ −v DE0(t, u).

Moreover, by the chain rule (here in R
1) the limit functions will realize equality

which holds if and only if |DE0(t, u)| ≤ ρ and ρ|v| + v DE0(t, u) = 0. Thus, using
Lemma 3.5.1 the limit u of solutions uε satisfies the differential inclusion

0 ∈ ∂Ψ0(u̇)+ DE0(t, u) with Ψ0(v) = ρ|v|.

Thus, we have established the following evolutionary Γ -convergence result that
connects quadratic Ψε to a one-homogeneous Ψ0 in the limit.

Theorem 3.3.4 ([65], [45, Theorem 3.2] For the above gradient structure for (3.3.10)

we have (R,Eε, Ψε)
pE→ (R,E0, Ψ0). Moreover, along well-prepared solutions we

have
∫ T

0 2Ψε(u̇ε(t))dt → ∫ T
0 Ψ0(u̇(t))dt .
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Concerning the last convergence of the dissipation, we emphasize that the conver-
gence only occurs after integration. The integrand 2Ψε(u̇ε(t)) develops many sharp
peaks at distance proportional to ε that have a width proportional to εα+1 and a height
of order ε−α , each of which corresponds to a fast viscous jump from one wiggle to
the next.

3.4 E-Convergence Using Evolutionary Variational
Estimates

Here we derive evolutionary Γ -convergence results based on the integrated evo-
lutionary variational estimate (IEVE), which was initiated in [2, Chap. 4.0] and is
further developed [15, 70]. There, the name evolutionary variational inequality and
the abbreviation EVI is used. However, to distinguish this notion from the evolution-
ary (quasi-) variational inequalities (see (3.5.4) and e.g. [12, 33]) we stick with our
name IEVE.

The main advantage of reformulating gradient flows u̇ = DξR∗(u,−DE (u)) in
terms of an IEVE is that the latter is derivative free (i.e. no occurrence of u̇, DE , nor
∂ξR∗), so we can use Γ -convergence for the functionals Eε and Rε more directly.
However, the theory using IEVE is restricted to the case of quadratic dissipation
potentials, which can be replaced by the associated dissipation distance D , and an
additional strong convexity condition, called geodesic λ-convexity, is needed as well,
see Sect. 3.4.3.

We first motivate the equivalence of the IEVE and the EDP by looking at an abstract
linear gradient flow. This will allow us to treat the one-dimensional homogenization
problem with oscillatory coefficient cε(x) = c(x/ε) for u̇, see Sect. 3.4.2. Next, we
discuss the general metric approach in Sect. 3.4.3, where the dissipation distance
is a general geodesic distance. In Theorem 3.4.3 we then provide a general result
showing E-convergence.

3.4.1 The Simplest Case: Quadratic Convex Functionals

We consider the simplest case that the functionals E and Ψ are quadratic, i.e. a
gradient systems (H,E , Ψ ) where H is a Hilbert space, E (u) = 1

2 〈Lu, u〉 ≥ 0, and
Ψ (v) = 1

2 〈Gv, v〉 ≥ 0 with G
∗ = G and L

∗ = L. The associated gradient flow is the
linear equation Gu̇ = −Lu.

The following formulation in terms of the IEVE is a special case of the integral
solutions developed in [6], which was developed for a general Banach space X and
equations u̇ + A(u) � f (t), where A is a possibly multi-valued accretive operator
(see [68, Sect. 9.6] for more details on integral solutions).
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Proposition 3.4.1 IEVE in the convex and quadratic case) For the above gradient
system (H,E , Ψ ) the following formulations are equivalent:

(FB) ⇐⇒ (RE) ⇐⇒ (EDP) ⇐⇒ (IEVE)

where the Integrated Evolutionary Variational Estimate formulation is given by

IEVE:

{∀ 0 ≤ s < t ≤ T ∀w ∈ H :
Ψ (u(t)− w)− Ψ (u(s)− w) ≤ (t − s)

(
E (w)− E (u(t)

)
.

(3.4.1)

The addition “Integrated” distinguishes this formulation from the differential evolu-
tionary variational estimate (EVE) given by d

dt Ψ (u(t)− w) ≤ E (w)− E (u(t)).

Proof The equivalence between (FB), (RE), and (EDP) is already established in
Sect. 3.3.1, so it remains to show (i)⇔ (IEVE).

“⇒” The quadratic form of Ψ and E and the linear form Gu̇ = −Lu of (i) yield

d
dt Ψ (u − w) = 〈Gu̇, u − w〉 (i)= −〈Lu, u − w〉

= 1
2 〈Lw, w〉 − 1

2 〈Lu, u〉 − 1
2 〈L(u − w), u − w〉 ≤ E (w)− E (u)− 0.

Integration over time and the monotonicity of E along solutions give

Ψ (u(t)− w)− Ψ (u(s)− w) =
t∫

s

E (w)− E (u(τ ))dτ ≤ (t − s)
(
E (w)− E (u(t)

)
,

which is the desired IEVE.
“⇐” Rearrangement of quadratic expressions gives

IEVE ⇐⇒ ∀w ∈ H : 1
2 〈G(u(t)− u(s)), u(t)+ u(s)− 2w〉
≤ t−s

2 〈L(u(t)+ w), w − u(t)〉.

Choosing s = t − h, dividing by h, and letting h → 0+, we find 〈Gu̇(t), u(t)− w〉 ≤
1
2 〈L(u(t)+ w), w− u(t)〉 for all w ∈ H . Setting w = u(t)− δ̂v, dividing by δ and
letting δ → 0+ gives 〈Gu̇(t), v̂〉 ≤ −〈Lu(t), v̂〉 for all v̂ ∈ H . Replacing v̂ by −̂v,
we even have equality and conclude that (i) holds. �

This formulation leads to the following simple but new E-convergence result. For
this, we introduce the domains dom(Eε) := { u ∈ H | Eε(u) <∞} and note that the
solutions do not need uε(0) ∈ dom(Eε), instead uε(0) ∈ dom(Eε) is sufficient.

Theorem 3.4.1 (E-convergence for quadratic case) Assume that Eε and Ψε are
quadratic functionals of a Hilbert space H . Further assume that there is a Hilbert
space Z � H (compact embedding) such that we have the coercivities

∃ c > 0 ∀ ε ∈ [0, 1], u ∈ H : Eε(u) ≥ c‖u‖2
Z, c‖u‖2

H ≤ Ψε(u) ≤ 1

c
‖u‖2

H .

(3.4.2)
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If Eε
M−→ E0 in H and Ψε

C−→ Ψ0 in H , then (H,Eε, Ψε)
E→(H,E0, Ψ0) (i.e. without

well-prepared initial conditions), namely if uε(0) ∈ dom(Eε) for all ε ∈ [0, 1], then

uε(0)→ u0(0) in H =⇒ ∀ t > 0 : uε(t) ⇀ u0(t) in Z and

Eε(uε(t))→ E0(u0(t)),

where uε : [0,∞[ → H are solutions for (H,Eε, Ψε).

The following proof is a simplified version of the more general proof for Theorem
3.4.3 in the metric setting for uniformly geodesically λ-convex gradient systems,
which is given in [15, 70]. Comparing this result with Theorem 3.3.2, we see that the
Mosco convergence of the energies Eε is the same, but there the Mosco convergence

Ψε
M−→ Ψ0 is much stronger than the continuous convergence Ψε

C−→ Ψ0 needed here.

Proof The solutions uε of Gεu̇ = −Lεu with uε(0) ∈ H satisfy

IEVEε : Ψε(uε(t)− w)− Ψε(uε(s)− w) ≤ (t − s)
(
Eε(w)− Eε(uε(t))

)
for 0 ≤ s < t ≤ T and w ∈ H . Hence we find the following a priori estimates:

Ψε(uε(t))+ tEε(uε(t)) ≤ Ψε(uε(0)) ≤ C0, (3.4.3a)

Eε(uε(t))+
t∫

s

Ψε(uε)+ Ψ ∗
ε (DEε(uε))dτ = Eε(uε(s)) ≤ C0/s. (3.4.3b)

Ψ ∗
ε (DEε(uε(t))) ≥ Ψ ∗

ε (DEε(uε(s))) for 0 < t < s ≤ T . (3.4.3c)

Here (3.4.3a) follows from the IEVE by setting s = 0 and w = 0 using Eε(0) = 0,
while (3.4.3b) is a consequence of (EDP) and (3.4.3a). The monotonicity (3.4.3c)
follows from d

dt Ψ
∗
ε (DEε(uε)) = −〈Lεu̇ε, u̇ε〉 ≤ 0. Choosing s = t/2 in (3.4.3b) and

using (3.4.3c) we obtain Ψ ∗
ε (DEε(uε(t)) ≤ 4C0/t2.

Hence, for each t0 > 0 we have a uniform bound for all uε in the spaces
H1([t0, T ]; H) ⊂ C1/2([t0, T ]; H) and L∞([t0, T ]; Z). By Arzela-Ascoli’s theorem
we find a subsequence (not relabeled) such that uε(t) ⇀ U (t) in Z for all t > 0. We
also set U (0) = u0(0) and prove now that U : [0, T ] → H is a solution of IEVEε=0

as follows.
For a given ŵ in H we choose a recovery sequence ŵε → ŵ in H with Eε(ŵε) →

E0(ŵ). Inserting ŵε into IEVEε we can pass to the limit using Eε
Γ−→ E0 and Ψε

C−→ Ψ0

and find

IEVE0 : Ψ0(U (t)− ŵ)− Ψ0(U (s)− ŵ) ≤ (t − s)
(
E0(ŵ)− E0(U (t))

)
.

Thus, U solves IEVE0. To conclude that it is indeed the unique solution u0 of
G0u̇ = −L0u with u(0) = u0(0) we still need to show that it is continuous at t = 0,
i.e. U (t)→ U (0) = u0(0). Taking s = 0 in IEVE0 and ŵ ∈ dom(E0) and using
E0(U (t)) ≥ 0 we find
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c lim sup
t↘0

‖U (t)− ŵ‖2
H ≤ lim sup

t↘0
Ψ0(U (t)− ŵ)

IEVE0≤ lim sup
t↘0

(
Ψ0(U (0)− ŵ)+ t

[
E0(ŵ)− E0(U (t))

])
≤ Ψ0(U (0)− ŵ) ≤ 1

c‖U (0)− ŵ‖2
H .

Choosing ŵ = wk → U (0) in H , where we used U (0) = u0(0) ∈ dom(E0), we con-
clude U (t)→ U (0) as desired. Hence, U (t) = u0(t) because of the uniqueness of
solutions.

Finally, we show energy convergence along the solutions. From (3.41) we have
derived the ε-independent bound ‖DEε(uε(t))‖H∗ ≤ C∗/t2, which implies

Eε(u) ≥ Eε(uε(t))− C∗
t2 ‖u − uε(t)‖2

H for all u ∈ H .

Fixing t > 0 and inserting a recovery sequence u = ûε → u0(t) in H with Eε(̂uε) →
E0(u0(t)) into the above estimate yield E0(u0(t)) ≥ lim supε→0 Eε(uε(t)), because

of ‖uε(t)− ûε‖H → 0. Since the opposite estimate holds by Eε
M−→ E0, we obtain

Eε(uε(t))→ E0(u0(t)), and the proof is complete. �

3.4.2 Linear Parabolic Homogenization via E-Convergence

Here we show that the linear parabolic homogenization problem can be handled
using the IEVE. We recall the linear parabolic equation

cεu̇ = div(aε∇u)− bεu in Ω, aε∇u · ν = 0 on ∂Ω, (3.4.4)

where Ω ⊂ R
d is a bounded Lipschitz domain. The coefficients are bε(x) = b(x/ε)

and cε(x) = c(x/ε) > 0 and aε(x) = a(x/ε) ∈ R
d×d
spd , where a, b, and c are 1-

periodic.
The Allen–Cahn-type gradient structure is given by H = L2(Ω) and the func-

tionals

Ψε(v) =
∫
Ω

cε(x)

2
v(x)2 dx and Eε(u) =

∫
Ω

1

2
∇u(x) · aε(x)∇u(x)+ bε(x)

2
u(x)2 dx .

Now the assumptions of Theorem 3.4.1 are satisfied with Z = H1(Ω). In particular,

we have Ψε
C−→ Ψ0 and Eε

M−→ E0 in H with

E0(u) =
∫
Ω

1

2
∇u · aeff∇u + barith

2
u2 dx and Ψ0(v) =

∫
Ω

carith

2
v2 dx,
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where in the 1D case we have aell = aharm, see Lemma 3.2.2. For homogenization

with d ≥ 2 we refer to [9, 14], where Eε

Γ
⇀ E0 is shown in H1(Ω), which gives

Eε
M−→ E0 in L2(Ω) via Proposition 3.2.1.
Theorem 3.4.1 guarantees that solutions uε of (3.4.4) converge to solutions u0 of

the effective equation

carithu̇ = div
(
aeff∇u

)− barithu in Ω, aeff∇u · ν = 0 on ∂Ω, (3.4.5)

in the following way:

uε(0)
L2→ u0(0) =⇒ ∀ t > 0 : uε(t)

H1

⇀ u0(t) and Eε(uε(t))→ E0(u0(t)).
(3.4.6)

Again, we emphasize that neither well-preparedness nor finite energy are needed.
It can be shown that the E-convergence for t > 0 implies aε∇uε(t)→ aeff∇u(t) in
L2(Ω;Rd).

A second way of formulating (3.4.4) as a gradient system relates to the gradient
structure for reaction-diffusion systems developed in [44] as a generalization of the
Wasserstein gradient structure for diffusion equations of [32]. For this, we introduce
the density ρ = cεu and obtain an equation in the Onsager form (cf. Sect. 3.3.1)

ρ̇ = div
(

aε∇
( ρ

cε

))− bε

cε

ρ = −KεDFε(ρ),

where we introduced the Onsager operator Kε and the free energy Fε via

Kεξ := − div
(
aε∇ξ

)+ bεξ and Fε(ρ) =
∫
Ω

1

2cε

ρ2 dx .

Here Kε can be seen as the operator generating the dual dissipation potential R∗
ε ,

viz.

R∗
ε (ξ) = 1

2
〈ξ, Kεξ 〉 :=

∫
Ω

1

2
∇ξ · aε∇ξ + bε

2
ξ 2 dx .

Because of this form, we see that the relevant Hilbert space H̃ is defined such
that H̃

∗ = H1(Ω), i.e. H̃ is a closed subspace of H−1(Ω). Again, Theorem 3.4.1
is applicable with Z̃ = L2(Ω), which is the space for which the functionals Fε

are equi-coercive. Moreover, we have the convergences Fε

Γ
⇀ F0 in L2(Ω) and

R∗
ε

Γ
⇀ R∗

0 in H1(Ω), where

F0(ρ) =
∫
Ω

1

2carith
ρ2 dx and R∗

0 (ξ) =
∫
Ω

1

2
∇ξ · Aeff∇ξ + barith

2
ξ 2 dx .

mielke@wias-berlin.de



232 A. Mielke

By Proposition 3.2.1 we concludeFε
M−→ F0 in H̃ , and by Theorem 3.2.2 and Lemma

3.2.1(c) we have Rε
C−→ R0 in H̃ .

Again, Theorem 3.4.1 is applicable and we obtain (H̃,Fε,Rε)
E→(H̃,F0,R0).

In particular, we conclude that the solutions ρε converge to ρ0 in the following sense:

ρε(0)
H−1→ ρ0(0) =⇒ ∀ t > 0 : ρε(t)

L2

⇀ ρ0(t) and Fε(ρε(t))→ Fε(ρ0(t)).
(3.4.7)

The latter convergences imply uε(t) = ρε(t)/cε → u0(t) = ρ0(t)/carith, where we
used the original definition of ρε.

Hence, we see that the second gradient structure yields a stronger convergence
result, because the necessary assumptions on the initial conditions are much weaker.
In the original variables uε the convergence in (3.4.7) means that we need uε(0)/cε →
u0(0)/carith in H̃ ≈ H−1(Ω) to obtain the weak convergence uε(t)/cε → u0(t)/carith

as well as uε(t)→ u0(t) in L2(Ω). Hence, we can apply the convergence (3.4.6)
afterwards.

3.4.3 Metric Gradient Systems and IEVEλ

We present here a few basic facts on the general theory of evolutionary variational
estimates on metric spaces. We refer to [2, 15, 70] for the general theory. In the next
section we then show that there is a natural approach to establish E-convergence via
the IEVE.

A metric gradient system is given by a triple (Q,E ,D) where (Q,D) is a com-
plete, geodesic space, that is a complete metric space admitting constant-speed geo-
desic curves γ : [0, 1] → Q between every two points u0, u1 ∈ Q, i.e.

γ (0) = u0, γ (1) = u1, and D(γ (s), γ (t)) = |s − t |D(u0, u1) for s, t ∈ [0, 1].

The notion of geodesic spaces is motivated by classical gradient systems (X,E ,R)

with a quadratic dissipation potential R(u, v) = 1
2 〈G(u)v, v〉. Under suitable condi-

tions we can define the associated dissipation distance via

DR(u0, u1)
2 = inf

{ 1∫
0

2R(γ (s), γ̇ (s))ds
∣∣∣ γ (0) = u0, γ (1) = u1,

γ ∈ W1,1([0, 1]; X)
}
,

and the minimizers are constant-speed geodesic curves.
For general metric gradient systems the notion of gradient flows was introduced

in [17], see [2] for historical remarks, using the metric velocity |u′|D(t) and the
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metric slope |∂E |D(u). These notions can be seen as generalizations of the terms(
2R(u, u̇)

)1/2
and

(
2R∗(u,−DE (u))

)1/2
, respectively, and are defined via

|u′|D(t) := lim
h→0

D(u(t + h), u(t))

h
and |∂E |D(u) := lim sup

w→u

max{E (w)−E (u), 0}
D(w, u)

.

Both definitions do not use any linear structure on the metric space (Q,D). We
only take difference quotients in the real numbers. In [17] metric gradient flows
were introduced by generalizing the energy-dissipation principle (EDP) (3.1.3)
(cf. Sect. 3.3.1):

E (u(T ))+
T∫

0

1

2
|u′|D(t)2 + 1

2
|∂E |D(u(t))2 dt = E (u(0)). (3.4.8)

As in Theorem 3.3.1 the EDP can be replaced by an Upper Energy-Dissipation
Estimate (UEDE) if we have a suitable lower chain-rule estimate, namely

|u′|D(·), |∂E |D(u(·)) ∈ L2([0, T ])
=⇒

{
E (u(·)) ∈ W1,1([0, T ]) and

d
dt E (u(t)) ≥ −|u′|D(t) |∂E |D(u(t)) a.e.

(3.4.9)

Solutions of the UEDE are called curves of maximal slope.
The general class of metric gradient systems is especially adapted to construct

solutions by taking limits τ → 0 for the time-discretized (backward-Euler) mini-
mization problems

uτ
k+1 ∈ Arg min{ E (u)+ 1

2τ
D(uτ

k , u)2 | u ∈ Q } for k = 1, ..., N , (3.4.10)

where τ = T/N > 0 is the time step. We refer to [2, 15, 51] for general surveys.

Remark 3.4.1 (Generalized metric gradient systems) The above metric gradient
flow corresponds to classical gradient flows in the sense that the dissipation poten-
tial 1

2 |u′|D(t)2 is quadratic in the velocity. Considering a general convex, lsc, and
monotone function ψ : [0,∞[ → [0,∞] we obtain a generalized metric gradient
system (Q,E ,D, ψ). The associated generalized metric gradient flow is defined by
the convex dual ψ∗(β) = sup{ νβ − ψ(ν) | ν ≥ 0 } and the EDP

E (u(T ))+
T∫

0

ψ
(|u′|D(t)

)+ ψ∗(|∂E |D(u(t))
)
dt = E (u(0)).

The p-gradient systems are given by ψ(ν) = ν p/p and are studied in [2]. The case of
rate-independent systems is given by ψ(ν) = c ν and will be studied in more detail
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in Sect. 3.5. Rate-independent systems with small viscosity are given by the function
ψ(ν) = σyieldν + δν2/2. The limit δ ↘ 0 is treated in [50, 52].

The important point is that convexity of functionals can be generalized to geodesic
convexity on geodesic spaces (Q,D) as follows. A functionalE : Q→ R∞ is called
geodesically λ -convex on (Q,D) if for all u0, u1 ∈ dom(E ) := { u ∈ Q | E (u) <

∞}, there exists a constant-speed geodesic γ : [0, 1] → Q with γ (0) = u0 and
γ (1) = u1 such that the function

s �→ E (γ (s))+ λs(1− s)

2
D(γ (0), γ (1))2 is convex on [0, 1]. (3.4.11)

The case λ = 0 is simply called geodesic convexity, λ > 0 improves the convexity,
and λ < 0 relaxes the convexity. A trivial but useful and important special case is
given by the Hilbert space setting with Q = H and Ψ (v) = 1

2 〈Gv, v〉. Then, we have
D(u0, u1) = (2Ψ (u1 − u0))

1/2 and the constant-speed geodesics are γ (s) = (1−
s)u0 + s u1. Moreover, for smooth energies E , geodesic λ-convexity is equivalent to
D2E ≥ λG.

For general geodesically λ-convex gradient systems (Q,E ,D) there is a rather
complete existence and uniqueness theory, see [2, 15], which we summarize here:
For each u0 ∈ dom(E ) there exists a unique solution u : [0,∞[ → Q of (3.4.8) with
u(0) = u0. Moreover the solutions depend Lipschitz continuously on the initial data,
i.e. any two solutions u1 and u2 satisfy

D(u1(t), u2(t)) ≤ e−λ(t−s)D(u1(s), u2(s)) for 0 ≤ s < t.

Moreover, under slightly stronger assumptions it can be shown that the time-
incremental solutions of (3.4.10) converge strongly, namely

D(u(kτ), uτ
k ) ≤ C(u0)

√
τ e−λτ kτ for k = 1, ..., N = T/τ,

where λτ = 1
τ

log(1− λτ). See [48] for an application in one-dimensional viscoelas-
ticity with a true metric (not translation invariant).

The main tool for the analysis of geodesically λ-convex metric gradient systems is
the reformulation in terms of the integrated evolutionary variational estimate IEVEλ,
where now Proposition 3.4.1 is generalized by the appearance of λ, which was chosen
0 in Sect. 3.4.1, and by replacing Ψ (u − w) with 1

2D(u, w)2. We have the following
equivalence:

Theorem 3.4.2 ([15, Theorem 2.11]) Assume that (Q,E ,D) is a geodesically λ-
convex gradient system as introduced above. Then, every solution u : [0,∞[ → Q
of the metric EDP (3.4.8) is a solution of the Integrated Evolutionary Variational
Estimate (IEVE)λ:
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∀w ∈ Q ∀s ≥ 0, ∀ t > s :
eλ(t−s)

2
D(u(t), w)2 − 1

2
D(u(s), w)2 ≤ mλ(t − s)

(
E (w)− E (u(t))

)
,

(3.4.12)

where mλ(r) = ∫ r
0 eλρ dρ. Moreover, every solution u of (IEVE)λ with E (u(0)) <∞

is a solution of (3.4.8).

Again, we see that the IEVE is a formulation without any derivative, i.e. we do neither
need the metric velocity |u′|D nor the slope |∂E |D . Thus, it is natural to study
evolutionary Γ -limits ε → 0 for families (Q,Eε,Dε) of metric gradient systems.
The importance here is that we need to be able to choose λ ∈ R independent of ε,
i.e. we need uniform geodesic convexity.

The crucial a priori estimate, which generalizes (3.41), is

eλt

2
D(u(t), w)2 +mλ(t)E (u(t))+ mλ(t)2

2
|∂E (u(t))|2D

≤ 1

2
D(u(0), w)2 +mλ(t)E (w) for all t > 0 and w ∈ Q,

(3.4.13)

see [15, Theorem 2.6].

3.4.4 E-Convergence for Metric Gradient Systems

The following result on evolutionary Γ -convergence is a slight variant of [15, The-
orem 2.17] or [70, Theorem 6.2], since we allow Dε to depend on ε, while it was
assumed to be constant there. We refer to [70, Theorem 7.4, Corollary 8.6] for more
general results including abstract Gromov-Hausdorff convergence of metric spaces.

We first list the precise assumptions on the gradient system (Q,Eε,Dε)ε∈[0,1].
Note that we assume that all the metrics Dε on the space Q are equivalent, cf.

(3.4.14a). Hence, we can write un
D−→ u for Dεn (un, u) → 0 for n →∞, where

εn ∈ [0, 1] can be arbitrary. However, for the geodesic convexity of Eε it is crucial
to consider the dissipation distance Dε with the same ε, see (3.4.14e):

∃ c > 0 ∀ ε ∈ [0, 1], u1, u2 ∈ Q :
cD0(u1, u2) ≤ Dε(u1, u2) ≤ 1

cD0(u1, u2);
(3.4.14a)

Dε
C−→ D0, i.e. u( j)

ε

D−→ u( j) ⇒ Dε(u
(1)
ε , u(2)

ε ) → D0(u
(1), u(2)); (3.4.14b)

∀ E > 0 ∃CE compact in (Q,D0) ∀ ε ∈ [0, 1] :
{ u ∈ Q | Eε(u) ≤ E } ⊂ CE ; (3.4.14c)

Eε
Γ−→ E0 in (Q,D0); (3.4.14d)

∃ λ ∈ R ∀ ε ∈ [0, 1] : Eεis geodesically λ-convex in (Q,Dε). (3.4.14e)
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Thus, the crucial assumptions are the uniform compactness (3.4.14c), the uniform

geodesic λ-convexity (3.4.14e) as well as the convergences Eε
Γ−→ E0 and Dε

C−→ D0

in (Q,D0).

Theorem 3.4.3 (E-convergence for IEVE ) If the assumptions (3.4.14) hold, then

(Q,Eε,Dε)
E→(Q,E0,D0) (no well-preparedness of init. cond.). More precisely,

if uε(0) ∈ dom(Eε) for ε ∈ [0, 1] and uε(0)
D−→ u0(0),

then ∀ t > 0 : uε(t)→ u0(t) and Eε(uε(t))→ E0(u0(t)).

We highlight that the whole sequence uε converges to u0, because we have uniqueness
of the solutions. Even though well-preparedness of the initial conditions is not needed,
we obtain energy convergence for all t > 0.
Sketch of proof: For a full proof we refer to the above references. Here we simply
highlight the main steps, which are exactly the same as for Theorem 3.4.1.

Based on the a priori estimate (3.4.13) evaluated for t ∈ [t0, T ] with arbitrary
0 < t0 < T and the uniform compactness (3.4.14c) we can extract a subsequence

(not relabeled) with uε(t)
D−→ U (t). Choosing a recovery sequence ŵε

D−→ ŵ with
Eε(ŵε) → E0(ŵ) we can pass to the limit ε → 0 in (IEVE)ελ and find that U is a
solution of the limit equation (IEVE)0

λ.
Continuity at t = 0 and energy convergence follow as for Theorem 3.4.1. �
For an application of this theory we refer to [26], where the heat equation on the

torus Td = R
d/Zd is considered as generated by the the Kantorovich-Wasserstein gra-

dient system (Prob(Td),E0,D0) with the entropy functional E0(ρ) = ∫
Td

ρ log ρdx
and D0 = DWass. It is obtained as evolutionary Γ -limit of discrete Markov chains in
the periodic d-dimensional lattice (Z/NZ)d for N →∞.

An application to the justification of amplitude equations is given in [47]. In fact,
this application is a Hilbert-space case, but nevertheless using the approach via the
IEVE improves the results considerably. The original equation is the ε-dependent,
fourth-order parabolic Swift-Hohenberg equation

u̇ = − 1

ε2

(
1+ ε2∂2

x )2u + μu − u3 on S := R/2πZ, (3.4.15)

which is the L2-gradient flow of the functional F SH
ε (u) = ∫

S

1
2ε2 (u + ε2uxx )

2 −
μ

2 u2 + 1
4 u4dx . Because of the linear operator the typical solutions (e.g. well-prepared

solutions) will spatially oscillate on the scale ε and are approximately of the form
u(t, x) ≈ Re

(
A(t, x)eix/ε

)
. Using Theorem 3.4.3 it is possible to show that the

Ginzburg-Landau equation

Ȧ = 4Axx + μA − 3
4 |A|2 A
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is the evolutionary Γ -limit. More precisely, using a bijection Mε, which satisfies
u = Re

(
(Mεu)eix/ε

)
, it is shown in [47, Theorem 2.3] that the solutions uε of the

Swift-Hohenberg equation converge to solutions A of Ginzburg-Landau equation in
the following sense:

Mεuε(0)
L2(S)→ A(0) =⇒ ∀ t > 0 : Mεuε(t)

H1(S)
⇀ A(t) and

F SH
ε (uε(t))→ FGL(A(t)).

The last application of the IEVE shows that even in the case of a Hilbert space
with a quadratic and translation-invariant dissipation potential the metric concepts
are extremely helpful and give a new look to semilinear parabolic equations, in
particular concerning question of evolutionary Γ -convergence.

3.5 Rate-Independent Systems (RIS)

We again consider generalized gradient systems (X,E ,R) on a Banach space X ,
but now we focus to the special case that the dissipation potential R is positively
homogeneous of degree 1, i.e.

∀ u, v ∈ X ∀ γ > 0 : R(u, γ v) = γ 1R(u, v). (3.5.1)

In particular, R(u, ·) cannot be smooth, but using convexity we still have a subdif-
ferential ∂vR(u, v) that is set-valued now. In particular, the relation between the rate
v = u̇ and the dissipative forces ξ ∈ ∂R(u, u̇) is positively homogeneous of degree
0, i.e. ∂vR(u, γ v) = γ 0∂vR(u, v), which explains the name “rate independence” of
the dissipative constitutive law. Rate-independent systems are ideal to describe hys-
teretic effects and occur in the case of Coulomb friction, in plasticity, magnetism, or
phase transformations.

3.5.1 Subdifferential Formulation of RIS

The evolution equation in Biot’s form (cf. (3.2.1)) is the subdifferential inclusion

0 ∈ ∂u̇R(u(t), u̇(t))+ DuE (t, u(t)) ∈ X∗, (3.5.2)

where we now included a time-dependence into the energy functional E , as in
Sect. 3.2.1. This is essential for rate-independent systems because they do not have
any internal time scale any more. So they do not move without an external time-
dependent stimulus.
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Fig. 3.4 Primal and dual dissipation potential for RIS

As before, Biot’s equation (3.5.2) is only one of the three equivalent formulations
of the problem. However, in the rate-independent case the 1-homogeneity of the
dissipation induces a very particular structure, see also Fig. 3.4.

Lemma 3.5.1 Assume that Ψ : X → [0,∞] is convex, lsc, and 1-homogeneous,
and set K := ∂Ψ (0). Then,

ξ ∈ ∂Ψ (v) ⇐⇒
{

ξ ∈ K
〈ξ, v〉 = Ψ (v)

and Ψ ∗(ξ) =
{

0 if ξ ∈ K ,

∞ else.

To understand the rate equation u̇ ∈ ∂ηR∗(u,−DE (t, u)), which is now often
called “flow rule”, we introduce the closed and convex set K (u) := ∂u̇R(u, 0) ⊂ X∗
and its outer normal cone

NK (u)(η) := { v ∈ X | ∀ ξ ∈ K (u) : 〈ξ − η, v〉 ≥ 0 },

then we have ∂ηR∗(u,−η) = −NK (u)(η) (cf. [66]) and find the rate equation

u̇(t) ∈ ∂ηR
∗(u(t),−DE (t, u(t))

)
, or − u̇(t) ∈ NK (u(t)(DE (t, u(t))). (3.5.3)

Using the characterization of ∂u̇R in Lemma 3.5.1 and the definition of NK (u) we can
rewrite the two equivalent equations (3.5.2) and (3.5.3) as so-called an evolutionary
quasi-variational inequalities (cf. [12, 33, 41]):

(3.55) ⇐⇒ ∀v ∈ X : 〈DuE (t, u), v − u̇〉 +R(u, v)−R(u, u̇) ≥ 0, (3.5.4a)

(3.56) ⇐⇒ ∀ξ ∈ K (u) ⊂ X∗ : 〈DuE (t, u)− ξ, u̇〉 ≥ 0. (3.5.4b)

For treating more general systems the energy-dissipation principle (3.2.5) is more
relevant. However, for RIS the dual dissipation potential R∗ does not give a contri-
bution to the balance, because it only attains the values 0 or +∞. The latter value
leads to a constraint. Thus, the EDP takes the form

∀t ∈ [0, T ] : −DE (t, u(t)) ∈ K (u(t)) = ∂u̇R(u(t), 0), (3.5.5a)
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E (T, u(T ))+
T∫

0

R(u, u̇)dt = E (0, u(0))+
T∫

0

∂tE (t, u(t))dt. (3.5.5b)

Here (3.5.5a) is a totally static local stability condition saying that the potential
restoring force is balanced by one of the possible dissipative friction forces, while
(3.5.5b) is a reduced energy balance, where the last integral is the work of the external
forces.

3.5.2 Energetic Solutions of RIS

Since the dissipation
∫ T

0 R(u(t), u̇(t))dt controls the BV-norm of u with respect to
the time only, in general cases the solutions u will not be absolutely continuous such
that u̇ is not properly defined because of jumps with u(t−) �= u(t+). The following
definition of energetic solutions is adapted to this situation, because it does not need
any continuity or differentiability with respect to time. We use a general state space
Q, which can be a general topological space without a differential structure, and
a general dissipation distance D : Q ×Q→ [0,∞] which is assumed to satisfy
the triangle inequality D(u1, u3) ≤ D(u1, u2)+D(u2, u3) (but not necessarily the
symmetry and positivity of usual distances, see [41, Chap. 5] or [43]). We call a triple
(Q,E ,D) an energetic RIS. Starting from a rate-independent dissipation potential
R, it is possible to find the associated dissipation distance D(u0, u1) by minimizing∫ 1

0 R(u(s), u̇(s))ds along all curves connecting u0 and u1, which is similar but not
equal to the definition of D in Sect. 3.4.3.

Definition 3.5.1 (Energetic solutions for RIS) A function u : [0, T ] → Q is called
an energetic solution for the RIS (Q,E ,D) if stability (S) and energy balance (E)
hold:

(S) E (t, u(t)) ≤ E (t, w)+D(u(t), w) for all t ∈ [0, T ] and w ∈ Q,

(E) E (T, u(T ))+ DissD(u, [0, T ]) = E (0, u(0))+
T∫

0

∂tE (t, u(t))dt.
(3.5.6)

In many cases this definition is equivalent to the notion of quasistatic (irreversible)
evolutions studied in [13, 21, 60].

The dissipated energy can be expressed solely by the dissipation distance

DissD(u, [0, T ]) := sup
{ N∑

j=1

D(u(t j−1), u(t j ))
∣∣ all partitions of [0, T ] }

and coincides with
∫ T

0 R(u(t), u̇(t))dt in the smooth case.
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The major advantage of the concept of energetic solutions is that it is a derivative-
free formulation, which only features the values of the functionals E and D and
the function values u(t). Thus, it shares the same properties as the IEVE discussed
in Sect. 3.4. In particular, existence results and evolutionary Γ -convergence can be
attacked by tools from the calculus of variations. In fact, energetic solutions are
the limits of the incremental minimization problems with time step τ = T/N → 0
(cf. [41, Theorem 5.2]):

uτ
k ∈ Arg Min{ E (kτ, u)+D(uτ

k−1, u) | u ∈ Q }. (3.5.7)

In contrast to the backward-Euler algorithm (3.4.10) for the metric gradient flow,
now there is no explicit dependence on the time step τ (reflecting rate independence)
and the dissipation distance has the power 1.

In fact, the rate formulations (3.5.2)–(3.5.5) and the energetic solutions are equiv-
alent in good cases, but are different in general, cf. [53, Chap. 3].

Proposition 3.5.1 (Equivalence of formulations for convex energies) Consider
a RIS (X,E ,D), where X is a Banach space and assume that the energies
E (t, ·) : X → R∞ are convex for all t ∈ [0, T ]. Further assume that the dissipa-
tion distance D has the form D(u0, u1) = Ψ (u1 − u0) for a lsc, convex and 1-
homogeneous function Ψ : X → [0,∞]. Then, u ∈ W1,1([0, T ]; X) is an energetic
solution if and only if u solves (3.5.5).

3.5.3 pE-Convergence for Energetic Solutions

We now consider a family (Q,Eε,Dε) of RIS, where for the simplicity of the pre-
sentation we restrict the discussion to the case that Q is a reflexive Banach space X
and the energies Eε have the form

Eε(t, u) = Fε(u)− 〈
ε(t), u〉. (3.5.8a)

We still keep general dissipation distances Dε and do not assume convexity of Fε.
Thus, all the results can be generalized to the general topological case, see [53, 55].
Our precise assumptions are as follows:

∃ c, C > 0 ∀ ε ≥ 0, u ∈ X : Fε(u) ≥ c‖u‖2 − C; (3.5.8b)

∀ ε ≥ 0 : Fε : X → R∞ is weakly lsc; (3.5.8c)

∃C > 0 ∀ ε ≥ 0 : ‖
ε‖C1([0,T ]) ≤ C; (3.5.8d)

∀ t ∈ [0, T ] : 
̇ε(t)→ 
̇0(t) in X∗; (3.5.8e)

∀ ε ≥ 0 ∀ u j ∈ X :
{
Dε(u1, u3) ≤ Dε(u1, u2)+Dε(u2, u3),

Dε(u1, u2) = 0 =⇒ u1 = u2.
(3.5.8f)
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In general, these conditions are not strong enough to show existence of solutions.
Indeed, even if we assume existence of solutions for ε > 0, we cannot expect to
conclude existence of solutions for ε = 0 by a limit argument. We need additional
properties, e.g. the weak continuity of D0.

However, we can already address another nice property of the energetic formu-
lation, namely the general validity of an appropriate generalization of the chain rule
(3.3.1), which allows us to turn an upper energy estimate into an energy-dissipation
balance as in Theorem 3.3.1. If (X,E0,D0) satisfies (3.5.8) and u : [0, T ] → X sat-
isfies the global stability (S) in (3.5.6), then we have the lower energy estimate (see
[41, Proposition 5.7])

E0(t, u(t))+ DissD0(u, [s, t]) ≥ E0(s, u(s))+
t∫

s

∂rE (r, u(r))dr, (3.5.9)

We present two results for evolutionary Γ -convergence. The first assumes that
the dissipation distances Dε weakly continuously converge to D0.

Theorem 3.5.1 (pE-convergence for RIS [55]) Assume that the RIS (X,Eε,Dε)

satisfies (3.5.8) and Eε

Γ
⇀ E0 and Dε

C
⇀ D0 in X , then (X,Eε,Dε)

pE
⇀(X,E0,D0),

i.e. for energetic solutions uε : [0, T ] → X the following holds:

if uε(0) ⇀ u0(0) and Eε(0, uε(0)) → E0(0, u0(0)) <∞,

then uε(t) ⇀ u0(t) and Eε(t, uε(t))→ E0(t, u0(t)) for 0 < t ≤ T .
(3.5.10)

Proof From (3.5.8b) and (3.5.8d) we find C1,Λ > 0 such that the power control
|∂Eε(t, u)| ≤ Λ

(
Eε(t, u)+ C1) holds. Inserting this estimate into the energy balance

(E) we obtain the a priori bound

Eε(t, uε(t))+ DissDε
(uε, [0, t]) ≤ eΛt

(
Eε(0, uε(0))+ C1

)− C1 ≤ E∗,

where we used the well-preparedness Eε(0, uε(0)) → E0(0, u0(0)) <∞. Using
(3.5.8b) once again we find ‖uε(t)‖ ≤ C2 for all t and ε > 0, and Helly’s selection
principle (cf. [41, Theorem 5.1]) allows us to extract a (not relabeled) subsequence
such that uε(t) ⇀ u0(t) for all t .

Next, we show that all u0(t) satisfy the stability condition (S). We know that (S)
is true for ε > 0, i.e.

Eε(t, uε(t)) ≤ Eε(t, wε)+Dε(uε(t), wε) for all t ∈ [0, T ] and wε ∈ X . (3.5.11)
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For a given test state w we choose a recovery sequence wε ⇀ w with Eε(t, wε) →
E0(t, w) and pass to the limit, viz.

E0(t, u0(t))
Γ≤ lim inf

ε→0
Eε(t, uε(t)) ≤ E0(t, w)+D0(u0(t), w),

where we used Eε

Γ
⇀ E0 and Dε

C
⇀ D0. Thus, stability of u0(t) is established.

In the energy balance (E)ε we can pass to the limit using (3.5.8d) and (3.5.8e) to
obtain

T∫
0

∂tEε(t, uε(t))dt = −
T∫

0

〈
̇ε, uε〉dt →−
T∫

0

〈
̇0, u0〉dt =
T∫

0

∂tE0(t, u0(t))dt.

Since the initial energies converge, the right-hand sides in (E)ε converge to that of
(E)0.

Using Dε

C
⇀ D0 we estimate the total dissipation on the interval [0, t] via

lim
ε→0

N∑
j=1

Dε(uε(t j−1), uε(t j )) =
N∑

j=1

D0(u0(t j−1), u0(t j )) ≥ DissD0(u0, [0, T ])− ρ,

where ρ > 0 can be made arbitrary small by choosing a suitable partition 0 = t0 <
t1 < · · · < tN−1 < tN=t . Hence, lim infε→0 DissDε

(uε, [0, t]) =: D0(t) ≥ d0(t) :=
DissD0(u0, [0, t]). Because of Eε

Γ
⇀ E0 for all t ∈ [0, T ] we have

e0(t) := E0(t, u0(t)) ≤ E0(t) := lim inf
ε→0

Eε(t, uε(t)) ≤ E1(t) := lim sup
ε→0

Eε(t, uε(t)).

Using the upper energy estimate on [0, t] yields

e0(t)+ d0(t) ≤ E1(t)+ D0(t) ≤ e0(0)+
t∫

0

∂sE0(s, u0(s))ds ≤ e0(t)+ d0(t),

where the last estimate follows from the lower energy estimate (3.5.9). Hence,
we conclude e0(t) = E0(t) = E1(t) which is the desired energy convergence in
(3.5.10). �

We apply this result to a rate-independent homogenization problem with non-
quadratic energies. We first show that the result fails, even if Dε = D0, e.g. if D0 is
not weakly continuous.
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Example 3.5.1 (Counterexample) We consider X = L2(Ω),

Eε(t, u) =
∫
Ω

1

2
a(

1

ε
x)u(x)2 − 
(t)u(x)dx, and Ψε(v) =

∫
Ω

c(
1

ε
x)|v(x)|dx .

Clearly, Eε

Γ
⇀ E0 : u �→ ∫

Ω
aharm

2 u2 − 
u dx while Ψε
Γ−→ Ψarith := carith‖ · ‖L1 and

Ψε

Γ
⇀ Ψmin = cmin‖ · ‖L1 , if the set { y ∈ [0, 1]d | c(y) = cmin } has positiveL d mea-

sure.
For the loading we assume 
(0) = 0 and 
̇(t) > 0 for t > 0. Starting from the

well-prepared initial condition uε(0, x) = 0 we find the unique solution

uε(t, x) = max{0, 
(t)− c(
1

ε
x)}/a(

1

ε
x).

Hence, for c ≡ const we obtain weak evolutionaryΓ -convergence to (L2(Ω),E0, Ψ0)

with Ψ0 = Ψarith = Ψmin, while for c(·) nonconstant the weak limit U (t) of uε(t) can-
not be described by a RIS system (L2(Ω), Ê0, Ψ̂0) for any Ê0 and Ψ̂0.

Example 3.5.2 (Homogenization of RIS) We consider X = H1
0(Ω) for a bounded

Lipschitz domain Ω ⊂ R
d , and energy functional Fε(u) = ∫

Ω
1
2∇u · A( 1

ε
x)∇u +

F( 1
ε
x, u) dx , and a dissipation distance Dε(u1, u2) = Ψε(u2 − u1) with Ψε(v) =∫

Ω
c( 1

ε
x)|v(x)|dx , where F(y, ·) ≥ 0 is continuous and convex and A, c, and F(·, u)

are 1-periodic in y = 1
ε
x .

By Proposition 3.5.1, the energetic solutions solve the differential inclusion

0 ∈ c(
1

ε
x)Sign(u̇)− div

(
A(

1

ε
x)∇u

)+ ∂u F(
1

ε
x, u)− 
ε(t).

Weak convergence in H1(Ω) implies strong convergence in L2(Ω), so in X we obtain
the convergences

Ψε
C
⇀ Ψ0 : v �→

∫
Ω

carith|v|dx and Fε
Γ
⇀ F0 : u �→

∫
Ω

1

2
∇u · Aeff∇u + Farith(u)dx .

Theorem 3.5.1 is applicable giving (X,Eε, Ψε)
pE
⇀(X,E0, Ψ0), where the limit equa-

tion reads 0 ∈ carith Sign(u̇)− div
(

Aeff∇u
)+ ∂u Farith(u)− 
0(t).

Our second result on evolutionary Γ -convergence does not need the weak conti-
nuity of D0, but requires the Hilbert-space setting with

Fε(u) = 1

2
〈Aεu, u〉 ≥ c‖u‖2

H and

Dε(u1, u2) = Ψε(u2 − u1) with Ψε(γ v) = γ 1Ψε(v).
(3.5.12)
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This case is important in classical models of elastoplasticity, and for fixed ε it
can be reduced to the analysis of monotone operators, see [1]. For evolutionary
Γ -convergence with Ψε truely dependent on ε the notion of energetic solutions
is more flexible. The following convergence result was developed for two-scale
homogenization and dimension reduction in elastoplastic models in [58] and [37],
respectively.

The homogenization of RIS without compactness does not work directly
(see Example 3.5.1), however the method of periodic unfolding developed for
two-scale homogenization turns weak Γ -convergence of the functionals into
Mosco-convergence in the two-scale setting. Hence, the homogenization results for
elastoplasticity in [24, 29, 58] can be derived using the following abstract evolution-
ary Γ -convergence result.

Theorem 3.5.2 (pE-convergence for quadratic RIS) Assume that H is a Hilbert
space and that the RIS (H,Eε,Dε), ε ∈ [0, 1], satisfy (3.5.8) and (3.5.12). If addi-
tionally

Eε
M−→ E0, Ψε

C−→ Ψ0, and Ψε

Γ
⇀ Ψ0 in H,

then (H,Eε,Dε)
pE
⇀(H,E0,D0) as in (3.5.10).

Proof We can proceed as in the proof of Theorem 3.5.1 for all parts except for the
stability of the weak limits u0(t), since now weak convergence is not enough to pass

to the limit in Ψε(wε − uε(t)), but for the upper energy estimate we need Ψε

Γ
⇀ Ψ0.

We prove the desired stability of u0(t) under the additional assumption Fε(u) ≤
C2‖u‖2. For the general case we refer to [37] and [53, Chap. 3.5.4]. Then, for
a test state v we can choose the recovery sequence vε = A−1

ε A0v. Indeed, since

vε minimizes the functional u �→ Fε(u)− 〈A0w, u〉 and Fε
M−→ F0 we conclude

vε → v and Fε(vε)→ F0(v) by a variant of Theorem 3.2.1.
Using the stability of uε(t) we have, for all wε,

0 ≤ Eε(t, wε)− Eε(t, uε)+ Ψε(wε − uε(t)). (3.5.13)

For a given limit test state w we choose wε = uε + A−1
ε A0(w− u0), which guarantees

wε ⇀ w and wε − uε → w− u0, giving Ψε(wε − uε) → Ψ0(w− u0),

(3.5.14)

because of Ψε
C−→ Ψ0. Moreover, using the quadratic structure of Eε we have

Eε(t, wε)− Eε(t, uε) = 1

2
〈Aε(wε − uε), wε + uε〉 − 〈
ε, wε − uε〉

= 1

2
〈A0(w− u0), wε + uε〉 − 〈
ε, wε − uε〉
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→ 1

2
〈A0(w− u0), w0 + u0〉 − 〈
ε, w0 − u0〉 = E0(t, w)− E0(t, u0).

Using this convergence and (3.5.14) in (3.5.13) yields the desired stability of
u0(t). �

The following simple example from [55] shows that Mosco convergence of Eε

and Ψε is not sufficient for evolutionary Γ -convergence even in finite dimensions.

Example 3.5.3 For ε > 0 consider the RIS (H,Eε, Ψε) with

H = R
2, Eε(t, q) = 1

2
q2

1 +
1

2
(q1 − q2

ε
)2 − tq1, Rε(v) = |v1| + 1

ε2 |v2|.

In R
2 all Γ -limits are Mosco limits, i.e. we have Eε

M−→ E0 and Rε
M−→ R0 with

E0(t, q) =
{

1
2 q2

1 − tq1 for q2 = 0,

∞ for q2 �= 0; and R0(v) =
{ |v1| for v2 = 0,

∞ for v2 �= 0.

For the unique solutions qε with qε(0) = 0 we find

q0(t) =
(

max{t − 1, 0}
0

)
�= lim

ε→0
qε(t) =

(
max{0, t/2− 1}

0

)
,

which contradicts evolutionary Γ -convergence.

Remark 3.5.1 (Mutual recovery sequences) In both convergence results the impor-
tant step in the proof is the stability of the limits u0(t). The same problem already
appears in the existence theory via the time-incremental minimization (3.5.7). Thus,
in [53, 55] the notion of mutual recovery sequences (wε)ε>0 is introduced for a given
stable sequence uε and a test state w by asking for the condition

lim sup
ε→0

(
Eε(t, wε)− Eε(t, uε)+Dε(wε, uε)

) ≤ E0(t, w)− E0(t, u0)+D0(w, u0),

see the occurrence of wε in (3.5.11) and (3.5.13) in the proofs of Theorems 3.5.1
and 3.5.2, respectively. An important nontrivial construction in that direction was
the so-called jump transfer lemma for rate-independent models for brittle fracture,
see [13, 21].

The above abstract results have a variety of applications. In [56] it is shown
that linearized elastoplasticity can be obtained by pE-convergence from finite-strain
elastoplasticity in the limit of small loadings and small yield stress. In [22] brittle
fracture is obtained as evolutionary Γ -limit of the Ambrosio-Tortorelli approxima-
tion, while [23] discusses homogenization for fracture evolution.

Remark 3.5.2 (Numerical approximation of RIS)
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Both of the above convergence results can be used to establish convergence of
numerical schemes for a given RIS (X,E ,D), see [42] for various versions. The
main idea is to consider the incremental minimization problem (3.5.7) restricted to
finite-dimensional subspaces Xm of the underlying Banach space X , to keep the
distance D or Ψ independent of m, while defining Em(t, u) = E (t, u) for u ∈ Xm

and Em(t, u) = ∞ for u ∈ X \ Xm .
We say that the subspaces Xm approximate X , if for each u ∈ X there exists

um ∈ Xm such that um → u for m →∞. Under mild conditions on E (t, ·) one can

show that Em
M−→ E in X , and then the above theorems are applicable.

Piecewise
constant
interpolant uτ

uτ

T

In fact, one can strengthen the result for the piecewise constant approximants uτ,m by
proving that the joint limit τ → 0 and m →∞ always has a subsequence converging
to a limit u0 which is an energetic solution for (X,E ,D), cf. [25, 42, 55].

In [10] the general interplay between incremental minimization with time step
τ > 0 and Γ -convergence of the functionals Eε and Ψε for ε → 0 is studied.

A completely different approach to pE-convergence for RIS is developed in [60]
which involves the notion of parametrized solutions for RIS, which is a variant of
the balanced-viscosity solutions defined in [50, 52]. The convergence result in [60]
is based on an adaptation of the theory in Sect. 3.3.3 using the energy-dissipation
principle.
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Stefanelli, Lev Truskinovsky, and Augusto Visintin.

References

1. Alber, H.-D.: Materials with memory. Lecture Notes in Mathematics, vol. 1682. Springer-
Verlag, Berlin (1998)

2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of prob-
ability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005)

3. Arnrich, S., Mielke, A., Peletier, M.A., Savaré, G., Veneroni, M.: Passing to the limit in a
Wasserstein gradient flow: from diffusion to reaction. Calc. Var. Part. Diff. Eqns. 44, 419–454
(2012)

mielke@wias-berlin.de



3 On Evolutionary Γ -Convergence for Gradient Systems 247

4. Attouch, H.: Variational Convergence of Functions and Operators. Pitman Advanced Publishing
Program, Pitman (1984)

5. Bellettini, G., Bertini, L., Mariani, M., Novaga, M.: Convergence of the one-dimensional Cahn-
Hilliard equation. SIAM J. Math. Anal. 44(5), 3458–3480 (2012)

6. Bénilan, P.: Solutions intégrales d’équations d’évolution dans un espace de Banach, C. R. Acad.
Sci. Paris Sér. A-B 274, A47–A50 (1972)

7. Biot, M.A.: Variational principles in irreversible thermodynamics with applications to vis-
coelasticity. Phys. Rev. 97(6), 1463–1469 (1955)

8. Braides, A.: G-Convergence for Beginners. Oxford University Press (2002)
9. Braides, A.: A handbook of g-convergence. In: Handbook of Differential Equations. Stationary

Partial Differential Equations, vol. 3 (2006)
10. Braides, A.: Local minimization, variational evolution and gamma-convergence. Lecture Notes

in Mathematics, vol. 2094. Springer (2013)
11. Brézis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les espaces

de Hilbert. North-Holland Publishing Co., Amsterdam (1973)
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