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Problem 1. Show that in the discrete setting, inf-sup constants are singular values.

Problem 2. Compute the inf-sup constant of the global bilinear form in terms of α and β in
the Brezzi splitting lemma.

Problem 3. Why is the primal dPG problem equivalent to the standard formulation of the
Poisson model problem?

Problem 4. Show for all q ∈ H(div,Ω) and v ∈ H1
0 (Ω) that
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Problem 5. Prove that
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Problem 6. The linear functional

Λ(q) :=

∫
E

q · νE ds

for an edge E ⊂ ∂Ω of a triangle Ω is well-defined for q ∈ H1(Ω;R2). Prove that Λ has no
continuous extension to Λ̂ : H(div,Ω)→ R.

Problem 7. Study the domain of the Fortin interpolation operator in the mixed FEM litera-
ture.


