The dPG Paradigm —discontinuous Petrov-Galerkin 4 CENTRAL—

<u>Carsten Carstensen</u>, Leszek F. Demkowicz, Jay Gopalakrishnan, Hella Rabus, Friederike Hellwig, Sophie Puttkammer, Philipp Bringmann, Johannes Storn

Humboldt-Universität zu Berlin

Outline

dPG Framework

- minimal residual method
- mixed problem
- a posteriori error analysis
- Applications
 - Poisson model problem
 - Stokes equations
 - linear elasticity
 - Maxwell equations
- Adaptive dPG
 - adaptive least-squares FEM

The dPG Methodology

dPG Framework

"dPG is a minimal residual method with piecewise discontinuous test functions"

Minimal Residual Method

Suppose $b: X \times Y \to \mathbb{R}$ is a bdd bilinear form on real Hilbert spaces X and Y with inf-sup condition

$$0 < \beta = \inf_{\substack{x \in X \\ \|x\|_X = 1}} \sup_{\substack{y \in Y \\ \|y\|_Y = 1}} b(x, y)$$

Continuous problem (P) with given RHS $F \in Y^*$ seeks

$$u \in X$$
 with $b(u, \bullet) = F$ in Y

Minimal Residual Method

Suppose $b: X \times Y \to \mathbb{R}$ is a bdd bilinear form on real Hilbert spaces X and Y with inf-sup condition

$$0 < \beta = \inf_{\substack{x \in X \\ \|x\|_X = 1}} \sup_{\substack{y \in Y \\ \|y\|_Y = 1}} b(x, y)$$

Continuous problem (P) with given RHS $F \in Y^*$ seeks

$$u \in X$$
 with $b(u, \bullet) = F$ in Y

Suppose (exclusively on the continuous level), in addition, non-degeneracy in that

$$\forall y \in Y \setminus \{0\} \quad b(\bullet, y) \not\equiv 0$$

so that (P) has a unique solution.

Minimal Residual Method

Suppose $b: X \times Y \to \mathbb{R}$ is a bdd bilinear form on real Hilbert spaces X and Y with inf-sup condition

$$0 < \beta = \inf_{\substack{x \in X \\ \|x\|_X = 1}} \sup_{\substack{y \in Y \\ \|y\|_Y = 1}} b(x, y)$$

Continuous problem (P) with given RHS $F \in Y^*$ seeks

$$u \in X$$
 with $b(u, \bullet) = F$ in Y

Suppose (exclusively on the continuous level), in addition, non-degeneracy in that

$$\forall y \in Y \setminus \{0\} \quad b(\bullet, y) \neq 0$$

so that (P) has a unique solution. The minimal residual method considers

$$u \in \underset{x \in X}{\operatorname{arg\,min}} \|b(x, \bullet) - F\|_{Y^*}.$$

This is sensitive without any further condition on *b* bdd bilinear with $\beta > 0$.

Discretization in Minimal Residual Method

Let $X_h \subset X$ and $Y_h \subset Y$ be closed (e.g. finite-dimensional) subspaces with

$$0 < \beta_h := \inf_{\substack{x_h \in X_h \\ \|x_h\|_X = 1}} \sup_{\substack{y_h \in Y_h \\ \|y_h\|_Y = 1}} b(x_h, y_h)$$

Petrov-Galerkin discretization requires a non-degeneracy condition on the discrete level and leads to $\dim X_h = \dim Y_h \in \mathbb{N}_0 \cup \{\infty\}$.

Discretization in Minimal Residual Method

Let $X_h \subset X$ and $Y_h \subset Y$ be closed (e.g. finite-dimensional) subspaces with

$$0 < \beta_h := \inf_{\substack{x_h \in X_h \\ \|x_h\|_X = 1}} \sup_{\substack{y_h \in Y_h \\ \|y_h\|_Y = 1}} b(x_h, y_h)$$

Petrov-Galerkin discretization requires a non-degeneracy condition on the discrete level and leads to dim $X_h = \dim Y_h \in \mathbb{N}_0 \cup \{\infty\}$. In what follows, dim $X_h < \dim Y_h$ and this is *not* a Petrov-Galerkin discretization but suits for a minimal residual method

(minRes_h)
$$u_h \in \underset{x_h \in X_h}{\operatorname{arg min}} \| b(x_h, \bullet) - F \|_{Y_h^*}$$

Alternative formulation: Seek $(u_h, v_h) \in X_h \times Y_h$ with

$$(\mathsf{M}_h) \qquad \begin{cases} b(x_h, v_h) = 0 & \text{ for all } x_h \in X_h \\ (v_h, y_h)_Y + b(u_h, y_h) = F(y_h) & \text{ for all } y_h \in Y_h \end{cases}$$

Theorem. $(\min \operatorname{Res}_h) \iff (M_h)$ **Proof.** $R_{Y_h} : Y_h \to Y_h^*, y_h \mapsto (y_h, \bullet)_Y$ Riesz map

"⇒" $u_h \in X_h$ solves (minRes_h) implies for all $t \in \mathbb{R}, x_h \in X_h$

$$\|F - b(u_{h}, \bullet)\|_{Y_{h}^{*}}^{2} \leq \|F - b(u_{h} + tx_{h}, \bullet)\|_{Y_{h}^{*}}^{2}$$

= $\|\underbrace{R_{Y_{h}}^{-1}(F - b(u_{h}, \bullet))}_{=: v_{h} \iff (v_{h}, \bullet)_{Y} + b(u_{h}, \bullet) = F \text{ in } Y_{h}$
= $\underbrace{\|v_{h}\|_{Y}^{2} - 2t \ b(x_{h}, v_{h}) + t^{2} \|b(x_{h}, \bullet)\|_{Y_{h}^{*}}^{2}}_{= \|F - b(u_{h}, \bullet)\|_{Y_{h}^{*}}^{2}$

Hence $b(\bullet, v_h) = 0$ in X_h

Theorem. $(\min \operatorname{Res}_h) \iff (M_h)$ **Proof.** $R_{Y_h} : Y_h \to Y_h^*, y_h \mapsto (y_h, \bullet)_Y$ Riesz map

"⇒" $u_h \in X_h$ solves (minRes_h) implies for all $t \in \mathbb{R}, x_h \in X_h$

$$\|F - b(u_{h}, \bullet)\|_{Y_{h}^{*}}^{2} \leq \|F - b(u_{h} + tx_{h}, \bullet)\|_{Y_{h}^{*}}^{2}$$

= $\|\underbrace{R_{Y_{h}}^{-1}(F - b(u_{h}, \bullet)) - tR_{Y_{h}}^{-1}b(x_{h}, \bullet)\|_{Y}^{2}}_{=: v_{h} \iff (v_{h}, \bullet)_{Y} + b(u_{h}, \bullet) = F \text{ in } Y_{h}}$
= $\|v_{h}\|_{Y}^{2} - 2t b(x_{h}, v_{h}) + t^{2}\|b(x_{h}, \bullet)\|_{Y_{h}^{*}}^{2}$
= $\|F - b(u_{h}, \bullet)\|_{Y_{h}^{*}}^{2}$

Hence $b(\bullet, v_h) = 0$ in X_h

dPG as Mixed Problem

Brezzi splitting lemma. (M_h) is well-posed iff

$$0 < \beta_h := \inf_{\substack{x_h \in X_h \\ \|x_h\|_X = 1 \\ \|y_h\|_Y = 1}} \sup_{\substack{y_h \in Y_h \\ \|y_h\|_Y = 1}} b(x_h, y_h)$$

Fortin criterion: $\beta_h > 0$ is equivalent to the existence of a projection $P: Y \rightarrow Y$ (i.e. linear, bdd, idempotent) onto $Y_h = P(Y)$ with annulation property

$$b(\bullet, y - Py) = 0$$
 in X_h

 $0 < \beta / \|P\| \leq \beta_h$

[cf. e.g. FE-book by D.Braess]

Then

dPG as Mixed Problem

Brezzi splitting lemma. (M_h) is well-posed iff

$$0 < \beta_h := \inf_{\substack{x_h \in X_h \\ \|x_h\|_X = 1}} \sup_{\substack{y_h \in Y_h \\ \|y_h\|_Y = 1}} b(x_h, y_h)$$

Fortin criterion: $\beta_h > 0$ is equivalent to the existence of a projection $P: Y \rightarrow Y$ (i.e. linear, bdd, idempotent) onto $Y_h = P(Y)$ with annulation property

$$b(\bullet, y - Py) = 0$$
 in X_h

[cf. e.g. FE-book by D.Braess]

Then

 $0 < \beta / \|P\| \leq \beta_h$ **General theory of mixed formulations** leads to $\gamma_h = \gamma_h(||b||, 1, \beta_h)$: Solution $u \in X$ to $b(u, \bullet) = F$ and v = 0 satisfy best-approximation property in the ansatz space only

$$||u - u_h||_X^2 + ||0 - v_h||_Y^2 \le ||b|| \gamma_h^{-1} \min_{x_h \in X_h} ||u - x_h||_X^2$$

Proof of Fortin Criterion " \Rightarrow "

Since $\beta_h > 0$, the discrete mixed problem has a unique solution for all right-hand sides. Given any $y \in Y$, consider the right-hand side $(F, G) := ((y, \cdot)_{Y_h}, b(\cdot, y)|_{X_h}) \in Y_h^* \times X_h^*$ and the unique solution $(v_h, u_h) \in Y_h \times X_h$ to (a) $(v_h, \cdot)_Y + b(u_h, \cdot) = (y, \cdot)_Y$ in Y_h . (b) $b(\cdot, v_h) = b(\cdot, y)$ in X_h . The map $y \mapsto (v_h, u_h)$ is linear and so $v_h =: Py$ defines $P \in L(Y, Y)$. If $y \in Y_h$, then (y, 0) solves (a)-(b). Uniqueness of discrete solutions proves y = Py. That is $P = P^2$. The annullation property is (b).

Proof of Fortin Criterion " \Leftarrow "

Given $x_h \in S(X_h) \subset S(X)$, the inf-sup condition of $\beta > 0$ leads to $y \in S(Y)$ in the Hilbert space Y with

$$\beta \leq \|b(x_h, \cdot)\|_{\mathbf{Y}^*} = b(x_h, y) \stackrel{!}{=} b(x_h, Py)$$
$$\leq \|b(x_h, \cdot)\|_{\mathbf{Y}^*_h} \underbrace{\|Py\|_{\mathbf{Y}_h}}_{\leq \|P\|}.$$

Hence $\beta/\|P\| \leq \|b(x_h, \cdot)\|_{Y_h^*}$. Since $x_h \in S(X_h)$ is arbitrary, this proves

$$0 < \beta / \|P\| \leqslant \beta_h := \inf_{x_h \in S(\mathbf{X}_h)} \underbrace{\sup_{y_h \in S(\mathbf{Y}_h)} b(x_h, y_h)}_{y_h \in S(\mathbf{Y}_h)} \quad \Box$$

(R1) *P* is an oblique projection (not an orthogonal projection in general) and Kato lemma asserts ||P|| = ||1 - P|| (provided $P \neq 0, 1$). (R2) The theorem holds in general Banach spaces as pointed out in [Ern, A. and Guermond, J.-L., *A converse to Fortin's Lemma in Banach spaces*, Comptes Rendus de l'Academie des sciences Serie I,2016.]

C. Carstensen (Humboldt)

dPG Framework

Suppose $b(u, \bullet) = F$ is well-posed (i.e. $\beta > 0$ and non-degeneracy condition) on the continuous level. The bilinear form leads to the operator $B_1: X \to Y^*$, $x \mapsto b(x, \bullet)$ and its dual $B_2: Y \to X^*$, $y \mapsto b(\bullet, y)$. Well-posedness means that B_1 and B_2 are invertible and and the inverse is bounded by $1/\beta$. Those mapping properties lead to equivalence

 $\|u - u_h\|_X^2 + \|v_h\|_Y^2 \approx \|b(\bullet, v_h)\|_{X^*}^2 + \|F - b(u_h, \bullet) + (v_h, \bullet)_Y\|_{Y^*}^2$

Suppose $b(u, \bullet) = F$ is well-posed (i.e. $\beta > 0$ and non-degeneracy condition) on the continuous level. The bilinear form leads to the operator $B_1: X \to Y^*, x \mapsto b(x, \bullet)$ and its dual $B_2: Y \to X^*, y \mapsto b(\bullet, y)$. Well-posedness means that B_1 and B_2 are invertible and and the inverse is bounded by $1/\beta$. Those mapping properties lead to equivalence

 $\|u - u_h\|_X^2 + \|v_h\|_Y^2 \approx \|b(\bullet, v_h)\|_{X^*}^2 + \|F - b(u_h, \bullet) + (v_h, \bullet)_Y\|_{Y^*}^2$ Since B_2 is invertible and bdd,

$$\beta \| \mathbf{v}_h \|_{\mathbf{Y}} \leq \| b(\bullet, \mathbf{v}_h) \|_{\mathbf{X}^*} \leq \| b \| \| \mathbf{v}_h \|_{\mathbf{Y}}$$

and $||v_h||_Y$ is the computable norm of the residual.

Suppose $b(u, \bullet) = F$ is well-posed (i.e. $\beta > 0$ and non-degeneracy condition) on the continuous level. The bilinear form leads to the operator $B_1: X \to Y^*, x \mapsto b(x, \bullet)$ and its dual $B_2: Y \to X^*, y \mapsto b(\bullet, y)$. Well-posedness means that B_1 and B_2 are invertible and and the inverse is bounded by $1/\beta$. Those mapping properties lead to equivalence

 $\|u - u_h\|_{X}^2 + \|v_h\|_{Y}^2 \approx \|b(\bullet, v_h)\|_{X*}^2 + \|F - b(u_h, \bullet) + (v_h, \bullet)_Y\|_{Y*}^2$ Since B_2 is invertible and bdd,

$$\beta \| \mathbf{v}_h \|_{\mathbf{Y}} \leq \| b(\bullet, \mathbf{v}_h) \|_{\mathbf{X}^*} \leq \| b \| \| \mathbf{v}_h \|_{\mathbf{Y}}$$

and $\|v_h\|_Y$ is the computable norm of the residual. For all $y \in Y$ with norm 1, the annulation operator $P: Y \rightarrow Y$ with range $P(Y) = Y_h$ and the discrete equations in (M_h) lead to $F(v) - b(u_h, v) + (v_h, v)_{Y} = F(v - Pv) - b(u_h, v - Pv) + (v_h, v - Pv)_{Y}$ Since $b(u_h, y - Py) = 0$ and $|(v_h, y - Py)_Y| \leq ||v_h||_Y ||P||$, it follows $\|u - u_h\|_X^2 + \|v_h\|_Y^2 \approx \|v_h\|_Y^2 + \|F \circ (1 - P)\|_{Y^*}^2$ higher order? nutable 11

1. Extreme Example in PMP Shows $LS \subset dPG$

The Poisson model problem (PMP) seeks $u \in H_0^1(\Omega)$ with $-\Delta u = f$ in Ω in the weak sense for a given RHS $f \in L^2(\Omega)$.

1. Extreme Example in PMP Shows $LS \subset dPG$

The Poisson model problem (PMP) seeks $u \in H_0^1(\Omega)$ with $-\Delta u = f$ in Ω in the weak sense for a given RHS $f \in L^2(\Omega)$. The equivalent first-order system seeks

 $p \in H(div, \Omega)$ and $u \in H_0^1(\Omega)$ with $p = \nabla u$ and f + div p = 0

1. Extreme Example in PMP Shows LS \subset dPG

The Poisson model problem (PMP) seeks $u \in H_0^1(\Omega)$ with $-\Delta u = f$ in Ω in the weak sense for a given RHS $f \in L^2(\Omega)$. The equivalent first-order system seeks

 $p \in H(div, \Omega)$ and $u \in H_0^1(\Omega)$ with $p = \nabla u$ and f + div p = 0

For all $(q, v) \in X = H(div, \Omega) \times H^1_0(\Omega)$ define

$$B_1(q, v) := (q - \nabla v, \operatorname{div} q) \in Y = L^2(\Omega; \mathbb{R}^n) \times L^2(\Omega).$$

The PMP is equivalent to $B_1(p, u) = (0, -f)$. Since $Y \equiv Y^*$, any $(q, v) \in X$ allows for

$$\|b(q, v; \bullet)\|_{Y^*} = \sqrt{\|q - \nabla v\|^2 + \|\operatorname{div} q\|^2}$$

The theory of least-squares FEM (LS) shows that this is indeed equivalent to $||(q, v)||_X$ and, in fact, this dPG method is a LS. This also shows that any discretisation $X_h \subset X$ is stable and quasi-optimal.

2. Extreme Example in PMP is Infeasible

In continuation of the PMP, define for any $(q, v) \in X = L^2(\Omega; \mathbb{R}^n) \times H^1_0(\Omega)$

$$B_1(q, \mathbf{v}) := (q - \nabla \mathbf{v}, \operatorname{div} q) \in Y = L^2(\Omega; \mathbb{R}^n) \times H^{-1}(\Omega).$$

This leads to a LS with discrete problem (which is always stable)

$$\min_{(q,v)\in X} (\|q - \nabla v\|^2 + \|f + div \, q\|_{H^{-1}(\Omega)}^2)$$

The computation of $||f + div q||_{H^{-1}(\Omega)}$ requires an approximation of the dual norm. The BPX precondition has been suggested to allow a practical variant and is an established LS.

2. Extreme Example in PMP is Infeasible

In continuation of the PMP, define for any $(q, v) \in X = L^2(\Omega; \mathbb{R}^n) \times H^1_0(\Omega)$

$$B_1(q, \mathbf{v}) := (q - \nabla \mathbf{v}, \operatorname{div} q) \in Y = L^2(\Omega; \mathbb{R}^n) \times H^{-1}(\Omega).$$

This leads to a LS with discrete problem (which is always stable)

$$\min_{(q,v)\in X} (\|q - \nabla v\|^2 + \|f + div \, q\|_{H^{-1}(\Omega)}^2)$$

The computation of $||f + div q||_{H^{-1}(\Omega)}$ requires an approximation of the dual norm. The BPX precondition has been suggested to allow a practical variant and is an established LS. In general, one requires an approximation of the norm in Y^* by the computable norm in Y^*_h for a large but finite-dimensional space Y_h , the test-search space. This is not a Petrov-Galerkin scheme, so in fact, dim $X_h < \dim Y_h$ in a minimum residual method. An effective computation, however, requires parallel computing and breaking the test norms in the sense that Y_h is a finite-dimensional space of piecewise discontinuous functions. This allows for a piecewise computation in parallel. The mathematical framework is in product spaces.

C. Carstensen (Humboldt)

Continuous Problem 4 dPG

• X(T), Y(T) real Hilbert spaces for any $T \in \mathcal{P}$ and

$$X \subset \hat{X} := \prod_{T \in \mathcal{P}} X(T)$$
 and $Y := \prod_{T \in \mathcal{P}} Y(T)$

• $b: \hat{X} \times Y \to \mathbb{R}$ is a bounded bilinear form with

$$b((x_{T})_{T\in\mathcal{P}}, (y_{T})_{T\in\mathcal{P}}) = \sum_{T\in\mathcal{P}} b_{T}(x_{T}, y_{T})$$
$$0 < \beta = \inf_{\substack{x\in X \\ \|x\|_{X}=1}} \sup_{\substack{y\in Y \\ \|y\|_{Y}=1}} b(x, y)$$

• Let $F \in Y^*$ and $u \in X$ satisfy $b(u, \bullet) = F$ in Y

Discretization

Let $X_h(T) \subset X(T)$ and $Y_h(T) \subset Y(T)$ be finite-dimensional subspaces

$$X_h := X \cap \prod_{T \in \mathcal{P}} X_h(T)$$
 and $Y_h := \prod_{T \in \mathcal{P}} Y_h(T)$

"dPG is a minimal residual method

(minRes_h)
$$u_h \in \underset{x_h \in X_h}{\arg \min} \|b(x_h, \bullet) - F\|_{Y_h^*}$$

with piecewise discontinuous test functions"

Alternative formulation. Seek $(u_h, v_h) \in X_h \times Y_h$ with

$$(\mathsf{M}_h) \qquad \begin{cases} b(x_h, v_h) = 0 & \text{ for all } x_h \in X_h \\ (v_h, y_h)_Y + b(u_h, y_h) = F(y_h) & \text{ for all } y_h \in Y_h \end{cases}$$

dPG as Mixed Problem

Brezzi splitting lemma. (M_h) is well-posed iff

$$0 < \beta_h := \inf_{\substack{x_h \in X_h \\ \|x_h\|_X = 1}} \sup_{\substack{y_h \in Y_h \\ \|y_h\|_Y = 1}} b(x_h, y_h)$$

Local annulation. For all $T \in \mathcal{P}$ let $P_T : Y(T) \to Y(T)$ be a bounded linear projection onto $Y_h(T)$ s.t. any $y_T \in Y(T)$ satisfies

$$b_T(\bullet, y_T - P_T y_T) = 0$$
 in $X_h(T)$

Then

$$0 < \min_{T \in \mathcal{P}} \beta \, \|P_T\|^{-1} \leqslant \beta_h$$

General theory of mixed formulations. For $u \in X$ with $b(u, \bullet) = F$,

$$||u - u_h||_X^2 + ||0 - v_h||_Y^2 \le ||b|| \gamma_h^{-1} \min_{x_h \in X_h} ||u - x_h||_X^2$$

Suppose $b(u, \bullet) = F$ is well-posed, then

$$\|u - u_h\|_X^2 + \|v_h\|_Y^2 \approx \|b(\bullet, v_h)\|_{X^*}^2 + \|F - b(u_h, \bullet) + (v_h, \bullet)_Y\|_{Y^*}^2$$

Global annulation. $P := \prod_{T \in \mathcal{P}} P_T$ fulfils $b(\bullet, y - Py) = 0$ in X_h for any $y \in Y$, $\beta_h > 0$, and

$$\|u - u_h\|_X^2 + \|v_h\|_Y^2 \approx \underbrace{\|v_h\|_Y^2}_{\text{computable}} + \underbrace{\|F \circ (1 - P)\|_{Y^*}^2}_{\text{higher order?}}$$

for all $(x_h, y_h) \in X_h \times Y_h$ replacing (u_h, v_h)

[C-Demkowicz-Gopalakrishnan, SINUM (2014)]

Application to Poisson Model Problem

Simplified dPG for Single Domain

Let $f \in L^2(\Omega)$ in open, bounded, polygonal Lipschitz domain $\Omega \subset \mathbb{R}^2$. Seek $u : \Omega \to \mathbb{R}$ with

$$(\mathsf{PMP}) \qquad -\Delta u = f \quad \text{in } \Omega \qquad \text{and} \qquad u = 0 \quad \text{on } \partial \Omega$$

Test functions $w \in H^1(\Omega)$ require (unknown) boundary term $t = \partial u / \partial \nu$ on $\partial \Omega$ as new variable and lead to well-posed problem: Given $f \in L^2(\Omega)$, seek $(u, t) \in X := H^1_0(\Omega) \times H^{-1/2}(\partial \Omega)$ with

$$\int_{\Omega} \nabla u \cdot \nabla w \, \mathrm{d}x - \langle t, \gamma_0 w \rangle_{\partial \Omega} = \int_{\Omega} f \, w \, \mathrm{d}x \qquad \text{for all } w \in Y := H^1(\Omega)$$

Traces

Theorem. $U \subset \mathbb{R}^n$ open, bounded Lipschitz domain

- $\exists \gamma_0 \in L(H^1(U); L^2(\partial U))$ with $\gamma_0 w = w|_{\partial U}$ for all $w \in H^1(U) \cap C^0(\overline{U})$
- $H^{1/2}(\partial U) := \gamma_0(H^1(U))$ is a Hilbert space
- Let $H^{-1/2}(\partial U) := (H^{1/2}(\partial U))^*$, then $\exists \gamma_{\nu} \in L(H(\operatorname{div}, U); H^{-1/2}(\partial U))$ surjective with $\gamma_{\nu}q = q|_{\partial U} \cdot \nu$ for all $q \in C^1(\overline{U}; \mathbb{R}^n)$

Integration by Parts. Any $q \in H(\text{div}, U)$ and $w \in H^1(U)$ satisfy

$$\langle \gamma_{\nu} \boldsymbol{q}, \gamma_{0} \boldsymbol{w} \rangle_{\partial U} = \int_{U} \boldsymbol{q} \cdot \nabla \boldsymbol{w} \, \mathrm{d}x + \int_{U} \mathrm{div} \, \boldsymbol{q} \cdot \boldsymbol{w} \, \mathrm{d}x$$

Traces on the Skeleton

Duality lemma.

$$\|g\|_{H^{1/2}(\partial U)} := \min_{\substack{h \in H^1(U) \\ \gamma_0 h = g}} \|h\|_{H^1(U)}, \quad \|t\|_{H^{-1/2}(\partial U)} = \min_{\substack{q \in H(\operatorname{div}, U) \\ \gamma_\nu q = t}} \|q\|_{H(\operatorname{div}, U)}$$

Let ${\mathcal T}$ be a regular triangulation of Ω

Consequence. For $q = (q_T)_{T \in \mathcal{P}} \in H(\operatorname{div}, \mathcal{T}) := \prod_{T \in \mathcal{T}} H(\operatorname{div}, T)$,

$$\gamma_{\nu}^{\mathcal{T}} \boldsymbol{q} := \prod_{\mathcal{T} \in \mathcal{T}} \gamma_{\nu} \boldsymbol{q}_{\mathcal{T}}$$

Define the Hilbert space $H^{-1/2}(\partial \mathcal{T}) := \gamma_{\nu}^{\mathcal{T}} H(\operatorname{div}, \Omega)$ with norm

$$\|t\|_{H^{-1/2}(\partial \mathcal{T})} = \min_{\substack{q \in H(\operatorname{div}, \Omega) \\ \gamma_{\nu}^{\mathcal{T}}q = t}} \|q\|_{H(\operatorname{div}, \Omega)}$$

dPG for PMP and Triangulation ${\cal T}$

$$\begin{split} X_h(T) &:= P_1(T) \times P_0(\mathcal{E}(T)) \subset X(T) := H^1(T) \times H^{-1/2}(\partial T) \\ Y_h(T) &:= P_1(T) \subset Y(T) := H^1(T) \text{ are Hilbert spaces for any } T \text{ with} \\ \text{local bilinear form } b_T : X(T) \times Y(T) \to \mathbb{R}, \end{split}$$

$$b_{T}(u_{T}, t_{T}; w_{T}) = \int_{T} \nabla u_{T} \cdot \nabla w_{T} \, \mathrm{d}x - \langle t_{T}, \gamma_{0} w_{T} \rangle_{\partial T}$$

Improved version of the duality and splitting lemma [CDG16] lead for

$$X := H_0^1(\Omega) \times H^{-1/2}(\partial \mathcal{T}) \subset \prod_{T \in \mathcal{T}} X(T) \text{ and } Y := \prod_{T \in \mathcal{T}} Y(T)$$

to the inf-sup condition

$$0 < \sqrt{1 - \frac{1}{\sqrt{1 + \lambda_1}}} \leqslant \beta = \inf_{\substack{x \in X \\ \|x\|_X = 1}} \sup_{\substack{y \in Y \\ \|y\|_Y = 1}} b(x, y)$$

Low-order dPG for PMP

$$X_h \equiv S_0^1(\mathcal{T}) imes P_0(\mathcal{E})$$
 and $Y_h = P_1(\mathcal{T})$

The nonconforming interpolation $P_T := \mathcal{I}^{nc}$ has annulation property and

$$\|F \circ (1 - \mathcal{I}^{\mathsf{nc}})\|_{Y^*} \leqslant \sqrt{1/48} + j_{1,1}^{-1} \|h_{\mathcal{T}}f\|_{L^2(\Omega)}$$

Experiment. $\Omega = (-1, 1)^2 \setminus [-1, 0]^2$, f(x, y) = 0 $u(r, \theta) = r^{2/3} \sin(2(\theta + \pi/2)/3)$ (polar coordinates (r, θ))

C. Carstensen (Humboldt)

Low-order dPG for PMP

Figure : Triangulation plot with 496 elements (250 degrees of freedom for u_C) for adaptive mesh-refinement with GUB as refinement indicator and $\theta = 0.3$

Application to Stokes Equations

Low-Order dPG for Stokes Equations

The Stokes equations in pseudostress formulation.

Given $f \in L^2(\Omega; \mathbb{R}^n)$ and $g \in H^1(\partial\Omega; \mathbb{R}^n)$ for domain $\Omega \subseteq \mathbb{R}^n$, seek $u \in H^1(\Omega; \mathbb{R}^n)$ and $\sigma \in H(\operatorname{div}, \Omega; \mathbb{R}^{n \times n})/\mathbb{R}$ with

dev
$$\sigma = Du$$
 in Ω
-div $\sigma = f$ in Ω
 $u = g$ along $\partial \Omega$

$$\operatorname{dev} A := A - 1/n \ (\operatorname{tr} A) \mathsf{I}_{n \times n}$$
Low-order dPG for Stokes Equations

$$\begin{split} X_{h}(T) &:= P_{0}(T; \mathbb{R}^{n \times n})/\mathbb{R} \times P_{0}(T; \mathbb{R}^{n}) \times P_{1}(\mathcal{E}(T); \mathbb{R}^{n}) \times P_{0}(\mathcal{E}(T); \mathbb{R}^{n}) \\ X(T) &:= L^{2}(T; \mathbb{R}^{n \times n}) \times L^{2}(T; \mathbb{R}^{n}) \times H^{1/2}(\partial T; \mathbb{R}^{n}) \times H^{-1/2}(\partial T; \mathbb{R}^{n}) \\ X &:= L^{2}(\Omega; \mathbb{R}^{n \times n})/\mathbb{R} \times L^{2}(\Omega; \mathbb{R}^{n}) \times H_{0}^{1/2}(\partial T; \mathbb{R}^{n}) \times H^{-1/2}(\partial T; \mathbb{R}^{n}) \\ &\subset \prod_{T \in \mathcal{T}} X(T) \quad \text{while} \quad Y = \prod_{T \in \mathcal{T}} Y(T) \\ Y_{h}(T) &:= RT_{0}(T; \mathbb{R}^{n \times n}) \times P_{1}(T; \mathbb{R}^{n}) \\ Y(T) &:= H(\operatorname{div}, T; \mathbb{R}^{n \times n}) \times H^{1}(T; \mathbb{R}^{n}) \\ \text{For all } T \in \mathcal{T} \text{ let } b_{T} : X(T) \times Y(T) \to \mathbb{R} \text{ with} \\ b_{T}(\sigma, u, s, t; \tau, v) &= \int_{T} \sigma : D_{nc} v \, dx + \int_{T} \operatorname{dev} \sigma : \tau \, dx + \int_{T} u \cdot \operatorname{div}_{nc} \tau \, dx \\ &- \langle t, \gamma_{0} v \rangle_{\partial T} - \langle \gamma_{\nu} \tau, s \rangle_{\partial T} \\ F(\tau, v) &:= \int_{\Omega} f \cdot v \, dx + \langle \gamma_{\nu}^{\mathcal{T}} \tau, \gamma_{0}^{\mathcal{T}} g \rangle_{\partial \mathcal{T}} \end{split}$$

C. Carstensen (Humboldt)

Low-Order dPG for Stokes Equations

- β and β_h are explicitly bounded in terms of the Friedrichs, tr-dev-div constant and the inf-sup constant of the mixed FEM H(div, Ω : ℝ^{n×n})/ℝ × L²(Ω : ℝⁿ)
- the data approximation error $\|F\circ(1-P)\|_{Y_h^*}$ is not necessarily of higher order
- the extension $\hat{Y}_h(T) := RT_0(T; \mathbb{R}^{n \times n}) / \mathbb{R} \oplus b_3(T) \mathbb{R}_{dev}^{n \times n} \times P_1(T; \mathbb{R}^n)$ of $Y_h(T)$ with the cubic bubble $b_3(T)$ guarantees the higher order

Numerical Example: dPG for Stokes – colliding flow Experiment. $\Omega = (-1, 1)^2$, $f \equiv 0$ with implicit boundary data, for all $(x_1, x_2) \in \Omega$, $u(x_1, x_2) = 4(5x_1x_2^4 - x_1^5, 5x_1^4x_2 - x_2^5)$ and $p(x_1, x_2) = 120x_1^2x_2^2 - 20(x_1^4 + x_2^4) - 16/3$.

Numerical Example: dPG for Stokes – L-shaped domain **Experiment.** $\Omega = (-1, 1)^2 \setminus ([0, 1] \times [-1, 0]), f \equiv 0,$ for all $(r, \varphi) \in [0, \infty) \times [0, 3\pi/2]$, $\omega := 3\pi/2$, $\alpha := 856399/1572864$, $w(\varphi) := \frac{\sin((1+\alpha)\varphi)\cos(\alpha\omega)}{1+\alpha} - \cos((1+\alpha)\varphi) + \frac{\sin((\alpha-1)\varphi)\cos(\alpha\omega)}{1-\alpha} + \cos((\alpha-1)\varphi)$, with implicit boundary data, $p(r, \varphi) = \frac{-r^{\alpha-1}((1+\alpha)^2 w'(\varphi) + w'''(\varphi))}{1-\alpha}$, and $u(r,\varphi) = \begin{pmatrix} r^{\alpha}((1+\alpha)\sin(\varphi)w(\varphi) + \cos(\varphi)w'(\varphi)) \\ -(1+\alpha)\cos(\varphi)w(\varphi) + \sin(\varphi)w'(\varphi) \end{pmatrix}$ $\eta_h, \theta = 1$ 10^{1} - $\tilde{\eta}_h, \theta = 1$ error estimator $- \|x - x_h\|_X, \ \theta = 1$ 10^{0} \rightarrow $\tilde{\eta}_h, \ \theta = 0.3$ 0.25 $- \|x - x_h\|_X, \ \theta = 0.3$ error resp. 0.5 10^{-1} 10^{2} 10^{5} 10^{7} 10^{3} 10^{4} 10^{6} number of degrees of freedom

C. Carstensen (Humboldt)

30

Numerical Example: dPG for Stokes – L-shaped domain

Figure : Triangulation plot with 371 elements (3711 degrees of freedom) for adaptive mesh-refinement with η_{ℓ} and $\theta = 0.3$

Numerical Example: dPG for Stokes – backward facing step **Experiment.** $\Omega = ((-2, 8) \times (-1, 1)) \setminus ((-2, 0) \times (-1, 0)), f \equiv 0,$ boundary data $g(x_1, x_2) = \begin{cases} 1/10(-x_2(x_2 - 1), 0) & \text{ for } x_1 = -2, \\ 1/80(-(x_2 - 1)(x_2 + 1), 0) & \text{ for } x_1 = 8, \\ (0, 0) & \text{ elsewhere } \end{cases}$

32

Numerical Example: dPG for Stokes – backward facing step

Figure : Triangulation plot with 1551 elements (15511 degrees of freedom) for adaptive mesh-refinement with η_{ℓ} and $\theta = 0.3$

Example for Linear Elasticity

Low-Order dPG for Linear Elasticity

The Navier-Lamé equations. Seek $u \in H^1(\Omega; \mathbb{R}^n)$ and $\sigma \in H(\operatorname{div}, \Omega; \mathbb{S})$ with

$$\begin{aligned} -\operatorname{div} \sigma &= f & \text{ in } \Omega, \\ \sigma &= \mathbb{C}\varepsilon(u) & \text{ in } \Omega, \\ u &= 0 & \text{ on } \Gamma_D, \\ \sigma\nu &= 0 & \text{ on } \Gamma_N, \end{aligned}$$

$$\begin{split} \varepsilon(u) &:= \operatorname{sym} \mathsf{D} \, u := (\mathsf{D} \, u + \mathsf{D} \, u^{\top})/2, \\ \mathbb{C}(\mathcal{A}) &:= 2\mu \mathcal{A} + \lambda \operatorname{tr}(\mathcal{A}) I_{n \times n}. \end{split}$$

Low-Order dPG for Linear Elasticity

Hilbert spaces.

$$\begin{split} X(T) &:= L^{2}(T; \mathbb{S}) \times L^{2}(T; \mathbb{R}^{n}) \times H^{1/2}(\partial T; \mathbb{R}^{n}) \times H^{-1/2}(\partial T; \mathbb{R}^{n}) \\ Y(T) &:= H(\operatorname{div}, T; \mathbb{S}) \times H^{1}(T; \mathbb{R}^{n}) \\ X &:= L^{2}(\Omega; \mathbb{S})/\mathbb{R} \times L^{2}(\Omega; \mathbb{R}^{n}) \times H_{D}^{1/2}(\partial T; \mathbb{R}^{n}) \times H_{N}^{-1/2}(\partial T; \mathbb{R}^{n}) \\ X &\subset \prod_{T \in \mathcal{T}} X(T), \quad Y &:= \prod_{T \in \mathcal{T}} Y(T) \end{split}$$

Bilinear form. For all $T \in \mathcal{T}$ let $b_T : X(T) \times Y(T) \rightarrow \mathbb{R}$ with

$$b_{\mathcal{T}}(\sigma, u, s, t; \tau, v) = \int_{\mathcal{T}} \sigma : \varepsilon_{NC}(v) \, \mathrm{d}x + \int_{\mathcal{T}} \mathbb{C}^{-1} \sigma : \tau \, \mathrm{d}x + \int_{\mathcal{T}} u \cdot \mathrm{div}_{\mathsf{nc}} \tau \, \mathrm{d}x \\ - \langle t, \gamma_0 v \rangle_{\partial \mathcal{T}} - \langle \gamma_{\nu} \tau, s \rangle_{\partial \mathcal{T}}.$$

Discretization. $X_h(T) := P_0(T; \mathbb{S})/\mathbb{R} \times P_0(T; \mathbb{R}^n) \times P_1(\mathcal{E}(T); \mathbb{R}^n) \times P_0(\mathcal{E}(T); \mathbb{R}^n), \quad Y_h(T) := \operatorname{sym} RT_0(T; \mathbb{R}^{n \times n})/\mathbb{R} \times P_1(T; \mathbb{R}^n).$

Low-Order dPG for Linear Elasticity

- bounds of β and β_h depend on Friedrichs, Korn, tr-dev-div constant, the inf-sup constant of the mixed FEM and μ , but are *independent* of λ
- canonical choice of norms (e.g., $\|\bullet\|$ on $L^2(\Omega; \mathbb{S})$) lead to locking-free L^2 - H^1 method
- energy method with other, \mathbb{C} -dependent norms (e.g., $\|\mathbb{C}^{1/2}\bullet\|$ on $L^2(\Omega; \mathbb{S})$) suffers from locking
- extension like for Stokes equations yield a higher order data approximation error

Example: Rotated L-shaped domain with exact solution

Numerical Example: Cook's membrane

Numerical Example: Cook's membrane

Numerical Example: Locking

Application to Maxwell Equations

Single Domain

 $\Omega \subset \mathbb{R}^3$ open, bounded, polyhydral Lipschitz domain. Seek $E:\Omega \to \mathbb{R}^3$ with

(Maxwell) curl curl
$$E - \omega^2 E = J$$
 in Ω and $E \times \nu = 0$ on $\partial \Omega$

Test functions $F \in H(\operatorname{curl}, \Omega)$ lead to boundary term $\hat{H} = \operatorname{curl} E \times \nu$ on $\partial \Omega$. Suppose ω^2 is not a Maxwell eigenvalue. The resulting well-posed problem reads:

Given
$$J \in L^2(\Omega; \mathbb{R}^3)$$
, seek $(E, \hat{H}) \in X := H_0(\operatorname{curl}, \Omega) \times H^{-1/2}(\operatorname{div}_{\partial\Omega}, \partial\Omega)$

$$\int_{\Omega} \operatorname{curl} E \cdot \operatorname{curl} F \, \mathrm{d} x - \omega^2 \int_{\Omega} E \cdot F \, \mathrm{d} x - \langle \pi_{\tau} F, \hat{H} \rangle_{\partial \Omega} = \int_{\Omega} J \cdot F \, \mathrm{d} x$$

for all $H(\operatorname{curl}, \Omega)$

Traces

Theorem. $U \subset \mathbb{R}^3$ open, bounded Lipschitz domain

- $\exists \gamma_{\tau} \in L(H(\operatorname{curl}, U); H^{-1/2}(\partial U)), \ \gamma_{\tau}H = H|_{\partial U} \times \nu \text{ for } H \in C^{\infty}(\overline{U}; \mathbb{R}^3)$
- $H^{-1/2}(\operatorname{div}_{\partial U}, \partial U) := \gamma_{\tau}(H(\operatorname{curl}, U))$ is a Hilbert space
- Let $H^{-1/2}(\operatorname{curl}_{\partial U}, \partial U) := (H^{-1/2}(\operatorname{div}_{\partial U}, \partial U))^*$, then $\exists \pi_{\tau} \in L(H(\operatorname{curl}, U); H^{-1/2}(\operatorname{curl}_{\partial U}, \partial U))$ surjective with $\pi_{\tau}F = \nu \times (F|_{\partial U} \times \nu)$ for all $F \in C^{\infty}(\overline{U}; \mathbb{R}^3)$

Integration by parts. Any $F, H \in H(\text{curl}, U)$ satisfy

$$\langle \pi_{\tau} F, \gamma_{\tau} H \rangle_{\partial U} = \int_{U} H \cdot \operatorname{curl} F \, \mathrm{d}x - \int_{U} \operatorname{curl} H \cdot F \, \mathrm{d}x$$

Traces on the Skeleton

Duality lemma.

$$\begin{aligned} \|\hat{H}\|_{H^{-1/2}(\operatorname{div}_{\partial U},\partial U)} &:= \min_{\substack{H \in H(\operatorname{curl},U) \\ \gamma_{\tau}H = \hat{H}}} \|H\|_{H(\operatorname{curl},U)} \\ \|\hat{F}\|_{H^{-1/2}(\operatorname{curl}_{\partial U},\partial U)} &= \min_{\substack{F \in H(\operatorname{curl},U) \\ \gamma_{\nu}F = \hat{F}}} \|q\|_{H(\operatorname{curl},U)} \end{aligned}$$

Let ${\mathcal T}$ be a shape-regular triangulation of Ω into tetrahedra

Consequence. For
$$H = (H_T)_{T \in \mathcal{T}} \in \prod_{T \in \mathcal{T}} H(\text{curl}, T)$$
 let
 $\gamma_{\tau}^{\mathcal{T}} H := \prod_{T \in \mathcal{T}} \gamma_{\tau} H_T$

Define the Hilbert space $H^{-1/2}(\operatorname{div}_{\partial \mathcal{T}}, \partial \mathcal{T}) := \gamma_{\tau}^{\mathcal{T}} H(\operatorname{curl}, \Omega)$ with norm

$$\|\hat{H}\|_{H^{-1/2}(\mathsf{div}_{\partial\mathcal{T}},\partial\mathcal{T})} = \min_{\substack{H \in H(\mathsf{curl},\Omega)\\ \gamma_{\nu}^{\mathcal{T}} H = \hat{H}}} \|H\|_{H(\mathsf{curl},\Omega)}$$

dPG for Maxwell and Triangulation ${\cal T}$

$$X(T) = H(\operatorname{curl}, T) \times H^{-1/2}(\operatorname{div}_{\partial T}, \partial T)$$
 and $Y(T) = H(\operatorname{curl}, T)$

$$\begin{aligned} X &:= H_0(\operatorname{curl}, \Omega) \times H^{-1/2}(\operatorname{div}_{\partial \mathcal{T}}, \partial \mathcal{T}) \subset \prod_{\mathcal{T} \in \mathcal{T}} X(\mathcal{T}) \text{ and} \\ Y &:= \prod_{\mathcal{T} \in \mathcal{T}} Y(\mathcal{T}) \text{ lead in (Maxwell) for all } \mathcal{T} \in \mathcal{T} \text{ to} \\ b_{\mathcal{T}} &: X(\mathcal{T}) \times Y(\mathcal{T}) \to \mathbb{R} \text{ with} \end{aligned}$$

$$b_{T}(E_{T}, \hat{H}_{T}; F_{T}) = \int_{T} \operatorname{curl} E_{T} \cdot \operatorname{curl} F_{T} \, \mathrm{d}x - \omega^{2} \int_{T} E_{T} \cdot F_{T} \, \mathrm{d}x - \langle \pi_{\tau} F_{T}, \hat{H}_{T} \rangle_{\partial T}$$

The duality and splitting lemma [CDG16] show for global bilinear form b

$$0 < \beta = \inf_{\substack{x \in X \\ \|x\|_X = 1}} \sup_{\substack{y \in Y \\ \|y\|_Y = 1}} b(x, y)$$

Discretization

Nédélec element. $N_k(T) := P_{k-1}(T; \mathbb{R}^3) \oplus S_k(T; \mathbb{R}^3)$ with

 $S_k(T; \mathbb{R}^3) := \{ p \in P_k(T; \mathbb{R}^3) \mid p \text{ homogenous polynomial of degree } k \text{ and} \\ p(x) \cdot x = 0 \text{ in } T \}$

Discretization with Nédélec elements.

 $X_h(T) := N_k(T) imes \gamma_{\tau} N_k(T)$ and $Y_h(T) := N_{\ell}(T)$ for $k, \ell \in \mathbb{N}$

Annulation operator $P_T : Y(T) \rightarrow Y_h(T)$ in [CDG16] requires $\ell = k + 3$ Numerical experiments with k = 1 seems to work with $\ell = 1$ as well

Numerical Example. Primal dPG for Maxwell

$$X_h(T) := N_1(T) \times \gamma_\tau N_1(T)$$
 and $Y_h(T) := N_\ell(T)$

Experiment. $\Omega = (0,1)^3$, $\omega^2 = 1$, $E = (\sin \pi x \sin \pi y \sin \pi z, 0, 0)$ k = 1, uniform refinement

Numerical Example. Primal dPG for Maxwell

$$X_h(T) := N_1(T) imes \gamma_\tau N_1(T)$$
 and $Y_h(T) := N_\ell(T)$

Experiment. $\Omega = (-1, 1)^3 \setminus [0, 1]^3$ (Fichera's corner domain), $\omega^2 = 3.1$ $E = (e^{i\omega z}, e^{i\omega x}, e^{i\omega y})$

Remark. ω^2 is close to a Maxwell eigenvalue

Numerical Example. Primal dPG for Maxwell

$$X_h(T) := N_1(T) imes \gamma_\tau N_1(T)$$
 and $Y_h(T) := N_\ell(T)$

Experiment. $\Omega = (-1, 1)^3 \setminus [0, 1]^3$ (Fichera's corner domain), $\omega^2 = 3.2$ $E = (e^{i\omega x}, e^{i\omega x}, e^{i\omega y})$

Remark. ω^2 is close to a Maxwell eigenvalue

Numerical Example. Singular Solution

$$X_h(T) := N_1(T) \times \gamma_\tau N_1(T)$$
 and $Y_h(T) := N_1(T)$

Experiment. $\Omega = (-1,1)^3 \setminus [0,1]^3$ (Fichera's corner domain), $\omega^2 = 1$ $E = \nabla p(x,y,z)$ with $p(x,y,z) = (x^2 + y^2 + z^2 + 10^{-6})^{1/4}$ **Remark.** Singularity in (x, y, z) = 0

51

Numerical Example. [CDG16]

Experiment. J = 0 and $\omega^2 = 25$ with boundary condition $\nu \times E = \nu \times E^D$, where $E^D(x, y, z) = (\sin \pi y, 0, 0)$

Figure : Iteration 1, 5, and 9

Numerical Example. [CDG16]

Remark. Since ω is large, the initial grid is too coarse for standard discretizations, but adaptive dPG seems to work

Flexible Modelling

There exist equivalent [CDG16] formulations of (Maxwell), e.g. the first-order system

$$i\omega E + \operatorname{curl} H = J$$
 and $-i\omega H + \operatorname{curl} E = 0$

It leads to the dPG method for the ultra-weak formulation

•
$$X(T) = L^2(T; \mathbb{C}^3) \times L^2(T; \mathbb{C}^3) \times \gamma_{\tau} H(\operatorname{curl}, T; \mathbb{C}^3) \times \gamma_{\tau} H(\operatorname{curl}, T; \mathbb{C}^3)$$

• $X = L^2(\Omega; \mathbb{C}^3) \times L^2(\Omega; \mathbb{C}^3) \times \gamma_{\tau}^{\tau} H_0(\operatorname{curl}, \Omega; \mathbb{C}^3) \times \gamma_{\tau}^{\tau} H(\operatorname{curl}, \Omega; \mathbb{C}^3)$
• $Y(T) = H(\operatorname{curl}, T; \mathbb{C}^3) \times H(\operatorname{curl}, T; \mathbb{C}^3), \quad Y = \prod_{T \in \mathcal{T}} Y(T)$

•
$$b_T(E, H, \hat{E}, \hat{H}; F, G) = i\omega \int_T E \cdot \overline{F} \, dx + \int_T H \cdot \overline{\operatorname{curl} F} \, dx - \langle F, \hat{H} \rangle_{\partial T}$$

 $-i\omega \int_T H \cdot \overline{G} \, dx + \int_T E \cdot \overline{\operatorname{curl} G} \, dx - \langle G, \hat{E} \rangle_{\partial T}$

Numerical Example. Ultra-weak dPG for Maxwell $X_h(T) = P_0(T; \mathbb{C}^3) \times P_0(T; \mathbb{C}^3) \times \gamma_\tau N_1(T; \mathbb{C}) \times \gamma_\tau N_1(T; \mathbb{C})$ and $Y_h(T) = N_\ell(T; \mathbb{C}^3) \times N_\ell(T; \mathbb{C}^3)$

Experiment. $\Omega = (0, 1)^3$, $\omega^2 = 1$, $E = (\sin \pi x \sin \pi y \sin \pi z, 0, 0)$ k = 1, uniform refinement

Adaptive Least-Squares FEM

$$\begin{array}{l} \mbox{Adaptive LSFEM 4 Stokes - Backward Facing Step} \\ \Omega = ((-2,8) \times (-1,1)) \backslash ((-2,0) \times (-1,0)), \ f \equiv 0, \\ \mbox{boundary data } g(x_1,x_2) = \begin{cases} 1/10(-x_2(x_2-1),0) & \mbox{for } x_1 = -2, \\ 1/80(-(x_2-1)(x_2+1),0) & \mbox{for } x_1 = 8, \\ (0,0) & \mbox{elsewhere.} \end{cases} \end{array}$$

$$LS(f; \sigma, u) \coloneqq \|f + \operatorname{div} \sigma\|_{L^2(\Omega)} \|\operatorname{dev} \sigma - \mathsf{D} u\|_{L^2(\Omega)}$$

Figure : Triangulation plot with with 1473 triangles (5895 degrees of freedom) for adaptive mesh-refinement with η_ℓ and $\theta=0.5$

Adaptive LSFEM – Adaptive Algorithm with Separate Marking

Adaptive LSFEM – Quasi-Optimal Convergence

Non-linear approximation class \mathcal{A}_s $(u, f) \in \mathcal{A} \times L^2(\Omega; \mathbb{R}^2)$ with

$$|(u,f)|^2_{\mathcal{A}_s} \coloneqq \sup_{N \in \mathbb{N}} N^{2s} E(u,f,N) < \infty$$

Best possible error

$$E(u, f, N) \\ \coloneqq \min_{\substack{\mathcal{T} \in \mathbb{T} \\ |\mathcal{T}| - |\mathcal{T}_0| \leq N}} \left(\min_{\substack{(\tau_{\mathsf{LS}}, \mathsf{v}_{\mathsf{LS}}) \in \Sigma(\mathcal{T}) \times \mathcal{A}(\mathcal{T})}} \mathsf{LS}(f; \tau_{\mathsf{LS}}, \mathsf{v}_{\mathsf{LS}}) + \mathsf{osc}^2(g', \mathcal{E}(\partial\Omega)) \right)$$

Optimal convergence rate $\exists 0 < \kappa_0 < \infty \ \exists 0 < \theta_0 < 1 \ \forall 0 < \kappa \leq \kappa_0$ $\forall 0 < \theta \leq \theta_0 \ \forall 0 < \rho < 1 \ \forall 0 < s < \infty$,

$$\sup_{\ell \in \mathbb{N}} \left(|\mathcal{T}_{\ell}| - |\mathcal{T}_{0}| \right)^{2s} \left(\mathsf{LS}(f; \sigma_{\ell}, u_{\ell}) + \mathsf{osc}^{2}(g', \mathcal{E}_{\ell}(\partial\Omega)) \right) \leqslant C_{\mathsf{opt}} |(u, f)|_{\mathcal{A}_{s}}^{2}$$

 $\mathit{C}_{\mathsf{opt}}$ depends solely on $\mathcal{T}_{\mathsf{0}}, \mathit{s}, \kappa, \theta,
ho$

Adaptive LSFEM – Quasi-Optimal Convergence – Proof

Adaptive LSFEM – Quasi-Optimal Convergence – Proof

Adaptive LSFEM – Quasi-Optimal Convergence – Proof

Adaptive LSFEM – Quasi-Optimal Convergence – Proof

Conclusions

- Comprehensive abstract theory for dPG as a mixed method and/or as a minimum residual method
- More stable and smaller pre-asymptotic range than other/standard methods (e.g. Nédélec-FEM for Maxwell)
- Test search space can be small without loosing stability in the examples presented
- Work in progress on
 - Guaranteed upper error bounds
 - Adaptive mesh design
 - Time-evolving dPG
 - dPG for non-linear problems (e.g. eigenvalue computation)

References I

- C. Carstensen, D. Gallistl, F. Hellwig, L. Weggler: Low-order dPG-FEM for an elliptic PDE, Computers & Mathematics with Applications 68 (11), 1503-1512, 2014.
- C. Carstensen, L. Demkowicz, J. Gopalakrishnan: *A posteriori error control for DPG methods*, SIAM Journal on Numerical Analysis 52 (3), 1335-1353, 2014.
- C. Carstensen, L. Demkowicz, J. Gopalakrishnan: *Breaking spaces and forms for the DPG method and applications including Maxwell equations*, ICES, 2016 (submitted).
- C. Carstensen, F. Hellwig: *Low-order dPG-FEMs for linear elasticity*, SINUM, 2016 (submitted).
- C. Carstensen, S. Puttkammer: *A low-order discontinuous Petrov-Galerkin Method for the Stokes Equations*, (in preparation).

References II

- A. Cohen, W. Dahmen, and G. Welper: Adaptivity and variational stabilization for convection-diffusion equations, ESAIM Math. Model. Numer. Anal. 46(5), 1247-1273, 2012.
- P. Bringmann, C. Carstensen: An Adaptive Least-Squares FEM for the Stokes Equations with Optimal Convergence Rates, Numerische Mathematik, 2016 (submitted).
- C. Carstensen, H. Rabus: *Axioms of Adaptivity for Separate Marking*, 2016 (in progress).

Thank you for your attention!

Advert from http://www.degruyter.com/view/j/cmam

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten Managing Editor: Matus, Piotr

4 Issues per year Mathematical Citation Quotient 2012: 0.34

Get New Article Alerts >

