Traces and Duality Lemma

Recall the duality lemma with $H^{1 / 2}(\partial \Omega):=\gamma_{0}\left(H^{1}(\Omega)\right)$ defined as the trace space of $H^{1}(\Omega)$ endowed with minimal extension norm; i.e., for $w \in H^{1 / 2}(\partial \Omega) \subset$ $L^{2}(\partial \Omega)$,

$$
\begin{aligned}
\|w\|_{H^{1 / 2}(\partial \Omega)} & =\min \left\{\|\widehat{w}\|_{H^{1}(\Omega)} \mid \widehat{w} \in H^{1}(\Omega), \gamma_{0} \widehat{w}=w\right\}, \\
H^{-1 / 2}(\partial \Omega) & :=\text { dual to } H^{1 / 2}(\partial \Omega)=: H^{1 / 2}(\partial \Omega)^{*} \\
& \stackrel{!}{=} \gamma_{\nu}(H(\operatorname{div}, \Omega)) .
\end{aligned}
$$

Any $q \in H(\operatorname{div}, \Omega)$ (i.e. $q \in L^{2}\left(\Omega, \mathbb{R}^{2}\right)$, $\left.\operatorname{div} q \in L^{2}(\Omega)\right)$ defines $\gamma_{\nu} q \in$ $H^{-1 / 2}(\partial \Omega)$ by

$$
\left(\gamma_{\nu} q\right)(w)=:\langle q \cdot \nu, w\rangle_{\partial \Omega}=\int_{\Omega}(q \cdot \nabla \hat{w}+\hat{w} \operatorname{div} q) \mathrm{d} x
$$

for $w \in H^{1 / 2}(\partial \Omega)$ and $\widehat{w} \in H^{1}(\Omega)$ with $\gamma_{0} \widehat{w}=w$.
(Side note:

$$
\begin{aligned}
\langle q \cdot \nu, w\rangle_{\partial \Omega} & \leq\|q\|\|\widehat{w}\|+\|\operatorname{div} q\|\|\widehat{w}\| \\
& \leq\|q\|_{H(\operatorname{div}, \Omega)}\|\widehat{w}\|_{H^{1}(\Omega)}
\end{aligned}
$$

implies $\left.\left\|\gamma_{\nu} q\right\|_{H^{-1 / 2}(\partial \Omega)} \leq\|q\|_{H(\operatorname{div}, \Omega)}.\right)$

Duality Lemma. (a) There exists exactly one

$$
\gamma_{\nu} \in L\left(H(\operatorname{div}, \Omega) ; H^{-1 / 2}(\partial \Omega)\right)
$$

such that for all $q \in H^{1}\left(\Omega ; \mathbb{R}^{n}\right)$

$$
\gamma_{\nu} q=\left(\gamma_{0} q\right) \cdot \nu \text { a.e. on } \partial \Omega .
$$

(b) Let $\langle\cdot, \cdot\rangle_{\partial \Omega}$ denote the duality brackets of $H^{-1 / 2}(\partial \Omega) \times H^{1 / 2}(\partial \Omega)$. All $q \in H(\operatorname{div}, \Omega)$ and $v \in H^{1}(\Omega)$ satisfy the formula

$$
\left\langle\gamma_{\nu} q, \gamma_{0} v\right\rangle_{\partial \Omega}=\int_{\Omega}(v \operatorname{div} q+q \cdot \nabla v) \mathrm{d} x .
$$

(c) The operator γ_{ν} is surjective and

$$
\operatorname{ker} \gamma_{\nu}=H_{0}(\operatorname{div}, \Omega):=\overline{\mathcal{D}\left(\Omega ; \mathbb{R}^{n}\right)}\|\bullet\|_{H(\mathrm{div})} .
$$

(d) (Duality lemma) For all $t \in H^{-1 / 2}(\partial \Omega)$ with $t(w)=:\langle t, w\rangle_{\partial \Omega}$ for $w \in$ $H^{1 / 2}(\partial \Omega)$, it holds

$$
\begin{aligned}
& \|t\|_{H^{-1 / 2}(\partial \Omega)}=\sup _{\substack{w \in H^{1 / 2}(\partial \Omega) \\
\|w\|_{H^{1}}=1}}\langle t, w\rangle_{\partial \Omega} \\
& =\sup _{\substack{v \in H^{1}(\Omega), \gamma_{0} v \neq 0}} \inf _{\varphi \in H^{1}(\Omega)} \frac{\left\langle t, \gamma_{0} v\right\rangle_{\partial \Omega}}{\|v-\varphi\|_{H^{1}(\Omega)}} \\
& =\inf _{\substack{q \in H(\operatorname{div}, \Omega), \gamma, q=t}}\|q\|_{H(\operatorname{div}, \Omega)} .
\end{aligned}
$$

Proof. Proof of (a). Let $q \in H(\operatorname{div}, \Omega)$. For all $v \in H^{1 / 2}(\partial \Omega) \hat{v} \in H^{1}(\Omega)$ denotes the unique weak solution of

$$
\begin{aligned}
-\Delta \hat{v}+\hat{v} & =0 \text { in } \Omega, \\
\gamma_{0} \hat{v} & =v \text { on } \partial \Omega .
\end{aligned}
$$

Then $\|v\|_{H^{1 / 2}(\partial \Omega)}=\|\hat{v}\|_{H^{1}(\Omega)}$. Define

$$
X_{q}(v):=\int_{\Omega}(\hat{v} \operatorname{div} q+q \cdot \nabla \hat{v}) \mathrm{d} x
$$

The repeated application of the Cauchy Schwarz inequality shows

$$
\begin{aligned}
X_{q}(v) & \leq\|\hat{v}\|_{L^{2}(\Omega)}\|\operatorname{div} q\|_{L^{2}(\Omega)}+\|q\|_{L^{2}(\Omega)}\|\nabla \hat{v}\|_{L^{2}(\Omega)} \\
& \leq\|q\|_{H(\text { div })}\|\hat{v}\|_{H^{1}(\Omega)}=\|q\|_{H(\text { div }}\|v\|_{H^{-1 / 2}(\partial \Omega)} .
\end{aligned}
$$

Hence $X_{q}: H^{1 / 2}(\partial \Omega) \rightarrow \mathbb{R}$ is linear and bounded. Thus for any $q \in H(\operatorname{div}, \Omega)$ there exists $g(q) \in H^{-1 / 2}(\partial \Omega)$ with $X_{q}=g(q)$. Define $\gamma_{\nu}: q \mapsto g(q)$. This operator is linear. The last inequality shows that the operator is also bounded, more precisely

$$
\left\|\gamma_{\nu}\right\|_{L\left(H(\operatorname{div}, \Omega) ; H^{-1 / 2}(\partial \Omega)\right)} \leq 1 .
$$

Moreover, for all functions $v \in H^{1 / 2}(\partial \Omega)$ and $q \in H^{1}\left(\Omega, \mathbb{R}^{n}\right)$, an integration by parts leads to

$$
\left\langle\left(\gamma_{0} q\right) \cdot \nu, v\right\rangle_{\partial \Omega}=\left\langle\left(\gamma_{0} q\right) \cdot \nu, \gamma_{0} \hat{v}\right\rangle_{\partial \Omega}=\int_{\Omega}(\hat{v} \operatorname{div} q+q \cdot \nabla \hat{v}) \mathrm{d} x
$$

Thus $\left\langle\left(\gamma_{0} q\right) \cdot \nu, v\right\rangle_{\partial \Omega}=\left\langle\gamma_{\nu} q, v\right\rangle_{\partial \Omega}$. Hence, for all $v \in H^{1 / 2}(\partial \Omega)$ it holds

$$
\left\langle\left(\gamma_{0} q\right) \cdot \nu-\gamma_{\nu} q, v\right\rangle_{\partial \Omega}=0,
$$

i.e., $\left(\gamma_{0} q\right) \cdot \nu=\gamma_{\nu} q \in H^{-1 / 2}(\partial \Omega)$. This implies (a). Moreover, $\langle\cdot, \cdot\rangle_{\partial \Omega}$ extends the scalar product $(\cdot, \cdot)_{\partial \Omega}$ in $L^{2}(\partial \Omega)$ for smooth functions.

Proof of (b). For all $v \in H^{1}(\Omega)$ and $q \in H(\operatorname{div}, \Omega)$ it holds

$$
\left\langle\gamma_{\nu} q, \gamma_{0} v\right\rangle_{\partial \Omega}=\int_{\Omega}(q \cdot \nabla \hat{v}+\hat{v} \operatorname{div} q) \mathrm{d} x
$$

where $\hat{v} \in H^{1}(\Omega)$ is such that $\Delta \hat{v}+\hat{v}=0$ and $\gamma_{0} v=\gamma_{0} \hat{v}$ in the weak sense. Since ker $\gamma_{0}=H_{0}^{1}(\Omega)$ and $v-\hat{v} \in H_{0}^{1}(\Omega)$, this equals

$$
\int_{\partial \Omega} \gamma_{\nu} q \cdot \gamma_{0} v \mathrm{~d} s=\int_{\Omega}(q \cdot \nabla v+v \operatorname{div} q) \mathrm{d} x
$$

and implies (b).
Proof of (c). For all $q \in \mathcal{D}\left(\Omega ; \mathbb{R}^{n}\right), \gamma_{\nu} q=\left(\gamma_{0} q\right) \cdot \nu=0$ a.e. by (a). Hence,

$$
H_{0}(\operatorname{div}, \Omega)=\overline{\mathcal{D}\left(\Omega ; \mathbb{R}^{n}\right)}\left\|^{\|}\right\|_{H(\mathrm{div})} \subseteq \operatorname{ker} \gamma_{\nu} .
$$

The proof of $\operatorname{ker} \gamma_{\nu} \subseteq H_{0}(\operatorname{div}, \Omega)$ is more technical and can be found in the literature, i.e., in [Girault, V. and Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, Heidelberg, New York (1986)]. It remains to show the surjectivity of γ_{ν}. Given any $t \in H^{-1 / 2}(\partial \Omega)$, the functional

$$
T: H^{1}(\Omega) \rightarrow \mathbb{R}, v \mapsto\left\langle t, \gamma_{0} v\right\rangle_{\partial \Omega}
$$

is linear and bounded, written $T \in H^{1}(\Omega)^{*}$. The Riesz representation $z \in$ $H^{1}(\Omega)$ of T in the Hilbert space $H^{1}(\Omega)$ satisfies $\langle z, \cdot\rangle_{H^{1}(\Omega)}=T(\cdot)$. For $\varphi \in \mathcal{D}(\Omega)$, it follows for $\gamma_{0} \varphi=0$ that

$$
\langle z, \varphi\rangle_{H^{1}(\Omega)}=T(\varphi)=\left\langle t, \gamma_{0} \varphi\right\rangle=0 .
$$

This proves $-\Delta z+z=0$ in the weak sense. In particular, $q:=\nabla z \in$ $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ and $\operatorname{div} \nabla z=\Delta z$ leads to $\operatorname{div} q=z \in L^{2}(\Omega)$. Hence, $q \in H(\operatorname{div}, \Omega)$ and

$$
\begin{aligned}
\|q\|_{H(\text { div })} & =\left(\|\operatorname{div} q\|^{2}+\|q\|^{2}\right)^{1 / 2}=\left(\|z\|^{2}+\|\nabla z\|^{2}\right)^{1 / 2} \\
& =\|z\|_{H^{1}(\Omega)}=\|T\|_{\left(H^{1}(\Omega)\right)^{*}} .
\end{aligned}
$$

For any $v \in H^{1}(\Omega)$, it follows

$$
\begin{aligned}
\left\langle\gamma_{\nu} q, \gamma_{0} v\right\rangle_{\partial \Omega} & =\int_{\Omega}(q \cdot \nabla v+v \operatorname{div} q) \mathrm{d} x=\int_{\Omega}(\nabla z \cdot \nabla v+v z) \mathrm{d} x \\
& =\langle z, v\rangle_{H^{1}(\Omega)}=T(v)=\left\langle t, \gamma_{0} v\right\rangle_{\partial \Omega} .
\end{aligned}
$$

This implies $\left\langle\gamma_{\nu} q-t, \gamma_{0} v\right\rangle=0$ for all $v \in H^{1}(\Omega)$, which is $\gamma_{\nu} q-t=0$ in $H^{-1 / 2}(\partial \Omega)$. Consequently, $t=\gamma_{\nu} q \in \mathcal{R}\left(\gamma_{\nu}\right)$.

Proof of (d). For any $t \in H^{-1 / 2}(\partial \Omega)$ let z and q be as above in the proof of (c). Then

$$
\|t\|_{H^{-1 / 2}(\partial \Omega)}=\sup _{\substack{\hat{v} \in H^{1}(\Omega) \\\left\|\gamma_{0}\right\|_{H^{1 / 2}(2 \Omega)}=1}}\left\langle t, \gamma_{0} \hat{v}\right\rangle
$$

with $\left\langle t, \gamma_{0} \hat{v}\right\rangle=\left\langle\gamma_{\nu} \nabla z, \gamma_{0} \hat{v}\right\rangle=\langle z, \hat{v}\rangle_{H^{1}(\Omega)} \leq\|z\|_{H^{1}(\Omega)}\|\hat{v}\|_{H^{1}(\Omega)}$. Since $\|\hat{v}\|_{H^{1}(\Omega)}=$ 1, this implies $\|t\|_{H^{-1 / 2}(\partial \Omega)} \leq\|z\|_{H^{1}(\Omega)}$. Conversely, $\left\langle t, \gamma_{0} z\right\rangle=\langle z, z\rangle_{H^{1}(\Omega)}=$ $\|z\|_{H^{1}(\Omega)}^{2}$ proves $\|t\|_{H^{-1 / 2}(\partial \Omega)} \geq\|z\|_{H^{1}(\Omega)}$.

This concludes the proof and characterizes $H^{-1 / 2}(\partial \Omega)$ completely.
Primal PMP with test functions in $H^{1}(\Omega)$ without (BC) leads to

$$
\begin{equation*}
b(u, t ; v)=a(u, v)-\langle t, v\rangle_{\partial \Omega} \stackrel{!}{=} F(v) \text { for all } v \in H^{1}(\Omega) . \tag{P}
\end{equation*}
$$

Theorem. u solves $(P M P) \Longleftrightarrow\left(u, \gamma_{\nu} \nabla u\right)$ solves (P).
Proof. " $\Rightarrow " v \in H_{0}^{1}(\Omega)$ implies $\langle t, v\rangle_{\partial \Omega}=0$. Hence u solves (PMP).
$" \Leftarrow "$ Let $u \in H_{0}^{1}(\Omega)$ solve (PMP), then $p:=\nabla u \in H(\operatorname{div}, \Omega)$ leads to $t:=$ $\gamma_{\nu} p \in H^{-1 / 2}(\partial \Omega)$ so that, for all $v \in H^{1}(\Omega)$, it follows it follows

$$
\begin{aligned}
\langle t, v\rangle_{\partial \Omega} & =\left\langle p \cdot \nu, \gamma_{0}(v)\right\rangle_{\partial \Omega} \\
& =\int_{\Omega}(\underbrace{p}_{=\nabla u} \cdot \nabla v+v \underbrace{\operatorname{div} p}_{=-f}) \mathrm{d} x=a(u, v)-F(v) .
\end{aligned}
$$

Define $H_{0}(\operatorname{div}, \Omega):=\left\{q \in H(\operatorname{div}, \Omega) \mid \gamma_{\nu} q=0\right\}$.

Interface trace spaces

For a shape-regular triangulation \mathcal{T} of $\Omega \subset \mathbb{R}^{n}$ into simplices define

$$
\begin{aligned}
H^{-1 / 2}(\partial \mathcal{T}):=\left\{\left(t_{K}\right)_{K \in \mathcal{T}} \in \prod_{K \in \mathcal{T}} H^{-1 / 2}(\partial K) \mid \exists\right. & \in H(\operatorname{div}, \Omega) \forall K \in \mathcal{T}, \\
& \left.\gamma_{\nu}\left(\left.q\right|_{K}\right)=t_{K} \in H^{-1 / 2}(\partial K)\right\}
\end{aligned}
$$

endowed with the norm

$$
\left\|\left(t_{K}\right)_{K \in \mathcal{T}}\right\|_{H^{-1 / 2}(\partial \mathcal{T})}:=\min \left\{\|q\|_{H(\operatorname{div}, \Omega)} \mid \forall K \in \mathcal{T}, \gamma_{\nu}\left(\left.q\right|_{K}\right)=t_{K}\right\}
$$

and

$$
\begin{aligned}
H^{1}(\mathcal{T}) & :=\left\{v \in L^{2}(\Omega)|\forall K \in \mathcal{T}, v|_{K} \in H^{1}(K)\right\} \\
& =\prod_{K \in \mathcal{T}} H^{1}(K)
\end{aligned}
$$

with

$$
\left\|\left(v_{K}\right)_{K \in \mathcal{T}}\right\|_{H^{1}(\mathcal{T})}:=\sqrt{\sum_{K \in \mathcal{T}}\left\|\left.v\right|_{K}\right\|_{H^{1}(K)}^{2}} .
$$

Given $t \equiv\left(t_{K}\right)_{K \in \mathcal{T}} \in H^{-1 / 2}(\partial \mathcal{T})$ and $v \in H^{1}(\mathcal{T})$ define

$$
\langle t, v\rangle_{\partial \mathcal{T}}:=\sum_{K \in \mathcal{T}}\left\langle t_{K},\left.v\right|_{K}\right\rangle_{\partial K} .
$$

There exists $q \in H(\operatorname{div}, \Omega)$ such that

$$
t_{K}=\gamma_{\nu}\left(\left.q\right|_{K}\right) \in H^{-1 / 2}(\partial K) \quad \text { for all } K \in \mathcal{T}
$$

and

$$
\begin{aligned}
\langle t, v\rangle_{\partial \mathcal{T}} & =\sum_{K \in \mathcal{T}} \int_{K}(q \cdot \nabla v+v \operatorname{div} q) \mathrm{d} x=\int_{\Omega}\left(q \cdot \nabla_{N C} v+v \cdot \operatorname{div} q\right) d t x \\
& \leq\|q\|_{H(\operatorname{div}, \Omega)}\|v\|_{H^{1}(\mathcal{T})} \stackrel{!}{=}\|t\|_{H^{-1 / 2}(\partial \mathcal{T})}\|v\|_{H^{1}(\Omega)}
\end{aligned}
$$

Define

$$
\left\{\begin{array}{l}
b:\left(H_{0}^{1}(\Omega) \times H^{-1 / 2}(\partial \mathcal{T})\right) \times H^{1}(\mathcal{T}) \rightarrow \mathbb{R} \\
b(u, t ; v):=((u, t), v) \mapsto a_{N C}(u, v)-\langle t, v\rangle_{\partial \mathcal{T}}
\end{array}\right.
$$

Theorem. u solves (PMP) and $t=\left(t_{K}\right)_{K \in \mathcal{T}}=\left(\gamma_{\nu}\left(\left.\nabla u\right|_{K}\right)\right)_{K \in \mathcal{T}}$ if and only if $(u, t) \in H_{0}^{1}(\Omega) \times H^{-1 / 2}(\partial \mathcal{T})$ solves

$$
b(u, t ; v)=F(v)
$$

for all $v \in H^{1}(\mathcal{T})$.
Proof. The Proof is left as an exercise.
Remark. $\langle t, v\rangle_{\partial \mathcal{T}}=0$ for $v \in H_{0}^{1}(\Omega)$.

inf-sup Condition

This section is devoted to some immediate estimation for $\beta>0$. Recall $X:=X_{1} \times X_{2}:=H_{0}^{1}(\Omega) \times H^{-1 / 2}(\partial \mathcal{T}), Y:=H^{1}(\mathcal{T})$ and the bounded bilinear form $b: X \times Y \rightarrow \mathbb{R}$ with

$$
b(u, t ; v)=b((u, t), v)=a_{\mathrm{NC}}(u, v)-\langle t, v\rangle_{\partial \mathcal{T}} \quad \forall(u, t) \in X, v \in Y .
$$

For any $(u, t) \in S(X)$ and $v \in S(Y)$ the Cauchy-Schwarz inequality leads to

$$
\begin{aligned}
b(u, t ; v) & \leq\|u\|\|v\|_{\mathrm{NC}}+\|t\|_{H^{-1 / 2}(\partial \mathcal{T})}\|v\|_{H^{1}(\mathcal{T})} \\
& \leq \sqrt{\|u\|^{2}+\|t\|_{H^{-1 / 2}(\partial \mathcal{T})}^{2}} \sqrt{\|v\|_{\mathrm{NC}}^{2}+\|v\|_{H^{1}(\mathcal{T})}^{2}}
\end{aligned}
$$

With $\|v\|_{\text {NC }} \leq\|v\|_{H^{1}(\mathcal{T})}$ the choice of (u, t) and v finally shows, that $b(u, t ; v)$ $\leq \sqrt{2}$. Given $(u, t) \in S(X)$ set $M:=\|b(u, t ; \bullet)\|_{H^{1}(\mathcal{T})^{*}}$. For $u \neq 0$ choose $v:=u /\|u\|_{H^{1}(\mathcal{T})}$ to obtain

$$
\langle t, u\rangle_{\partial \mathcal{T}}=\sum_{K \in \mathcal{T}}\langle t, u\rangle_{\partial K}=\int_{\Omega}(q \cdot \nabla u+u \operatorname{div} q) \mathrm{d} x=\int_{\partial \Omega} u q \cdot \nu \mathrm{~d} s=0 .
$$

Hence,

$$
b(u, t ; v)=\frac{a_{\mathrm{NC}}(u, u)}{\|u\|_{H^{1}(\mathcal{T})}}=\frac{\|u\|^{2}}{\sqrt{\|u\|^{2}+\|u\|^{2}}} .
$$

The Friedrichs inequality implies $\|u\| \leq C_{F}(\Omega)\|u\|$ with $C_{F} \leq \operatorname{width}(\Omega) / \pi$. This leads to

$$
b(u, t ; v) \leq \frac{\|u\|}{\sqrt{1+C_{F}^{2}(\Omega)}} \leq M .
$$

Hence

$$
\begin{equation*}
\|u\| \leq M \sqrt{1+C_{F}^{2}(\Omega)} \tag{1}
\end{equation*}
$$

Given t let $q \in H(\operatorname{div}, \Omega)$ have minimal extension norm in $H(\operatorname{div}, \Omega)$ with $q \cdot \nu=t$ on ∂K for all $K \in \mathcal{T}$. The duality lemma leads to some $v \in H^{1}(\mathcal{T})$ with $\|v\|_{H^{1}(\mathcal{T})}=1$ and $\|t\|_{H^{-1 / 2}(\partial \mathcal{T})}=\langle t, v\rangle_{\partial \mathcal{T}}$ (i.e. v is the normed Riesz representation of $\langle t, \bullet\rangle_{\partial \mathcal{T}}$ in $\left.H^{1}(\mathcal{T})\right)$. This implies

$$
-\|u\|\| \| v\left\|_{\mathrm{NC}}+\right\| t\left\|_{H^{-1 / 2}}=a_{\mathrm{NC}}(u, v)+\right\| t \|_{H^{-1 / 2}}=b(u, t ; v) \leq M,
$$

whence

$$
\begin{equation*}
\|t\|_{H^{-1 / 2}(\partial \mathcal{T})}-\|u\| \leq M . \tag{2}
\end{equation*}
$$

The inequalities (1) and (2) show that

$$
1=\|u\|^{2}+\|t\|_{H^{-1 / 2}(\partial \mathcal{T})}^{2} \leq M^{2}\left(1+\sqrt{1+C_{F}^{2}(\Omega)}\right)^{2}+M^{2}\left(1+C_{F}^{2}(\Omega)\right) .
$$

This leads to

$$
\frac{1}{\left(1+\sqrt{C_{F}^{2}(\Omega)}\right)^{2}+1+C_{F}^{2}(\Omega)} \leq M^{2}=\|b(u, t ; \bullet)\|_{H^{1}(\mathcal{T})^{*}}^{2} .
$$

Since this holds for all $(u, t) \in S(X)$, it implies

$$
0<\frac{1}{\sqrt{3+2 C_{F}(\Omega)^{2}+2 \sqrt{1+C_{F}^{2}(\Omega)}}} \leq \beta=\inf _{x \in S(X)} \sup _{v \in S\left(H^{1}(\mathcal{T})\right)} b(u, t ; v) .
$$

Splitting Lemmas

Splitting Lemma I. Given real Hilbert spaces $X_{1}, X_{2}, X:=X_{1} \times X_{2},\{0\} \neq$ $Y_{1} \subseteq Y$ and bounded bilinear forms $b_{j}: X_{j} \rightarrow Y$ for $j=1,2$, let $b: X \times Y \rightarrow$ $\mathbb{R},\left(x_{1}, x_{2} ; y\right) \mapsto b_{1}\left(x_{1}, y\right)+b_{2}\left(x_{2}, y\right)$. Suppose
(A1) $0<\beta_{1}:=\inf _{x_{1} \in S\left(X_{1}\right)} \sup _{y_{1} \in S\left(Y_{1}\right)} b_{1}\left(x_{1}, y_{1}\right)$,
(A2) $0<\beta_{2}:=\inf _{x_{2} \in S\left(X_{2}\right)} \sup _{y \in S(Y)} b_{2}\left(x_{2}, y\right)$,
(A3) $\left.b_{2}\right|_{X_{2} \times Y_{1}}=0$.

Then b satisfies an inf-sup condition with $\beta>0$ and

$$
0<\frac{\beta_{1} \beta_{2}}{\sqrt{\left(\beta_{1}+\left\|b_{1}\right\|\right)^{2}+\beta_{2}^{2}}} \leq \beta \leq \beta_{2}
$$

Example (Application to primal dPG for PMP). Let $X_{1}:=H_{0}^{1}(\Omega), X_{2}:=$ $H^{-1 / 2}(\partial \mathcal{T})$ and $Y_{1}:=H_{0}^{1}(\Omega) \subseteq H^{1}(\mathcal{T})=: Y$.

Ad (A1). Show that

$$
\beta_{1}=\inf _{u \in H_{0}^{1}(\Omega),\|u\|=1} \sup _{v \in H_{0}^{1}(\Omega),\|v\|^{2}+\|v\|^{2}=1} a(u, v)=\frac{1}{\sqrt{1+C_{F}^{2}(\Omega)}}
$$

Proof of " \leq " is as above. For " \geq " utilize the first Dirichlet eigenpair $\left(\lambda_{1}, \Phi_{1}\right)$ with $\left\|\Phi_{1}\right\|=1$ and $\left\|\Phi_{1}\right\|=\lambda_{1}^{1 / 2}$ so that $C_{F}(\Omega)=\lambda_{1}^{-1 / 2}$ and $\left\|\Phi_{1}\right\|_{H^{1}(\mathcal{T})}=\sqrt{1+\lambda_{1}}$. Consequently

$$
\beta_{1} \leq \sup _{v \in H_{0}^{1}(\Omega),\|v\|_{H^{1}(\Omega)}=1} \frac{a\left(\Phi_{1}, v\right)}{\left\|\Phi_{1}\right\|}
$$

Since the eigenvectors $\left(\Phi_{j}\right)_{j \in \mathbb{N}}$ form an L^{2}-orthonormal and a-orthogonal basis of $H_{0}^{1}(\Omega)$ the supremum is attained by $v:=\Phi_{1} /\left\|\Phi_{1}\right\|_{H^{1}() \Omega}$. This leads to

$$
\beta_{1} \leq \frac{\left\|\Phi_{1}\right\|^{2}}{\left\|\Phi_{1}\right\|\left\|\Phi_{1}\right\|_{H^{1}(\Omega)}}=\frac{\left\|\Phi_{1}\right\|}{\left\|\Phi_{1}\right\|_{H^{1}(\Omega)}}=\frac{\sqrt{\lambda_{1}}}{\sqrt{1+\lambda_{1}}}=\frac{1}{\sqrt{1+\lambda^{-1}}}=\frac{1}{\sqrt{1+C_{F}^{2}(\Omega)}}
$$

$A d$ (A2). By duality lemma it holds

$$
\beta_{2}:=\inf _{t \in S\left(H^{-1 / 2}(\partial \mathcal{T})\right)} \sup _{v \in S\left(H^{1}(\mathcal{T})\right)}-\langle t, v\rangle_{\partial \mathcal{T}}=\inf _{t \in S\left(H^{-1 / 2}(\partial \mathcal{T})\right)}\|t\|_{H^{-1 / 2}(\partial \mathcal{T})}=1
$$

$A d$ (A3). The Cauchy-Schwarz inequality implies

$$
\left\|b_{1}\right\|=\sup _{u \in S\left(H_{0}^{1}(\Omega)\right)} \sup _{v \in S\left(H^{1}(\mathcal{T})\right)} a_{\mathrm{NC}}(u, v) \leq \sup _{u \in S\left(H_{0}^{1}(\Omega)\right)} \sup _{v \in S\left(H^{1}(\mathcal{T})\right)}\|u\|\| \| v \| \leq 1
$$

The proof of $\left\|b_{1}\right\| \geq 1$ is left as an exercise. This leads to the inf-sup estimate

$$
\frac{1}{\sqrt{1+C_{F}^{2}(\Omega)+\left(\sqrt{1+C_{F}^{2}(\Omega)}+1\right)^{2}}}=\frac{1}{\sqrt{3+2 C_{F}^{2}(\Omega)+2 \sqrt{1+C_{F}^{2}(\Omega)}}} \leq \beta
$$

Proof of the first splitting lemma. Given $\left(x_{1}, x_{2}\right) \in S\left(X_{1} \times X_{2}\right)$ let $s:=\left\|x_{1}\right\|_{X_{1}}$ and $\left\|x_{2}\right\|_{X_{2}}=\sqrt{1-s^{2}}$ for $0 \leq s \leq 1$. Then (A1) and (A3) imply

$$
\beta_{1} s \leq\left\|b_{1}\left(x_{1}, \bullet\right)\right\|_{Y_{1}^{*}}=\left\|b\left(x_{1}, x_{2} ; \cdot\right)\right\|_{Y_{1}^{*}}=: M .
$$

Moreover, (A2), the definition of b and triangle inequality show that

$$
\beta_{2} \sqrt{1-s^{2}} \leq\left\|b_{2}\left(x_{2}, \cdot\right)\right\|_{Y_{*}} \leq\left\|b\left(x_{1}, x_{2} ; \cdot\right)\right\|_{Y_{*}}+\left\|b_{1}\left(x_{1}, \bullet\right)\right\|_{Y_{*}} \leq M+\left\|b_{1}\right\| s .
$$

Consequently

$$
f(s):=\max \left\{\beta_{1} s, \beta_{2} \sqrt{1-s^{2}}-\left\|b_{1}\right\| s\right\} \leq M
$$

It remains to compute $\min f:=\min _{0 \leq s \leq 1} f(s) \leq M$. Since $\left(x_{1}, x_{2}\right) \in S(X)$ is arbitrary, this lead to $\beta_{0} \leq \beta$. The monotony of $\beta_{1} s$ and $\beta_{2} \sqrt{1-s^{2}}-\left\|b_{1}\right\| s$ shows that the minimizer s exists in $(0,1)$ with

$$
\left(\left\|b_{1}\right\|+\beta_{1}\right) s=\beta_{2} \sqrt{1-s^{2}}
$$

Set $\kappa:=\beta_{2} /\left(\beta_{1}+\left\|b_{1}\right\|\right)$, so $s^{2}=\kappa^{2}\left(1-s^{2}\right)$, whence $s=\kappa / \sqrt{1+\kappa}$. Consequently,

$$
\beta_{0}=\frac{\beta_{1} \kappa}{\sqrt{1+\kappa^{2}}}
$$

concludes the proof.
Splitting Lemma II. In addition to the notation of the first splitting lemma with (A1)-(A2), suppose

$$
Y_{1}:=\left\{y \in Y \mid b_{2}(\cdot, y)=0 \text { in } X_{2}\right\}
$$

(then (A3) follows and characterizes maximal Y_{1} in (A3)) and

$$
N_{1}:=\left\{y_{1} \in Y_{1} \mid b_{1}\left(\cdot, y_{1}\right)=0 \text { in } X_{1}\right\}=\{0\} .
$$

Then

$$
N:=\{y \in Y \mid b(\cdot, y)=0 \text { in } X\}=0
$$

and

$$
\underline{\beta}:=\frac{\sqrt{2} \beta_{1} \beta_{2}}{\sqrt{\beta_{1}^{2}+\beta_{2}^{2}+\left\|b_{1}\right\|^{2}+\sqrt{\left(\beta_{1}^{2}+\beta_{2}^{2}+\left\|b_{1}\right\|^{2}\right)^{2}-4 \beta_{1}^{2} \beta_{2}^{2}}}} \leq \beta .
$$

Example (Application to primal dPG for PMP). Given $v \in Y_{1}$, then for any $q \in H(\operatorname{div}, \Omega)$ follows

$$
0=\int_{\Omega}\left(v \operatorname{div} q+q \cdot \nabla_{\mathrm{NC}} v\right) \mathrm{d} x .
$$

Hence, any $\alpha=1,2$ and $\varphi \in H^{1}(\Omega)$ satisfy

$$
0=\int_{\Omega}\left(v \partial \varphi / \partial \alpha+\varphi e_{\alpha} \cdot \nabla_{\mathrm{NC}} v\right) \mathrm{d} x .
$$

Hence, $\nabla_{\mathrm{NC}} v$ is the weak gradient of $v \in L^{2}(\Omega)$, i.e. $v \in H^{1}(\Omega)$. Consequently,

$$
\int_{\partial \Omega} v q \cdot \nu \mathrm{~d} s=0 \quad \text { for all } q \in H(\operatorname{div}, \Omega) .
$$

This implies $v=0$ on $\partial \Omega$, whence $v \in H_{0}^{1}(\Omega)$. Consequently,

$$
Y_{1}=\left\{v \in H^{1}(\mathcal{T}) \mid \forall t \in H^{-1 / 2}(\partial \mathcal{T}),\langle t, v\rangle_{\partial \mathcal{T}}=0\right\}=H_{0}^{1}(\Omega)
$$

Moreover,

$$
N_{1}:=\left\{w \in H_{0}^{1}(\Omega) \mid a_{\mathrm{NC}}(\cdot, w)=0 \text { in } H_{0}^{1}(\Omega)\right\}=\{0\} .
$$

Recall $1=\beta_{2}=\left\|b_{1}\right\|$ and $1 / \sqrt{1+C_{F}^{2}(\Omega)}$ and compute

$$
\begin{aligned}
\beta_{0} \leq \underline{\beta} & =\frac{\sqrt{2}}{\sqrt{2\left(1+C_{F}^{2}(\Omega)\right)+1+\sqrt{\left(3+2 C_{F}^{2}(\Omega)\right)^{2}-4\left(1+C_{F}^{2}(\Omega)\right)}}} \\
& =\frac{\sqrt{2}}{\sqrt{3+2 C_{F}^{2}(\Omega)+\sqrt{5+4 C_{F}^{2}(\Omega)+8 C_{F}^{2}(\Omega)}}} .
\end{aligned}
$$

Proof of the second splitting lemma. Since Y_{1} is a closed subspace of the Hilbert space Y, there is an orthogonal decomposition $Y=Y_{1} \oplus Y_{2}$ with $Y_{1}^{\perp}=Y_{2}$. Then

$$
0<\inf _{x_{2} \in S\left(X_{2}\right)} \sup _{y \in S(Y)} b_{2}\left(x_{2}, y\right)=\inf _{x_{2} \in S\left(X_{2}\right)} \sup _{y_{2} \in S\left(Y_{2}\right)} b_{2}\left(x_{2}, y_{2}\right)=\beta_{2} .
$$

Any $y_{2} \in Y_{2}$ with $b_{2}\left(\cdot, y_{2}\right)=0$ in X_{2} belongs to Y_{1}, whence $y_{2} \in Y_{1} \cap Y_{2}=$ $\{0\}$. Consequently, $\left.b_{2}\right|_{X_{2} \times Y_{2}}$ satisfies inf-sup condition with β_{2} and is nondegenerate. General theory of bilinear forms shows

$$
\beta_{2}=\inf _{y_{2} \in S\left(Y_{2}\right)} \sup _{x_{2} \in S\left(X_{2}\right)} b_{2}\left(x_{2}, y_{2}\right)>0 .
$$

Given any $\left(x_{1}, x_{2}\right) \in S\left(X_{1} \times X_{2}\right)$ there exists a unique solution $y_{2} \in Y_{2}$ to $b_{2}\left(\cdot, y_{2}\right)=\left\langle x_{2}, \cdot\right\rangle_{X_{2}}$. From Riesz isomorphism follows $\left\|b\left(\cdot, y_{2}\right)\right\|_{X_{2}^{*}}=\left\|x_{2}\right\|_{X_{2}}$. Then for any $y_{2} \in Y_{2}$

$$
\beta_{2}\left\|y_{2}\right\|_{Y} \leq\left\|b_{2}\left(\cdot, y_{2}\right)\right\|_{X_{2}^{*}}=\left\|x_{2}\right\|_{X_{2}} .
$$

Since $\beta_{1}>0$ and $N_{1}=\{0\},\left.b_{1}\right|_{X_{1} \times Y_{1}}$ satisfies inf-sup conditions and is nondegenerate, whence there exists a unique solution $y_{1} \in Y_{1}$ to

$$
b_{1}\left(\cdot, y_{1}\right)=\left\langle\cdot, x_{1}\right\rangle_{X_{1}}-b_{1}\left(\cdot, y_{2}\right) \quad \text { in } X_{1} .
$$

Consequently,

$$
\beta_{1}\left\|Y_{1}\right\|_{Y} \leq\left\|b_{1}\left(\cdot, y_{1}\right)\right\|_{X_{1}^{*}} \leq\left\|x_{1}\right\|_{X_{1}}+\left\|b_{1}\right\|\left\|y_{2}\right\|_{Y} .
$$

Altogether

$$
\begin{aligned}
b\left(x, y_{1}+y_{2}\right) & =b_{1}\left(x_{1}, y_{1}+y_{2}\right)+b_{2}\left(x_{2}, y_{1}+y_{2}\right) \\
& =\left\|x_{1}\right\|_{X_{1}}^{2}+b_{2}\left(x_{2}, y_{2}\right)=\left\|x_{1}\right\|_{X_{1}}^{2}+\left\|x_{2}\right\|_{Y_{2}}^{2}=1 .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left\|y_{1}+y_{2}\right\|_{Y}^{2} & =\left\|y_{1}\right\|_{Y}^{2}+\left\|y_{2}\right\|_{Y}^{2} \\
& \leq \frac{1}{\beta_{1}^{2}}\left(\left\|x_{1}\right\|_{X_{1}}+\left\|b_{1}\right\|\left\|x_{2}\right\|_{X_{2}} / \beta_{2}\right)^{2}+\left\|x_{2}\right\|_{X_{2}}^{2} / \beta_{2}^{2} \\
& =\left(\left\|x_{1}\right\|_{X_{1}},\left\|x_{2}\right\|_{X_{2}}\right)\left(\begin{array}{cc}
\beta_{1}^{-2} & \left\|b_{1}\right\| \beta_{1}^{-2} \beta_{2}^{-1} \\
\left\|b_{1}\right\| \beta_{1}^{-2} \beta_{2}^{-1} & \beta_{2}^{-2}\left(1+\left\|b_{1}\right\|^{2} / \beta_{1}^{2}\right)
\end{array}\right)\binom{\left\|x_{1}\right\|_{X_{1}}}{\left\|x_{2}\right\|_{X_{2}}}
\end{aligned}
$$

is bounded from above by the maximal eigenvalue Λ of the 2×2 matrix

$$
\beta_{1}^{-2}\left(\begin{array}{cc}
1 & \left\|b_{1}\right\| / \beta_{2} \\
\left\|b_{1}\right\| / \beta_{2} & \frac{\beta_{1}^{2}+\left\|b_{1}\right\|}{\beta_{2}^{2}}
\end{array}\right) .
$$

This implies

$$
\Lambda^{-1 / 2} \leq \frac{b\left(x, y_{1}+y_{2}\right)}{\left\|y_{1}+y_{2}\right\|_{Y}} \leq\|b(x, \cdot)\|_{Y^{*}}
$$

Since $x \in S(X)$ is arbitrary, this proves $\beta \geq \Lambda^{-1 / 2}$. The formula follows from explicit calculations of the above 2×2 matrix.

Discretization

Define for $k \in \mathbb{N}_{0}$

$$
\begin{aligned}
& S_{0}^{k+1}(\mathcal{T}) \subset \mathrm{X}_{1}=H_{0}^{1}(\Omega) \\
& P_{k}(\mathcal{E}) \subset \mathrm{X}_{2}=H^{-1 / 2}(\partial \mathcal{T}) \\
& \mathrm{X}_{h}:=S_{0}^{k+1} \times P_{k}(\mathcal{E}) \\
& \mathrm{Y}_{h}:=P_{k+d}(\mathcal{T}) \subset \mathrm{Y}=H^{1}(\mathcal{T}) .
\end{aligned}
$$

Suggest $d=$ dimension of domain and all $k \in \mathbb{N}_{0}$. This lecture studies $d=1$ for $n=2$ space dimensions and $k=0$.
Remark $\left(\right.$ on $P_{0}(\mathcal{E}) \subset H^{-1 / 2}(\partial \mathcal{T})$). Given any $t_{0} \in P_{0}(\mathcal{E})$. Let $\tau_{R T} \in$ $R T_{0}(\mathcal{T}) \subset H(\operatorname{div}, \Omega)$ satisfy

$$
\forall E \in \mathcal{E}: t_{0}=\tau_{R T} \cdot \nu_{E} \text { on } E .
$$

Then

$$
\left\langle t_{0}, v\right\rangle_{\partial \mathcal{T}}=\sum_{K \in \mathcal{T}} \int_{\partial K}\left(\left.\tau_{R T}\right|_{K} \cdot \nu_{K}\right) v \mathrm{~d} s
$$

for all $v \in H^{1}(\mathcal{T})$.
Discrete duality lemma. For any $t_{0} \in P_{0}(\mathcal{E})$ there exists exactly one $p_{\mathrm{RT}} \in$ $\mathrm{RT}_{0}(\mathcal{T}) \subseteq H(\operatorname{div}, \Omega)$ such that for all $K \in \mathcal{T}$ and $E \in \mathcal{E}(K)$

$$
\left(\left.\nu_{E} \cdot \nu_{K}\right|_{E}\right) t_{0}=\left.\left(p_{\mathrm{RT}} \cdot \nu_{K}\right)\right|_{E} .
$$

Then

$$
\left\|t_{0}\right\|_{H^{-1 / 2}(\partial \mathcal{T})} \leq\left\|p_{\mathrm{RT}}\right\|_{H(\mathrm{div}, \Omega)} \leq \sqrt{1+\frac{h_{\max }^{2}}{\pi^{2}}}\left\|t_{0}\right\|_{H^{-1 / 2}(\partial \mathcal{T})}
$$

Proof. Recall that $\left\|t_{0}\right\|_{H^{-1 / 2}(\partial \mathcal{T})}$ is the minimum of all $\|q\|_{H(\operatorname{div}, \Omega)}$ for any $q \in$ $H(\operatorname{div}, \Omega)$ with

$$
\begin{equation*}
\left(\left.\nu_{E} \cdot \nu_{K}\right|_{E}\right) t_{0}=\left.\left(q \cdot \nu_{K}\right)\right|_{E} \quad \text { for all } K \in \mathcal{T}, E \in \mathcal{E}(K) \tag{3}
\end{equation*}
$$

This proves the first inequality. Given any $q \in H(\operatorname{div}, \Omega),\left(p_{\mathrm{RT}}-q\right) \cdot \nu_{K}=0$ on ∂K defined by the integration-by-parts formula. In particular

$$
0=\int_{\partial K}\left(p_{\mathrm{RT}}-q\right) \cdot \nu_{K} \mathrm{~d} s=\int_{K} \operatorname{div}\left(p_{\mathrm{RT}}-q\right) \mathrm{d} x \quad \text { for all } K \in \mathcal{T} .
$$

Consequently,

$$
\operatorname{div} p_{\mathrm{RT}}=\Pi_{0} \operatorname{div} q \quad \text { a.e. in } \Omega .
$$

An integration by parts shows for any $v \in H^{1}(\mathcal{T})$ that

$$
\begin{aligned}
\left|\int_{\Omega}\left(p_{\mathrm{RT}}-q\right) \cdot \nabla_{\mathrm{NC}} v \mathrm{~d} x\right| & =\left|\int_{\Omega}\left(v-\Pi_{0} v\right) \operatorname{div}\left(q-p_{\mathrm{RT}}\right) \mathrm{d} x\right| \\
& \leq h_{\max } / \pi\|v\|_{\mathrm{NC}}\left\|\left(1-\Pi_{0}\right) \operatorname{div} q\right\|_{L^{2}(\Omega)} .
\end{aligned}
$$

Set $v(x):=\left(\Pi_{0} p_{\mathrm{RT}}\right) \cdot(x-\operatorname{mid}(K))+1 / 4\left(\operatorname{div} p_{\mathrm{RT}}\right)|x-\operatorname{mid}(K)|^{2}$ with

$$
\nabla_{\mathrm{NC}} v=\Pi_{0} p_{\mathrm{RT}}+1 / 2\left(\operatorname{div} p_{\mathrm{RT}}\right)+1 / 2 \operatorname{div} p_{\mathrm{RT}}(\cdot-\operatorname{mid}(\mathcal{T}))=p_{\mathrm{RT}}
$$

in the previous estimate to deduce

$$
\begin{align*}
\left\|p_{\mathrm{RT}}\right\|_{L^{2}(\Omega)}^{2} & =\int_{\Omega} q \cdot p_{\mathrm{RT}} \mathrm{~d} x+\int_{\Omega}\left(p_{\mathrm{RT}}-q\right) \cdot \nabla_{\mathrm{NC}} v \mathrm{~d} x \\
& \leq\|q\|_{L^{2}(\Omega)}\left\|p_{\mathrm{RT}}\right\|_{L^{2}(\Omega)}+\frac{h_{\max }}{\pi}\left\|p_{\mathrm{RT}}\right\|_{L^{2}(\Omega)}\left\|\left(1-\Pi_{0}\right) \operatorname{div} q\right\|_{L^{2}(\Omega)} \tag{4}
\end{align*}
$$

whence

$$
\left\|p_{\mathrm{RT}}\right\|_{L^{2}(\Omega)} \leq\|q\|_{L^{2}(\Omega)}+\frac{h_{\max }}{\pi}\left\|\left(1-\Pi_{0}\right) \operatorname{div} q\right\|_{L^{2}(\Omega)} .
$$

This and (4) imply with $\lambda=h_{\text {max }} / \pi$

$$
\begin{aligned}
\left\|p_{\mathrm{RT}}\right\|_{H(\operatorname{div}, \Omega)}^{2} & \leq\left(\|q\|_{L^{2}(\Omega)}+\lambda\left\|\left(1-\Pi_{0}\right) \operatorname{div} q\right\|_{L^{2}(\Omega)}\right)^{2}+\left\|\Pi_{0} \operatorname{div} q\right\|_{L^{2}(\Omega)} \\
& \leq\left(1+\lambda^{2}\right)\|q\|_{L^{2}(\Omega)}^{2}+\left(1+1 / \lambda^{2}\right) \lambda^{2}\left\|\left(1-\Pi_{0}\right) \operatorname{div} q\right\|_{L^{2}(\Omega)}^{2} \\
& \leq\left(1+\lambda^{2}\right)\left(\|q\|_{L^{2}(\Omega)}^{2}+\left\|\left(1-\Pi_{0}\right) \operatorname{div} q\right\|_{L^{2}(\Omega)}^{2}+\left\|\Pi_{0} \operatorname{div} q\right\|\right) .
\end{aligned}
$$

In other words, $\left\|p_{\mathrm{RT}}\right\|_{H(\operatorname{div}, \Omega)} / \sqrt{1+h_{\max }^{2} / \pi^{2}}$ is a lower bound of $\|q\|_{H(\operatorname{div}, \Omega)}$ for all q with (3). By definition of $\left\|t_{0}\right\|_{H^{1 / 2}(\partial \mathcal{T})}$ as the minimum, this shows

$$
\frac{\left\|p_{\mathrm{RT}}\right\|_{H(\operatorname{div}, \Omega)}}{\sqrt{1+h_{\max }^{2} / \pi^{2}}} \leq\left\|t_{0}\right\|_{H^{-1 / 2}(\partial \mathcal{T})}
$$

Annulation property for $P:=I_{\mathrm{NC}}^{\text {loc }}: H^{1}(\mathcal{T}) \rightarrow H^{1}(\mathcal{T})$ projection onto $P_{1}(\mathcal{T})$ defined by

$$
\left.I_{\mathrm{NC}}^{\mathrm{loc}} v\right|_{K}:=\left.\sum_{E \in \mathcal{E}(K)} f_{E}\left(\left.v\right|_{K}\right) \mathrm{d} s \Psi_{E}\right|_{K} \in P_{1}(K) \quad \text { for any } v \in H^{1}(\mathcal{T}), K \in \mathcal{T} .
$$

Given any $v \in H^{1}(\mathcal{T})$,

$$
\|(1-P) v\|_{Y}=\sqrt{\left\|v-I_{\mathrm{NC}}^{\mathrm{loc}} v\right\|^{2}+\left\|v-I_{\mathrm{NC}}^{\mathrm{loc}} v\right\|^{2}} \leq \sqrt{1+\kappa^{2} h_{\max }^{2}}\|v\|_{\mathrm{NC}} .
$$

Consequently, the Kato lemma implies

$$
\|P\|=\|1-P\| \leq \sqrt{1+\kappa^{2} h_{\max }^{2}} .
$$

Mean value property of the gradients $\Pi_{0} \nabla_{\mathrm{NC}} I_{\mathrm{NC}}^{\text {loc }} v$ for all $v \in H^{1}(\mathcal{T})$ leads to the annulation property

$$
\sum_{K \in \mathcal{T}} \int_{\partial K} t_{0}\left(\left.v\right|_{K}-\left.I_{\mathrm{NC}}^{\mathrm{loc}} v\right|_{K}\right) \mathrm{d} s=\left\langle t_{0}, v-P v\right\rangle_{\partial \mathcal{T}} .
$$

Hence, for all $x_{h}=\left(u_{c}, t_{0}\right) \in X_{h}$ and $v \in H^{1}(\mathcal{T})$, it follows

$$
b\left(x_{h}, v-P v\right)=a_{\mathrm{NC}}\left(u_{c}, v-P v\right)-\left\langle t_{0}, v-P v\right\rangle_{\partial \mathcal{T}}=0 .
$$

The abstract theory asserts discrete inf-sup condition with $\beta \leq\|P\| \beta_{h} \leq\|b\|$. This shows

$$
\frac{\beta}{\sqrt{1+\kappa^{2} h_{\max }^{2}}} \leq \beta_{h} .
$$

The a posteriori analysis involves $\|F \circ(1-P)\|_{Y^{*}} \leq \kappa\left\|h_{\mathcal{T}} f\right\|_{L^{2}(T)}$, which is computable but not of higher order.

