
Traces and Duality Lemma

Recall the duality lemma with H1/2(∂Ω) := γ0(H
1(Ω)) defined as the trace

space ofH1(Ω) endowed with minimal extension norm; i.e., for w ∈ H1/2(∂Ω) ⊂
L2(∂Ω),

‖w‖H1/2(∂Ω) = min{‖ŵ‖H1(Ω)|ŵ ∈ H1(Ω), γ0ŵ = w},

H−1/2(∂Ω) := dual to H1/2(∂Ω) =: H1/2(∂Ω)∗

!
= γν(H(div,Ω)).

Any q ∈ H(div,Ω) (i.e. q ∈ L2(Ω,R2), div q ∈ L2(Ω)) defines γνq ∈
H−1/2(∂Ω) by

(γνq)(w) =: 〈q · ν, w〉∂Ω =

∫
Ω
(q · ∇ŵ + ŵ div q)dx

for w ∈ H1/2(∂Ω) and ŵ ∈ H1(Ω) with γ0ŵ = w.
(Side note:

〈q · ν, w〉∂Ω ≤ ‖q‖ ||| ŵ |||+‖ div q‖‖ŵ‖
≤ ‖q‖H(div,Ω)‖ŵ‖H1(Ω)

implies ‖γνq‖H−1/2(∂Ω) ≤ ‖q‖H(div,Ω).)

Duality Lemma. (a) There exists exactly one

γν ∈ L(H(div,Ω);H−1/2(∂Ω))

such that for all q ∈ H1(Ω;Rn)

γνq = (γ0q) · ν a.e. on ∂Ω.

(b) Let 〈 • , • 〉∂Ω denote the duality brackets of H−1/2(∂Ω) × H1/2(∂Ω). All
q ∈ H(div,Ω) and v ∈ H1(Ω) satisfy the formula

〈γνq, γ0v〉∂Ω =

∫
Ω

(
v div q + q · ∇v

)
dx.
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(c) The operator γν is surjective and

ker γν = H0(div,Ω) := D(Ω;Rn)
‖ • ‖H(div)

.

(d) (Duality lemma) For all t ∈ H−1/2(∂Ω) with t(w) =: 〈t, w〉∂Ω for w ∈
H1/2(∂Ω), it holds

‖t‖H−1/2(∂Ω) = sup
w∈H1/2(∂Ω),
‖w‖

H1/2=1

〈t, w〉∂Ω

= sup
v∈H1(Ω),
γ0v 6=0

inf
ϕ∈H1(Ω)

〈t, γ0v〉∂Ω

‖v − ϕ‖H1(Ω)

= inf
q∈H(div,Ω),

γνq=t

‖q‖H(div,Ω).

Proof. Proof of (a). Let q ∈ H(div,Ω). For all v ∈ H1/2(∂Ω) v̂ ∈ H1(Ω)
denotes the unique weak solution of

−∆v̂ + v̂ = 0 in Ω,

γ0v̂ = v on ∂Ω.

Then ‖v‖H1/2(∂Ω) = ‖v̂‖H1(Ω). Define

Xq(v) :=

∫
Ω
(v̂ div q + q · ∇v̂)dx

The repeated application of the Cauchy Schwarz inequality shows

Xq(v) ≤ ‖v̂‖L2(Ω)‖ div q‖L2(Ω) + ‖q‖L2(Ω)‖∇v̂‖L2(Ω)

≤ ‖q‖H(div)‖v̂‖H1(Ω) = ‖q‖H(div)‖v‖H−1/2(∂Ω).

Hence Xq : H1/2(∂Ω)→ R is linear and bounded. Thus for any q ∈ H(div,Ω)
there exists g(q) ∈ H−1/2(∂Ω) with Xq = g(q). Define γν : q 7→ g(q). This op-
erator is linear. The last inequality shows that the operator is also bounded,
more precisely

‖γν‖L(H(div,Ω);H−1/2(∂Ω)) ≤ 1.

Moreover, for all functions v ∈ H1/2(∂Ω) and q ∈ H1(Ω,Rn), an integration
by parts leads to

〈(γ0q) · ν, v〉∂Ω = 〈(γ0q) · ν, γ0v̂〉∂Ω =

∫
Ω
(v̂ div q + q · ∇v̂)dx,
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Thus 〈(γ0q) · ν, v〉∂Ω = 〈γνq, v〉∂Ω. Hence, for all v ∈ H1/2(∂Ω) it holds

〈(γ0q) · ν − γνq, v〉∂Ω = 0,

i.e., (γ0q)·ν = γνq ∈ H−1/2(∂Ω). This implies (a). Moreover, 〈 • , • 〉∂Ω extends
the scalar product ( • , • )∂Ω in L2(∂Ω) for smooth functions.

Proof of (b). For all v ∈ H1(Ω) and q ∈ H(div,Ω) it holds

〈γνq, γ0v〉∂Ω =

∫
Ω

(
q · ∇v̂ + v̂ div q

)
dx,

where v̂ ∈ H1(Ω) is such that ∆v̂ + v̂ = 0 and γ0v = γ0v̂ in the weak sense.
Since ker γ0 = H1

0(Ω) and v − v̂ ∈ H1
0(Ω), this equals∫

∂Ω
γνq · γ0vds =

∫
Ω

(
q · ∇v + v div q

)
dx

and implies (b).

Proof of (c). For all q ∈ D(Ω;Rn), γνq = (γ0q) · ν = 0 a.e. by (a). Hence,

H0(div,Ω) = D(Ω;Rn)
‖ • ‖H(div) ⊆ ker γν.

The proof of ker γν ⊆ H0(div,Ω) is more technical and can be found in the
literature, i.e., in [Girault, V. and Raviart, P. A., Finite Element Methods
for Navier-Stokes Equations, Springer-Verlag, Berlin, Heidelberg, New York
(1986)]. It remains to show the surjectivity of γν. Given any t ∈ H−1/2(∂Ω),
the functional

T : H1(Ω)→ R, v 7→ 〈t, γ0v〉∂Ω

is linear and bounded, written T ∈ H1(Ω)∗. The Riesz representation z ∈
H1(Ω) of T in the Hilbert space H1(Ω) satisfies 〈z, • 〉H1(Ω) = T ( • ). For
ϕ ∈ D(Ω), it follows for γ0ϕ = 0 that

〈z, ϕ〉H1(Ω) = T (ϕ) = 〈t, γ0ϕ〉 = 0.

This proves −∆z + z = 0 in the weak sense. In particular, q := ∇z ∈
L2(Ω;Rn) and div∇z = ∆z leads to div q = z ∈ L2(Ω). Hence, q ∈ H(div,Ω)
and

‖q‖H(div) = (‖ div q‖2 + ‖q‖2)1/2 = (‖z‖2 + ‖∇z‖2)1/2

= ‖z‖H1(Ω) = ‖T‖(H1(Ω))∗.
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For any v ∈ H1(Ω), it follows

〈γνq, γ0v〉∂Ω =

∫
Ω

(
q · ∇v + v div q

)
dx =

∫
Ω

(
∇z · ∇v + vz

)
dx

= 〈z, v〉H1(Ω) = T (v) = 〈t, γ0v〉∂Ω.

This implies 〈γνq − t, γ0v〉 = 0 for all v ∈ H1(Ω), which is γνq − t = 0 in
H−1/2(∂Ω). Consequently, t = γνq ∈ R(γν).

Proof of (d). For any t ∈ H−1/2(∂Ω) let z and q be as above in the proof of
(c). Then

‖t‖H−1/2(∂Ω) = sup
v̂∈H1(Ω)

‖γ0v̂‖H1/2(∂Ω)
=1

〈t, γ0v̂〉

with 〈t, γ0v̂〉 = 〈γν∇z, γ0v̂〉 = 〈z, v̂〉H1(Ω) ≤ ‖z‖H1(Ω)‖v̂‖H1(Ω). Since ‖v̂‖H1(Ω) =
1, this implies ‖t‖H−1/2(∂Ω) ≤ ‖z‖H1(Ω). Conversely, 〈t, γ0z〉 = 〈z, z〉H1(Ω) =

‖z‖2
H1(Ω) proves ‖t‖H−1/2(∂Ω) ≥ ‖z‖H1(Ω).

This concludes the proof and characterizes H−1/2(∂Ω) completely.

Primal PMP with test functions in H1(Ω) without (BC) leads to

b(u, t; v) = a(u, v)− 〈t, v〉∂Ω
!

= F (v) for all v ∈ H1(Ω). (P)

Theorem. u solves (PMP) ⇐⇒ (u, γν∇u) solves (P).

Proof. ”⇒” v ∈ H1
0(Ω) implies 〈t, v〉∂Ω = 0. Hence u solves (PMP). �

”⇐” Let u ∈ H1
0(Ω) solve (PMP), then p := ∇u ∈ H(div,Ω) leads to t :=

γνp ∈ H−1/2(∂Ω) so that, for all v ∈ H1(Ω), it follows it follows

〈t, v〉∂Ω = 〈p · ν, γ0(v)〉∂Ω

=

∫
Ω
( p︸︷︷︸

=∇u

·∇v + v div p︸︷︷︸
=−f

)dx = a(u, v)− F (v).

Define H0(div,Ω) := {q ∈ H(div,Ω)|γνq = 0}.
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Interface trace spaces

For a shape-regular triangulation T of Ω ⊂ Rn into simplices define

H−1/2(∂T ) := {(tK)K∈T ∈
∏
K∈T

H−1/2(∂K)|∃q ∈ H(div,Ω)∀K ∈ T ,

γν(q|K) = tK ∈ H−1/2(∂K)}

endowed with the norm

‖(tK)K∈T ‖H−1/2(∂T ) := min{‖q‖H(div,Ω)|∀K ∈ T , γν(q|K) = tK}

and

H1(T ) := {v ∈ L2(Ω)|∀K ∈ T , v|K ∈ H1(K)}
=
∏
K∈T

H1(K)

with

‖(vK)K∈T ‖H1(T ) :=

√∑
K∈T
‖v|K‖2

H1(K).

Given t ≡ (tK)K∈T ∈ H−1/2(∂T ) and v ∈ H1(T ) define

〈t, v〉∂T :=
∑
K∈T
〈tK , v|K〉∂K .

There exists q ∈ H(div,Ω) such that

tK = γν(q|K) ∈ H−1/2(∂K) for all K ∈ T

and

〈t, v〉∂T =
∑
K∈T

∫
K

(q · ∇v + v div q)dx =

∫
Ω
(q · ∇NCv + v · div q)dtx

≤ ‖q‖H(div,Ω)‖v‖H1(T )
!

= ‖t‖H−1/2(∂T )‖v‖H1(Ω)

Define {
b : (H1

0(Ω)×H−1/2(∂T ))×H1(T )→ R
b(u, t; v) := ((u, t), v) 7→ aNC(u, v)− 〈t, v〉∂T
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Theorem. u solves (PMP) and t = (tK)K∈T = (γν(∇u|K))K∈T if and only
if (u, t) ∈ H1

0(Ω)×H−1/2(∂T ) solves

b(u, t; v) = F (v)

for all v ∈ H1(T ).

Proof. The Proof is left as an exercise.

Remark. 〈t, v〉∂T = 0 for v ∈ H1
0(Ω).

inf-sup Condition

This section is devoted to some immediate estimation for β > 0. Recall
X := X1×X2 := H1

0(Ω)×H−1/2(∂T ), Y := H1(T ) and the bounded bilinear
form b : X × Y → R with

b(u, t; v) = b((u, t), v) = aNC(u, v)− 〈t, v〉∂T ∀ (u, t) ∈ X, v ∈ Y.

For any (u, t) ∈ S(X) and v ∈ S(Y ) the Cauchy-Schwarz inequality leads
to

b(u, t; v) ≤ |||u ||| ||| v |||NC +‖t‖H−1/2(∂T )‖v‖H1(T )

≤
√
|||u |||2 +‖t‖2

H−1/2(∂T )

√
||| v |||2NC +‖v‖2

H1(T ).

With ||| v |||NC ≤ ‖v‖H1(T ) the choice of (u, t) and v finally shows, that b(u, t; v)

≤
√

2. Given (u, t) ∈ S(X) set M := ‖b(u, t; • )‖H1(T )∗. For u 6= 0 choose
v := u/‖u‖H1(T ) to obtain

〈t, u〉∂T =
∑
K∈T
〈t, u〉∂K =

∫
Ω

(
q · ∇u+ u div q

)
dx =

∫
∂Ω
u q · νds = 0.

Hence,

b(u, t; v) =
aNC(u, u)

‖u‖H1(T )
=

|||u |||2√
‖u‖2 + |||u |||2

.

The Friedrichs inequality implies ‖u‖ ≤ CF (Ω) |||u ||| with CF ≤ width(Ω)/π.
This leads to

b(u, t; v) ≤ |||u |||√
1 + C2

F (Ω)
≤M.
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Hence

|||u ||| ≤M
√

1 + C2
F (Ω). (1)

Given t let q ∈ H(div,Ω) have minimal extension norm in H(div,Ω) with
q · ν = t on ∂K for all K ∈ T . The duality lemma leads to some v ∈ H1(T )
with ‖v‖H1(T ) = 1 and ‖t‖H−1/2(∂T ) = 〈t, v〉∂T (i.e. v is the normed Riesz

representation of 〈t, • 〉∂T in H1(T )). This implies

− |||u ||| ||| v |||NC +‖t‖H−1/2 = aNC(u, v) + ‖t‖H−1/2 = b(u, t; v) ≤M,

whence

‖t‖H−1/2(∂T ) − |||u ||| ≤M. (2)

The inequalities (1) and (2) show that

1 = |||u |||2 +‖t‖2
H−1/2(∂T ) ≤M 2(1 +

√
1 + C2

F (Ω))2 +M 2(1 + C2
F (Ω)).

This leads to

1

(1 +
√
C2
F (Ω))2 + 1 + C2

F (Ω)
≤M 2 = ‖b(u, t; • )‖2

H1(T )∗.

Since this holds for all (u, t) ∈ S(X), it implies

0 <
1√

3 + 2CF (Ω)2 + 2
√

1 + C2
F (Ω)

≤ β = inf
x∈S(X)

sup
v∈S(H1(T ))

b(u, t; v).

Splitting Lemmas

Splitting Lemma I. Given real Hilbert spaces X1, X2, X := X1×X2, {0} 6=
Y1 ⊆ Y and bounded bilinear forms bj : Xj → Y for j = 1, 2, let b : X ×Y →
R, (x1, x2; y) 7→ b1(x1, y) + b2(x2, y). Suppose

(A1) 0 < β1 := inf
x1∈S(X1)

sup
y1∈S(Y1)

b1(x1, y1),

(A2) 0 < β2 := inf
x2∈S(X2)

sup
y∈S(Y )

b2(x2, y),

(A3) b2|X2×Y1
= 0.
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Then b satisfies an inf-sup condition with β > 0 and

0 <
β1β2√

(β1 + ‖b1‖)2 + β2
2

≤ β ≤ β2.

Example (Application to primal dPG for PMP). Let X1 := H1
0(Ω), X2 :=

H−1/2(∂T ) and Y1 := H1
0(Ω) ⊆ H1(T ) =: Y .

Ad (A1). Show that

β1 = inf
u∈H1

0 (Ω),|||u |||=1
sup

v∈H1
0 (Ω),||| v |||2 +‖v‖2=1

a(u, v) =
1√

1 + C2
F (Ω)

.

Proof of “≤” is as above. For “≥” utilize the first Dirichlet eigenpair

(λ1,Φ1) with ‖Φ1‖ = 1 and |||Φ1 ||| = λ
1/2
1 so that CF (Ω) = λ

−1/2
1 and

‖Φ1‖H1(T ) =
√

1 + λ1. Consequently

β1 ≤ sup
v∈H1

0 (Ω),‖v‖H1(Ω)=1

a(Φ1, v)

|||Φ1 |||
.

Since the eigenvectors (Φj)j∈N form an L2-orthonormal and a-orthogonal
basis of H1

0(Ω) the supremum is attained by v := Φ1/‖Φ1‖H1()Ω. This leads
to

β1 ≤
|||Φ1 |||2

|||Φ1 ||| ‖Φ1‖H1(Ω)
=
|||Φ1 |||
‖Φ1‖H1(Ω)

=

√
λ1√

1 + λ1

=
1√

1 + λ−1
=

1√
1 + C2

F (Ω)
.

Ad (A2). By duality lemma it holds

β2 := inf
t∈S(H−1/2(∂T ))

sup
v∈S(H1(T ))

−〈t, v〉∂T = inf
t∈S(H−1/2(∂T ))

‖t‖H−1/2(∂T ) = 1.

Ad (A3). The Cauchy-Schwarz inequality implies

‖b1‖ = sup
u∈S(H1

0 (Ω))

sup
v∈S(H1(T ))

aNC(u, v) ≤ sup
u∈S(H1

0 (Ω))

sup
v∈S(H1(T ))

|||u ||| ||| v ||| ≤ 1.

The proof of ‖b1‖ ≥ 1 is left as an exercise. This leads to the inf-sup estimate

1√
1 + C2

F (Ω) + (
√

1 + C2
F (Ω) + 1)2

=
1√

3 + 2C2
F (Ω) + 2

√
1 + C2

F (Ω)
≤ β.

8



Proof of the first splitting lemma. Given (x1, x2) ∈ S(X1×X2) let s := ‖x1‖X1

and ‖x2‖X2
=
√

1− s2 for 0 ≤ s ≤ 1. Then (A1) and (A3) imply

β1s ≤ ‖b1(x1, • )‖Y ∗1 = ‖b(x1, x2; • )‖Y ∗1 =: M.

Moreover, (A2), the definition of b and triangle inequality show that

β2

√
1− s2 ≤ ‖b2(x2, • )‖Y∗ ≤ ‖b(x1, x2; • )‖Y∗ + ‖b1(x1, • )‖Y∗ ≤M + ‖b1‖s.

Consequently

f(s) := max{β1s, β2

√
1− s2 − ‖b1‖s} ≤M.

It remains to compute min f := min0≤s≤1 f(s) ≤M . Since (x1, x2) ∈ S(X) is
arbitrary, this lead to β0 ≤ β. The monotony of β1s and β2

√
1− s2 − ‖b1‖s

shows that the minimizer s exists in (0, 1) with

(‖b1‖ + β1)s = β2

√
1− s2.

Set κ := β2/(β1 + ‖b1‖), so s2 = κ2(1 − s2), whence s = κ/
√

1 + κ. Con-
sequently,

β0 =
β1κ√
1 + κ2

concludes the proof.

Splitting Lemma II. In addition to the notation of the first splitting lemma
with (A1)-(A2), suppose

Y1 := {y ∈ Y | b2( • , y) = 0 in X2}

(then (A3) follows and characterizes maximal Y1 in (A3)) and

N1 := {y1 ∈ Y1| b1( • , y1) = 0 in X1} = {0}.

Then

N := {y ∈ Y | b( • , y) = 0 in X} = 0

and

β :=

√
2β1β2√

β2
1 + β2

2 + ‖b1‖2 +
√

(β2
1 + β2

2 + ‖b1‖2)2 − 4β2
1β

2
2

≤ β.
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Example (Application to primal dPG for PMP). Given v ∈ Y1, then for any
q ∈ H(div,Ω) follows

0 =

∫
Ω
(v div q + q · ∇NCv) dx.

Hence, any α = 1, 2 and ϕ ∈ H1(Ω) satisfy

0 =

∫
Ω
(v∂ϕ/∂α + ϕ eα · ∇NCv) dx.

Hence, ∇NCv is the weak gradient of v ∈ L2(Ω), i.e. v ∈ H1(Ω). Con-
sequently, ∫

∂Ω
v q · ν ds = 0 for all q ∈ H(div,Ω).

This implies v = 0 on ∂Ω, whence v ∈ H1
0(Ω). Consequently,

Y1 = {v ∈ H1(T )|∀ t ∈ H−1/2(∂T ), 〈t, v〉∂T = 0} = H1
0(Ω).

Moreover,

N1 := {w ∈ H1
0(Ω)| aNC( • , w) = 0 in H1

0(Ω)} = {0}.

Recall 1 = β2 = ‖b1‖ and 1/
√

1 + C2
F (Ω) and compute

β0 ≤ β =

√
2√

2(1 + C2
F (Ω)) + 1 +

√
(3 + 2C2

F (Ω))2 − 4(1 + C2
F (Ω))

=

√
2√

3 + 2C2
F (Ω) +

√
5 + 4C2

F (Ω) + 8C2
F (Ω)

.

Proof of the second splitting lemma. Since Y1 is a closed subspace of the Hil-
bert space Y , there is an orthogonal decomposition Y = Y1⊕Y2 with Y ⊥1 = Y2.
Then

0 < inf
x2∈S(X2)

sup
y∈S(Y )

b2(x2, y) = inf
x2∈S(X2)

sup
y2∈S(Y2)

b2(x2, y2) = β2.

Any y2 ∈ Y2 with b2( • , y2) = 0 in X2 belongs to Y1, whence y2 ∈ Y1 ∩ Y2 =
{0}. Consequently, b2|X2×Y2

satisfies inf-sup condition with β2 and is non-
degenerate. General theory of bilinear forms shows

β2 = inf
y2∈S(Y2)

sup
x2∈S(X2)

b2(x2, y2) > 0.
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Given any (x1, x2) ∈ S(X1 × X2) there exists a unique solution y2 ∈ Y2 to
b2( • , y2) = 〈x2, • 〉X2

. From Riesz isomorphism follows ‖b( • , y2)‖X∗2 = ‖x2‖X2
.

Then for any y2 ∈ Y2

β2‖y2‖Y ≤ ‖b2( • , y2)‖X∗2 = ‖x2‖X2
.

Since β1 > 0 and N1 = {0}, b1|X1×Y1
satisfies inf-sup conditions and is non-

degenerate, whence there exists a unique solution y1 ∈ Y1 to

b1( • , y1) = 〈 • , x1〉X1
− b1( • , y2) in X1.

Consequently,

β1‖Y1‖Y ≤ ‖b1( • , y1)‖X∗1 ≤ ‖x1‖X1
+ ‖b1‖‖y2‖Y .

Altogether

b(x, y1 + y2) = b1(x1, y1 + y2) + b2(x2, y1 + y2)

= ‖x1‖2
X1

+ b2(x2, y2) = ‖x1‖2
X1

+ ‖x2‖2
Y2

= 1.

On the other hand,

‖y1 + y2‖2
Y = ‖y1‖2

Y + ‖y2‖2
Y

≤ 1

β2
1

(‖x1‖X1
+ ‖b1‖‖x2‖X2

/β2)
2 + ‖x2‖2

X2
/β2

2

= (‖x1‖X1
, ‖x2‖X2

)

(
β−2

1 ‖b1‖β−2
1 β−1

2

‖b1‖β−2
1 β−1

2 β−2
2 (1 + ‖b1‖2/β2

1)

)(
‖x1‖X1

‖x2‖X2

)
is bounded from above by the maximal eigenvalue Λ of the 2× 2 matrix

β−2
1

(
1 ‖b1‖/β2

‖b1‖/β2
β2

1+‖b1‖
β2

2

)
.

This implies

Λ−1/2 ≤ b(x, y1 + y2)

‖y1 + y2‖Y
≤ ‖b(x, • )‖Y ∗.

Since x ∈ S(X) is arbitrary, this proves β ≥ Λ−1/2. The formula follows from
explicit calculations of the above 2× 2 matrix.

11



Discretization

Define for k ∈ N0

Sk+1
0 (T ) ⊂ X1 = H1

0(Ω)

Pk(E) ⊂ X2 = H−1/2(∂T )

Xh := Sk+1
0 × Pk(E)

Yh := Pk+d(T ) ⊂ Y = H1(T ).

Suggest d = dimension of domain and all k ∈ N0. This lecture studies d = 1
for n = 2 space dimensions and k = 0.

Remark ( on P0(E) ⊂ H−1/2(∂T )). Given any t0 ∈ P0(E). Let τRT ∈
RT0(T ) ⊂ H(div,Ω) satisfy

∀E ∈ E : t0 = τRT · νE on E.

Then

〈t0, v〉∂T =
∑
K∈T

∫
∂K

(τRT |K · νK)v ds

for all v ∈ H1(T ).

Discrete duality lemma. For any t0 ∈ P0(E) there exists exactly one pRT ∈
RT0(T ) ⊆ H(div,Ω) such that for all K ∈ T and E ∈ E(K)

(νE · νK |E)t0 = (pRT · νK)|E.

Then

‖t0‖H−1/2(∂T ) ≤ ‖pRT‖H(div,Ω) ≤
√

1 +
h2

max

π2
‖t0‖H−1/2(∂T ).

Proof. Recall that ‖t0‖H−1/2(∂T ) is the minimum of all ‖q‖H(div,Ω) for any q ∈
H(div,Ω) with

(νE · νK |E)t0 = (q · νK)|E for all K ∈ T , E ∈ E(K). (3)

This proves the first inequality. Given any q ∈ H(div,Ω), (pRT − q) · νK = 0
on ∂K defined by the integration-by-parts formula. In particular

0 =

∫
∂K

(pRT − q) · νK ds =

∫
K

div(pRT − q) dx for all K ∈ T .
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Consequently,

div pRT = Π0 div q a.e. in Ω.

An integration by parts shows for any v ∈ H1(T ) that

|
∫

Ω
(pRT − q) · ∇NCv dx| = |

∫
Ω
(v − Π0v) div(q − pRT) dx|

≤ hmax/π ||| v |||NC ‖(1− Π0) div q‖L2(Ω).

Set v(x) := (Π0pRT) · (x−mid(K)) + 1/4(div pRT)|x−mid(K)|2 with

∇NCv = Π0pRT + 1/2(div pRT) + 1/2 div pRT( • −mid(T )) = pRT

in the previous estimate to deduce

‖pRT‖2
L2(Ω) =

∫
Ω
q · pRT dx+

∫
Ω
(pRT − q) · ∇NCv dx

≤ ‖q‖L2(Ω)‖pRT‖L2(Ω) +
hmax

π
‖pRT‖L2(Ω)‖(1− Π0) div q‖L2(Ω), (4)

whence

‖pRT‖L2(Ω) ≤ ‖q‖L2(Ω) +
hmax

π
‖(1− Π0) div q‖L2(Ω).

This and (4) imply with λ = hmax/π

‖pRT‖2
H(div,Ω) ≤ (‖q‖L2(Ω) + λ‖(1− Π0) div q‖L2(Ω))

2 + ‖Π0 div q‖L2(Ω)

≤ (1 + λ2)‖q‖2
L2(Ω) + (1 + 1/λ2)λ2‖(1− Π0) div q‖2

L2(Ω)

≤ (1 + λ2)(‖q‖2
L2(Ω) + ‖(1− Π0) div q‖2

L2(Ω) + ‖Π0 div q‖).

In other words, ‖pRT‖H(div,Ω)/
√

1 + h2
max/π

2 is a lower bound of ‖q‖H(div,Ω)

for all q with (3). By definition of ‖t0‖H1/2(∂T ) as the minimum, this shows

‖pRT‖H(div,Ω)√
1 + h2

max/π
2
≤ ‖t0‖H−1/2(∂T ).

Annulation property for P := I loc
NC : H1(T ) → H1(T ) projection onto P1(T )

defined by

I loc
NCv|K :=

∑
E∈E(K)

−
∫
E

(v|K) dsΨE|K ∈ P1(K) for any v ∈ H1(T ), K ∈ T .
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Given any v ∈ H1(T ),

‖(1− P )v‖Y =
√
‖v − I loc

NCv‖2 + ||| v − I loc
NCv |||

2 ≤
√

1 + κ2h2
max ||| v |||NC .

Consequently, the Kato lemma implies

‖P‖ = ‖1− P‖ ≤
√

1 + κ2h2
max.

Mean value property of the gradients Π0∇NCI
loc
NCv for all v ∈ H1(T ) leads to

the annulation property∑
K∈T

∫
∂K
t0(v|K − I loc

NCv|K) ds = 〈t0, v − Pv〉∂T .

Hence, for all xh = (uc, t0) ∈ Xh and v ∈ H1(T ), it follows

b(xh, v − Pv) = aNC(uc, v − P v)− 〈t0, v − P v〉∂T = 0.

The abstract theory asserts discrete inf-sup condition with β ≤ ‖P‖βh ≤ ‖b‖.
This shows

β√
1 + κ2h2

max

≤ βh.

The a posteriori analysis involves ‖F ◦ (1 − P )‖Y ∗ ≤ κ‖hT f‖L2(T ), which is
computable but not of higher order.
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