Traces and Duality Lemma

Recall the duality lemma with $H^{1/2}(\partial\Omega) := \gamma_0(H^1(\Omega))$ defined as the trace space of $H^1(\Omega)$ endowed with minimal extension norm; i.e., for $w \in H^{1/2}(\partial\Omega) \subset L^2(\partial\Omega)$,

$$||w||_{H^{1/2}(\partial\Omega)} = \min\{||\widehat{w}||_{H^1(\Omega)}||\widehat{w}\in H^1(\Omega), \gamma_0\widehat{w}=w\},$$

$$H^{-1/2}(\partial\Omega) := \text{dual to } H^{1/2}(\partial\Omega) =: H^{1/2}(\partial\Omega)^*$$

$$\stackrel{!}{=} \gamma_{\nu}(H(\text{div},\Omega)).$$

Any $q \in H(\text{div}, \Omega)$ (i.e. $q \in L^2(\Omega, \mathbb{R}^2)$, $\text{div } q \in L^2(\Omega)$) defines $\gamma_{\nu}q \in H^{-1/2}(\partial\Omega)$ by

$$(\gamma_{\nu}q)(w) =: \langle q \cdot \nu, w \rangle_{\partial\Omega} = \int_{\Omega} (q \cdot \nabla \hat{w} + \hat{w} \operatorname{div} q) dx$$

for $w \in H^{1/2}(\partial\Omega)$ and $\widehat{w} \in H^1(\Omega)$ with $\gamma_0 \widehat{w} = w$. (Side note:

$$\langle q \cdot \nu, w \rangle_{\partial\Omega} \le ||q|| ||\widehat{w}|| + ||\operatorname{div} q|| ||\widehat{w}||$$
$$\le ||q||_{H(\operatorname{div},\Omega)} ||\widehat{w}||_{H^1(\Omega)}$$

implies $\|\gamma_{\nu}q\|_{H^{-1/2}(\partial\Omega)} \leq \|q\|_{H(\operatorname{div},\Omega)}$.)

Duality Lemma. (a) There exists exactly one

$$\gamma_{\nu} \in L(H(\operatorname{div},\Omega); H^{-1/2}(\partial\Omega))$$

such that for all $q \in H^1(\Omega; \mathbb{R}^n)$

$$\gamma_{\nu}q = (\gamma_0 q) \cdot \nu \text{ a.e. on } \partial\Omega.$$

(b) Let $\langle \bullet, \bullet \rangle_{\partial\Omega}$ denote the duality brackets of $H^{-1/2}(\partial\Omega) \times H^{1/2}(\partial\Omega)$. All $q \in H(\text{div}, \Omega)$ and $v \in H^1(\Omega)$ satisfy the formula

$$\langle \gamma_{\nu} q, \gamma_0 v \rangle_{\partial \Omega} = \int_{\Omega} \left(v \operatorname{div} q + q \cdot \nabla v \right) dx.$$

(c) The operator γ_{ν} is surjective and

$$\ker \gamma_{\nu} = H_0(\operatorname{div}, \Omega) := \overline{\mathcal{D}(\Omega; \mathbb{R}^n)}^{\| \bullet \|_{H(\operatorname{div})}}.$$

(d) (Duality lemma) For all $t \in H^{-1/2}(\partial\Omega)$ with $t(w) =: \langle t, w \rangle_{\partial\Omega}$ for $w \in H^{1/2}(\partial\Omega)$, it holds

$$\begin{split} \|t\|_{H^{-1/2}(\partial\Omega)} &= \sup_{w \in H^{1/2}(\partial\Omega), \atop \|w\|_{H^{1/2}=1}} \langle t, w \rangle_{\partial\Omega} \\ &= \sup_{v \in H^{1}(\Omega), \atop \gamma_{0}v \neq 0} \inf_{\varphi \in H^{1}(\Omega)} \frac{\langle t, \gamma_{0}v \rangle_{\partial\Omega}}{\|v - \varphi\|_{H^{1}(\Omega)}} \\ &= \inf_{q \in H(\operatorname{div}, \Omega), \atop \gamma_{U}q = t} \|q\|_{H(\operatorname{div}, \Omega)}. \end{split}$$

Proof. Proof of (a). Let $q \in H(\text{div}, \Omega)$. For all $v \in H^{1/2}(\partial \Omega)$ $\hat{v} \in H^1(\Omega)$ denotes the unique weak solution of

$$-\Delta \hat{v} + \hat{v} = 0 \text{ in } \Omega,$$

$$\gamma_0 \hat{v} = v \text{ on } \partial \Omega.$$

Then $||v||_{H^{1/2}(\partial\Omega)} = ||\hat{v}||_{H^1(\Omega)}$. Define

$$X_q(v) := \int_{\Omega} (\hat{v} \operatorname{div} q + q \cdot \nabla \hat{v}) dx$$

The repeated application of the Cauchy Schwarz inequality shows

$$X_{q}(v) \leq \|\hat{v}\|_{L^{2}(\Omega)} \|\operatorname{div} q\|_{L^{2}(\Omega)} + \|q\|_{L^{2}(\Omega)} \|\nabla \hat{v}\|_{L^{2}(\Omega)}$$

$$\leq \|q\|_{H(\operatorname{div})} \|\hat{v}\|_{H^{1}(\Omega)} = \|q\|_{H(\operatorname{div})} \|v\|_{H^{-1/2}(\partial\Omega)}.$$

Hence $X_q: H^{1/2}(\partial\Omega) \to \mathbb{R}$ is linear and bounded. Thus for any $q \in H(\operatorname{div}, \Omega)$ there exists $g(q) \in H^{-1/2}(\partial\Omega)$ with $X_q = g(q)$. Define $\gamma_{\nu}: q \mapsto g(q)$. This operator is linear. The last inequality shows that the operator is also bounded, more precisely

$$\|\gamma_{\nu}\|_{L(H(\operatorname{div},\Omega);H^{-1/2}(\partial\Omega))} \le 1.$$

Moreover, for all functions $v \in H^{1/2}(\partial\Omega)$ and $q \in H^1(\Omega,\mathbb{R}^n)$, an integration by parts leads to

$$\langle (\gamma_0 q) \cdot \nu, v \rangle_{\partial\Omega} = \langle (\gamma_0 q) \cdot \nu, \gamma_0 \hat{v} \rangle_{\partial\Omega} = \int_{\Omega} (\hat{v} \operatorname{div} q + q \cdot \nabla \hat{v}) dx,$$

Thus $\langle (\gamma_0 q) \cdot \nu, v \rangle_{\partial\Omega} = \langle \gamma_{\nu} q, v \rangle_{\partial\Omega}$. Hence, for all $v \in H^{1/2}(\partial\Omega)$ it holds

$$\langle (\gamma_0 q) \cdot \nu - \gamma_\nu q, v \rangle_{\partial \Omega} = 0,$$

i.e., $(\gamma_0 q) \cdot \nu = \gamma_{\nu} q \in H^{-1/2}(\partial \Omega)$. This implies (a). Moreover, $\langle \bullet, \bullet \rangle_{\partial \Omega}$ extends the scalar product $(\bullet, \bullet)_{\partial \Omega}$ in $L^2(\partial \Omega)$ for smooth functions.

Proof of (b). For all $v \in H^1(\Omega)$ and $q \in H(\text{div}, \Omega)$ it holds

$$\langle \gamma_{\nu} q, \gamma_0 v \rangle_{\partial \Omega} = \int_{\Omega} (q \cdot \nabla \hat{v} + \hat{v} \operatorname{div} q) dx,$$

where $\hat{v} \in H^1(\Omega)$ is such that $\Delta \hat{v} + \hat{v} = 0$ and $\gamma_0 v = \gamma_0 \hat{v}$ in the weak sense. Since $\ker \gamma_0 = H_0^1(\Omega)$ and $v - \hat{v} \in H_0^1(\Omega)$, this equals

$$\int_{\partial\Omega} \gamma_{\nu} q \cdot \gamma_0 v ds = \int_{\Omega} \left(q \cdot \nabla v + v \operatorname{div} q \right) dx$$

and implies (b).

Proof of (c). For all $q \in \mathcal{D}(\Omega; \mathbb{R}^n)$, $\gamma_{\nu}q = (\gamma_0 q) \cdot \nu = 0$ a.e. by (a). Hence,

$$H_0(\operatorname{div},\Omega) = \overline{\mathcal{D}(\Omega;\mathbb{R}^n)}^{\|\bullet\|_{H(\operatorname{div})}} \subseteq \ker \gamma_{\nu}.$$

The proof of ker $\gamma_{\nu} \subseteq H_0(\text{div}, \Omega)$ is more technical and can be found in the literature, i.e., in [Girault, V. and Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, Heidelberg, New York (1986)]. It remains to show the surjectivity of γ_{ν} . Given any $t \in H^{-1/2}(\partial\Omega)$, the functional

$$T: H^1(\Omega) \to \mathbb{R}, v \mapsto \langle t, \gamma_0 v \rangle_{\partial \Omega}$$

is linear and bounded, written $T \in H^1(\Omega)^*$. The Riesz representation $z \in H^1(\Omega)$ of T in the Hilbert space $H^1(\Omega)$ satisfies $\langle z, \bullet \rangle_{H^1(\Omega)} = T(\bullet)$. For $\varphi \in \mathcal{D}(\Omega)$, it follows for $\gamma_0 \varphi = 0$ that

$$\langle z, \varphi \rangle_{H^1(\Omega)} = T(\varphi) = \langle t, \gamma_0 \varphi \rangle = 0.$$

This proves $-\Delta z + z = 0$ in the weak sense. In particular, $q := \nabla z \in L^2(\Omega; \mathbb{R}^n)$ and $\operatorname{div} \nabla z = \Delta z$ leads to $\operatorname{div} q = z \in L^2(\Omega)$. Hence, $q \in H(\operatorname{div}, \Omega)$ and

$$||q||_{H(\operatorname{div})} = (||\operatorname{div} q||^2 + ||q||^2)^{1/2} = (||z||^2 + ||\nabla z||^2)^{1/2}$$

= $||z||_{H^1(\Omega)} = ||T||_{(H^1(\Omega))^*}.$

For any $v \in H^1(\Omega)$, it follows

$$\langle \gamma_{\nu} q, \gamma_{0} v \rangle_{\partial \Omega} = \int_{\Omega} \left(q \cdot \nabla v + v \operatorname{div} q \right) dx = \int_{\Omega} \left(\nabla z \cdot \nabla v + v z \right) dx$$
$$= \langle z, v \rangle_{H^{1}(\Omega)} = T(v) = \langle t, \gamma_{0} v \rangle_{\partial \Omega}.$$

This implies $\langle \gamma_{\nu}q - t, \gamma_0 v \rangle = 0$ for all $v \in H^1(\Omega)$, which is $\gamma_{\nu}q - t = 0$ in $H^{-1/2}(\partial\Omega)$. Consequently, $t = \gamma_{\nu}q \in \mathcal{R}(\gamma_{\nu})$.

Proof of (d). For any $t \in H^{-1/2}(\partial\Omega)$ let z and q be as above in the proof of (c). Then

$$||t||_{H^{-1/2}(\partial\Omega)} = \sup_{\substack{\hat{v}\in H^1(\Omega)\\ ||\gamma_0\hat{v}||_{H^{1/2}(\partial\Omega)} = 1}} \langle t, \gamma_0 \hat{v} \rangle$$

with $\langle t, \gamma_0 \hat{v} \rangle = \langle \gamma_\nu \nabla z, \gamma_0 \hat{v} \rangle = \langle z, \hat{v} \rangle_{H^1(\Omega)} \leq \|z\|_{H^1(\Omega)} \|\hat{v}\|_{H^1(\Omega)}$. Since $\|\hat{v}\|_{H^1(\Omega)} = 1$, this implies $\|t\|_{H^{-1/2}(\partial\Omega)} \leq \|z\|_{H^1(\Omega)}$. Conversely, $\langle t, \gamma_0 z \rangle = \langle z, z \rangle_{H^1(\Omega)} = \|z\|_{H^1(\Omega)}^2$ proves $\|t\|_{H^{-1/2}(\partial\Omega)} \geq \|z\|_{H^1(\Omega)}$.

This concludes the proof and characterizes $H^{-1/2}(\partial\Omega)$ completely.

Primal PMP with test functions in $H^1(\Omega)$ without (BC) leads to

$$b(u,t;v) = a(u,v) - \langle t,v \rangle_{\partial\Omega} \stackrel{!}{=} F(v) \text{ for all } v \in H^1(\Omega).$$
 (P)

Theorem. u solves $(PMP) \iff (u, \gamma_{\nu} \nabla u)$ solves (P).

Proof. " \Rightarrow " $v \in H_0^1(\Omega)$ implies $\langle t, v \rangle_{\partial\Omega} = 0$. Hence u solves (PMP). \square " \Leftarrow " Let $u \in H_0^1(\Omega)$ solve (PMP), then $p := \nabla u \in H(\operatorname{div}, \Omega)$ leads to $t := \gamma_{\nu} p \in H^{-1/2}(\partial\Omega)$ so that, for all $v \in H^1(\Omega)$, it follows it follows

$$\langle t, v \rangle_{\partial\Omega} = \langle p \cdot \nu, \gamma_0(v) \rangle_{\partial\Omega}$$

$$= \int_{\Omega} (\underbrace{p}_{=\nabla u} \cdot \nabla v + v \underbrace{\operatorname{div} p}_{=-f}) dx = a(u, v) - F(v).$$

Define $H_0(\operatorname{div}, \Omega) := \{ q \in H(\operatorname{div}, \Omega) | \gamma_{\nu} q = 0 \}.$

Interface trace spaces

For a shape-regular triangulation \mathcal{T} of $\Omega \subset \mathbb{R}^n$ into simplices define

$$H^{-1/2}(\partial \mathcal{T}) := \{ (t_K)_{K \in \mathcal{T}} \in \prod_{K \in \mathcal{T}} H^{-1/2}(\partial K) | \exists q \in H(\operatorname{div}, \Omega) \forall K \in \mathcal{T},$$
$$\gamma_{\nu}(q|_K) = t_K \in H^{-1/2}(\partial K) \}$$

endowed with the norm

$$\|(t_K)_{K\in\mathcal{T}}\|_{H^{-1/2}(\partial\mathcal{T})} := \min\{\|q\|_{H(\operatorname{div},\Omega)}|\forall K\in\mathcal{T}, \gamma_{\nu}(q|_K) = t_K\}$$

and

$$H^{1}(\mathcal{T}) := \{ v \in L^{2}(\Omega) | \forall K \in \mathcal{T}, v |_{K} \in H^{1}(K) \}$$
$$= \prod_{K \in \mathcal{T}} H^{1}(K)$$

with

$$\|(v_K)_{K\in\mathcal{T}}\|_{H^1(\mathcal{T})} := \sqrt{\sum_{K\in\mathcal{T}} \|v|_K\|_{H^1(K)}^2}.$$

Given $t \equiv (t_K)_{K \in \mathcal{T}} \in H^{-1/2}(\partial \mathcal{T})$ and $v \in H^1(\mathcal{T})$ define

$$\langle t, v \rangle_{\partial \mathcal{T}} := \sum_{K \in \mathcal{T}} \langle t_K, v |_K \rangle_{\partial K}.$$

There exists $q \in H(\text{div}, \Omega)$ such that

$$t_K = \gamma_{\nu}(q|_K) \in H^{-1/2}(\partial K)$$
 for all $K \in \mathcal{T}$

and

$$\langle t, v \rangle_{\partial \mathcal{T}} = \sum_{K \in \mathcal{T}} \int_{K} (q \cdot \nabla v + v \operatorname{div} q) dx = \int_{\Omega} (q \cdot \nabla_{NC} v + v \cdot \operatorname{div} q) dtx$$
$$\leq \|q\|_{H(\operatorname{div},\Omega)} \|v\|_{H^{1}(\mathcal{T})} \stackrel{!}{=} \|t\|_{H^{-1/2}(\partial \mathcal{T})} \|v\|_{H^{1}(\Omega)}$$

Define

$$\begin{cases} b \colon (H_0^1(\Omega) \times H^{-1/2}(\partial \mathcal{T})) \times H^1(\mathcal{T}) \to \mathbb{R} \\ b(u, t; v) := ((u, t), v) \mapsto a_{NC}(u, v) - \langle t, v \rangle_{\partial \mathcal{T}} \end{cases}$$

Theorem. u solves (PMP) and $t = (t_K)_{K \in \mathcal{T}} = (\gamma_{\nu}(\nabla u|_K))_{K \in \mathcal{T}}$ if and only if $(u,t) \in H_0^1(\Omega) \times H^{-1/2}(\partial \mathcal{T})$ solves

$$b(u, t; v) = F(v)$$

for all $v \in H^1(\mathcal{T})$.

Proof. The Proof is left as an exercise.

Remark. $\langle t, v \rangle_{\partial \mathcal{T}} = 0$ for $v \in H_0^1(\Omega)$.

inf-sup Condition

This section is devoted to some immediate estimation for $\beta > 0$. Recall $X := X_1 \times X_2 := H_0^1(\Omega) \times H^{-1/2}(\partial \mathcal{T}), Y := H^1(\mathcal{T})$ and the bounded bilinear form $b: X \times Y \to \mathbb{R}$ with

$$b(u, t; v) = b((u, t), v) = a_{NC}(u, v) - \langle t, v \rangle_{\partial \mathcal{T}} \quad \forall (u, t) \in X, v \in Y.$$

For any $(u,t) \in S(X)$ and $v \in S(Y)$ the Cauchy-Schwarz inequality leads to

$$b(u,t;v) \leq \| u \| \| v \|_{NC} + \| t \|_{H^{-1/2}(\partial \mathcal{T})} \| v \|_{H^{1}(\mathcal{T})}$$

$$\leq \sqrt{\| u \|^{2} + \| t \|_{H^{-1/2}(\partial \mathcal{T})}^{2}} \sqrt{\| v \|_{NC}^{2} + \| v \|_{H^{1}(\mathcal{T})}^{2}}.$$

With $||v||_{NC} \le ||v||_{H^1(\mathcal{T})}$ the choice of (u,t) and v finally shows, that $b(u,t;v) \le \sqrt{2}$. Given $(u,t) \in S(X)$ set $M := ||b(u,t;\bullet)||_{H^1(\mathcal{T})^*}$. For $u \ne 0$ choose $v := u/||u||_{H^1(\mathcal{T})}$ to obtain

$$\langle t, u \rangle_{\partial \mathcal{T}} = \sum_{K \in \mathcal{T}} \langle t, u \rangle_{\partial K} = \int_{\Omega} \left(q \cdot \nabla u + u \operatorname{div} q \right) dx = \int_{\partial \Omega} u \, q \cdot \nu ds = 0.$$

Hence,

$$b(u,t;v) = \frac{a_{NC}(u,u)}{\|u\|_{H^1(\mathcal{T})}} = \frac{\|u\|^2}{\sqrt{\|u\|^2 + \|u\|^2}}.$$

The Friedrichs inequality implies $||u|| \leq C_F(\Omega) ||u||$ with $C_F \leq \text{width}(\Omega)/\pi$. This leads to

$$b(u, t; v) \le \frac{\|u\|}{\sqrt{1 + C_F^2(\Omega)}} \le M.$$

Hence

$$|||u||| \le M\sqrt{1 + C_F^2(\Omega)}. \tag{1}$$

Given t let $q \in H(\text{div}, \Omega)$ have minimal extension norm in $H(\text{div}, \Omega)$ with $q \cdot \nu = t$ on ∂K for all $K \in \mathcal{T}$. The duality lemma leads to some $v \in H^1(\mathcal{T})$ with $\|v\|_{H^1(\mathcal{T})} = 1$ and $\|t\|_{H^{-1/2}(\partial \mathcal{T})} = \langle t, v \rangle_{\partial \mathcal{T}}$ (i.e. v is the normed Riesz representation of $\langle t, \bullet \rangle_{\partial \mathcal{T}}$ in $H^1(\mathcal{T})$). This implies

$$- \| u \| \| v \|_{\mathrm{NC}} + \| t \|_{H^{-1/2}} = a_{\mathrm{NC}}(u, v) + \| t \|_{H^{-1/2}} = b(u, t; v) \le M,$$

whence

$$||t||_{H^{-1/2}(\partial \mathcal{T})} - |||u||| \le M.$$
 (2)

The inequalities (1) and (2) show that

$$1 = |||u|||^2 + ||t||_{H^{-1/2}(\partial \mathcal{T})}^2 \le M^2 (1 + \sqrt{1 + C_F^2(\Omega)})^2 + M^2 (1 + C_F^2(\Omega)).$$

This leads to

$$\frac{1}{(1+\sqrt{C_F^2(\Omega)})^2+1+C_F^2(\Omega)} \le M^2 = \|b(u,t;\bullet)\|_{H^1(\mathcal{T})^*}^2.$$

Since this holds for all $(u, t) \in S(X)$, it implies

$$0 < \frac{1}{\sqrt{3 + 2C_F(\Omega)^2 + 2\sqrt{1 + C_F^2(\Omega)}}} \le \beta = \inf_{x \in S(X)} \sup_{v \in S(H^1(\mathcal{T}))} b(u, t; v).$$

Splitting Lemmas

Splitting Lemma I. Given real Hilbert spaces $X_1, X_2, X := X_1 \times X_2, \{0\} \neq Y_1 \subseteq Y$ and bounded bilinear forms $b_j : X_j \to Y$ for j = 1, 2, let $b : X \times Y \to \mathbb{R}$, $(x_1, x_2; y) \mapsto b_1(x_1, y) + b_2(x_2, y)$. Suppose

$$(A1) \ 0 < \beta_1 := \inf_{x_1 \in S(X_1)} \sup_{y_1 \in S(Y_1)} b_1(x_1, y_1),$$

$$(A2) \ 0 < \beta_2 := \inf_{x_2 \in S(X_2)} \sup_{y \in S(Y)} b_2(x_2, y),$$

$$(A3) b_2|_{X_2 \times Y_1} = 0.$$

Then b satisfies an inf-sup condition with $\beta > 0$ and

$$0 < \frac{\beta_1 \beta_2}{\sqrt{(\beta_1 + ||b_1||)^2 + \beta_2^2}} \le \beta \le \beta_2.$$

Example (Application to primal dPG for PMP). Let $X_1 := H_0^1(\Omega)$, $X_2 := H^{-1/2}(\partial \mathcal{T})$ and $Y_1 := H_0^1(\Omega) \subseteq H^1(\mathcal{T}) =: Y$.

Ad(A1). Show that

$$\beta_1 = \inf_{u \in H_0^1(\Omega), \|\|u\| = 1} \sup_{v \in H_0^1(\Omega), \|\|v\|^2 + \|v\|^2 = 1} a(u, v) = \frac{1}{\sqrt{1 + C_F^2(\Omega)}}.$$

Proof of " \leq " is as above. For " \geq " utilize the first Dirichlet eigenpair (λ_1, Φ_1) with $\|\Phi_1\| = 1$ and $\|\Phi_1\| = \lambda_1^{1/2}$ so that $C_F(\Omega) = \lambda_1^{-1/2}$ and $\|\Phi_1\|_{H^1(\mathcal{T})} = \sqrt{1 + \lambda_1}$. Consequently

$$\beta_1 \le \sup_{v \in H_0^1(\Omega), \|v\|_{H^1(\Omega)} = 1} \frac{a(\Phi_1, v)}{\|\Phi_1\|}.$$

Since the eigenvectors $(\Phi_j)_{j\in\mathbb{N}}$ form an L^2 -orthonormal and a-orthogonal basis of $H_0^1(\Omega)$ the supremum is attained by $v := \Phi_1/\|\Phi_1\|_{H^1(\Omega)}$. This leads to

$$\beta_1 \le \frac{\| \Phi_1 \|^2}{\| \Phi_1 \| \|\Phi_1\|_{H^1(\Omega)}} = \frac{\| \Phi_1 \|}{\| \Phi_1 \|_{H^1(\Omega)}} = \frac{\sqrt{\lambda_1}}{\sqrt{1 + \lambda_1}} = \frac{1}{\sqrt{1 + \lambda^{-1}}} = \frac{1}{\sqrt{1 + C_F^2(\Omega)}}.$$

Ad (A2). By duality lemma it holds

$$\beta_2:=\inf_{t\in S(H^{-1/2}(\partial\mathcal{T}))}\sup_{v\in S(H^1(\mathcal{T}))}-\langle t,v\rangle_{\partial\mathcal{T}}=\inf_{t\in S(H^{-1/2}(\partial\mathcal{T}))}\|t\|_{H^{-1/2}(\partial\mathcal{T})}=1.$$

Ad(A3). The Cauchy-Schwarz inequality implies

$$||b_1|| = \sup_{u \in S(H_0^1(\Omega))} \sup_{v \in S(H^1(\mathcal{T}))} a_{\text{NC}}(u, v) \le \sup_{u \in S(H_0^1(\Omega))} \sup_{v \in S(H^1(\mathcal{T}))} |||u|| |||v||| \le 1.$$

The proof of $||b_1|| \ge 1$ is left as an exercise. This leads to the inf-sup estimate

$$\frac{1}{\sqrt{1+C_F^2(\Omega)+(\sqrt{1+C_F^2(\Omega)}+1)^2}} = \frac{1}{\sqrt{3+2C_F^2(\Omega)+2\sqrt{1+C_F^2(\Omega)}}} \leq \beta.$$

Proof of the first splitting lemma. Given $(x_1, x_2) \in S(X_1 \times X_2)$ let $s := ||x_1||_{X_1}$ and $||x_2||_{X_2} = \sqrt{1 - s^2}$ for $0 \le s \le 1$. Then (A1) and (A3) imply

$$\beta_1 s \leq ||b_1(x_1, \bullet)||_{Y_1^*} = ||b(x_1, x_2; \bullet)||_{Y_1^*} =: M.$$

Moreover, (A2), the definition of b and triangle inequality show that

$$\beta_2 \sqrt{1-s^2} \le \|b_2(x_2, \bullet)\|_{Y_*} \le \|b(x_1, x_2; \bullet)\|_{Y_*} + \|b_1(x_1, \bullet)\|_{Y_*} \le M + \|b_1\|_{S}.$$

Consequently

$$f(s) := \max\{\beta_1 s, \beta_2 \sqrt{1 - s^2} - ||b_1||s\} \le M.$$

It remains to compute min $f := \min_{0 \le s \le 1} f(s) \le M$. Since $(x_1, x_2) \in S(X)$ is arbitrary, this lead to $\beta_0 \le \beta$. The monotony of $\beta_1 s$ and $\beta_2 \sqrt{1 - s^2} - ||b_1|| s$ shows that the minimizer s exists in (0, 1) with

$$(||b_1|| + \beta_1)s = \beta_2\sqrt{1-s^2}$$

Set $\kappa := \beta_2/(\beta_1 + ||b_1||)$, so $s^2 = \kappa^2(1 - s^2)$, whence $s = \kappa/\sqrt{1 + \kappa}$. Consequently,

$$\beta_0 = \frac{\beta_1 \kappa}{\sqrt{1 + \kappa^2}}$$

concludes the proof.

Splitting Lemma II. In addition to the notation of the first splitting lemma with (A1)-(A2), suppose

$$Y_1 := \{ y \in Y | b_2(\bullet, y) = 0 \text{ in } X_2 \}$$

(then (A3) follows and characterizes maximal Y_1 in (A3)) and

$$N_1 := \{ y_1 \in Y_1 | b_1(\bullet, y_1) = 0 \text{ in } X_1 \} = \{ 0 \}.$$

Then

$$N := \{ y \in Y | b(\bullet, y) = 0 \text{ in } X \} = 0$$

and

$$\underline{\beta} := \frac{\sqrt{2}\beta_1\beta_2}{\sqrt{\beta_1^2 + \beta_2^2 + \|b_1\|^2 + \sqrt{(\beta_1^2 + \beta_2^2 + \|b_1\|^2)^2 - 4\beta_1^2\beta_2^2}}} \le \beta.$$

Example (Application to primal dPG for PMP). Given $v \in Y_1$, then for any $q \in H(\text{div}, \Omega)$ follows

$$0 = \int_{\Omega} (v \operatorname{div} q + q \cdot \nabla_{\operatorname{NC}} v) \, dx.$$

Hence, any $\alpha = 1, 2$ and $\varphi \in H^1(\Omega)$ satisfy

$$0 = \int_{\Omega} (v \partial \varphi / \partial \alpha + \varphi \, e_{\alpha} \cdot \nabla_{\text{NC}} v) \, dx.$$

Hence, $\nabla_{NC}v$ is the weak gradient of $v \in L^2(\Omega)$, i.e. $v \in H^1(\Omega)$. Consequently,

$$\int_{\partial\Omega} v \, q \cdot \nu \, ds = 0 \quad \text{for all } q \in H(\text{div}, \Omega).$$

This implies v=0 on $\partial\Omega$, whence $v\in H_0^1(\Omega)$. Consequently,

$$Y_1 = \{ v \in H^1(\mathcal{T}) | \forall t \in H^{-1/2}(\partial \mathcal{T}), \langle t, v \rangle_{\partial \mathcal{T}} = 0 \} = H_0^1(\Omega).$$

Moreover,

$$N_1 := \{ w \in H_0^1(\Omega) | a_{NC}(\bullet, w) = 0 \text{ in } H_0^1(\Omega) \} = \{ 0 \}.$$

Recall $1 = \beta_2 = ||b_1||$ and $1/\sqrt{1 + C_F^2(\Omega)}$ and compute

$$\beta_0 \leq \underline{\beta} = \frac{\sqrt{2}}{\sqrt{2(1 + C_F^2(\Omega)) + 1 + \sqrt{(3 + 2C_F^2(\Omega))^2 - 4(1 + C_F^2(\Omega))}}}$$
$$= \frac{\sqrt{2}}{\sqrt{3 + 2C_F^2(\Omega) + \sqrt{5 + 4C_F^2(\Omega) + 8C_F^2(\Omega)}}}.$$

Proof of the second splitting lemma. Since Y_1 is a closed subspace of the Hilbert space Y, there is an orthogonal decomposition $Y = Y_1 \oplus Y_2$ with $Y_1^{\perp} = Y_2$. Then

$$0 < \inf_{x_2 \in S(X_2)} \sup_{y \in S(Y)} b_2(x_2, y) = \inf_{x_2 \in S(X_2)} \sup_{y_2 \in S(Y_2)} b_2(x_2, y_2) = \beta_2.$$

Any $y_2 \in Y_2$ with $b_2(\cdot, y_2) = 0$ in X_2 belongs to Y_1 , whence $y_2 \in Y_1 \cap Y_2 = \{0\}$. Consequently, $b_2|_{X_2 \times Y_2}$ satisfies inf-sup condition with β_2 and is non-degenerate. General theory of bilinear forms shows

$$\beta_2 = \inf_{y_2 \in S(Y_2)} \sup_{x_2 \in S(X_2)} b_2(x_2, y_2) > 0.$$

Given any $(x_1, x_2) \in S(X_1 \times X_2)$ there exists a unique solution $y_2 \in Y_2$ to $b_2(\bullet, y_2) = \langle x_2, \bullet \rangle_{X_2}$. From Riesz isomorphism follows $||b(\bullet, y_2)||_{X_2^*} = ||x_2||_{X_2}$. Then for any $y_2 \in Y_2$

$$\beta_2 \|y_2\|_Y \le \|b_2(\bullet, y_2)\|_{X_2^*} = \|x_2\|_{X_2}.$$

Since $\beta_1 > 0$ and $N_1 = \{0\}$, $b_1|_{X_1 \times Y_1}$ satisfies inf-sup conditions and is non-degenerate, whence there exists a unique solution $y_1 \in Y_1$ to

$$b_1(\bullet, y_1) = \langle \bullet, x_1 \rangle_{X_1} - b_1(\bullet, y_2)$$
 in X_1 .

Consequently,

$$\beta_1 \| Y_1 \|_Y \le \| b_1(\bullet, y_1) \|_{X_1^*} \le \| x_1 \|_{X_1} + \| b_1 \| \| y_2 \|_Y.$$

Altogether

$$b(x, y_1 + y_2) = b_1(x_1, y_1 + y_2) + b_2(x_2, y_1 + y_2)$$

= $||x_1||_{X_1}^2 + b_2(x_2, y_2) = ||x_1||_{X_1}^2 + ||x_2||_{Y_2}^2 = 1.$

On the other hand,

$$||y_{1} + y_{2}||_{Y}^{2} = ||y_{1}||_{Y}^{2} + ||y_{2}||_{Y}^{2}$$

$$\leq \frac{1}{\beta_{1}^{2}} (||x_{1}||_{X_{1}} + ||b_{1}|| ||x_{2}||_{X_{2}}/\beta_{2})^{2} + ||x_{2}||_{X_{2}}^{2}/\beta_{2}^{2}$$

$$= (||x_{1}||_{X_{1}}, ||x_{2}||_{X_{2}}) \begin{pmatrix} \beta_{1}^{-2} & ||b_{1}||\beta_{1}^{-2}\beta_{2}^{-1} \\ ||b_{1}||\beta_{1}^{-2}\beta_{2}^{-1} & \beta_{2}^{-2}(1 + ||b_{1}||^{2}/\beta_{1}^{2}) \end{pmatrix} \begin{pmatrix} ||x_{1}||_{X_{1}} \\ ||x_{2}||_{X_{2}} \end{pmatrix}$$

is bounded from above by the maximal eigenvalue Λ of the 2 × 2 matrix

$$\beta_1^{-2} \begin{pmatrix} 1 & \|b_1\|/\beta_2 \\ \|b_1\|/\beta_2 & \frac{\beta_1^2 + \|b_1\|}{\beta_2^2} \end{pmatrix}.$$

This implies

$$\Lambda^{-1/2} \le \frac{b(x, y_1 + y_2)}{\|y_1 + y_2\|_Y} \le \|b(x, \bullet)\|_{Y^*}.$$

Since $x \in S(X)$ is arbitrary, this proves $\beta \geq \Lambda^{-1/2}$. The formula follows from explicit calculations of the above 2×2 matrix.

Discretization

Define for $k \in \mathbb{N}_0$

$$S_0^{k+1}(\mathcal{T}) \subset X_1 = H_0^1(\Omega)$$

$$P_k(\mathcal{E}) \subset X_2 = H^{-1/2}(\partial \mathcal{T})$$

$$X_h := S_0^{k+1} \times P_k(\mathcal{E})$$

$$Y_h := P_{k+d}(\mathcal{T}) \subset Y = H^1(\mathcal{T}).$$

Suggest d = dimension of domain and all $k \in \mathbb{N}_0$. This lecture studies d = 1 for n = 2 space dimensions and k = 0.

Remark (on $P_0(\mathcal{E}) \subset H^{-1/2}(\partial \mathcal{T})$). Given any $t_0 \in P_0(\mathcal{E})$. Let $\tau_{RT} \in RT_0(\mathcal{T}) \subset H(\text{div}, \Omega)$ satisfy

$$\forall E \in \mathcal{E} : t_0 = \tau_{RT} \cdot \nu_E \text{ on } E.$$

Then

$$\langle t_0, v \rangle_{\partial \mathcal{T}} = \sum_{K \in \mathcal{T}} \int_{\partial K} (\tau_{RT}|_K \cdot \nu_K) v \, ds$$

for all $v \in H^1(\mathcal{T})$.

Discrete duality lemma. For any $t_0 \in P_0(\mathcal{E})$ there exists exactly one $p_{RT} \in RT_0(\mathcal{T}) \subseteq H(\text{div}, \Omega)$ such that for all $K \in \mathcal{T}$ and $E \in \mathcal{E}(K)$

$$(\nu_E \cdot \nu_K|_E)t_0 = (p_{\rm RT} \cdot \nu_K)|_E.$$

Then

$$||t_0||_{H^{-1/2}(\partial \mathcal{T})} \le ||p_{\mathrm{RT}}||_{H(\mathrm{div},\Omega)} \le \sqrt{1 + \frac{h_{\mathrm{max}}^2}{\pi^2}} ||t_0||_{H^{-1/2}(\partial \mathcal{T})}.$$

Proof. Recall that $||t_0||_{H^{-1/2}(\partial \mathcal{T})}$ is the minimum of all $||q||_{H(\operatorname{div},\Omega)}$ for any $q \in H(\operatorname{div},\Omega)$ with

$$(\nu_E \cdot \nu_K|_E)t_0 = (q \cdot \nu_K)|_E \quad \text{for all } K \in \mathcal{T}, E \in \mathcal{E}(K). \tag{3}$$

This proves the first inequality. Given any $q \in H(\text{div}, \Omega)$, $(p_{\text{RT}} - q) \cdot \nu_K = 0$ on ∂K defined by the integration-by-parts formula. In particular

$$0 = \int_{\partial K} (p_{RT} - q) \cdot \nu_K \, ds = \int_K \operatorname{div}(p_{RT} - q) \, dx \quad \text{for all } K \in \mathcal{T}.$$

Consequently,

$$\operatorname{div} p_{\mathrm{RT}} = \Pi_0 \operatorname{div} q$$
 a.e. in Ω .

An integration by parts shows for any $v \in H^1(\mathcal{T})$ that

$$\left| \int_{\Omega} (p_{\mathrm{RT}} - q) \cdot \nabla_{\mathrm{NC}} v \, dx \right| = \left| \int_{\Omega} (v - \Pi_{0} v) \operatorname{div}(q - p_{\mathrm{RT}}) \, dx \right|$$

$$\leq h_{\mathrm{max}} / \pi \| v \|_{\mathrm{NC}} \| (1 - \Pi_{0}) \operatorname{div} q \|_{L^{2}(\Omega)}.$$

Set
$$v(x) := (\Pi_0 p_{RT}) \cdot (x - \text{mid}(K)) + 1/4(\text{div } p_{RT})|x - \text{mid}(K)|^2$$
 with

$$\nabla_{\text{NC}}v = \Pi_0 p_{\text{RT}} + 1/2(\text{div } p_{\text{RT}}) + 1/2 \text{div } p_{\text{RT}}(\bullet - \text{mid}(\mathcal{T})) = p_{\text{RT}}$$

in the previous estimate to deduce

$$||p_{\rm RT}||_{L^{2}(\Omega)}^{2} = \int_{\Omega} q \cdot p_{\rm RT} \, dx + \int_{\Omega} (p_{\rm RT} - q) \cdot \nabla_{\rm NC} v \, dx$$

$$\leq ||q||_{L^{2}(\Omega)} ||p_{\rm RT}||_{L^{2}(\Omega)} + \frac{h_{\rm max}}{\pi} ||p_{\rm RT}||_{L^{2}(\Omega)} ||(1 - \Pi_{0}) \, \text{div } q||_{L^{2}(\Omega)}, \quad (4)$$

whence

$$||p_{\mathrm{RT}}||_{L^2(\Omega)} \le ||q||_{L^2(\Omega)} + \frac{h_{\mathrm{max}}}{\pi} ||(1 - \Pi_0) \operatorname{div} q||_{L^2(\Omega)}.$$

This and (4) imply with $\lambda = h_{\text{max}}/\pi$

$$\begin{aligned} \|p_{\mathrm{RT}}\|_{H(\mathrm{div},\Omega)}^{2} &\leq (\|q\|_{L^{2}(\Omega)} + \lambda \|(1 - \Pi_{0})\operatorname{div} q\|_{L^{2}(\Omega)})^{2} + \|\Pi_{0}\operatorname{div} q\|_{L^{2}(\Omega)} \\ &\leq (1 + \lambda^{2})\|q\|_{L^{2}(\Omega)}^{2} + (1 + 1/\lambda^{2})\lambda^{2}\|(1 - \Pi_{0})\operatorname{div} q\|_{L^{2}(\Omega)}^{2} \\ &\leq (1 + \lambda^{2})(\|q\|_{L^{2}(\Omega)}^{2} + \|(1 - \Pi_{0})\operatorname{div} q\|_{L^{2}(\Omega)}^{2} + \|\Pi_{0}\operatorname{div} q\|). \end{aligned}$$

In other words, $||p_{\text{RT}}||_{H(\text{div},\Omega)}/\sqrt{1+h_{\text{max}}^2/\pi^2}$ is a lower bound of $||q||_{H(\text{div},\Omega)}$ for all q with (3). By definition of $||t_0||_{H^{1/2}(\partial \mathcal{T})}$ as the minimum, this shows

$$\frac{\|p_{\rm RT}\|_{H({\rm div},\Omega)}}{\sqrt{1+h_{\rm max}^2/\pi^2}} \le \|t_0\|_{H^{-1/2}(\partial\mathcal{T})}.$$

Annulation property for $P := I_{NC}^{loc} : H^1(\mathcal{T}) \to H^1(\mathcal{T})$ projection onto $P_1(\mathcal{T})$ defined by

$$I_{\mathrm{NC}}^{\mathrm{loc}}v|_{K} := \sum_{E \in \mathcal{E}(K)} \int_{E} (v|_{K}) \, \mathrm{d}s \Psi_{E}|_{K} \in P_{1}(K) \quad \text{for any } v \in H^{1}(\mathcal{T}), K \in \mathcal{T}.$$

Given any $v \in H^1(\mathcal{T})$,

$$\|(1-P)v\|_{Y} = \sqrt{\|v-I_{\rm NC}^{\rm loc}v\|^{2} + \|v-I_{\rm NC}^{\rm loc}v\|^{2}} \le \sqrt{1+\kappa^{2}h_{\rm max}^{2}} \|v\|_{\rm NC}.$$

Consequently, the Kato lemma implies

$$||P|| = ||1 - P|| \le \sqrt{1 + \kappa^2 h_{\text{max}}^2}.$$

Mean value property of the gradients $\Pi_0 \nabla_{\text{NC}} I_{\text{NC}}^{\text{loc}} v$ for all $v \in H^1(\mathcal{T})$ leads to the annulation property

$$\sum_{K \in \mathcal{T}} \int_{\partial K} t_0(v|_K - I_{NC}^{loc} v|_K) \, ds = \langle t_0, v - Pv \rangle_{\partial \mathcal{T}}.$$

Hence, for all $x_h = (u_c, t_0) \in X_h$ and $v \in H^1(\mathcal{T})$, it follows

$$b(x_h, v - Pv) = a_{NC}(u_c, v - Pv) - \langle t_0, v - Pv \rangle_{\partial \mathcal{T}} = 0.$$

The abstract theory asserts discrete inf-sup condition with $\beta \leq ||P|| \beta_h \leq ||b||$. This shows

$$\frac{\beta}{\sqrt{1+\kappa^2 h_{\max}^2}} \le \beta_h.$$

The a posteriori analysis involves $||F \circ (1-P)||_{Y^*} \le \kappa ||h_T f||_{L^2(T)}$, which is computable but not of higher order.