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Overview

@ Part 1: dimension reduction problem for homogeneous nonlinearly elastic
plates.

@ Part 2/tutorial: static '-convergence, and the notion of 2-scale convergence.

@ Part 3: simultaneous homogenization and dimension reduction.

» Motivation
> A little bit of history
» Homogenization under physical growth conditions
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Motivation

]

In many applications: establish the macroscopic behavior of a material which is
“mycroscopically” heterogeneous, in order to study some characteristics of the
heterogeneous material (for example its thermal or electrical conductivity).

I

Homogenization problems for thin structures.
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Dimension reduction in nonlinear elasticity

Scaling of the applied loads in terms of the thickness parameter

I

Different scalings of the elastic energy

4

Different limit models.
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Periodic homogenization and dimension reduction

Scaling of the applied loads in terms of the thickness parameter

I

Different scalings of the elastic energy & different ratio thickness/periodicity
scale(s)

I

Different limit models.
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A (very) brief history of homogenization and dimension
reduction

Seminal papers: membrane regime

J-F. Babadjian - M. Baia (2006),

-growth
A. Braides - I. Fonseca - G. A. Francort (2000)} p-grow

%w’ _B< W(F) < B+ |FP).
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A (very) brief history of homogenization and dimension
reduction

Seminal papers: membrane regime

J-F. Babadjian - M. Baia (2006),

. p-growth
A. Braides - |. Fonseca - G. A. Francfort (2000)

%w’ _B< W(F) < B+ |FP).

Incompatible with the physical requirement that the energy blows up under
very strong compressions.

W(F) — +oo as detF — 0.

Homogenization under physical growth conditions for the energy density, at least
for models corresponding to very small loads f" ~ h®, a > 2 (Von Karman plate
theories) or a = 2 (Kirchhoff plate theories)?
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A brief history of homogenization and dimension reduction

Seminal papers: membrane regime

J-F. Babadjian - M. Baia (2006),

. p-growth
A. Braides - |. Fonseca - G. A. Francfort (2000)

Incompatible with the physical requirement that the energy blows up under
very strong compressions.

W(F) — +o0o as detF — 0.

P. Hornung - S. Neukamm - I. Vel¢ic (2014), S. Neukamm - |. Velgic (2013), 1.
Veltic (2014), L. Bufford - E.D. - |. Fonseca (2015): homogenization and

dimension reduction under physical growth conditions for the energy density
(fh =~ h, a > 2).
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Homogenization with physical growth conditions for a

multiscale thin plate
[P. Hornung - S. Neukamm - I. Vel&ic (2014)], [L. Bufford - E.D. - I. Fonseca (2015)]

Reference configuration:
Qpi=wx (-

NI
NI
N—r

)

@ w=bounded Lipschitz domain in R?, whose boundary is piecewise C?,

@ h > O0=thickness parameter.
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Homogenization with physical growth conditions for a

multiscale thin plate
[P. Hornung - S. Neukamm - I. Vel&ic (2014)], [L. Bufford - E.D. - I. Fonseca (2015)]

Reference configuration:
Qpi=wx (-

NI
NI
N—r

)

@ w=bounded Lipschitz domain in R?, whose boundary is piecewise C?,
@ h > O0=thickness parameter.

@ two in plane homogeneity scales - a coarser one and a finer one - £(h) and
2
e*(h),

o {h} and {e(h)} are monotone decreasing sequences of positive numbers,
h—0, and e(h) - 0 as h — 0.

Elisa Davoli Multiscale Dimension Reduction 6 /37



Homogenization with physical growth conditions

The rescaled nonlinear elastic energy:

/ /

jh(v) = %/Q,, W(s?h)’ %,Vv(x)) dx

for every deformation v € W12(Q,,; R3).

Kirchhoff's plate theory: we consider sequences of deformations
{vh} € Wb2(Qp; R3) verifying

h(\ b
Iimsupj (v7)

h—0 h? < e
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Our goal

To identify the effective energy associated to the rescaled elastic energies

{jhh(zvh)} for different values of

M= fim

and

=i
72 2 (kY

i.e. depending on the interaction of the homogeneity scales with the thickness
parameter.

Five regimes: v; = +00, 0 <y < 400, 71 =0 and 72 = +00, 0 < 72 < 400,
Y2 = +00.

Elisa Davoli Multiscale Dimension Reduction 8 /37



Assumptions on the stored energy density

W R? x R? x M>*3 — [0, +00)

(HO) (-,-, F) — W(.,-, F) is measurable and Q-periodic, W(y, z,-) is continuous,

(H1) W(y,z,RF) = W(y,z, F) for every F € M3*3 and for all R € SO(3) (frame
indifference),

(H2) W(y,z,F) > C dist>(F; SO(3)) for every F € M3*3 (nondegeneracy),
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Assumptions on the stored energy density

W R? x R? x M>*3 — [0, +00)

(HO) (-,-, F) — W(.,-, F) is measurable and Q-periodic, W(y, z,-) is continuous,
(H1) W(y,z,RF) = W(y,z, F) for every F € M3*3 and for all R € SO(3) (frame
indifference),
(H2) W(y,z,F) > C dist>(F; SO(3)) for every F € M3*3 (nondegeneracy),
(H3) there exists § > 0 such that W(y, z, F) < G, dist?(F; SO(3)) for every
F € M3*3 with dist(F; SO(3)) < 4,

(H4) lim|g|-0 W(%z,ldJr‘g)l;Q(y’z’G) =0, where 2(y, z,-) is a quadratic form on
M3><3_
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Change of variables

We focus on the asymptotic behavior of sequences of deformations
{uh} € Wt2(Q; R3) satisfying the uniform energy estimate

Eh(uy = W(X—/ Xy uh(x)> dx < Ch* for every h > 0
o \e(hy 2y - e

where Q := Q; = w x (=3, 3), and V,u(x) := (V’u(x)

Bﬁ#> forae. x € Q.

Remark

For W independent of y and z, such scalings of the energy lead to Kirchhoff's
nonlinear plate theory [G. Friesecke - R.D James - S. Miiller (2006)].
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Compactness

Theorem (G. Friesecke - R.D James - S. Miiller (2006))

Let {u"} € Wh2(Q; R3) satisfy the uniform energy estimate. Then, there exists a
map u € W?2(w; R3) such that, up to subsequences,

u — ][ u"(x)dx — u strongly in L*(Q;R3)
Q

Vpu = (V'uln,) strongly in L2(Q; M**3),

with
Oxu(x') - Ogu(x') = ba,3 forae x' ew, o, fe{l,2}
and
ny(x') := O u(x) A Opu(x’) fora.e. x' € w.
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The limit model

Theorem (L. Bufford - E.D. - |. Fonseca (2015))

Let v1 € [0, +00] and let v = +oo. Let {u"} ¢ WH?(Q;R3) and
u € W?2(w;R3) be as in Theorem 1. Then

L ER)
e

> £ (u).

Moreover, for every u € W?2(w; R3) as in Theorem 1, there exists a sequence
{u"} € WH2(Q; R3) such that

h(,h
lim supL:) < EM(u).

h—0 h
y
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The limit model

Theorem (L. Bufford - E.D. - |. Fonseca (2015))
The effective energy is given by

En(u) =42 L[ Zpen(N¥(x")) dx if u is as in Theorem 1,
+0o0 otherwise in L2(Q; R3),

where MY s the second fundamental form associated to u,
I'I;’B(x') =07 ﬁu( xX')-ny(x") fora,f=1,2,

nu(x') = dru(x’) A Bru(x'), and 2, . is a quadratic from dependent on the
value of ;.
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The limit model

Theorem (0 < 1 < +00.)
In particular, if 0 < v, < 400, for every A € M2X?2

Sym

— . 5 x3A+B 0
Qhom(A) 0= Inf { /(%,%)XQ Qhom(Yﬂ ( 0 O )

aX3¢17(;3,y)> ) |

b1 € WIZ (-1 1) WI2(QiRY)), B € Mm}

o (o

where

Phom(y, C) :=inf {/ ,@(y,z, C + sym (Voz(z)}O)) Dy € Vl/lfﬁ(Q;R3)}
Q

for a.e. y € Q, and for every C € M3x3

sym*
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The limit model

Theorem (71 = 4+00)
If y1 = 400, for every A € M2X2

Sym

Do (A) = inf { /(_;

+sym(vy¢1<X3,y)d<X3))> d e 12((~, 1R,

x3A+ B 0)

’%)XQghom(y’( 0 0

b1 € (-3, 1) WI2(Q: RY)), and B Mm}
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The limit model

Theorem (71 = 0)
If y1 = 0, for every A € M2X2

Sym

—0 . 5 X3A+ B 0
"@hom(A) 0= mf { A_%7%)XQ Qhom (yv ( O O )

symV,€(xs, y) +x3Vyn(y) &i(xs,y)
+ sym &(x3,y)
g1(x3,y) &(x3,y) g3(x3, )

geL?((— 1,1 WiA(Q:R?), n € W22(Q),

g € L2(( - %7%) X Q);l: 172a3aB € Mg;(nzl}
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A few questions

@ Why are there pointwise minimizations with respect to gradients in the
periodicity variables?

@ How does the value of ; determine the different minimization problems?

@ Where does two-scale convergence come into play?
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Proof of the liminf inequality for 71 € (0, +00)(sketch)

1. Convergence of scaled stresses

[VFTF — Id|> < Cdist?>(F; SO(3)) < W(y, z, F)
&

Uniform energy estimate
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Proof of the liminf inequality for 71 € (0, +00)(sketch)

1. Convergence of scaled stresses

IWFTF — Id|? < Cdist?(F; SO(3)) < W(y, z, F)
&

Uniform energy estimate

I

Uniform bound on the L2-norm of the sequence of linearized stresses

Eh(x) = \/(thh(X))Tthuh(x) —1d.
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Proof of the liminf inequality for 71 € (0, +00)(sketch)

1. Convergence of scaled stresses

Linearization of the stored energy density around the identity

I

Xl l

e(h)’ e2(h)’ (X)>

h(,h
Iiminfg () = liminf ,@(
Q

h—0 h? h—0

Elisa Davoli Multiscale Dimension Reduction 19 / 37



Proof of the liminf inequality for 71 € (0, +00)(sketch)

1. Convergence of scaled stresses

Linearization of the stored energy density around the identity

4

] Eh(uh) o x' x! \
hoo b2 ho0 Qg(e(h)’52(h)’E(X)>dX'

Key point: to identify the multiscale limit of the sequence E".

Key ingredient: multiscale convergence adapted to dimension reduction.
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Proof of the liminf inequality for 71 € (0, +00)(sketch)

Definition (G. Allaire (1992), D. Lukkassen - G. Nguetseng - P. Wall
(2002), G. Nguetseng (1989), G.Allaire - M. Briane (1996))

Let u € L2(2 x @ x Q) and {u"} € L?(Q). We say that {u"} converges weakly

37
3-scale to u in L2(Q x Q x Q), and we write u” = u, if

/Qu”(é)so(f,%,%) d£—>/Q/Q/Qu({,n,)\)cp(f,n,)\)d/\dndg

for every p € C°(Q; Goer(Q x Q)).
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Proof of the liminf inequality for 71 € (0, +00)(sketch)

Definition (S. Neukamm (2010))

Let u € L2(2 x @ x Q) and {u"} € L?(Q). We say that {u"} converges weakly
dr—3—
dr-3-scale to u in L2(Q x Q x Q), and we write u" — ° u, if

/Q uh(x)<p(x, %llr)’ %lh)) dx — /Q/Q/Q u(x,y,z)p(x,y, z) dz dy dx

for every ¢ € C°(; Goer(Q X Q)).

Remark

Bounded sequences in L% are precompact with respect to multiscale convergence

v
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Proof of the liminf inequality for 71 € (0, +00)(sketch)

Definition (S. Neukamm (2010))

Let u € L2(2 x @ x Q) and {u"} € L?(Q). We say that {u"} converges weakly
dr—3—
dr-3-scale to u in L2(Q x Q x Q), and we write u" — ° u, if

/Q uh(x)go(x, %;1), %) dx — /Q/Q/Q u(x,y,z)p(x,y, z) dz dy dx

for every ¢ € C°(; Goer(Q X Q)).

Remark

Bounded sequences in L? are precompact with respect to multiscale convergence

v

Question: how are 3-scale limits, 2-scale limits, and weak L2-limit related? On the
blackboard!
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Proof of the liminf inequality for 71 € (0, +00)(sketch)

Theorem (Multiscale limits of scaled gradients)
Let u,{u"} C W2(Q) be such that

ul = u  weakly in WH?(Q).

and
lim sup/ |V pu(x)[? dx < .
h—0 Q

Then u is independent of x3.
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Proof of the liminf inequality for 71 € (0, +00)(sketch)

Theorem (Multiscale limits of scaled gradients)
Let u, {u"} € W12(Q) be such that

ul = u  weakly in WH?(Q).

and
I|msup/ |Vt (x)|? dx < o0.

Then u is independent of x3.Moreover, there exist uy € L*(; Wa2(Q)),

2
€ L2(Qx Q;Wi2(Q)), and i € [*(w x Q x Q; W2 ( — 1.3)) such that, up

to the extraction of a (not relabeled) subsequence,

h dr—3—s p
Viu"  —  (V'u+Vyu + Vo,

Ox, 1)  weakly dr-3-scale.

Elisa Davoli Multiscale Dimension Reduction
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Proof of the liminf inequality for 71 € (0, +00)(sketch)

Theorem (Multiscale limits of scaled gradients)
Moreover,

(i) if y1 =72 = +oo (i.e. e(h) << h), then 0,,i = 0, i =0, fori =1,2;
(ii) if0 <y < 400 and v, = 400 (i.e. e(h) ~ h), then

uy .
71

[_7:

1
(iii) ifv1 =0 and v2 = +o0 (i.e. h << g(h) << h2), then

Owu1 =0 and 0,0=0,i=1,2.
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Proof of the liminf inequality for 71 € (0, +00)(sketch)

Theorem (Multiscale limits of scaled gradients)
Moreover,

(i) if y1 =72 = +oo (i.e. e(h) << h), then 0,,i = 0, i =0, fori =1,2;
(ii) if0 <y < 400 and v, = 400 (i.e. e(h) ~ h), then

u1

ua=—;
M

1
(iii) ifv1 =0 and v2 = +o0 (i.e. h << g(h) << h2), then

Owu1 =0 and 0,0=0,i=1,2.

Question: why do we have such a structure for multiscale limits of scaled
gradients? On the blackboard!
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Proof of the liminf inequality for 71 € (0, +00)(sketch)

2. The rigidity estimate

Theorem (G. Friesecke - R.D. James - S. Miiller (2002))
Let o € (0,1] and let h,6 > 0 be such that

h<1
=

There exists a constant C, depending only on w and g, such that for every
u e Wh?(w;R?) there exists a map R : w — SO(3) piecewise constant on each
cube x +8Y, with x € 6Z2, and there exists R € W12(w; M3*3) such that
[Vhu — R||i2(Q;M3X3) + R - §||i2(w;M3x3)
WV RIs pmraageny < Clldist(Vau; SOG) iz
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Proof of the liminf inequality

3. Compactness of linearized strains

v = lim

h
h—0 %
4

Apply the theorem with § = £(h) and construct maps R" piecewise constant on
cubes of size £(h) and centers in £(h)Z? such that

€ (0,+00)

IVau" = R[22 qapsxsy < Clldist(Vau'; SO(3)) || 2y < CH*.

I

The sequence of linearized strains

Rh(x") TV pul(x) — Id

G'(x) := b

is uniformly bounded in L.
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Proof of the liminf inequality

4. Stress-strain relation and liminf inequality

 V(Vau"(x)) TV puh(x) — Id
Ef(x) := h - h

J(Id+ hRF()GA(x)) T (Id + hRF(x') G (x)) — Id

h

~ symR"(x')G"(x) ~ sym

Vhuh(x) — Rh(x')'

h

The problem becomes:

to identify the multiscale limit of the sequence

thh — Rh
p .

sym

Elisa Davoli Multiscale Dimension Reduction
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Proof of the liminf inequality

5. ldentification of the limit strain

Idea: rewrite u” as
ull(x) =: @"(x') + hxsR"(x")e3 + hr' (X', x3)

where

2
a"(x') = / ) u(x', x3) dxs.
2
Then

thh _ Rh - (V'Uh _ (Rh)/

=n [(RP— R
h h +X3V’Rhe3‘¥€3) +V;,rh.
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Proof of the liminf inequality

5. ldentification of the limit strain

Bounded sequences in L2 are precompact with respect to multiscale convergence

I

v/ =h _ Rh ’ 3
uf() v weakly 3-scale.

By the results by [P. Hornung - S. Neukamm - |. Vel¢ic (2014)] and the relation
between 3-scale limits and 2-scale limits we only need to show

V(x',y,z) - /Q V(x',y,&)dé = V:v(X,y, 2)
for some v € L2(Q x Q; W12(Q))...

per
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Proof of the liminf inequality

5. ldentification of the limit strain

...that is
! / . L , B
/Q/Q/Q (V(x.y.2) —/Qv(x v,€)d€) (V) p(2)b(x', ) dx dy dz = 0
for every o € Clo,(QiR?) and 1 € C2(w; C35,(Q)), where

(V) 0(2) = (= Opl2) 0 0(2) ).
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Proof of the liminf inequality

5. ldentification of the limit strain

...that is
! / . L , B
/Q/Q/Q (V(x.y.2) —/Qv(x v,€)d€) (V) p(2)b(x', ) dx dy dz = 0
for every o € Clo,(QiR?) and 1 € C2(w; C35,(Q)), where

(V) 0(2) = (= Opl2) 0 0(2) ).

Test functions of the form
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Proof of the liminf inequality

5. Identification of the limit strain

We need to identify

Iim/ V'ah (<) — (R")(x') :(V/)J‘cp( X )1/)(/, x )dx.

h—0 h
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Proof of the liminf inequality

5. ldentification of the limit strain

We need to identify

. / V/Uh(xl) _ (Rh)/(X/)

h—0 J,

@ Step 1:

: : (V/)J‘cp(52)zh))1/1<x/, E?h)) dx.

!/

"ah(x) v x' ,
"”‘/v . Ve (52(/7))‘[’( (h)) dx = 0.
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Proof of the liminf inequality

5. ldentification of the limit strain

We need to identify

"ah(x") — (RMY (X' , X , X
“m/v ( )h(R)( ):(V)L¢(52(h))¢<x’a(h))dx'

h—0 J,

@ Step 1:

!/

"ah(x , x' ,
;',iﬂ'o/wv h( b ﬁ"(m)‘[’( (h)) =0

@ Step 2:

/Q/Q /Q ( /Q V(x',y,€)d€) : (V') (2)0(x',y) dx dy dz = 0.
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Proof of the liminf inequality

5. ldentification of the limit strain

We need to identify

/Uh x') — hy/ X/ , X' , X
“m/v ( )h(R)( ):(V)L¢(52(h))¢<x’a(h))dx'

h—0 J,

@ Step 1:

!/

"ah(x , x' ,
;',iﬂ'o/wv h( b ﬁ"(m)‘[’( (h)) =0

@ Step 2:

/Q/Q /Q ( /Q V(x',y,€)d€) : (V') (2)0(x',y) dx dy dz = 0.

@ Step 3:
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Proof of the liminf inequality

5. Identification of the limit strain

Idea: the maps R" are piecewise constant con cubes of size £(h) and centers in
e(h)z2....
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Proof of the liminf inequality

5. ldentification of the limit strain

Idea: the maps R" are piecewise constant con cubes of size £(h) and centers in
e(h)Z2....
Main difficulty: ...but we have oscillations on cubes of size £2(h) and centers in
e2(h)z2.
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Proof of the liminf inequality

5. ldentification of the limit strain

Solution: to distinguish between “bad cubes” and “good cubes” and show that
the measure of the intersection between w and the set of “bad cubes” converges
to zero faster than or comparable to (h), as h — 0.

2,

€l

"bad" cub ’T T "good" cube

b o,
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Final remarks on the case 7; = 0.

@ By G. Friesecke, R.D. James and S. Miiller's rigidity estimate: work with
sequences of piecewise constant rotations which are constant on cubes
of size £2(h) having centers in the grid £2(h)Z2.

@ To identify the limit multiscale stress we need to deal with oscillating test
functions with vanishing averages on a scale ¢(h).
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Final remarks on the case 7; = 0.

The identification of “good cubes’ and “bad cubes” of size 2(h) is not helpful as
the contribution of the oscillating test functions on cubes of size £2(h) is not
negligible anymore.

We are only able to perform an identification of the multiscale limit in the case
Y2 = 400, extending to the multiscale setting the results obtained by I. Vel&ic.
The identification of the effective energy in the case in which ~; = 0 and

~2 € [0, 4+00) remains an open question.
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Thank you for your attention!




