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Overview

Part 1: dimension reduction problem for homogeneous nonlinearly elastic
plates.

Part 2/tutorial: static Γ-convergence, and the notion of 2-scale convergence.

Part 3: simultaneous homogenization and dimension reduction.
I Motivation
I A little bit of history
I Homogenization under physical growth conditions
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Motivation

In many applications: establish the macroscopic behavior of a material which is
“mycroscopically” heterogeneous, in order to study some characteristics of the
heterogeneous material (for example its thermal or electrical conductivity).

⇓
Homogenization problems for thin structures.
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Dimension reduction in nonlinear elasticity

Scaling of the applied loads in terms of the thickness parameter

⇓

Different scalings of the elastic energy

⇓

Different limit models.
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Periodic homogenization and dimension reduction

Scaling of the applied loads in terms of the thickness parameter

⇓

Different scalings of the elastic energy & different ratio thickness/periodicity
scale(s)

⇓

Different limit models.
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A (very) brief history of homogenization and dimension
reduction

Seminal papers: membrane regime

J-F. Babadjian - M. Baia (2006),

A. Braides - I. Fonseca - G. A. Francfort (2000)

}
p-growth

1

β
|F |p − β ≤W (F ) ≤ β(1 + |F |p).

Incompatible with the physical requirement that the energy blows up under
very strong compressions.

W (F )→ +∞ as detF → 0+.

Homogenization under physical growth conditions for the energy density, at least
for models corresponding to very small loads f h ≈ hα, α > 2 (Von Kàrmàn plate
theories) or α = 2 (Kirchhoff plate theories)?
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A brief history of homogenization and dimension reduction

Seminal papers: membrane regime

J-F. Babadjian - M. Baia (2006),

A. Braides - I. Fonseca - G. A. Francfort (2000)

}
p-growth

Incompatible with the physical requirement that the energy blows up under
very strong compressions.

W (F )→ +∞ as detF → 0+.

P. Hornung - S. Neukamm - I. Velčic̀ (2014), S. Neukamm - I. Velčic̀ (2013), I.
Velčic̀ (2014), L. Bufford - E.D. - I. Fonseca (2015): homogenization and
dimension reduction under physical growth conditions for the energy density
(f h ≈ hα, α ≥ 2).
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Homogenization with physical growth conditions for a
multiscale thin plate
[P. Hornung - S. Neukamm - I. Velčic̀ (2014)], [L. Bufford - E.D. - I. Fonseca (2015)]

Reference configuration:
Ωh := ω × (− h

2 ,
h
2 )

ω=bounded Lipschitz domain in R2, whose boundary is piecewise C 1,

h > 0=thickness parameter.

two in plane homogeneity scales - a coarser one and a finer one - ε(h) and
ε2(h),

{h} and {ε(h)} are monotone decreasing sequences of positive numbers,
h→ 0, and ε(h)→ 0 as h→ 0.
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Homogenization with physical growth conditions

The rescaled nonlinear elastic energy:

J h(v) :=
1

h

ˆ
Ωh

W
( x ′

ε(h)
,

x ′

ε2(h)
,∇v(x)

)
dx

for every deformation v ∈W 1,2(Ωh;R3).

Kirchhoff’s plate theory: we consider sequences of deformations
{vh} ⊂W 1,2(Ωh;R3) verifying

lim sup
h→0

J h(vh)

h2
< +∞.
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Our goal

To identify the effective energy associated to the rescaled elastic energies{J h(vh)
h2

}
for different values of

γ1 := lim
h→0

h

ε(h)

and

γ2 := lim
h→0

h

ε2(h)
,

i.e. depending on the interaction of the homogeneity scales with the thickness
parameter.

Five regimes: γ1 = +∞, 0 < γ1 < +∞, γ1 = 0 and γ2 = +∞, 0 < γ2 < +∞,
γ2 = +∞.
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Assumptions on the stored energy density

W : R2 × R2 ×M3×3 → [0,+∞)

(H0) (·, ·,F ) 7→W (·, ·,F ) is measurable and Q-periodic, W (y , z , ·) is continuous,

(H1) W (y , z ,RF ) = W (y , z ,F ) for every F ∈M3×3 and for all R ∈ SO(3) (frame
indifference),

(H2) W (y , z ,F ) ≥ C1 dist
2(F ;SO(3)) for every F ∈M3×3 (nondegeneracy),

(H3) there exists δ > 0 such that W (y , z ,F ) ≤ C2 dist
2(F ;SO(3)) for every

F ∈M3×3 with dist(F ;SO(3)) < δ,

(H4) lim|G |→0
W (y ,z,Id+G)−Q(y ,z,G)

|G |2 = 0, where Q(y , z , ·) is a quadratic form on

M3×3.
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Change of variables

We focus on the asymptotic behavior of sequences of deformations
{uh} ⊂W 1,2(Ω;R3) satisfying the uniform energy estimate

Eh(uh) :=

ˆ
Ω

W
( x ′

ε(h)
,

x ′

ε2(h)
,∇hu

h(x)
)
dx ≤ Ch2 for every h > 0.

where Ω := Ω1 = ω × (− 1
2 ,

1
2 ), and ∇hu(x) :=

(
∇′u(x)

∣∣∂x3
u(x)

h

)
for a.e. x ∈ Ω.

Remark
For W independent of y and z, such scalings of the energy lead to Kirchhoff’s
nonlinear plate theory [G. Friesecke - R.D James - S. Müller (2006)].
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Compactness

Theorem (G. Friesecke - R.D James - S. Müller (2006))

Let {uh} ⊂W 1,2(Ω;R3) satisfy the uniform energy estimate. Then, there exists a
map u ∈W 2,2(ω;R3) such that, up to subsequences,

uh −
 

Ω

uh(x) dx → u strongly in L2(Ω;R3)

∇hu
h → (∇′u|nu) strongly in L2(Ω;M3×3),

with
∂xαu(x ′) · ∂xβu(x ′) = δα,β for a.e. x ′ ∈ ω, α, β ∈ {1, 2}

and
nu(x ′) := ∂x1u(x ′) ∧ ∂x2u(x ′) for a.e. x ′ ∈ ω.
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The limit model

Theorem (L. Bufford - E.D. - I. Fonseca (2015))

Let γ1 ∈ [0,+∞] and let γ2 = +∞. Let {uh} ⊂W 1,2(Ω;R3) and
u ∈W 2,2(ω;R3) be as in Theorem 1. Then

lim inf
h→0

Eh(uh)

h2
≥ Eγ1 (u).

Moreover, for every u ∈W 2,2(ω;R3) as in Theorem 1, there exists a sequence
{uh} ⊂W 1,2(Ω;R3) such that

lim sup
h→0

Eh(uh)

h2
≤ Eγ1 (u).
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The limit model

Theorem (L. Bufford - E.D. - I. Fonseca (2015))

The effective energy is given by

Eγ1 (u) :=

{
1

12

´
ω

Q
γ1

hom(Πu(x ′)) dx ′ if u is as in Theorem 1,

+∞ otherwise in L2(Ω;R3),

where Πu is the second fundamental form associated to u,

Πu
α,β(x ′) := −∂2

α,βu(x ′) · nu(x ′) for α, β = 1, 2,

nu(x ′) := ∂1u(x ′) ∧ ∂2u(x ′), and Q
γ1

hom is a quadratic from dependent on the
value of γ1.
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The limit model

Theorem (0 < γ1 < +∞.)

In particular, if 0 < γ1 < +∞, for every A ∈M2×2
sym

Q
γ1

hom(A) := inf

{ˆ(
− 1

2 ,
1
2

)
×Q

Qhom

(
y ,
( x3A + B 0

0 0

)
+ sym

(
∇yφ1(x3, y)

∣∣∣∂x3φ1(x3, y)

γ1

))
:

φ1 ∈W 1,2
(
(− 1

2 ,
1
2 );W 1,2

per(Q;R3)
)
, B ∈M2×2

sym

}
;

where

Qhom(y ,C ) := inf
{ˆ

Q

Q
(
y , z ,C + sym

(
∇φ2(z)

∣∣0)) : φ2 ∈W 1,2
per(Q;R3)

}
for a.e. y ∈ Q, and for every C ∈M3×3

sym.
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The limit model

Theorem (γ1 = +∞)

If γ1 = +∞, for every A ∈M2×2
sym

Q
∞
hom(A) := inf

{ˆ(
− 1

2 ,
1
2

)
×Q

Qhom

(
y ,
( x3A + B 0

0 0

)
+ sym (∇yφ1(x3, y)|d(x3))

)
: d ∈ L2((− 1

2 ,
1
2 );R3),

φ1 ∈ L2((− 1
2 ,

1
2 );W 1,2

per(Q;R3)), and B ∈M2×2
sym

}
.

Elisa Davoli Multiscale Dimension Reduction 15 / 37



The limit model

Theorem (γ1 = 0)

If γ1 = 0, for every A ∈M2×2
sym

Q
0

hom(A) := inf

{ˆ(
− 1

2 ,
1
2

)
×Q

Qhom

(
y ,
( x3A + B 0

0 0

)

+ sym

 sym∇yξ(x3, y) + x3∇2
yη(y) g1(x3, y)

g2(x3, y)
g1(x3, y) g2(x3, y) g3(x3, y)

 :

ξ ∈ L2
((
− 1

2 ,
1
2 );W 1,2

per(Q;R2)
)
, η ∈W 2,2

per(Q),

gi ∈ L2
((
− 1

2 ,
1
2 )× Q), i = 1, 2, 3,B ∈M2×2

sym

}
.
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A few questions

Why are there pointwise minimizations with respect to gradients in the
periodicity variables?

How does the value of γ1 determine the different minimization problems?

Where does two-scale convergence come into play?
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Proof of the liminf inequality for γ1 ∈ (0,+∞)(sketch)
1. Convergence of scaled stresses

|
√
FTF − Id |2 ≤ Cdist2(F ;SO(3)) ≤W (y , z ,F )

&

Uniform energy estimate

⇓

Uniform bound on the L2-norm of the sequence of linearized stresses

E h(x) :=

√
(∇huh(x))T∇huh(x)− Id

h
.
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Proof of the liminf inequality for γ1 ∈ (0,+∞)(sketch)
1. Convergence of scaled stresses

Linearization of the stored energy density around the identity

⇓

lim inf
h→0

Eh(uh)

h2
u lim inf

h→0

ˆ
Ω

Q
( x ′

ε(h)
,

x ′

ε2(h)
,E h(x)

)
dx .

Key point: to identify the multiscale limit of the sequence E h.
Key ingredient: multiscale convergence adapted to dimension reduction.
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Proof of the liminf inequality for γ1 ∈ (0,+∞)(sketch)

Definition (G. Allaire (1992), D. Lukkassen - G. Nguetseng - P. Wall
(2002), G. Nguetseng (1989), G.Allaire - M. Briane (1996))

Let u ∈ L2(Ω× Q × Q) and {uh} ∈ L2(Ω). We say that {uh} converges weakly

3-scale to u in L2(Ω× Q × Q), and we write uh
3−s
−⇀ u, if

ˆ
Ω

uh(ξ)ϕ
(
ξ,

ξ

ε(h)
,

ξ

ε2(h)

)
dξ →

ˆ
Ω

ˆ
Q

ˆ
Q

u(ξ, η, λ)ϕ(ξ, η, λ) dλ dη dξ

for every ϕ ∈ C∞c (Ω;Cper(Q × Q)).
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Proof of the liminf inequality for γ1 ∈ (0,+∞)(sketch)

Definition (S. Neukamm (2010))

Let u ∈ L2(Ω× Q × Q) and {uh} ∈ L2(Ω). We say that {uh} converges weakly

dr-3-scale to u in L2(Ω× Q × Q), and we write uh
dr−3−s
−⇀ u, if

ˆ
Ω

uh(x)ϕ
(
x ,

x ′

ε(h)
,

x ′

ε2(h)

)
dx →

ˆ
Ω

ˆ
Q

ˆ
Q

u(x , y , z)ϕ(x , y , z) dz dy dx

for every ϕ ∈ C∞c (Ω;Cper(Q × Q)).

Remark

Bounded sequences in L2 are precompact with respect to multiscale convergence

Question: how are 3-scale limits, 2-scale limits, and weak L2-limit related? On the
blackboard!
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Proof of the liminf inequality for γ1 ∈ (0,+∞)(sketch)

Theorem (Multiscale limits of scaled gradients)

Let u, {uh} ⊂W 1,2(Ω) be such that

uh ⇀ u weakly in W 1,2(Ω).

and

lim sup
h→0

ˆ
Ω

|∇hu
h(x)|2 dx <∞.

Then u is independent of x3.

Moreover, there exist u1 ∈ L2(Ω;W 1,2
per(Q)),

u2 ∈ L2(Ω× Q;W 1,2
per(Q)), and ū ∈ L2

(
ω × Q × Q;W 1,2

(
− 1

2 ,
1
2

))
such that, up

to the extraction of a (not relabeled) subsequence,

∇hu
h

dr−3−s
−⇀

(
∇′u +∇yu1 +∇zu2

∣∣∣∂x3 ū
)

weakly dr-3-scale.
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Proof of the liminf inequality for γ1 ∈ (0,+∞)(sketch)

Theorem (Multiscale limits of scaled gradients)

Moreover,

(i) if γ1 = γ2 = +∞ (i.e. ε(h) << h), then ∂yi ū = ∂zi ū = 0, for i = 1, 2;

(ii) if 0 < γ1 < +∞ and γ2 = +∞ (i.e. ε(h) ∼ h), then

ū =
u1

γ1
;

(iii) if γ1 = 0 and γ2 = +∞ (i.e. h << ε(h) << h
1
2 ), then

∂x3u1 = 0 and ∂zi ū = 0, i = 1, 2.

Question: why do we have such a structure for multiscale limits of scaled
gradients? On the blackboard!
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Question: why do we have such a structure for multiscale limits of scaled
gradients? On the blackboard!

Elisa Davoli Multiscale Dimension Reduction 23 / 37



Proof of the liminf inequality for γ1 ∈ (0,+∞)(sketch)
2. The rigidity estimate

Theorem (G. Friesecke - R.D. James - S. Müller (2002))

Let γ0 ∈ (0, 1] and let h, δ > 0 be such that

γ0 ≤
h

δ
≤ 1

γ0
.

There exists a constant C, depending only on ω and γ0, such that for every
u ∈W 1,2(ω;R3) there exists a map R : ω → SO(3) piecewise constant on each
cube x + δY , with x ∈ δZ2, and there exists R̃ ∈W 1,2(ω;M3×3) such that

‖∇hu − R‖2
L2(Ω;M3×3) + ‖R − R̃‖2

L2(ω;M3×3)

+ h2‖∇′R̃‖2
L2(ω;M3×3×M3×3) ≤ C‖dist(∇hu;SO(3))‖L2(Ω).

Elisa Davoli Multiscale Dimension Reduction 24 / 37



Proof of the liminf inequality
3. Compactness of linearized strains

γ1 := lim
h→0

h

ε(h)
∈ (0,+∞)

⇓

Apply the theorem with δ = ε(h) and construct maps Rh piecewise constant on
cubes of size ε(h) and centers in ε(h)Z2 such that

‖∇hu
h − Rh‖2

L2(Ω;M3×3) ≤ C‖dist(∇hu
h;SO(3))‖L2(Ω) ≤ Ch2.

⇓

The sequence of linearized strains

G h(x) :=
Rh(x ′)T∇hu

h(x)− Id

h

is uniformly bounded in L2.
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Proof of the liminf inequality
4. Stress-strain relation and liminf inequality

E h(x) :=

√
(∇huh(x))T∇huh(x)− Id

h

=

√
(Id + hRh(x ′)G h(x))T (Id + hRh(x ′)G h(x))− Id

h

≈ symRh(x ′)G h(x) ≈ sym
∇hu

h(x)− Rh(x ′)

h
.

The problem becomes:
to identify the multiscale limit of the sequence

sym
∇hu

h − Rh

h
.

Elisa Davoli Multiscale Dimension Reduction 26 / 37



Proof of the liminf inequality
5. Identification of the limit strain

Idea: rewrite uh as

uh(x) =: ūh(x ′) + hx3R̃
h(x ′)e3 + hrh(x ′, x3)

where

ūh(x ′) :=

ˆ 1
2

− 1
2

uh(x ′, x3) dx3.

Then

∇hu
h − Rh

h
=
(∇′ūh − (Rh)′

h
+ x3∇′R̃he3

∣∣∣ (R̃h − Rh)

h
e3

)
+∇hr

h.
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Proof of the liminf inequality
5. Identification of the limit strain

Bounded sequences in L2 are precompact with respect to multiscale convergence

⇓

∇′ūh − (Rh)′

h

3−s
−⇀ V weakly 3-scale.

By the results by [P. Hornung - S. Neukamm - I. Velčic̀ (2014)] and the relation
between 3-scale limits and 2-scale limits we only need to show

V (x ′, y , z)−
ˆ
Q

V (x ′, y , ξ) dξ = ∇zv(x ′, y , z)

for some v ∈ L2(Ω× Q;W 1,2
per(Q))...

Elisa Davoli Multiscale Dimension Reduction 28 / 37



Proof of the liminf inequality
5. Identification of the limit strain

...that isˆ
Ω

ˆ
Q

ˆ
Q

(
V (x ′, y , z)−

ˆ
Q

V (x ′, y , ξ) dξ
)

: (∇′)⊥ϕ(z)ψ(x ′, y) dx dy dz = 0

for every ϕ ∈ C 1
per(Q;R3) and ψ ∈ C∞c (ω;C∞per(Q)), where

(∇′)⊥ϕ(z) :=
(
− ∂z2ϕ(z)|∂z1ϕ(z)

)
.

⇓

Test functions of the form

(∇′)⊥ϕ
( x ′

ε2(h)

)
ψ
(
x ′,

x ′

ε(h)

)
.
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Proof of the liminf inequality
5. Identification of the limit strain

Idea: the maps Rh are piecewise constant con cubes of size ε(h) and centers in
ε(h)Z2....

Main difficulty: ...but we have oscillations on cubes of size ε2(h) and centers in
ε2(h)Z2.
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Proof of the liminf inequality
5. Identification of the limit strain

Solution: to distinguish between “bad cubes” and “good cubes” and show that
the measure of the intersection between ω and the set of “bad cubes” converges
to zero faster than or comparable to ε(h), as h→ 0.

Elisa Davoli Multiscale Dimension Reduction 32 / 37



Final remarks on the case γ1 = 0.

By G. Friesecke, R.D. James and S. Müller’s rigidity estimate: work with
sequences of piecewise constant rotations which are constant on cubes
of size ε2(h) having centers in the grid ε2(h)Z2.

To identify the limit multiscale stress we need to deal with oscillating test
functions with vanishing averages on a scale ε(h).
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Final remarks on the case γ1 = 0.

The identification of “good cubes” and “bad cubes” of size ε2(h) is not helpful as
the contribution of the oscillating test functions on cubes of size ε2(h) is not
negligible anymore.

We are only able to perform an identification of the multiscale limit in the case
γ2 = +∞, extending to the multiscale setting the results obtained by I. Velčic̀.
The identification of the effective energy in the case in which γ1 = 0 and
γ2 ∈ [0,+∞) remains an open question.
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Thank you for your attention!
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