Evolutionary Γ-convergence

Alexander Mielke

Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin

Institut für Mathematik, Humboldt-Universität zu Berlin www.wias-berlin.de/people/mielke/
$2^{\text {nd }}$ CENTRAL Summer School on Analysis and Numerics of PDEs
Humboldt-Universität zu Berlin, 29. August - 2. September 2016
erc Ad Grant (4/2011-3/2017)
Analysis of Multi-Scale Systems
Driven by Functionals

CENTRAL Workshop page: \rightarrow Materials
Materials for lecture of Alexander Mielke
Survey Article
A. Mielke (2016):

On evolutionary Γ-convergence for gradient systems.
Chapter 3 (pages 187-249) in the Proceedings of Summer School 2012.
Muntean, Rademacher, Zagaris: Macroscopic and Large Scale Phenomena:
Coarse Graining, Mean Field Limits and Ergodicity.
Lecture Notes in Applied Math. \& Mechanics Vol. 3, Springer 2016.

Overview

1. Introduction

2. Gradient systems
3. Motivating examples
4. Energy-dissipation formulations
5. Evolutionary variational inequality (EVI)
6. Rate-independent systems (RIS)

Aim of these lectures:

Evolutionary systems (time-dependent O/PDEs) with multiple scales $0<\varepsilon=1 / n \ll 1$ small parameter

- Describe mathematical methods for limit passage $\varepsilon \rightarrow 0$ ($\varepsilon=h$ contains the case of numerical convergence!)

Restriction:

- only generalized gradient systems
- only very simple applications
- proofs only for the simplest results

General evolutionary equations

Multiscale limit corresponds to interchanging to limits, namely
" $\lim _{\varepsilon \rightarrow 0}$ " and " $u^{\varepsilon}(t)=u_{0}^{\varepsilon}+\int_{0}^{t} \ldots \mathrm{~d} s$ "

	microsc. system		macrosc. system
	$\dot{u}_{\varepsilon}=\boldsymbol{G}_{\varepsilon}\left(u_{\varepsilon}\right)$		$\dot{y}=\boldsymbol{G}_{0}(y)$
initial state	u_{ε}^{0}	$\xrightarrow[M_{\varepsilon}]{\text { upscaling }}$	y^{0}
time evolution	\downarrow	\downarrow	
	$u_{\varepsilon}(t)=\boldsymbol{S}_{\varepsilon}\left(t, u_{\varepsilon}^{0}\right) \xrightarrow[M_{\varepsilon}]{\text { upscaling }} y(t)=\boldsymbol{S}_{0}\left(t, y^{0}\right)$		

1. Introduction

General evolutionary equations

Multiscale limit corresponds to interchanging to limits, namely
" $\lim _{\varepsilon \rightarrow 0}$ " and " $u^{\varepsilon}(t)=u_{0}^{\varepsilon}+\int_{0}^{t} \ldots \mathrm{~d} s$ "

	microsc. system		macrosc. system
	$\dot{u}_{\varepsilon}=\boldsymbol{G}_{\varepsilon}\left(u_{\varepsilon}\right)$		$\dot{y}=\boldsymbol{G}_{0}(y)$
initial state	u_{ε}^{0}	$\xrightarrow[M_{\varepsilon}]{\text { upscaling }}$	y^{0}
time evolution	\downarrow	\downarrow	
	$u_{\varepsilon}(t)=\boldsymbol{S}_{\varepsilon}\left(t, u_{\varepsilon}^{0}\right) \xrightarrow[M_{\varepsilon}]{\text { upscaling }} y(t)=\boldsymbol{S}_{0}\left(t, y^{0}\right)$		

Mathematical task: Prove $\lim _{\varepsilon \rightarrow 0} \boldsymbol{M}_{\varepsilon} \circ \boldsymbol{S}_{\varepsilon}(t, \cdot)=\boldsymbol{S}_{0}\left(t, \lim _{\varepsilon \rightarrow 0} \boldsymbol{M}_{\varepsilon}(\cdot)\right)$
We say that the PDEs $\dot{u}=G_{\varepsilon}(u)$ evolutionary converge to $\dot{u}=G_{0}(u)$.
Γ-convergence is a purely static concept
At first sight there is no relation to evolution.

- $\mathcal{J}_{0}, \mathcal{J}_{\varepsilon}: \boldsymbol{X} \rightarrow \mathbb{R}$ are a functionals, \boldsymbol{X} sep./refl. Banach space
- If $\mathcal{J}_{\varepsilon} \stackrel{\Gamma}{\rightleftharpoons} \mathcal{J}_{0}$, then solutions of minimization problems converge:
$\forall \ell \in \boldsymbol{X}^{*}$ we have

$$
\left.\begin{array}{l}
u_{\varepsilon} \in \underset{w \in \boldsymbol{X}}{\operatorname{ArgMin}}\left(\mathcal{J}_{\varepsilon}(w)-\langle\ell, w\rangle\right) \\
\text { and } u_{\varepsilon} \rightharpoonup u
\end{array}\right\} \Longrightarrow u \in \underset{w \in \boldsymbol{X}}{\operatorname{ArgMin}}\left(\mathcal{J}_{0}(w)-\langle\ell, w\rangle\right)
$$

1. Introduction

Γ-convergence is a purely static concept
At first sight there is no relation to evolution.

- $\mathcal{J}_{0}, \mathcal{J}_{\varepsilon}: \boldsymbol{X} \rightarrow \mathbb{R}$ are a functionals, \boldsymbol{X} sep./refl. Banach space
- If $\mathcal{J}_{\varepsilon} \stackrel{\Gamma}{\sqsupset} \mathcal{J}_{0}$, then solutions of minimization problems converge:
$\forall \ell \in \boldsymbol{X}^{*}$ we have

$$
\left.\begin{array}{c}
u_{\varepsilon} \in \underset{w \in \boldsymbol{X}}{\operatorname{ArgMin}}\left(\mathcal{J}_{\varepsilon}(w)-\langle\ell, w\rangle\right) \\
\text { and } u_{\varepsilon} \rightharpoonup u
\end{array}\right\} \Longrightarrow u \in \underset{w \in \boldsymbol{X}}{\operatorname{ArgMin}}\left(\mathcal{J}_{0}(w)-\langle\ell, w\rangle\right)
$$

Evolutionary $\mathrm{\Gamma}$-convergence means "evolutionary convergence" for time-dependent O/PDEs that are given in terms of functionals.
\rightsquigarrow evolution/dynamics driven by functionals

An example for evolution driven by functionals

- the damped wave equation

$$
\rho(x) \ddot{u}(t, x)+\delta(x) \dot{u}(t, x)=\operatorname{div}(A(x) \nabla u(t, x))+f(t, x) \text { in } \Omega+\text { Dir.B.C. }
$$

What are the relevant functionals?

1. Introduction

An example for evolution driven by functionals

- the damped wave equation

$$
\rho(x) \ddot{u}(t, x)+\delta(x) \dot{u}(t, x)=\operatorname{div}(A(x) \nabla u(t, x))+f(t, x) \text { in } \Omega+\text { Dir.B.C. }
$$

What are the relevant functionals?

- kinetic energy $\mathcal{K}(\dot{u})=\int_{\Omega} \frac{\rho}{2} \dot{u}^{2} \mathrm{~d} x$
- potential energy $\mathcal{E}(t, u)=\int_{\Omega}\left(\frac{1}{2} \nabla u \cdot A \nabla u-u f(t)\right) \mathrm{d} x$

1. Introduction

An example for evolution driven by functionals
the damped wave equation

$$
\rho(x) \ddot{u}(t, x)+\delta(x) \dot{u}(t, x)=\operatorname{div}(A(x) \nabla u(t, x))+f(t, x) \text { in } \Omega+\text { Dir.B.C. }
$$

What are the relevant functionals?

- kinetic energy $\mathcal{K}(\dot{u})=\int_{\Omega} \frac{\rho}{2} \dot{u}^{2} \mathrm{~d} x$
- potential energy $\mathcal{E}(t, u)=\int_{\Omega}\left(\frac{1}{2} \nabla u \cdot A \nabla u-u f(t)\right) \mathrm{d} x$
- dissipation potential $\mathcal{R}(\dot{u})=\int_{\Omega} \frac{\delta}{2} \dot{u}^{2} \mathrm{~d} x$

The PDE is given in terms of the three functionals \mathcal{K}, \mathcal{E}, and \mathcal{R} via the force balance (cf. lectures by T. Roubíček or E. Davoli)

$$
0=\underbrace{\frac{\partial}{\partial t}\left(\mathrm{D}_{\dot{u}} \mathcal{K}(\dot{u})\right)}_{\text {inertial terms }}+\underbrace{\mathrm{D}_{\dot{u}} \mathcal{R}(\dot{u})}_{\text {dissipation }}+\underbrace{\mathrm{D}_{u} \mathcal{E}(t, u)}_{\text {potential force }}
$$

Slightly more general O/PDE driven by functionals

$$
(\mathrm{DE})_{\varepsilon} \quad 0=\frac{\partial}{\partial t}\left(\mathrm{D}_{\dot{u}} \mathcal{K}_{\varepsilon}(u, \dot{u})\right)+\mathrm{D}_{\dot{u}} \mathcal{R}_{\varepsilon}(u, \dot{u})+\mathrm{D}_{u} \varepsilon_{\varepsilon}(t, u)
$$

Naïve hope of evolutionary Γ convergence

$$
\left.\begin{array}{l}
\mathcal{K}_{\varepsilon} \stackrel{\Gamma}{\rightharpoonup} \mathcal{K}_{0} \\
\mathcal{R}_{\varepsilon} \xrightarrow{\stackrel{\Gamma}{\rightharpoonup}} \mathcal{R}_{0} \\
\varepsilon_{\varepsilon} \stackrel{\Gamma}{\rightharpoonup} \varepsilon_{0}
\end{array}\right\} \quad \Longrightarrow \quad(\mathrm{DE})_{\varepsilon} \xrightarrow{\text { evol }}(\mathrm{DE})_{0}
$$

Slightly more general O/PDE driven by functionals

$$
(\mathrm{DE})_{\varepsilon} \quad 0=\frac{\partial}{\partial t}\left(\mathrm{D}_{\dot{u}} \mathcal{K}_{\varepsilon}(u, \dot{u})\right)+\mathrm{D}_{\dot{u}} \mathcal{R}_{\varepsilon}(u, \dot{u})+\mathrm{D}_{u} \varepsilon_{\varepsilon}(t, u)
$$

Naïve hope of evolutionary Γ convergence

$$
\left.\begin{array}{l}
\mathcal{K}_{\varepsilon} \stackrel{\Gamma}{\square} \mathcal{K}_{0} \\
\mathcal{R}_{\varepsilon} \xrightarrow{\stackrel{\Gamma}{\rightharpoonup}} \mathcal{R}_{0} \\
\mathcal{E}_{\varepsilon} \stackrel{\Gamma}{\square} \mathcal{E}_{0}
\end{array}\right\} \quad \Longrightarrow \quad(\mathrm{DE})_{\varepsilon} \xrightarrow{\text { evol }}(\mathrm{DE})_{0}
$$

- In general, this is wrong since the convergences need to be "compatible". (In numerics: discretizations of different parts need to be compatible.)
- True goal: Find sufficient compatibility conditions for the convergences.

Overview

1. Introduction
2. Gradient systems
3. Motivating examples
4. Energy-dissipation formulations
5. Evolutionary variational inequality (EVI)
6. Rate-independent systems (RIS)

Overview

1. Introduction

2. Gradient systems

2.1. General definitions for gradient systems
2.2. Evolutionary Γ-convergence for GS
3. Motivating examples
4. Energy-dissipation formulations
5. Evolutionary variational inequality (EVI)
6. Rate-independent systems (RIS)

2. Gradient systems

Gradient flows $=$ evolution driven by gradient systems $(\boldsymbol{X}, \varepsilon, \mathbb{G})$

- $u \in \boldsymbol{X}=$ state space (closed convex subset of a reflexive Banach space)
$\square \mathcal{E}:[0, T] \times \boldsymbol{X} \rightarrow \mathbb{R}_{\infty}:=\mathbb{R} \cup\{\infty\}$ energy functional
$\mathfrak{G}(u): \mathrm{T}_{u} \boldsymbol{X}=\boldsymbol{X} \rightarrow \mathrm{T}_{u}^{*} \boldsymbol{X}=\boldsymbol{X}^{*}$ metric structure
(Riemannian tensor with $\mathbb{G}(u)=\mathbb{G}(u)^{*} \geq 0$)
A gradient system induces a DE via (the force balance)

$$
0=\underbrace{\mathbb{G}(u) \dot{u}}_{\text {visc.force }}+\underbrace{\mathrm{D}_{u} \mathcal{E}(t, u)}_{\text {rest.force }} \in \mathrm{T}_{u}^{*} \boldsymbol{X}=\boldsymbol{X}^{*}
$$

The gradient $\nabla \mathcal{E}$ of \mathcal{E} has the form

2. Gradient systems

Gradient flows $=$ evolution driven by gradient systems $(\boldsymbol{X}, \varepsilon, \mathbb{G})$

- $u \in \boldsymbol{X}=$ state space (closed convex subset of a reflexive Banach space)
$\square \mathcal{E}:[0, T] \times \boldsymbol{X} \rightarrow \mathbb{R}_{\infty}:=\mathbb{R} \cup\{\infty\}$ energy functional
$\mathfrak{G}(u): \mathrm{T}_{u} \boldsymbol{X}=\boldsymbol{X} \rightarrow \mathrm{T}_{u}^{*} \boldsymbol{X}=\boldsymbol{X}^{*}$ metric structure
(Riemannian tensor with $\mathbb{G}(u)=\mathbb{G}(u)^{*} \geq 0$)
A gradient system induces a DE via (the force balance)

$$
0=\underbrace{\mathbb{G}(u) \dot{u}}_{\text {visc.force }}+\underbrace{\mathrm{D}_{u} \mathcal{E}(t, u)}_{\text {rest.force }} \in \mathrm{T}_{u}^{*} \boldsymbol{X}=\boldsymbol{X}^{*}
$$

The gradient $\nabla \mathcal{E}$ of \mathcal{E} has the form $\nabla_{\mathbb{G}} \mathcal{E}(t, u)=\mathbb{G}(u)^{-1} \mathrm{D}_{u} \mathcal{E}(t, u)$.
This gives the equivalent formulation (gradient flow)

$$
\dot{u}=-\nabla_{\mathbb{G}} \mathcal{E}(t, u)=-\mathbb{G}(u)^{-1} \mathrm{D}_{u} \mathcal{E}(t, u) \in \mathrm{T}_{u} \boldsymbol{X}=\boldsymbol{X}
$$

2. Gradient systems

Gradient flows $=$ evolution driven by gradient systems $(\boldsymbol{X}, \varepsilon, \mathbb{G})$

- $u \in \boldsymbol{X}=$ state space (closed convex subset of a reflexive Banach space)
$\square \mathcal{E}:[0, T] \times \boldsymbol{X} \rightarrow \mathbb{R}_{\infty}:=\mathbb{R} \cup\{\infty\}$ energy functional
$\mathfrak{G}(u): \mathrm{T}_{u} \boldsymbol{X}=\boldsymbol{X} \rightarrow \mathrm{T}_{u}^{*} \boldsymbol{X}=\boldsymbol{X}^{*}$ metric structure
(Riemannian tensor with $\mathbb{G}(u)=\mathbb{G}(u)^{*} \geq 0$)
A gradient system induces a DE via (the force balance)

$$
0=\underbrace{\mathbb{G}(u) \dot{u}}_{\text {visc.force }}+\underbrace{\mathrm{D}_{u} \mathcal{E}(t, u)}_{\text {rest.force }} \in \mathrm{T}_{u}^{*} \boldsymbol{X}=\boldsymbol{X}^{*}
$$

The gradient $\nabla \mathcal{E}$ of \mathcal{E} has the form $\nabla_{\mathbb{G}} \mathcal{E}(t, u)=\mathbb{G}(u)^{-1} \mathrm{D}_{u} \mathcal{E}(t, u)$.
This gives the equivalent formulation (gradient flow)

$$
\dot{u}=-\nabla_{\mathbb{G}} \mathcal{E}(t, u)=-\mathbb{G}(u)^{-1} \mathrm{D}_{u} \mathcal{E}(t, u) \in \mathrm{T}_{u} \boldsymbol{X}=\boldsymbol{X}
$$

2. Gradient systems

$0=\mathbb{G}(u) \dot{u}+\mathrm{D}_{u} \mathcal{E}(t, u) \in \boldsymbol{X}^{*} \quad \Longleftrightarrow \quad \dot{u}=-\mathbb{K}(u) \mathrm{D}_{u} \mathcal{E}(t, u) \in \boldsymbol{X}$
The metric tensor \mathbb{G} is uniquely characterized by a quadratic form, namely the (primal) dissipation potential

$$
\mathcal{R}(u, \dot{u}):=\frac{1}{2}\langle\underbrace{\mathbb{G}(u) \dot{u}}, \underbrace{\dot{u}}\rangle \quad \Longrightarrow \quad \mathrm{D}_{\dot{u}} \mathcal{R}(u, \dot{u})=\mathbb{G}(u) \dot{u} \in \boldsymbol{X}^{*}
$$

We introduce the short-hand $\mathbb{K}(u):=\mathbb{G}(u)^{-1}$ and define the dual dissipation potential

$$
\mathcal{R}^{*}(u, \xi):=\frac{1}{2}\langle\underbrace{\xi}, \underbrace{\mathbb{K}(u) \xi}\rangle \quad \Longrightarrow \quad \mathrm{D}_{\xi} \mathcal{R}^{*}(u, \xi)=\mathbb{K}(u) \xi \in \boldsymbol{X}
$$

2. Gradient systems

$0=\mathbb{G}(u) \dot{u}+\mathrm{D}_{u} \mathcal{E}(t, u) \in \boldsymbol{X}^{*} \quad \Longleftrightarrow \quad \dot{u}=-\mathbb{K}(u) \mathrm{D}_{u} \mathcal{E}(t, u) \in \boldsymbol{X}$
The metric tensor \mathbb{G} is uniquely characterized by a quadratic form, namely the (primal) dissipation potential

$$
\mathcal{R}(u, \dot{u}):=\frac{1}{2}\langle\underbrace{\mathbb{G}(u) \dot{u}}, \underbrace{\dot{u}}\rangle \quad \Longrightarrow \quad \mathrm{D}_{\dot{u}} \mathcal{R}(u, \dot{u})=\mathbb{G}(u) \dot{u} \in \boldsymbol{X}^{*}
$$

We introduce the short-hand $\mathbb{K}(u):=\mathbb{G}(u)^{-1}$ and define the dual dissipation potential

$$
\mathcal{R}^{*}(u, \xi):=\frac{1}{2}\langle\underbrace{\xi}, \underbrace{\mathbb{K}(u) \xi}\rangle \quad \Longrightarrow \quad \mathrm{D}_{\xi} \mathcal{R}^{*}(u, \xi)=\mathbb{K}(u) \xi \in \boldsymbol{X}
$$

- Gradient systems can also be denoted by

$$
(\boldsymbol{X}, \mathcal{E}, \mathbb{G})=(\boldsymbol{X}, \mathcal{E}, \mathcal{R})=\left(\boldsymbol{X}, \mathcal{E}, \mathcal{R}^{*}\right)=(\boldsymbol{X}, \mathcal{E}, \mathbb{K})
$$

- The induced equation can be written as

$$
0=\mathrm{D}_{\dot{u}} \mathcal{R}(u, \dot{u})+\mathrm{D}_{u} \mathcal{E}(t, u) \in \boldsymbol{X}^{*} \quad \Longleftrightarrow \quad \dot{u}=\mathrm{D}_{\xi} \mathcal{R}^{*}\left(u,-\mathrm{D}_{u} \mathcal{E}(t, u)\right) \in \boldsymbol{X}
$$

2. Gradient systems

Generalized gradient systems ($\boldsymbol{X}, \mathcal{E}, \mathcal{R}$)
$\mathcal{R}(u, \dot{u})$ general dissipation potential, which means that

$$
\mathcal{R}(u, \cdot): \boldsymbol{X} \rightarrow[0, \infty] \text { is convex, lower semi-continuous, and } \mathcal{R}(u, 0)=0 .
$$

The possible dissipative forces are given by the (set-valued) convex subdifferential $\partial_{\dot{u}} \mathcal{R}(u, \dot{u})=\left\{\xi \in \boldsymbol{X}^{*} \mid \forall w \in \boldsymbol{X}: \mathcal{R}(u, w) \geq \mathcal{R}(u, \dot{u})+\langle\xi, w-u\rangle\right\}$.

$$
\text { (DE) } \quad 0 \in \partial_{\dot{u}} \mathcal{R}(u, \dot{u})+\mathrm{D}_{u} \mathcal{E}(t, u)
$$

Classical gradient system $\mathcal{R}(u, v)=\frac{1}{2}\langle\mathbb{G}(u) v, v\rangle$ (quadratic)
More general $\mathcal{R}(u, v)=\|\mathbb{A}(u) v\|_{B}+\frac{1}{2}\|\mathbb{V}(u) v\|_{H}^{2}+\frac{1}{p}\|\mathbb{M}(u)\|_{Z}^{p}$

2. Gradient systems

Generalized gradient systems ($\boldsymbol{X}, \mathcal{E}, \mathcal{R}$)
$\mathcal{R}(u, \dot{u})$ general dissipation potential, which means that

$$
\mathcal{R}(u, \cdot): \boldsymbol{X} \rightarrow[0, \infty] \text { is convex, lower semi-continuous, and } \mathcal{R}(u, 0)=0 .
$$

The possible dissipative forces are given by the (set-valued) convex subdifferential $\partial_{\dot{u}} \mathcal{R}(u, \dot{u})=\left\{\xi \in \boldsymbol{X}^{*} \mid \forall w \in \boldsymbol{X}: \mathcal{R}(u, w) \geq \mathcal{R}(u, \dot{u})+\langle\xi, w-u\rangle\right\}$.

$$
\text { (DE) } \quad 0 \in \partial_{\dot{u}} \mathcal{R}(u, \dot{u})+\mathrm{D}_{u} \mathcal{E}(t, u)
$$

Classical gradient system $\mathcal{R}(u, v)=\frac{1}{2}\langle\mathbb{G}(u) v, v\rangle$ (quadratic)
More general $\mathcal{R}(u, v)=\|\mathbb{A}(u) v\|_{B}+\frac{1}{2}\|\mathbb{V}(u) v\|_{H}^{2}+\frac{1}{p}\|\mathbb{M}(u)\|_{Z}^{p}$
In multiscale modeling on is interested in
Γ-convergence for families of gradient systems ($\boldsymbol{X}, \mathcal{E}_{\varepsilon}, \mathcal{R}_{\varepsilon}$)
-homogenization

- dimension reductions (plates, interfaces, ...)
- singular perturbations
- numerical approximation $\varepsilon=h \rightarrow 0$

Overview

1. Introduction

2. Gradient systems

2.1. General definitions for gradient systems
2.2. Evolutionary Γ-convergence for GS
3. Motivating examples
4. Energy-dissipation formulations
5. Evolutionary variational inequality (EVI)
6. Rate-independent systems (RIS)

2. Gradient systems

Our working definition for this course:
Definition (Γ-convergence of geneneralized gradient systems $=$ evolutionary Γ-convergence)
We write $\left(\boldsymbol{X}, \varepsilon_{\varepsilon}, \mathcal{R}_{\varepsilon}\right) \xrightarrow{\text { evol }}\left(\boldsymbol{X}, \varepsilon_{0}, \mathcal{R}_{0}\right)$ if and only if

$$
\left.\begin{array}{c}
u^{\varepsilon}:[0, T] \rightarrow \boldsymbol{X} \\
\text { solves }\left(\boldsymbol{X}, \mathcal{\varepsilon}_{\varepsilon}, \mathcal{R}_{\varepsilon}\right) \\
u^{\varepsilon}(0) \rightharpoonup u_{0}, \\
\mathcal{E}_{\varepsilon}\left(u^{\varepsilon}(0)\right) \rightarrow \mathcal{E}_{0}\left(u_{0}\right)
\end{array}\right\} \Longrightarrow\left\{\begin{array}{c}
\exists u \text { sln. of }\left(\boldsymbol{X}, \varepsilon_{0}, \mathcal{R}_{0}\right) \text { with } u(0)=u_{0} \\
\text { and a subsequence } \varepsilon_{k} \rightarrow 0: \\
\forall t \in[0, T]: u^{\varepsilon_{k}}(t) \rightharpoonup u(t) \\
\mathcal{E}_{\varepsilon}\left(u^{\varepsilon_{k}}(t)\right) \rightarrow \mathcal{E}_{0}(u(t))
\end{array}\right.
$$

Aim: Find conditions of $\left(\mathcal{E}_{\varepsilon}, \mathcal{R}_{\varepsilon}\right) \rightsquigarrow\left(\mathcal{E}_{0}, \mathcal{R}_{0}\right)$ to guarantee evolutionary Γ-convergence.

Overview

1. Introduction
2. Gradient systems
3. Motivating examples
4. Energy-dissipation formulations
5. Evolutionary variational inequality (EVI)
6. Rate-independent systems (RIS)

Overview

1. Introduction
2. Gradient systems
3. Motivating examples
3.1. Possible applications
3.2. Γ-convergence for (static) functionals
3.3. An ODE problem
3.4. Homogenization
4. Energy-dissipation formulations
5. Evolutionary variational inequality (EVI)
6. Rate-independent systems (RIS)

3. Motivating examples

Why do we want to use gradient structures?

- They displays the physics behind:
one DE may have several gradient structures
The gradient structure defines function space
energy space $u \in \boldsymbol{Z} \Leftrightarrow \mathcal{E}(t, u)<\infty$
dynamic space $\dot{u} \in \boldsymbol{X} \Leftrightarrow \mathcal{R}(\dot{u})<\infty$
- Using the gradient structure may simplify the proof of showing evolutionary convergence

However: Evol. Γ-conv. for $\left(\boldsymbol{X}, \mathcal{E}_{\varepsilon}, \mathbb{G}_{\varepsilon}\right) \underset{\nLeftarrow}{\nRightarrow}$ Evol. conv. for $\dot{u}=-\nabla_{\mathbb{G}_{\varepsilon}} \mathcal{E}_{\varepsilon}(u)$

3. Motivating examples

Why do we want to use gradient structures?

- They displays the physics behind:
one DE may have several gradient structures
\square The gradient structure defines function space
energy space $u \in \boldsymbol{Z} \Leftrightarrow \mathcal{E}(t, u)<\infty$ dynamic space $\dot{u} \in \boldsymbol{X} \Leftrightarrow \mathcal{R}(\dot{u})<\infty$
- Using the gradient structure may simplify the proof of showing evolutionary convergence

However: Evol. Γ-conv. for $\left(\boldsymbol{X}, \mathcal{E}_{\varepsilon}, \mathbb{G}_{\varepsilon}\right) \underset{\nLeftarrow}{\nRightarrow}$ Evol. conv. for $\dot{u}=-\nabla_{\mathbb{G}_{\varepsilon}} \varepsilon_{\varepsilon}(u)$

- Most importantly: We will see an example, where one equation has different gradient structures having evolutionary Γ-limits that do not coincide

3. Motivating examples

Heat equation $\dot{\theta}=\kappa \Delta \theta \quad \neq \quad$ Diffusion equation $\dot{u}=m \Delta u$
(This will important for coupling reaction-diffusion and heat transfer in one thermodynamic framework. \rightsquigarrow Tutorial)

3. Motivating examples

Heat equation for temperature \neq diffusion equation
Diffusion equation $\dot{v}=m \Delta v=-\mathbb{K}_{\text {diff }}(v) \mathrm{D} \mathcal{E}_{\text {diff }}(v)$ with
$\mathcal{E}_{\text {diff }}(v)=\int_{\Omega} v \log v-v \mathrm{~d} x$ and $\mathbb{K}_{\text {diff }}(v) \xi=-m \operatorname{div}(v \nabla \xi) \quad$ JKO/Wasserstein
Pure heat equation for temperature
total entropy $\mathcal{S}(\theta):=\int_{\Omega} S(\theta(x)) \mathrm{d} x$
total energy $\mathcal{E}(\theta):=\int_{\Omega} E(\theta(x)) \mathrm{d} x$ with Gibbs relation $0<c(\theta)=E^{\prime}(\theta)=\frac{1}{\theta} S^{\prime}(\theta)$ (e.g. $S(\theta)=s_{0} \log \theta$ and $E(\theta)=s_{0} \theta$)

3. Motivating examples

Heat equation for temperature \neq diffusion equation
Diffusion equation $\dot{v}=m \Delta v=-\mathbb{K}_{\text {diff }}(v) \mathrm{D} \mathcal{E}_{\text {diff }}(v)$ with
$\mathcal{E}_{\text {diff }}(v)=\int_{\Omega} v \log v-v \mathrm{~d} x$ and $\mathbb{K}_{\text {diff }}(v) \xi=-m \operatorname{div}(v \nabla \xi) \quad$ JKO/Wasserstein
Pure heat equation for temperature
total entropy $\mathcal{S}(\theta):=\int_{\Omega} S(\theta(x)) \mathrm{d} x$
total energy $\mathcal{E}(\theta):=\int_{\Omega} E(\theta(x)) \mathrm{d} x$ with Gibbs relation $0<c(\theta)=E^{\prime}(\theta)=\frac{1}{\theta} S^{\prime}(\theta)$ (e.g. $S(\theta)=s_{0} \log \theta$ and $E(\theta)=s_{0} \theta$)

Physical heat equation: $c(\theta) \dot{\theta}=\operatorname{div}(\kappa(\theta) \nabla \theta)$
Physical gradient structure $\dot{\theta}=+\mathbb{K}_{\text {heat }}(\theta) \mathrm{DS}(\theta)$

3. Motivating examples

Heat equation for temperature \neq diffusion equation
Diffusion equation $\dot{v}=m \Delta v=-\mathbb{K}_{\text {diff }}(v) \mathrm{D} \mathcal{E}_{\text {diff }}(v)$ with
$\mathcal{E}_{\text {diff }}(v)=\int_{\Omega} v \log v-v \mathrm{~d} x$ and $\mathbb{K}_{\text {diff }}(v) \xi=-m \operatorname{div}(v \nabla \xi) \quad$ JKO/Wasserstein
Pure heat equation for temperature
total entropy $\mathcal{S}(\theta):=\int_{\Omega} S(\theta(x)) \mathrm{d} x$
total energy $\mathcal{E}(\theta):=\int_{\Omega} E(\theta(x)) \mathrm{d} x$ with Gibbs relation $0<c(\theta)=E^{\prime}(\theta)=\frac{1}{\theta} S^{\prime}(\theta)$

$$
\text { (e.g. } S(\theta)=s_{0} \log \theta \text { and } E(\theta)=s_{0} \theta \text {) }
$$

Physical heat equation: $c(\theta) \dot{\theta}=\operatorname{div}(\kappa(\theta) \nabla \theta)$
Physical gradient structure $\dot{\theta}=+\mathbb{K}_{\text {heat }}(\theta) \operatorname{DS}(\theta)$
Only choice: $\mathbb{K}_{\text {heat }}(\theta) \xi=-\frac{1}{E^{\prime}(\theta)} \operatorname{div}\left(\mu(\theta) \nabla\left(\frac{\xi}{E^{\prime}(\theta)}\right)\right)\left(\right.$ note $\mathbb{K}_{\text {heat }}(\theta) \mathrm{D} \mathcal{E}(\theta) \equiv 0$! $)$
Using $\frac{S^{\prime}(\theta)}{E^{\prime}(\theta)}=\frac{1}{\theta}$ we have to choose $\mu(\theta)=\theta^{2} \kappa(\theta)$

3. Motivating examples

Heat equation for temperature \neq diffusion equation
Diffusion equation $\dot{v}=m \Delta v=-\mathbb{K}_{\text {diff }}(v) \mathrm{D} \mathcal{E}_{\text {diff }}(v)$ with
$\mathcal{E}_{\text {diff }}(v)=\int_{\Omega} v \log v-v \mathrm{~d} x$ and $\mathbb{K}_{\text {diff }}(v) \xi=-m \operatorname{div}(v \nabla \xi) \quad$ JKO/Wasserstein
Pure heat equation for temperature
total entropy $\mathcal{S}(\theta):=\int_{\Omega} S(\theta(x)) \mathrm{d} x$
total energy $\mathcal{E}(\theta):=\int_{\Omega} E(\theta(x)) \mathrm{d} x$ with Gibbs relation $0<c(\theta)=E^{\prime}(\theta)=\frac{1}{\theta} S^{\prime}(\theta)$

$$
\text { (e.g. } S(\theta)=s_{0} \log \theta \text { and } E(\theta)=s_{0} \theta \text {) }
$$

Physical heat equation: $c(\theta) \dot{\theta}=\operatorname{div}(\kappa(\theta) \nabla \theta)$
Physical gradient structure $\dot{\theta}=+\mathbb{K}_{\text {heat }}(\theta) \operatorname{DS}(\theta)$
For coupling it is better to use the internal energy $u=E(\theta)$ as variable $\widehat{\varepsilon}(u)=\int_{\Omega} u(x) \mathrm{d} x \quad$ and $\widehat{\mathcal{S}}(u)=\int_{\Omega} \widehat{S}(u(x)) \mathrm{d} x$
Equivalent gradient structure $\dot{u}=\widehat{\mathbb{K}}(u) \mathrm{D} \widehat{\mathcal{S}}(u)$ with $\widehat{\mathbb{K}}(u) \eta=-\operatorname{div}(\widehat{\mu}(u) \nabla \eta)$

