# **Overview**

- 1. Introduction
- 2. Gradient systems
- 3. Motivating examples

#### 4. Energy-dissipation formulations

- 4.1. Equivalent formulations via Legendre transform
- 4.2. The Sandier-Serfaty approach using EDP
- 4.3. Choice of GS determines effective equation
- 4.4. General evolutionary  $\Gamma\text{-convergence}$  using EDP
- 4.5. From viscous to rate-independent friction
- 5. Evolutionary variational inequality (EVI)





#### **One equation** $\dot{u} = \mathcal{V}(u)$ may have different gradient structures:

- Gradient structure  $\dot{u} = -\mathbb{K}(u)\mathcal{E}(u)$  is additional physical information.
- Different physical problems may have the same PDE but different GS.
  heat equation  $\dot{\theta} = \Delta \theta \quad \neq \quad \dot{u} = \Delta u$  diffusion equation
- In a multiscale problem only certain GS may have a pE-limit



#### One equation $\dot{u} = \mathcal{V}(u)$ may have different gradient structures:

- Gradient structure  $\dot{u} = -\mathbb{K}(u)\mathcal{E}(u)$  is additional physical information.
- Different physical problems may have the same PDE but different GS.
  heat equation  $\dot{\theta} = \Delta \theta \quad \neq \quad \dot{u} = \Delta u$  diffusion equation
- In a multiscale problem only certain GS may have a pE-limit
- Even more dramatic: Different gradient structures may lead to different effective equations!

Tartar 1990: Nonlocal homogenization of hyperbolic equations: $\Omega = ]0, \ell[, u^{\varepsilon}(t, x) \in \mathbb{R}]$  $\dot{u}^{\varepsilon}(t, x) = -a(x/\varepsilon)u^{\varepsilon}(t, x)$  $soln. u^{\varepsilon}(t, x) = u^{\varepsilon}(0, x) \exp(-ta(x/\varepsilon))$ Problem  $u^{\varepsilon}(0, \cdot) \rightharpoonup u_0^0 \not\Rightarrow u^{\varepsilon}(t, \cdot) = u_0^0 \exp(-t a_{eff})$ 



- 0 (a

Leibniz-Gemeinschaft Z

## Philosophy: GS of $\dot{u}^{\varepsilon}(t,x) = -a(x/\varepsilon)u^{\varepsilon}(t,x)$ is important!

$$\begin{aligned} (\boldsymbol{X}, \mathcal{E}_{\varepsilon}, \mathcal{R}_{\varepsilon}) \text{ with } \boldsymbol{X} &= L^{2}(\Omega) \\ (\mathsf{A}) \ \mathcal{E}_{\varepsilon}(u) &= \int_{\Omega} \frac{a(x/\varepsilon)}{2} u(x)^{2} \, \mathrm{d}x \\ \mathcal{E}_{\varepsilon} \xrightarrow{\Gamma} \mathcal{E}_{\mathsf{harm}} : u \mapsto \int_{\Omega} \frac{a_{\mathsf{harm}}}{2} u^{2} \, \mathrm{d}x \\ \mathsf{Guess} (\mathsf{A}) \text{ for limit } \underbrace{\dot{u} = -a_{\mathsf{harm}} u} \end{aligned} \quad \text{and } \mathcal{R}_{\varepsilon}(\dot{u}) &= \mathcal{R}(\dot{u}) = \int_{\Omega} \frac{1}{2} \dot{u}(x)^{2} \, \mathrm{d}x \\ \mathcal{R}_{\varepsilon} &= \mathcal{R} \end{aligned}$$

$$(\mathsf{cf. Braides 2013})$$



Philosophy: GS of  $\dot{u}^{\varepsilon}(t,x) = -a(x/\varepsilon)u^{\varepsilon}(t,x)$  is important!

$$\begin{aligned} (\boldsymbol{X}, \mathcal{E}_{\varepsilon}, \mathcal{R}_{\varepsilon}) \text{ with } \boldsymbol{X} &= L^{2}(\Omega) \\ (\mathsf{A}) \ \mathcal{E}_{\varepsilon}(u) &= \int_{\Omega} \frac{a(x/\varepsilon)}{2} u(x)^{2} \, \mathrm{d}x \\ \mathcal{E}_{\varepsilon} \xrightarrow{\Gamma} \mathcal{E}_{\mathsf{harm}} : u \mapsto \int_{\Omega} \frac{a_{\mathsf{harm}}}{2} u^{2} \, \mathrm{d}x \\ \mathsf{Guess} (\mathsf{A}) \text{ for limit } \underbrace{\dot{u} = -a_{\mathsf{harm}} u} \end{aligned} \quad \text{and } \mathcal{R}_{\varepsilon}(\dot{u}) &= \mathcal{R}(\dot{u}) = \int_{\Omega} \frac{1}{2} \dot{u}(x)^{2} \, \mathrm{d}x \\ \mathcal{R}_{\varepsilon} &= \mathcal{R} \\ \mathsf{Guess} (\mathsf{A}) \text{ for limit } \underbrace{\dot{u} = -a_{\mathsf{harm}} u} \end{aligned}$$

(B) 
$$\overline{\mathcal{E}}_{\varepsilon}(u) = \overline{\mathcal{E}}(u) = \int_{\Omega} \frac{1}{2} u(x)^2 dx$$
  
 $\overline{\mathcal{E}}_{\varepsilon} = \overline{\mathcal{E}}$   
Guess (B) for limit  $\dot{u} = -a_{\text{arith}} u$ 

and 
$$\overline{\mathcal{R}}_{\varepsilon}(\dot{u}) = \int_{\Omega} \frac{1}{2a(x/\varepsilon)} \dot{u}(x)^2 dx$$
  
 $\overline{\mathcal{R}}_{\varepsilon}(\dot{u}) \stackrel{\Gamma}{\longrightarrow} \overline{\mathcal{R}}_{0}(\dot{u}) = \int_{\Omega} \frac{1}{2a_{\text{arith}}} \dot{u}^2 dx$ 

Is (A) or (B) correct? Or both? or None?





Leibniz-Gemeinschaft

## Philosophy: GS of $\dot{u}^{\varepsilon}(t,x) = -a(x/\varepsilon)u^{\varepsilon}(t,x)$ is important!

$$\begin{aligned} (\boldsymbol{X}, \mathcal{E}_{\varepsilon}, \mathcal{R}_{\varepsilon}) \text{ with } \boldsymbol{X} &= L^{2}(\Omega) \\ (\mathsf{A}) \ \mathcal{E}_{\varepsilon}(u) &= \int_{\Omega} \frac{a(x/\varepsilon)}{2} u(x)^{2} \, \mathrm{d}x & \text{ and } \mathcal{R}_{\varepsilon}(\dot{u}) &= \mathcal{R}(\dot{u}) = \int_{\Omega} \frac{1}{2} \dot{u}(x)^{2} \, \mathrm{d}x \\ \mathcal{E}_{\varepsilon} \xrightarrow{\Gamma} \mathcal{E}_{\mathsf{harm}} : u \mapsto \int_{\Omega} \frac{a_{\mathsf{harm}}}{2} u^{2} \, \mathrm{d}x & \mathcal{R}_{\varepsilon} &= \mathcal{R} \\ & \mathsf{Guess (A) for limit } \dot{u} &= -a_{\mathsf{harm}} u \end{aligned}$$

(B) 
$$\overline{\mathcal{E}}_{\varepsilon}(u) = \overline{\mathcal{E}}(u) = \int_{\Omega} \frac{1}{2} u(x)^2 \, \mathrm{d}x$$
  
 $\overline{\mathcal{E}}_{\varepsilon} = \overline{\mathcal{E}}$ 

and 
$$\overline{\mathcal{R}}_{\varepsilon}(\dot{u}) = \int_{\Omega} \frac{1}{2a(x/\varepsilon)} \dot{u}(x)^2 dx$$
  
 $\overline{\mathcal{R}}_{\varepsilon}(\dot{u}) \stackrel{\Gamma}{\rightharpoonup} \overline{\mathcal{R}}_{0}(\dot{u}) = \int_{\Omega} \frac{1}{2a_{\mathsf{arith}}} \dot{u}^2 dx$ 

Guess (B) for limit  $\dot{u} = -a_{arith}u$ 

Is (A) or (B) correct? Or both? or None? Neither  $(L^2(\Omega), \mathcal{E}_{\varepsilon}, \mathcal{R})$  nor  $(L^2(\Omega), \overline{\mathcal{E}}, \overline{\mathcal{R}}_{\varepsilon})$  do *pE*-converge!



Two other gradient structures inspired by different physics (namely by transport theory and growth or death of species)  $X_{\mathrm{M}} := \mathrm{M}_{\geq 0}(\overline{\Omega})$  non-negative Radon measures (C)  $\tilde{\mathcal{E}}_{\varepsilon}(u) = \int_{\Omega} a(\frac{x}{\varepsilon})u(x) \,\mathrm{d}x$  and  $\tilde{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \int_{\Omega} \frac{\dot{u}(x)^2}{2u(x)} \,\mathrm{d}x$  $\mathrm{D}_{\dot{u}}\tilde{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \frac{\dot{u}}{u} = -a(\frac{x}{\varepsilon}) = -\mathrm{D}\tilde{\mathcal{E}}_{\varepsilon}(u)$  PDE is OK

(D) 
$$\widehat{\mathcal{E}}_{\varepsilon}(u) = \int_{\Omega} \frac{1}{a(x/\varepsilon)} u(x) dx$$
 and  $\widehat{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \int_{\Omega} \frac{\dot{u}(x)^2}{2a(x/\varepsilon)^2 u(x)} dx$   
 $D_{\dot{u}} \widehat{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \frac{\dot{u}}{a(x/\varepsilon)^2 u} = -\frac{1}{a(x/\varepsilon)} = -D\widehat{\mathcal{E}}_{\varepsilon}(u)$  PDE is OK



Two other gradient structures inspired by different physics

$$\begin{split} \mathbf{X}_{\mathrm{M}} &:= \mathrm{M}_{\geq 0}(\overline{\Omega}) \text{ non-negative Radon measures} \\ (\mathsf{C}) \ \widetilde{\mathcal{E}}_{\varepsilon}(u) &= \int_{\Omega} a(\frac{x}{\varepsilon}) u(x) \, \mathrm{d}x \text{ and } \widetilde{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \int_{\Omega} \frac{\dot{u}(x)^2}{2u(x)} \, \mathrm{d}x \\ &\quad \mathrm{D}_{\dot{u}} \widetilde{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \frac{\dot{u}}{u} = -a(\frac{x}{\varepsilon}) = -\mathrm{D} \widetilde{\mathcal{E}}_{\varepsilon}(u) \end{split}$$
 PDE is OK

(D) 
$$\widehat{\mathcal{E}}_{\varepsilon}(u) = \int_{\Omega} \frac{1}{a(x/\varepsilon)} u(x) dx$$
 and  $\widehat{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \int_{\Omega} \frac{\dot{u}(x)^2}{2a(x/\varepsilon)^2 u(x)} dx$   
 $D_{\dot{u}} \widehat{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \frac{\dot{u}}{a(x/\varepsilon)^2 u} = -\frac{1}{a(x/\varepsilon)} = -D\widehat{\mathcal{E}}_{\varepsilon}(u)$  PDE is OK

**Theorem** [Survey'16] (C) 
$$(\mathbf{X}_{\mathrm{M}}, \widetilde{\mathcal{E}}_{\varepsilon}, \widetilde{\mathcal{R}}_{\varepsilon}) \xrightarrow{\mathsf{evol}} (w^*) (\mathbf{X}_{\mathrm{M}}, \widetilde{\mathcal{E}}_{\min}, \widetilde{\mathcal{R}}_{\mathrm{H}})$$
 and  
(D)  $(\mathbf{X}_{\mathrm{M}}, \widehat{\mathcal{E}}_{\varepsilon}, \widehat{\mathcal{R}}_{\varepsilon}) \xrightarrow{\mathsf{evol}} (w^*) (\mathbf{X}_{\mathrm{M}}, \widehat{\mathcal{E}}_{\max}, \widehat{\mathcal{R}}_{\max})$ 

(C)  $\widetilde{\mathcal{E}}_{\min}(u) = \int_{\Omega} a_{\min} u \, dx \quad \rightsquigarrow \quad \dot{u} = -a_{\min} u \, du$ (D)  $\widehat{\mathcal{E}}_{\max}(u) = \int_{\Omega} \frac{1}{a_{\max}} u \, dx \quad \rightsquigarrow \quad \dot{u} = -a_{\max} u$ 

Different effective equations depending on choice of GS!





**Sketch of proof for case (C)** [(D) is analogous, cf. Survey'16]:

•  $\widetilde{\mathcal{E}}_{\varepsilon}(u) = \int_{0}^{\ell} a(x/\varepsilon) du(x)$  is a linear energy functional in  $X_{\mathrm{M}}$ 

•  $\widetilde{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \mathcal{R}_{\mathrm{H}}(u, \dot{u}) = \int_{\Omega} \dot{u}^2 / (2u) \, \mathrm{d}x$  is a state-dependent dissipation potential that induces Hellinger distance  $d_{\mathrm{H}}(u_0, u_1) = 2 \|\sqrt{u_1} - \sqrt{u_0}\|_{\mathrm{L}^2}$ 

(EDB)  $\widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(T)) + \int_{0}^{T} \left( \widetilde{\mathcal{R}}_{\mathrm{H}}(u_{\varepsilon}, \dot{u}_{\varepsilon}) + \mathcal{R}_{\mathrm{H}}^{*}(u_{\varepsilon}, -\mathrm{D}\mathcal{E}_{\varepsilon}(u_{\varepsilon})) \right) \mathrm{d}t = \widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(0))$ 



Libniz Leibniz-Gemeinschaft

**Sketch of proof for case (C)** [(D) is analogous, cf. Survey'16]:

•  $\widetilde{\mathcal{E}}_{\varepsilon}(u) = \int_{0}^{\ell} a(x/\varepsilon) du(x)$  is a linear energy functional in  $X_{\mathrm{M}}$ 

•  $\widetilde{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \mathcal{R}_{\mathrm{H}}(u, \dot{u}) = \int_{\Omega} \dot{u}^2 / (2u) \, \mathrm{d}x$  is a state-dependent dissipation potential that induces Hellinger distance  $d_{\mathrm{H}}(u_0, u_1) = 2 \|\sqrt{u_1} - \sqrt{u_0}\|_{\mathrm{L}^2}$ 

(EDB)  $\widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(T)) + \int_{0}^{T} \left( \widetilde{\mathcal{R}}_{\mathrm{H}}(u_{\varepsilon}, \dot{u}_{\varepsilon}) + \mathcal{R}_{\mathrm{H}}^{*}(u_{\varepsilon}, -\mathrm{D}\mathcal{E}_{\varepsilon}(u_{\varepsilon})) \right) \mathrm{d}t = \widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(0))$ 

(1) Well-Preparedness gives  $\widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(0)) \to \widetilde{\mathcal{E}}_{\min}(u(0)) := \int_{\Omega} a_{\min}u_0(x) dx.$ 



Libniz Leibniz-Gemeinschaft

**Sketch of proof for case (C)** [(D) is analogous, cf. Survey'16]:

•  $\widetilde{\mathcal{E}}_{\varepsilon}(u) = \int_0^{\ell} a(x/\varepsilon) du(x)$  is a linear energy functional in  $X_{\mathrm{M}}$ 

•  $\widetilde{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \mathcal{R}_{\mathrm{H}}(u, \dot{u}) = \int_{\Omega} \dot{u}^2 / (2u) \, \mathrm{d}x$  is a state-dependent dissipation potential that induces Hellinger distance  $d_{\mathrm{H}}(u_0, u_1) = 2 \|\sqrt{u_1} - \sqrt{u_0}\|_{\mathrm{L}^2}$ 

(EDB)  $\widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(T)) + \int_{0}^{T} \left( \widetilde{\mathcal{R}}_{\mathrm{H}}(u_{\varepsilon}, \dot{u}_{\varepsilon}) + \mathcal{R}_{\mathrm{H}}^{*}(u_{\varepsilon}, -\mathrm{D}\mathcal{E}_{\varepsilon}(u_{\varepsilon})) \right) \mathrm{d}t = \widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(0))$ 

- (1) Well-Preparedness gives  $\widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(0)) \to \widetilde{\mathcal{E}}_{\min}(u(0)) := \int_{\Omega} a_{\min}u_0(x) dx.$
- (2) Using  $a(x/\varepsilon) \ge a_{\min}$  gives  $\widetilde{\mathcal{E}}_{\varepsilon}(u) \ge \widetilde{\mathcal{E}}_{\min}(u)$ Using linearity of  $\widetilde{\mathcal{E}}_0$  gives  $u_{\varepsilon} \stackrel{*}{\rightharpoonup} u \Rightarrow \liminf \widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}) \ge \widetilde{\mathcal{E}}_{\min}(u)$



Leibniz-Gemeinschaft y

**Sketch of proof for case (C)** [(D) is analogous, cf. Survey'16]:

•  $\widetilde{\mathcal{E}}_{\varepsilon}(u) = \int_0^{\ell} a(x/\varepsilon) du(x)$  is a linear energy functional in  $X_{\mathrm{M}}$ 

•  $\widetilde{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \mathcal{R}_{\mathrm{H}}(u, \dot{u}) = \int_{\Omega} \dot{u}^2 / (2u) \, \mathrm{d}x$  is a state-dependent dissipation potential that induces Hellinger distance  $d_{\mathrm{H}}(u_0, u_1) = 2 \|\sqrt{u_1} - \sqrt{u_0}\|_{\mathrm{L}^2}$ 

(EDB)  $\widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(T)) + \int_{0}^{T} \left( \widetilde{\mathcal{R}}_{\mathrm{H}}(u_{\varepsilon}, \dot{u}_{\varepsilon}) + \mathcal{R}_{\mathrm{H}}^{*}(u_{\varepsilon}, -\mathrm{D}\mathcal{E}_{\varepsilon}(u_{\varepsilon})) \right) \mathrm{d}t = \widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(0))$ 

- (1) Well-Preparedness gives  $\widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(0)) \to \widetilde{\mathcal{E}}_{\min}(u(0)) := \int_{\Omega} a_{\min}u_0(x) dx.$
- (2) Using  $a(x/\varepsilon) \ge a_{\min}$  gives  $\widetilde{\mathcal{E}}_{\varepsilon}(u) \ge \widetilde{\mathcal{E}}_{\min}(u)$ Using linearity of  $\widetilde{\mathcal{E}}_0$  gives  $u_{\varepsilon} \stackrel{*}{\rightharpoonup} u \Rightarrow \liminf \widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}) \ge \widetilde{\mathcal{E}}_{\min}(u)$
- (3) With  $\mathfrak{R}^*_{\mathrm{H}}(u,\xi) = \int_{\Omega} \frac{u}{2}\xi^2 \,\mathrm{d}x$  and  $\xi = \mathrm{D}\mathcal{E}_{\varepsilon}(u_{\varepsilon}) = a_{\varepsilon}$ , the dissipation is  $\int_0^T \left(\widetilde{\mathfrak{R}}_{\varepsilon}(u_{\varepsilon},\dot{u}_{\varepsilon}) + \widetilde{\mathfrak{R}}^*_{\varepsilon}(u_{\varepsilon},-\mathrm{D}\mathcal{E}_{\varepsilon}(u_{\varepsilon}))\right) \mathrm{d}t = \int_0^T \int_0^\ell \left(\frac{\dot{u}_{\varepsilon}^2}{2u_{\varepsilon}} + \frac{u_{\varepsilon}}{2}a_{\varepsilon}^2\right) \mathrm{d}x \,\mathrm{d}t$ Estimate  $a_{\varepsilon}^2 \ge a_{\min}^2$ , use  $u_{\varepsilon} \stackrel{*}{\rightharpoonup} u$  and convexity of  $(u,v) \mapsto \frac{v^2}{2u}$  to obtain  $\liminf_{\varepsilon \to 0} \int_0^T \int_0^\ell \left(\frac{\dot{u}_{\varepsilon}^2}{2u_{\varepsilon}} + \frac{u_{\varepsilon}}{2}a_{\varepsilon}^2\right) \mathrm{d}x \,\mathrm{d}t \ge \int_0^T \int_0^\ell \left(\frac{\dot{u}^2}{2u} + \frac{u}{2}a_{\min}^2\right) \mathrm{d}x \,\mathrm{d}t = \int_0^T \left(\mathfrak{R}_{\mathrm{H}}(u,\dot{u}) + \mathfrak{R}^*_{\mathrm{H}}(u,-\mathrm{D}\widetilde{\mathcal{E}}_{\mathrm{min}}(u))\right)$



Leibniz-Gemeinschaft y

**Sketch of proof for case (C)** [(D) is analogous, cf. Survey'16]:

•  $\widetilde{\mathcal{E}}_{\varepsilon}(u) = \int_0^{\ell} a(x/\varepsilon) du(x)$  is a linear energy functional in  $X_{\mathrm{M}}$ 

•  $\widetilde{\mathcal{R}}_{\varepsilon}(u, \dot{u}) = \mathcal{R}_{\mathrm{H}}(u, \dot{u}) = \int_{\Omega} \dot{u}^2 / (2u) \, \mathrm{d}x$  is a state-dependent dissipation potential that induces Hellinger distance  $d_{\mathrm{H}}(u_0, u_1) = 2 \|\sqrt{u_1} - \sqrt{u_0}\|_{\mathrm{L}^2}$ 

(EDB)  $\widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(T)) + \int_{0}^{T} \left( \widetilde{\mathcal{R}}_{\mathrm{H}}(u_{\varepsilon}, \dot{u}_{\varepsilon}) + \mathcal{R}_{\mathrm{H}}^{*}(u_{\varepsilon}, -\mathrm{D}\mathcal{E}_{\varepsilon}(u_{\varepsilon})) \right) \mathrm{d}t = \widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(0))$ 

- (1) Well-Preparedness gives  $\widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}(0)) \to \widetilde{\mathcal{E}}_{\min}(u(0)) := \int_{\Omega} a_{\min}u_0(x) dx.$
- (2) Using  $a(x/\varepsilon) \ge a_{\min}$  gives  $\widetilde{\mathcal{E}}_{\varepsilon}(u) \ge \widetilde{\mathcal{E}}_{\min}(u)$ Using linearity of  $\widetilde{\mathcal{E}}_0$  gives  $u_{\varepsilon} \stackrel{*}{\rightharpoonup} u \Rightarrow \liminf \widetilde{\mathcal{E}}_{\varepsilon}(u_{\varepsilon}) \ge \widetilde{\mathcal{E}}_{\min}(u)$
- (3) With  $\mathcal{R}^*_{\mathrm{H}}(u,\xi) = \int_{\Omega} \frac{u}{2} \xi^2 \,\mathrm{d}x$  and  $\xi = \mathrm{D}\mathcal{E}_{\varepsilon}(u_{\varepsilon}) = a_{\varepsilon}$ , the dissipation is  $\int_0^T \left(\widetilde{\mathcal{R}}_{\varepsilon}(u_{\varepsilon},\dot{u}_{\varepsilon}) + \widetilde{\mathcal{R}}^*_{\varepsilon}(u_{\varepsilon},-\mathrm{D}\mathcal{E}_{\varepsilon}(u_{\varepsilon}))\right) \mathrm{d}t = \int_0^T \int_0^\ell \left(\frac{\dot{u}_{\varepsilon}^2}{2u_{\varepsilon}} + \frac{u_{\varepsilon}}{2}a_{\varepsilon}^2\right) \mathrm{d}x \,\mathrm{d}t$

Estimate  $a_{\varepsilon}^2 \ge a_{\min}^2$ , use  $u_{\varepsilon} \stackrel{*}{\rightharpoonup} u$  and convexity of  $(u, v) \mapsto \frac{v^2}{2u}$  to obtain  $\liminf_{\varepsilon \to 0} \int_0^T \int_0^\ell \left(\frac{\dot{u}_{\varepsilon}^2}{2u_{\varepsilon}} + \frac{u_{\varepsilon}}{2}a_{\varepsilon}^2\right) \mathrm{d}x \,\mathrm{d}t \ge \int_0^T \int_0^\ell \left(\frac{\dot{u}^2}{2u} + \frac{u}{2}a_{\min}^2\right) \mathrm{d}x \,\mathrm{d}t = \int_0^T \left(\mathcal{R}_{\mathrm{H}}(u, \dot{u}) + \mathcal{R}_{\mathrm{H}}^*(u, -\mathrm{D}\widetilde{\mathcal{E}}_{\min}(u))\right)$ 

(1)–(3) show that u is a solution of (EDE) for  $(X_M, \mathcal{E}_{\min}, \mathcal{R}_H)$ .



## **Overview**

- 1. Introduction
- 2. Gradient systems
- 3. Motivating examples

#### 4. Energy-dissipation formulations

- 4.1. Equivalent formulations via Legendre transform
- 4.2. The Sandier-Serfaty approach using EDP
- 4.3. Choice of GS determines effective equation
- 4.4. General evolutionary  $\Gamma\text{-convergence}$  using EDP
- 4.5. From viscous to rate-independent friction
- 5. Evolutionary variational inequality (EVI)





(EDE) 
$$\mathcal{E}_{\varepsilon}(u^{\varepsilon}(t)) + \int_{0}^{T} \mathcal{R}_{\varepsilon}(u^{\varepsilon}, \dot{u}^{\varepsilon}) + \mathcal{R}^{*}_{\varepsilon}(u^{\varepsilon}, -\mathrm{D}\mathcal{E}_{\varepsilon}(u^{\varepsilon})) \,\mathrm{d}t \leq \mathcal{E}_{\varepsilon}(u^{\varepsilon}(0))$$

It suffices to find  $(\boldsymbol{X}, \mathcal{E}_0, \mathcal{R}_0)$  and  $\mathcal M$  such that

 $\bullet \mathcal{E}_{\varepsilon} \stackrel{\Gamma}{\rightharpoonup} \mathcal{E}_{0} \qquad \bullet \text{ Chain rule holds for } (\boldsymbol{X}, \mathcal{E}_{0}, \mathcal{R}_{0})$ 

(EDE) 
$$\mathcal{E}_{\varepsilon}(u^{\varepsilon}(t)) + \int_{0}^{T} \mathcal{R}_{\varepsilon}(u^{\varepsilon}, \dot{u}^{\varepsilon}) + \mathcal{R}^{*}_{\varepsilon}(u^{\varepsilon}, -\mathrm{D}\mathcal{E}_{\varepsilon}(u^{\varepsilon})) \,\mathrm{d}t \leq \mathcal{E}_{\varepsilon}(u^{\varepsilon}(0))$$

It suffices to find  $(\boldsymbol{X}, \mathcal{E}_0, \mathcal{R}_0)$  and  $\mathcal M$  such that

**E** 
$$\mathcal{E}_{\varepsilon} \stackrel{\Gamma}{\rightharpoonup} \mathcal{E}_{0}$$
**Chain rule holds for**  $(\mathbf{X}, \mathcal{E}_{0}, \mathcal{R}_{0})$ 
**I**  $\int_{0}^{T} \mathcal{M}(u, \dot{u}) dt \leq \liminf_{\varepsilon} \int_{0}^{T} \left( \mathcal{R}_{\varepsilon}(u^{\varepsilon}, \dot{u}^{\varepsilon}) + \mathcal{R}_{\varepsilon}^{*}(u^{\varepsilon}, -\mathrm{D}\mathcal{E}_{\varepsilon}(u^{\varepsilon})) \right) dt$ 
(a)  $\mathcal{M}(u, v) \geq -\langle \mathrm{D}\mathcal{E}_{0}(u), v \rangle$  and
(b)  $\mathcal{M}(u, v) = -\langle \mathrm{D}\mathcal{E}_{0}(u), v \rangle \Longrightarrow$ 
 $\mathcal{R}_{0}(u, v) + \mathcal{R}_{0}^{*}(u, -\mathrm{D}\mathcal{E}_{0}(u)) = -\langle \mathrm{D}\mathcal{E}_{0}(u), v \rangle$ 

Remark:

$$\begin{split} \mathcal{M}(u,v) \geq \mathcal{R}_0(u,v) + \mathcal{R}_0^*(u,-\mathrm{D}\mathcal{E}_0(u)) \text{ is suffic. for (a,b) but not necessary!} \\ \text{Even, passage from quadratic } \mathcal{R}_\varepsilon(v) = r_\varepsilon \|v\|_H^2 \\ \text{to 1-homogeneous } \mathcal{R}_0(v) = r_0 \|v\|_X^1 \text{ is possible!} \end{split}$$



#### From diffusion to transmission (a case of dimension reduction)

(Liero'12 PhD thesis, Liero-M-Peletier-Renger'2015 WIAS preprint 2148)

Consider diffusion in ]-l, l[ with much lower mobility in thin layer  $]-\varepsilon, \varepsilon[$ :

$$\dot{u} = \operatorname{div}(A_{\varepsilon}(x)\nabla u) + \operatorname{Neum.BC} \quad \text{with } A_{\varepsilon}(x) = \begin{cases} a & \text{for } \varepsilon < |x| < l, \\ \varepsilon b & \text{for } |x| \le \varepsilon \end{cases}$$



$$\begin{split} &\mathcal{E}_{\varepsilon}(u) = \int_{\Omega} \lambda_{\mathrm{B}}(u(x)) \,\mathrm{d}x \quad \text{ with } \lambda_{\mathrm{B}}(z) = z \log z - z + 1 \geq 0 \\ &\mathcal{R}_{\varepsilon}^{*}(u,\xi) = \frac{1}{2} \int_{\Omega} A_{\varepsilon}(x) u(x) \xi'(x)^{2} \,\mathrm{d}x \qquad \text{ quadratic Wasserstein diffusion} \end{split}$$

#### From diffusion to transmission (a case of dimension reduction)

(Liero'12 PhD thesis, Liero-M-Peletier-Renger'2015 WIAS preprint 2148)

Consider diffusion in ]-l, l[ with much lower mobility in thin layer  $]-\varepsilon, \varepsilon[$ :



Limit gradient system  $(L^1_{\geq}(\Omega), \mathcal{E}, \mathcal{R}^*_0)$  with  $\mathcal{E}(u) = \int_{-l}^{l} \lambda_B(u(x)) dx$  and  $\mathcal{R}^*_0(u, \xi) = \frac{a}{2} \int_{]-l,0[} u |\xi'|^2 dx + \frac{a}{2} \int_{]0,l[} u |\xi'|^2 dx + \frac{b}{\sqrt{u(0^-)u(0^+)}} \left(\cosh\left(\frac{1}{2}(\xi(0^+) - \xi(0^-))\right) - 1\right)$ 

Chemical potential  $\xi(x) = D\mathcal{E}(u)(x) = \log u(x)$ 

**Transmission cond.** arises from  $\dot{u} = D_{\xi} \mathcal{R}_0^*(u, -D\mathcal{E}(u))$  via integr.by parts:

$$x = 0^+: \quad au(0^+)\xi'(0^+) = -b\sqrt{u(0^-)u(0^+)}\frac{1}{2}\sinh\left(\frac{1}{2}(\xi(0^+) - \xi(0^-))\right)$$



Limit gradient system  $(L^1_{\geq}(\Omega), \mathcal{E}, \mathcal{R}^*_0)$  with  $\mathcal{E}(u) = \int_{-l}^{l} \lambda_B(u(x)) dx$  and  $\mathcal{R}^*_0(u, \xi) = \frac{a}{2} \int_{]-l,0[} u |\xi'|^2 dx + \frac{a}{2} \int_{]0,l[} u |\xi'|^2 dx + \frac{b}{\sqrt{u(0^-)u(0^+)}} \left(\cosh\left(\frac{1}{2}(\xi(0^+) - \xi(0^-))\right) - 1\right)$ 

Chemical potential  $\xi(x) = D\mathcal{E}(u)(x) = \log u(x)$  **Transmission cond.** arises from  $\dot{u} = D_{\xi}\mathcal{R}_{0}^{*}(u, -D\mathcal{E}(u))$  via integr.by parts:  $x = 0^{+}: \quad au(0^{+})\xi'(0^{+}) = -b\sqrt{u(0^{-})u(0^{+})}\frac{1}{2}\sinh\left(\frac{1}{2}(\xi(0^{+})-\xi(0^{-}))\right)$   $au'(0^{+}) = -b(u(0^{+})-u(0^{-}))$  $x = 0^{-}: \quad au'(0^{-}) = +b(u(0^{+})-u(0^{-}))$ 

Linear transmission conditions arise in nontrivial nonlinear way.
 Obtain Marcelin-de Donder kinetics (as used in physics) for membrane.



Since  $\mathcal{E}_{\varepsilon} = \mathcal{E}$  the evol.  $\Gamma$ -convergence follows easily using the next result.

**Proposition.** Define the time-space functional  

$$\mathcal{J}_{\varepsilon}(u) = \int_{0}^{T} (\mathcal{R}_{\varepsilon}(u, \dot{u}) + \mathcal{R}_{\varepsilon}^{*}(u, -\log u)) \, \mathrm{d}x = \int_{0-l}^{Tl} \left( \frac{(\int_{x}^{1} \dot{u} \, \mathrm{d}y)^{2}}{2A_{\varepsilon}(x)u} + \frac{A_{\varepsilon}(x)(u')^{2}}{2u} \right) \, \mathrm{d}x \, \mathrm{d}t,$$
then  $\mathcal{J}_{\varepsilon} \xrightarrow{\Gamma} \mathcal{J}_{0}$  in  $\mathrm{L}^{1}([0, T] \times \Omega)$  with  $\mathcal{J}_{0}(u) = \int_{0}^{T} (\mathcal{R}_{0}(u, \dot{u}) + \mathcal{R}_{0}^{*}(u, -\log u)) \, \mathrm{d}x.$ 

The Sandier-Serfaty approach does not work: For general u (not solutions u<sub>ε</sub> → u) we have separate Γ-limits
u → ∫<sub>0</sub><sup>T</sup> ℜ<sub>ε</sub>(u, u) dt ⊥ ∂<sub>veloc</sub> ≤ ∫<sub>0</sub><sup>T</sup> ℜ<sub>0</sub> dt
u → ∫<sub>0</sub><sup>T</sup> ℜ<sub>ε</sub><sup>\*</sup>(u, - log u) dt ⊥ ∂<sub>slope</sub> ≤ ∫<sub>0</sub><sup>T</sup> ℜ<sub>0</sub><sup>\*</sup>(·, - log ·) dt
There is a non-trivial interplay between the two terms, recovery sequences for ∂<sub>veloc</sub> and ∂<sub>slope</sub> are different: ∂<sub>0</sub> ≥ ∂<sub>veloc</sub>+∂<sub>slope</sub>





$$\begin{array}{ll} \text{Idea of the proof of proposition:} \quad \mathcal{J}_{\varepsilon}(u) = \int_{-l}^{l} \left( \frac{\left(\int_{-1}^{x} \dot{u} \, \mathrm{d}y\right)^{2}}{2A_{\varepsilon}(x)u} + \frac{A_{\varepsilon}(x)(u')^{2}}{2u} \right) \, \mathrm{d}x \\ \text{Blow up of membrane to size 1:} \quad x = X_{\varepsilon}(\hat{x}) = \begin{cases} \hat{x} & \text{for } \hat{x} \in [-l, -\varepsilon], \\ \frac{\varepsilon(2\hat{x}-1)}{1+2\hat{\varepsilon}} & \text{for } \hat{x} \in [-\varepsilon, 1+\varepsilon], \\ \hat{x}-1 & \text{for } \hat{x} \in [1+\varepsilon, l+1]. \end{cases}$$

Setting  $\hat{u}(\hat{x}) = u(X_{\varepsilon}(\hat{x}))$  and  $\hat{a}_{\varepsilon}(\hat{x}) := \frac{A_{\varepsilon}(X_{\varepsilon}(\hat{x}))}{X'_{\varepsilon}(\hat{x})} \in \{a, b\}$  yields transformed fnctl

$$\widehat{\mathcal{J}}_{\varepsilon}(\hat{u}) = \int_{-l}^{l+1} \left( \frac{\left( \int_{-1}^{\hat{x}} \dot{\hat{u}} \, X_{\varepsilon}'(\hat{y}) \, \mathrm{d}\hat{y} \right)^2}{2\widehat{a}_{\varepsilon}(\hat{x})\hat{u}} + \frac{\widehat{a}_{\varepsilon}(\hat{x})(\hat{u}')^2}{2\hat{u}} \right) \mathrm{d}\hat{x} \stackrel{\Gamma}{\rightharpoonup} \widehat{\mathcal{J}}_0 := \widehat{\mathcal{J}}_{[-1,0]} + \widehat{\mathcal{J}}_{\mathsf{memb}} + \widehat{\mathcal{J}}_{[1,l+1]}$$





$$\begin{array}{ll} \text{Idea of the proof of proposition:} \quad \mathcal{J}_{\varepsilon}(u) = \int_{-l}^{l} \left( \frac{\left(\int_{-1}^{x} \dot{u} \, \mathrm{d}y\right)^{2}}{2A_{\varepsilon}(x)u} + \frac{A_{\varepsilon}(x)(u')^{2}}{2u} \right) \, \mathrm{d}x \\ \text{Blow up of membrane to size 1:} \quad x = X_{\varepsilon}(\hat{x}) = \begin{cases} \hat{x} & \text{for } \hat{x} \in [-l, -\varepsilon], \\ \frac{\varepsilon(2\hat{x}-1)}{1+2\hat{\varepsilon}} & \text{for } \hat{x} \in [-\varepsilon, 1+\varepsilon], \\ \hat{x}-1 & \text{for } \hat{x} \in [1+\varepsilon, l+1]. \end{cases}$$

Setting  $\hat{u}(\hat{x}) = u(X_{\varepsilon}(\hat{x}))$  and  $\hat{a}_{\varepsilon}(\hat{x}) := \frac{A_{\varepsilon}(X_{\varepsilon}(\hat{x}))}{X'_{\varepsilon}(\hat{x})} \in \{a, b\}$  yields transformed fnctl

$$\widehat{\mathcal{J}}_{\varepsilon}(\hat{u}) = \int_{-l}^{l+1} \left( \frac{\left( \int_{-1}^{\hat{x}} \dot{\hat{u}} \, X_{\varepsilon}'(\hat{y}) \, \mathrm{d}\hat{y} \right)^2}{2\widehat{a}_{\varepsilon}(\hat{x})\hat{u}} + \frac{\widehat{a}_{\varepsilon}(\hat{x})(\hat{u}')^2}{2\hat{u}} \right) \mathrm{d}\hat{x} \stackrel{\Gamma}{\rightharpoonup} \widehat{\mathcal{J}}_0 := \widehat{\mathcal{J}}_{[-1,0]} + \widehat{\mathcal{J}}_{\mathsf{memb}} + \widehat{\mathcal{J}}_{[1,l+1]}$$

where 
$$\widehat{\mathcal{J}}_{\text{memb}}(\hat{u}) = \int_0^1 \left( \frac{\alpha^2}{2b\widehat{u}} + \frac{b(\hat{u}')^2}{2\widehat{u}} \right) d\hat{x}$$
 with  $\alpha = \int_{-l}^0 \dot{\hat{u}}(\hat{y}) d\hat{y} = \text{const.}$ 

Now we use 
$$\min \left\{ \int_{0}^{1} \frac{\beta^{2} + (\hat{u}')^{2}}{2\hat{u}} d\hat{x} \mid \hat{u}(0) = u(0^{-}) \\ \hat{u}(1) = u(0^{+}) \right\} = \dots$$

$$= \sqrt{u(0^{-})u(0^{+})} \left( \mathfrak{S}\left(\frac{\beta}{\sqrt{u(0^{-})u(0^{+})}}\right) + \mathfrak{S}^{*}\left(\log\frac{u(0^{+})}{u(0^{-})}\right) \right) \text{ with } \mathfrak{S}^{*}(\xi) = 4\cosh(\frac{1}{2}\xi) - 4$$

A. Mielke, Evolutionary  $\Gamma$ -convergence, Berlin, 29.8–2.9.2016



## **Overview**

- 1. Introduction
- 2. Gradient systems
- 3. Motivating examples

#### 4. Energy-dissipation formulations

- 4.1. Equivalent formulations via Legendre transform
- 4.2. The Sandier-Serfaty approach using EDP
- 4.3. Choice of GS determines effective equation
- 4.4. General evolutionary  $\Gamma\text{-convergence}$  using EDP
- 4.5. From viscous to rate-independent friction
- 5. Evolutionary variational inequality (EVI)





#### Aim: Derive dry friction as evol. $\Gamma$ -limit of viscous friction

 $(\mathbb{R}, \mathcal{E}_{\varepsilon}, \Psi_{\varepsilon}) \xrightarrow{\text{evol}} (\mathbb{R}, \mathcal{E}_{0}, \Psi_{0})$ where  $\Psi_{\varepsilon}(v) = \frac{\varepsilon^{\alpha}}{2}v^{2}$  (quadratic) and  $\Psi_{0}(v) = \rho |v|$  (one-homogeneous) Here  $\mathcal{E}_{\varepsilon}(t, \cdot)$  is a **wiggly energy landscape** James '96, Puglisi&Truskinovsky '02,'05



Prandtl Gedankenmodell 1928



Librizeibniz-Gemeinschaft

#### Aim: Derive dry friction as evol. $\Gamma$ -limit of viscous friction

 $(\mathbb{R}, \mathcal{E}_{\varepsilon}, \Psi_{\varepsilon}) \xrightarrow{\text{evol}} (\mathbb{R}, \mathcal{E}_{0}, \Psi_{0})$ where  $\Psi_{\varepsilon}(v) = \frac{\varepsilon^{\alpha}}{2}v^{2}$  (quadratic) and  $\Psi_{0}(v) = \rho |v|$  (one-homogeneous) Here  $\mathcal{E}_{\varepsilon}(t, \cdot)$  is a **wiggly energy landscape** James '96, Puglisi&Truskinovsky '02,'05



Prandtl Gedankenmodell 1928



$$\varepsilon^{\alpha} \dot{u} = -D_u \mathcal{E}_{\varepsilon}(t, u) = -(u - \ell(t)) + \rho \sin(u/\varepsilon)$$





Leibniz-Gemeinschaft y

#### Aim: Derive dry friction as evol. $\Gamma$ -limit of viscous friction

 $(\mathbb{R}, \mathcal{E}_{\varepsilon}, \Psi_{\varepsilon}) \xrightarrow{\text{evol}} (\mathbb{R}, \mathcal{E}_{0}, \Psi_{0})$ where  $\Psi_{\varepsilon}(v) = \frac{\varepsilon^{\alpha}}{2}v^{2}$  (quadratic) and  $\Psi_{0}(v) = \rho |v|$  (one-homogeneous) Here  $\mathcal{E}_{\varepsilon}(t, \cdot)$  is a **wiggly energy landscape** James '96, Puglisi&Truskinovsky '02,'05



Prandtl Gedankenmodell 1928





Simulation:



A. Mielke, Evolutionary  $\Gamma$ -convergence, Berlin, 29.8–2.9.2016



For  $\varepsilon \to 0$  (vanishing oscillations and vanishing viscosity): Convergence to a rate-independent hysteresis operator





$$\mathcal{E}_{\varepsilon}(t,u) = \frac{1}{2}u^2 - \ell(t)u + \varepsilon\rho\cos(u/\varepsilon), \quad \Psi_{\varepsilon}(v) = \frac{\varepsilon^{\alpha}}{2}v^2, \quad \Psi_{\varepsilon}^*(\xi) = \frac{1}{2\varepsilon^{\alpha}}\xi^2$$

Theorem (M'11 Cont. Mech. Thermodyn. / Puglisi-Truskinovsky'05)

 $(\mathbb{R}, \mathcal{E}_{\varepsilon}, \Psi_{\varepsilon}) \xrightarrow{evol} (\mathbb{R}, \mathcal{E}_0, \Psi_0)$ 

where  $\mathcal{E}_0(u) = \frac{1}{2}u^2 - \ell(t)u$ and  $\Psi_0(v) = \rho |v|$ 

Use (EDE) 
$$\mathcal{E}_{\varepsilon}(T, u_{\varepsilon}(T)) + \mathcal{J}_{\varepsilon}(u_{\varepsilon}) = \mathcal{E}_{\varepsilon}(u_{\varepsilon}(0))$$
 with  
 $\mathcal{J}_{\varepsilon}(u) = \int_{0}^{T} \Psi_{\varepsilon}(\dot{u}) + \Psi_{\varepsilon}^{*}(-\mathrm{D}\mathcal{E}_{\varepsilon}(t, u)) \,\mathrm{d}t \ge \int_{0}^{T} (1 - \varepsilon^{\frac{\alpha}{2}}) |\dot{u}| |\mathrm{D}\mathcal{E}_{\varepsilon}(t, u)| + \frac{1/2}{\varepsilon^{\alpha/2}} \mathrm{D}\mathcal{E}_{\varepsilon}(t, u)^{2} \,\mathrm{d}t$ 





$$\mathcal{E}_{\varepsilon}(t,u) = \frac{1}{2}u^2 - \ell(t)u + \varepsilon\rho\cos(u/\varepsilon), \quad \Psi_{\varepsilon}(v) = \frac{\varepsilon^{\alpha}}{2}v^2, \quad \Psi_{\varepsilon}^*(\xi) = \frac{1}{2\varepsilon^{\alpha}}\xi^2$$

Theorem (M'11 Cont. Mech. Thermodyn. / Puglisi-Truskinovsky'05)

 $(\mathbb{R}, \mathcal{E}_{\varepsilon}, \Psi_{\varepsilon}) \xrightarrow{evol} (\mathbb{R}, \mathcal{E}_{0}, \Psi_{0}) \qquad \qquad \text{where } \mathcal{E}_{0}(u) = \frac{1}{2}u^{2} - \ell(t)u \\ \text{and } \Psi_{0}(v) = \rho|v|$ 

Use (EDE) 
$$\mathcal{E}_{\varepsilon}(T, u_{\varepsilon}(T)) + \mathcal{J}_{\varepsilon}(u_{\varepsilon}) = \mathcal{E}_{\varepsilon}(u_{\varepsilon}(0))$$
 with  
 $\mathcal{J}_{\varepsilon}(u) = \int_{0}^{T} \Psi_{\varepsilon}(\dot{u}) + \Psi_{\varepsilon}^{*}(-\mathrm{D}\mathcal{E}_{\varepsilon}(t, u)) \,\mathrm{d}t \ge \int_{0}^{T} (1 - \varepsilon^{\frac{\alpha}{2}}) |\dot{u}| |\mathrm{D}\mathcal{E}_{\varepsilon}(t, u)| + \frac{1/2}{\varepsilon^{\alpha/2}} \mathrm{D}\mathcal{E}_{\varepsilon}(t, u)^{2} \,\mathrm{d}t$ 

**Proposition:** 
$$u^{\varepsilon} \rightsquigarrow u^{0} \implies \liminf_{\varepsilon \to 0} \mathbb{J}_{\varepsilon}(u^{\varepsilon}) \ge \int_{0}^{T} \mathfrak{M}(u^{0}, \dot{u}^{0}, t) dt$$
 with

 $\mathcal{M}(u,v,t) = |v| K(\ell(t) - u) + \chi_{[-\rho,\rho]}(\ell(t) - u) \text{ and } K(\xi) = \frac{1}{2\pi} \int_0^{2\pi} |\xi + \rho \cos y| \, \mathrm{d}y$ 

$$\begin{split} K(\xi) &= |\xi| \text{ for } |\xi| \ge \rho \text{ and } K(\xi) \gneqq |\xi| \text{ for } |\xi| < \rho \implies \\ \mathcal{M}(u,v,t) \ge |v| |\ell(t)-u| \ge -v \operatorname{D} \mathcal{E}_0(t,u) \implies \dots \implies \Psi_0(v) = \rho |v| \end{split}$$



## **Overview**

- 1. Introduction
- 2. Gradient systems
- 3. Motivating examples
- 4. Energy-dissipation formulations
- 5. Evolutionary variational inequality (EVI)
- 6. Rate-independent systems (RIS)



## **Overview**

- 1. Introduction
- 2. Gradient systems
- 3. Motivating examples
- 4. Energy-dissipation formulations
- 5. Evolutionary variational inequality (EVI)
  - 5.1. Abstract theory of (EVI)  $_{\lambda}$
  - 5.2. Application of (EVI) $_{\lambda}$  to homogenization
- 6. Rate-independent systems (RIS)





Ambrosio-Gigli-Savaré'05, Daneri-Savaré'08'10 Gradient system  $(\mathbf{X}, \mathcal{E}, \mathcal{R})$  with quadratic  $\mathcal{R}(u, v) = \frac{1}{2} \langle \mathbb{G}(u)v, v \rangle$ 

- Geodesic distance  $d_{\mathcal{R}} : \mathbf{X} \times \mathbf{X} \to [0, \infty]$  defined via  $d_{\mathcal{R}}(u_0, u_1)^2 = \inf\{\int_0^1 2\mathcal{R}(\widetilde{u}, \dot{\widetilde{u}}) \, \mathrm{d}s \mid u_0 \overset{\widetilde{u}}{\leadsto} u_1\}$
- $\begin{array}{ll} \bullet & \widetilde{u}: [s_0, s_1] \to \boldsymbol{X} \text{ is called a } \textbf{geodesic curve in } (\boldsymbol{X}, d_{\mathcal{R}}) \\ & \quad \text{if } d_{\mathcal{R}}(\widetilde{u}(r), \widetilde{u}(t)) = |t r| d_{\mathcal{R}}(\widetilde{u}(s_0), \widetilde{u}(s_1)) \text{ for all } r, t \in [s_0, s_1] \end{array}$



Ambrosio-Gigli-Savaré'05, Daneri-Savaré'08'10 Gradient system  $(\mathbf{X}, \mathcal{E}, \mathcal{R})$  with **quadratic**  $\mathcal{R}(u, v) = \frac{1}{2} \langle \mathbb{G}(u)v, v \rangle$ 

■ Geodesic distance  $d_{\mathcal{R}} : \mathbf{X} \times \mathbf{X} \to [0, \infty]$  defined via  $d_{\mathcal{R}}(u_0, u_1)^2 = \inf\{\int_0^1 2\mathcal{R}(\widetilde{u}, \dot{\widetilde{u}}) \, \mathrm{d}s \mid u_0 \stackrel{\widetilde{u}}{\leadsto} u_1\}$ 

 $\widetilde{u}: [s_0, s_1] \to \mathbf{X} \text{ is called a geodesic curve in } (\mathbf{X}, d_{\mathcal{R}})$ if  $d_{\mathcal{R}}(\widetilde{u}(r), \widetilde{u}(t)) = |t - r| d_{\mathcal{R}}(\widetilde{u}(s_0), \widetilde{u}(s_1)) \text{ for all } r, t \in [s_0, s_1]$ 

•  $\mathcal{E}: \mathbf{X} \to \mathbb{R}_{\infty}$  is called **geodesically**  $\lambda$ -convex on  $(\mathbf{X}, d_{\mathcal{R}})$  if  $s \mapsto \mathcal{E}(\widetilde{u}(s)) - \lambda \frac{d_{\mathcal{R}}(\widetilde{u}(s_0), \widetilde{u}(s))^2}{2}$  is convex on  $[s_0, s_1]$  for all geod.  $\widetilde{u}$ 

Trivial but useful and important case: Hilbert spaces!!  $\mathbb{G}(u) = \mathbb{G}_{\varepsilon} = \text{const.} \implies d_{\mathcal{R}_{\varepsilon}}(u_0, u_1) = \|u_1 - u_0\|_{\mathbb{G}_{\varepsilon}} \text{ with } \|w\|_{\mathbb{G}_{\varepsilon}}^2 = \langle \mathbb{G}_{\varepsilon} w, w \rangle$ Then,  $\mathcal{E}$  geod.  $\lambda$ -convex on  $(\mathbf{X}, d_{\mathbb{G}_{\varepsilon}}) \iff D^2 \mathcal{E} \ge \lambda \mathbb{G}_{\varepsilon}$ 





Formulations used so far:

(i) 
$$0 \in \mathbb{G}(u)\dot{u} + \mathrm{D}\mathcal{E}(u)$$
 (ii)  $\dot{u} = -\nabla_{\mathbb{G}}\mathcal{E}(u) = -\mathbb{K}(u)\mathrm{D}\mathcal{E}(u)$  (iii) ....  
(EDE)  $\mathcal{E}(u(T)) + \int_0^T \mathcal{R}(u, \dot{u}) + \mathcal{R}^*(u, -\mathrm{D}\mathcal{E}(u)) \mathrm{d}t \le \mathcal{E}(u(0))$ 

#### Truely derivative-free reformulation for $\lambda$ -convex gradient system

Theorem [AGS'05] (Benilan'72: Hilbert-space case 
$$d = d_{\mathbb{G}_{const}}$$
)  
If  $(X, \mathcal{E}, \mathbb{G})$  is geodesically  $\lambda$ -convex, then  
(i)  $\Leftrightarrow$  (ii)  $\Leftrightarrow$  (iii)  $\Leftrightarrow$  (EDE)  $\Leftrightarrow$  (EVI) $_{\lambda} \Leftrightarrow$  (EVI') $_{\lambda}$   
where  
(EVI) $_{\lambda} \quad \frac{1}{2} \frac{d^+}{dt} d_{\mathbb{G}}(u(t), w)^2 + \frac{\lambda}{2} d_{\mathbb{G}}(u(t), w)^2 + \mathcal{E}(u(t)) \leq \mathcal{E}(w)$   
for  $t > 0, w \in X$   
(EVI') $_{\lambda} \quad \frac{e^{\lambda \tau}}{2} d_{\mathbb{G}}(u(t+\tau), w)^2 - \frac{1}{2} d_{\mathbb{G}}(u(t), w)^2$   
 $\leq \frac{e^{\lambda \tau} - 1}{\lambda} \left(\mathcal{E}(w) - \mathcal{E}(u(t+\tau))\right)$  for  $t, \tau > 0, w \in X$ 





Formulations used so far:

(i) 
$$0 \in \mathbb{G}(u)\dot{u} + \mathrm{D}\mathcal{E}(u)$$
 (ii)  $\dot{u} = -\nabla_{\mathbb{G}}\mathcal{E}(u) = -\mathbb{K}(u)\mathrm{D}\mathcal{E}(u)$  (iii) ....  
(EDE)  $\mathcal{E}(u(T)) + \int_0^T \mathcal{R}(u, \dot{u}) + \mathcal{R}^*(u, -\mathrm{D}\mathcal{E}(u)) \mathrm{d}t \le \mathcal{E}(u(0))$ 

#### Truely derivative-free reformulation for $\lambda$ -convex gradient system

Theorem [AGS'05] (Benilan'72: Hilbert-space case 
$$d = d_{\mathbb{G}_{const}}$$
)  
If  $(X, \mathcal{E}, \mathbb{G})$  is geodesically  $\lambda$ -convex, then  
(i)  $\Leftrightarrow$  (ii)  $\Leftrightarrow$  (iii)  $\Leftrightarrow$  (EDE)  $\Leftrightarrow$  (EVI) $_{\lambda} \Leftrightarrow$  (EVI') $_{\lambda}$   
where  
(EVI) $_{\lambda} \quad \frac{1}{2} \frac{d^{+}}{dt} d_{\mathbb{G}}(u(t), w)^{2} + \frac{\lambda}{2} d_{\mathbb{G}}(u(t), w)^{2} + \mathcal{E}(u(t)) \leq \mathcal{E}(w)$   
for  $t > 0, w \in X$   
(EVI') $_{\lambda} \quad \frac{e^{\lambda \tau}}{2} d_{\mathbb{G}}(u(t+\tau), w)^{2} - \frac{1}{2} d_{\mathbb{G}}(u(t), w)^{2}$   
 $\leq \frac{e^{\lambda \tau} - 1}{\lambda} \left( \mathcal{E}(w) - \mathcal{E}(u(t+\tau)) \right)$  for  $t, \tau > 0, w \in X$ 

#### **Exercise**:

(a) Prove (EDE)  $\Leftrightarrow$  (EVI) $_{\lambda}$  (b) Prove (EVI) $_{\lambda}$   $\Leftrightarrow$  (EVI' $_{\lambda}$ 





Formulations used so far:

(i) 
$$0 \in \mathbb{G}(u)\dot{u} + \mathrm{D}\mathcal{E}(u)$$
 (ii)  $\dot{u} = -\nabla_{\mathbb{G}}\mathcal{E}(u) = -\mathbb{K}(u)\mathrm{D}\mathcal{E}(u)$  (iii) ....  
(EDE)  $\mathcal{E}(u(T)) + \int_0^T \mathcal{R}(u, \dot{u}) + \mathcal{R}^*(u, -\mathrm{D}\mathcal{E}(u)) \mathrm{d}t \le \mathcal{E}(u(0))$ 

#### Truely derivative-free reformulation for $\lambda$ -convex gradient system

Theorem [AGS'05] (Benilan'72: Hilbert-space case 
$$d = d_{\mathbb{G}_{const}}$$
)  
If  $(\mathbf{X}, \mathcal{E}, \mathbb{G})$  is geodesically  $\lambda$ -convex, then  
(i)  $\Leftrightarrow$  (ii)  $\Leftrightarrow$  (iii)  $\Leftrightarrow$  (EDE)  $\Leftrightarrow$  (EVI) $_{\lambda} \Leftrightarrow$  (EVI') $_{\lambda}$   
where  
 $(\mathsf{EVI})_{\lambda} \quad \frac{1}{2} \frac{d^+}{dt} d_{\mathbb{G}}(u(t), w)^2 + \frac{\lambda}{2} d_{\mathbb{G}}(u(t), w)^2 + \mathcal{E}(u(t)) \leq \mathcal{E}(w)$   
for  $t > 0, w \in \mathbf{X}$   
 $(\mathsf{EVI'})_{\lambda} \quad \frac{e^{\lambda \tau}}{2} d_{\mathbb{G}}(u(t+\tau), w)^2 - \frac{1}{2} d_{\mathbb{G}}(u(t), w)^2$   
 $\leq \frac{e^{\lambda \tau} - 1}{\lambda} \left( \mathcal{E}(w) - \mathcal{E}(u(t+\tau)) \right)$  for  $t, \tau > 0, w \in \mathbf{X}$ 

 $\oplus$  no derivatives of  $\mathcal{E}_{\varepsilon}$  and  $\mathcal{R}_{\varepsilon}$  appear  $\leadsto$  ideal for  $\Gamma$ -convergence  $\oplus$  no time derivative  $\dot{u}$  is involved

A. Mielke, Evolutionary  $\Gamma\text{-convergence},$  Berlin, 29.8–2.9.2016





## $(\mathsf{EVI'})_{\lambda} \quad \frac{\mathrm{e}^{\lambda\tau}}{2} d_{\varepsilon} (u(t+\tau), w)^2 - \frac{1}{2} d_{\varepsilon} (u(t), w)^2 \leq \frac{\mathrm{e}^{\lambda\tau} - 1}{\lambda} \left( \mathcal{E}_{\varepsilon}(w) - \mathcal{E}_{\varepsilon}(u(t+\tau)) \right)$

Theorem (Savaré'11 (personal communication))

If  $(\mathbf{X}, \mathcal{E}_{\varepsilon}, d_{\varepsilon})$  is geodesically  $\lambda$ -convex,  $\mathcal{E}_{\varepsilon}$  **X**-coercive (both unif. in  $\varepsilon$ ),  $\mathcal{E}_{\varepsilon} \xrightarrow{\Gamma} \mathcal{E}$ , and  $d_{\varepsilon} \xrightarrow{\text{cont}} d$  in **X**, then  $(\mathbf{X}, \mathcal{E}_{\varepsilon}, d_{\varepsilon}) \xrightarrow{\text{evol}} (\mathbf{X}, \mathcal{E}, d)$ . (Convergence of the whole sequence  $u^{\varepsilon}$  to u, since solutions are unique.)





# $(\mathsf{EVI'})_{\lambda} \quad \frac{\mathrm{e}^{\lambda\tau}}{2} d_{\varepsilon} (u(t+\tau), w)^2 - \frac{1}{2} d_{\varepsilon} (u(t), w)^2 \leq \frac{\mathrm{e}^{\lambda\tau} - 1}{\lambda} \left( \mathcal{E}_{\varepsilon}(w) - \mathcal{E}_{\varepsilon}(u(t+\tau)) \right)$

Theorem (Savaré'11 (personal communication))

If  $(\mathbf{X}, \mathcal{E}_{\varepsilon}, d_{\varepsilon})$  is geodesically  $\lambda$ -convex,  $\mathcal{E}_{\varepsilon}$  **X**-coercive (both unif. in  $\varepsilon$ ),  $\mathcal{E}_{\varepsilon} \xrightarrow{\Gamma} \mathcal{E}$ , and  $d_{\varepsilon} \xrightarrow{\text{cont}} d$  in **X**, then  $(\mathbf{X}, \mathcal{E}_{\varepsilon}, d_{\varepsilon}) \xrightarrow{\text{evol}} (\mathbf{X}, \mathcal{E}, d)$ . (Convergence of the whole sequence  $u^{\varepsilon}$  to u, since solutions are unique.)

The relatively strong assumption  $d_{\varepsilon} \stackrel{\text{cont}}{\rightharpoonup} d$  in X means  $u_{\varepsilon} \rightharpoonup u \& w_{\varepsilon} \rightharpoonup w$  in  $X \implies d_{\varepsilon}(u_{\varepsilon}, w_{\varepsilon}) \rightarrow d(u, w)$ 

This can be weakened to Gromov-Hausdorff convergence  $(\mathbf{X}, d_{\varepsilon}) \xrightarrow{\text{GH}} (\mathbf{X}, d)$ .





# $(\mathsf{EVI'})_{\lambda} \quad \frac{\mathrm{e}^{\lambda\tau}}{2} d_{\varepsilon} (u(t+\tau), w)^2 - \frac{1}{2} d_{\varepsilon} (u(t), w)^2 \leq \frac{\mathrm{e}^{\lambda\tau} - 1}{\lambda} \left( \mathcal{E}_{\varepsilon}(w) - \mathcal{E}_{\varepsilon}(u(t+\tau)) \right)$

Theorem (Savaré'11 (personal communication))

If  $(\mathbf{X}, \mathcal{E}_{\varepsilon}, d_{\varepsilon})$  is geodesically  $\lambda$ -convex,  $\mathcal{E}_{\varepsilon}$  **X**-coercive (both unif. in  $\varepsilon$ ),  $\mathcal{E}_{\varepsilon} \xrightarrow{\Gamma} \mathcal{E}$ , and  $d_{\varepsilon} \xrightarrow{cont} d$  in **X**, then  $(\mathbf{X}, \mathcal{E}_{\varepsilon}, d_{\varepsilon}) \xrightarrow{evol} (\mathbf{X}, \mathcal{E}, d)$ . (Convergence of the whole sequence  $u^{\varepsilon}$  to u, since solutions are unique.)

Sketch of proof:  $u_{\varepsilon}$  solves (EVI')<sub> $\lambda$ </sub> for  $(X, \mathcal{E}_{\varepsilon}, d_{\varepsilon})$ 

- $\varepsilon$ -uniform bounds from (EVI')<sub> $\lambda$ </sub>  $\implies$   $u_{\varepsilon_k}(t) \rightharpoonup u(t)$  for all  $t \in [0,T]$
- Pass to the limit in (EVI')<sub>λ</sub> using recovery sequence w<sub>ε</sub> → w with ε<sub>ε</sub>(w<sub>ε</sub>) → ε(w)
  ⇒ d<sub>ε</sub>(u<sub>ε</sub>(t+τ), w<sub>ε</sub>) → d(u(t+τ), w) and d<sub>ε</sub>(u<sub>ε</sub>(t), w<sub>ε</sub>) → d(u(t), w)
  ⇒ ε(u(t+τ)) ≤ liminf<sub>ε→0</sub> ε<sub>ε</sub>(u<sub>ε</sub>(t+τ)) by Γ-liminf estimate
- Hence,  $u: [0,T] \rightarrow X$  satisfies (EVI') $_{\lambda}$  for  $(X, \mathcal{E}, d)$



QED

## **Overview**

- 1. Introduction
- 2. Gradient systems
- 3. Motivating examples
- 4. Energy-dissipation formulations
- 5. Evolutionary variational inequality (EVI)
  - 5.1. Abstract theory of (EVI) $_{\lambda}$
  - 5.2. Application of  $(EVI)_{\lambda}$  to homogenization
- 6. Rate-independent systems (RIS)

