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The plot:

Part |: basic scenario: rate-independent plasticity + rate-independent damage

Part II: perfect plasticity with rate dependent damage with a possible healing

Part Ill: rate-independent unidirectional damage with visco-plasticity,
thermodynamics, etc.

Part IV: tutorial — further outlooks
(combination with other processes, large strains, etc.)
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@ Preliminary ingrediences
@ Nonsimple materials
@ Perfect plasticity (Prandtl-Reuss model)

e Perfect plasticity in nonsimple materials with damage
@ The model
@ Weak formulation
@ Time discretisation, a-priori estimates, convergence

© Numerics, simulations, modifications
@ Numerics
@ Computational simulations
@ Some modifications
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The

The

Preliminary ingrediences q 5
Y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

concept of 2nd-grade nonsimple materials

(also called complex materials or multipolar solids)
R.A. TouPIN 1962, R.D. MINDLIN & N.N. ESHEL 1968, M. SILHAVY, 1985,
P. Pobpro-GuipucLi 2002, P. Pobpio-GuibucLi & M. VIANELLO 2010,
E. FrIED & M. E. GURTIN 2006, etc.

calculus on T:

divy is the surface-divergence operator, which may be introduced as
follows: given a vector field v : [ — IR3, we extend it to a neighborhood
of ', and we let its surface gradient be defined as V v = VVE,, where
P, =1 — n® n is the projector on the tangent space of I'; we then let the
surface divergence of v be the scalar field

divyv = P, : Vv = tr(R,VvP,). Given a tensor field A : I — R**3, we
let div,A : T — IR? be the unique vector field such that

divy(ATa) = a-div,A for all constant vector fields a: I — IR3.

so that div,7 is (up to a factor —1) the mean curvature of the surface I'.
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Preliminary ingrediences q 5
y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Consider a quadratic functional:

uH/ﬂ%Ce(u):e(u)+%HVe(u)fVe(u)fg~udxf/r f-udS

Neu

to be minimized on H(Q; R) subject to ulr_ = wyy,.
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Preliminary ingrediences q 5
y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Consider a quadratic functional:
ur—>/ ~Ce(u) : e(u) + HVe()Ve(u)fg~udx7/ f-udS
MNeu
to be minimized on H(Q; R) subject to ulr_ = wyy,.
How the Euler-Lagrange equation look like?
The weak formulation:

/(Ce v) + HVe(u): Ve(v)dx:/g~vdx+/ f-vdS.
Q r

Neu

YweH (QRY), v, =0.
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Preliminary ingrediences q 5
Y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Consider a quadratic functional:

1 1 .
u / —Ce(uv) : e(u) + zHVe(u):Ve(u) — g - udx —/ f-udS
Q 2 2 MNeu
to be minimized on H?(Q; IR?) subject to Ulrp. = Wi
How the Euler-Lagrange equation look like?
The weak formulation using symmetry of C and H:

/Q(Ce(u) : Vv +HVe(u): Vvdx :/

g~vdx+/ f-vdS.
Q r

Neu

YveHA(QRY), v, =0.
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Preliminary ingrediences q 5
Y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Consider a quadratic functional:

un—>/§2%(3e(u):e(u)—&-%]HIVe(u)fVe(u)—g-udx—/r f-udS

Neu

to be minimized on H?(Q; IR?) subject to Ul = Wp

How the Euler-Lagrange equation look like?

The weak formulation using symmetry of C and H:

/Q(Ce(u) : Vv +HVe(u): Vvdx :/

g~vdx+/ f-vdS.
Q r

Neu
YveHA(QRY), v, =0.
Green's formula:

/Qfdiv((Ce(u)) v —div(HVe(v)) : Vvdx = /Qg' vdXJr/r f-vdS

Neu

f/r (Ce(w)) : (v® i) + (HVe(u)): (Vv ® i) dS.
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Preliminary ingrediences q 5
Y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Consider a quadratic functional:

ut—>/ ~Ce(u )+ HVe()Ve(u)—g~udx—/ f-udS
MNeu

to be minimized on H?(Q;IR?) subject to Ulrp. = W

How the Euler-Lagrange equation look like?

The weak formulation using symmetry of C and H:

/Q(Ce(u) Vv +HVe(u): VZvdx :/

g~vdx+/ f-vdS.
Q r

> Ne(ljl
’ VveH*(Q; RY), v|, =0.
Green's formula once more:

/Q—div(Ce(u))-v+div2(HVe(u))~vdx:/Qg-vdx+/ f-vds

MNeu

_ / (Ce(w)) : (v® 7) + (HVe(w) (Vv ® 7) — div(HVe(u)):(v ® 7) dS.

r
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Preliminary ingrediences q 5
y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Now we need to re-write the term [ (HVe(u)) (Vv ® i) dS.
We use a general decomposition Vv = % + VevonTl. Thus:
/r (HVe(u)) : (iwVv)dS
/r ((EVe(w) (ﬁ®ﬁ))%
/ (HVe(u)) : (*@ﬁ)) % — div, ((HVe(u)) : ﬁ) v

+ (divy7) ((HVe(w)) : (77))vds.

+ (HVe(u)) : (i®wVyv)dS

We used a “surface” Green-type formula:
Jrwi((Vsv)®n)dS = [ (divgn)(w:(A®))v — divy(w-f)v dS.

T.Roubitek (Aug.30, 2016, HUB, CENTRAL) Plasticity and damage: PART Il



Preliminary ingrediences q 5
y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Thus;/ﬂ—div(@e(u)) v +div’(HVe(u)) - vdx = /Qg~ vdx + /rN f-vdS
= /r (Ce(u)) : (v® A) + (HVe(u)) : (Vv ® i) — div(HVe(u)):(v ® ) dS.

T.Roubitek (Aug.30, 2016, HUB, CENTRAL) Plasticity and damage: PART Il



Preliminary ingrediences q 5
y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Thus: )
/—div((Ce(u)) v+ div?(HVe(u)) - vdx = / g vdx+/ f-vdS
Q Q r

Neu

= /r (Ce(u)) : (v® A) + (HVe(u)) : (Vv ® i) — div(HVe(u)):(v ® ) dS.
can be re-written as:

/—div((Ce(u)) v +div’(HVe(u)) - vdx = / g-vdx+ f-vdS
Q

3V MNeu

—/ (Ce(w) : (v ) + ((HVe(w)) : () ) 5% ~ div, ((HVe(w)) - 7)v
i
+ (divg#) ((HVe(u)) : (A®R) ) v — div(HVe(u)):(v ® /) dS.
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Preliminary ingrediences q 5
Y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Thus: )
/—div((Ce(u)) v+ div?(HVe(u)) - vdx = / g vdx+/ f-vdS
Q Q r

Neu

= /r (Ce(u)) : (v® A) + (HVe(u)) : (Vv ® i) — div(HVe(u)):(v ® ) dS.
can be re-written as:
/ —div(Ce(v)) - v + divz(HVe(u)) cvdx = / g-vdx+ f-vdS
Q Qav MNeu
- /r (Ce(u)) : (v i) + ((HVe(u)) : (ﬁ@ﬁ)) = divs((HVe(u)) : ﬁ) v
+ (divy7) ((HVe(u)) : (ﬁ@ﬁ)) v — div(HVe(u)):(v @ 7) dS.

From this, we can read the underlying BVP in the classical formulation:

— div(Ce(v)) + div?(HVe(uv)) = g on Q,

...when choosing v with a compact support.in .
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Preliminary ingrediences q 5
Y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Thus: )
/—div((Ce(u)) v+ div?(HVe(u)) - vdx = / g vdx+/ f-vdS
Q Q MNeu

= /r (Ce(u)) : (v® A) + (HVe(u)) : (Vv ® i) — div(HVe(u)):(v ® ) dS.
can be re-written as:
/ —div(Ce(u)) - v + div? (HVe(u)) - vdx = / g-vdx+ f-vdS
Q

3V MNeu

Q
- /r (Ce(u)) : (v i) + ((HVe(u)) : (ﬁ@ﬁ)) ad divs((HVe(u)) : ﬁ)v
+ (divy7) ((HVe(u)) : (ﬁ@ﬁ)) v — div(HVe(u)):(v @ 7) dS.
From this, we can read the underlying BVP in the classical formulation:
— div(Ce(v)) + div?(HVe(uv)) = g on Q,
(Ce(u)) i — div, ((HVe(u)) . ﬁ)
+ (divgA) ((HVe(u)) : (ﬁ®ﬁ)) —div(HVe(u)):(v® ) = f on MNyen

)

...when choosing v with 9v/9ii =0 on T and v|r, =0 onIp;.
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Preliminary ingrediences q 5
Y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Thus: )
/—div((Ce(u)) v+ div?(HVe(u)) - vdx = / g vdx+/ f-vdS
Q Q MNeu

= /r (Ce(u)) : (v® A) + (HVe(u)) : (Vv ® i) — div(HVe(u)):(v ® ) dS.
can be re-written as:

/ —div(Ce(u)) - v + div? (HVe(u)) - vdx = / g-vdx+ f-vdS
Q

3V MNeu

Q
- /r (Ce(u)) : (v i) + ((HVe(u)) : (ﬁ@ﬁ)) ad divs((HVe(u)) : ﬁ)v
+ (divy7) ((HVe(u)) : (ﬁ@ﬁ)) v — div(HVe(u)):(v @ 7) dS.
From this, we can read the underlying BVP in the classical formulation:

— div(Ce(v)) + div?(HVe(uv)) = g on Q,
(Ce(u)) i — div, ((HVe(u)) . ﬁ)

+ (divgA) ((HVe(u)) : (ﬁ®ﬁ)) —div(HVe(u)):(v® ) = f on MNyen
(HVe(u)) : (A®) =0 onT,

...when choosing a general v with v\rD‘ =0 0n [p;.
1r
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Preliminary ingrediences q 5
Y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Thus: )
/—div((Ce(u)) v+ div?(HVe(u)) - vdx = / g vdx+/ f-vdS
Q Q MNeu

= /r (Ce(u)) : (v® A) + (HVe(u)) : (Vv ® i) — div(HVe(u)):(v ® ) dS.
can be re-written as:

/ —div(Ce(u)) - v + div? (HVe(u)) - vdx = / g-vdx+ f-vdS
Q Q MNeu
- / (Ce(u)) : (v i) + ((HVe(u)) : (ﬁ@ﬁ)) % - divs((HVe(u)) : ﬁ) v
r
+ (divg#) ((HVe(u)) : (ﬁ@ﬁ)) v —div(HVe(u)):(v ® ) dS.
From this, we can read the underlying BVP in the classical formulation:
— div(Ce(v)) + div?(HVe(uv)) = g on Q,
(Ce(u)) i — div, ((HVe(u)) . ﬁ)
+ (divgA) ((HVe(u)) : (ﬁ®ﬁ)) —div(HVe(u)):(v® ) = f on MNyen
(HVe(u)) : (A®) =0 on T,
and the Dirichlet boundary condition on p;,.
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Preliminary ingrediences q 5
y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Thus: )
/—div((Ce(u)) v+ div? (HVe(u)) - vdx = / g de+/ F.vdsS
Q 0 .

Neu

— /r (Ce(u)) : (v® i) + (HVe(u)) : (Vv ® i) — div(HVe(u)):(v ® ) dS.
can be re-written as:

/Qfdiv((Ce(u)) v+ diVQ(HVe(u)) cvdx = ng vdx + " f-vdS
- /r (Ce(u)) : (v@ F) + ((HVe(u)) : (ﬁ®ﬁ)) % . divs((HVe(u)) - ﬁ) v
+ (divyF) ( (HVe(u)) : (ﬁ@ﬁ)) v — div(HVe(u)):(v ® 7i) dS.
From this, we can read the underlying BVP in the classical formulation:
— div(Ce(v)) + div?(HVe(uv)) = g on Q,
(Ce(u)) 7 — div, ((HVe(u)) : ﬁ)
— div(HVe(u)):(v® i) = f on Myey,
(HVe(u)) : (i) =0 on T,

and the Dirichlet boundary condition on [pi,.
...we identified the true traction stress!
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Preliminary ingrediences q q
y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Perfect plasticity (=no hardening, HH = 0, b = 0), PRANDTL-REUSS" model:
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Preliminary ingrediences q q
y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Perfect plasticity (=no hardening, HH = 0, b = 0), PRANDTL-REUSS" model:

Space of functions with bounded deformations  (P.M. SUQUET, 1978):

BD(%;RY) := {u € LN RY); e(u) € Meas(Q; R},

Sym
where e(u) is the distributional symmetric gradient of wu.

The state-space is (not a Cartesian product, but):

Qer = {(u, ) € BD(Q; RY) x Meas(Q; REXY);

Sym

e(u)—m € L2(QRLY), veRdS = —7 on py},

sym /

where a ® b means the symetrised tensorial product %(a ® b+ b® a).
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Preliminary ingrediences q q
y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Perfect plasticity (=no hardening, HH = 0, b = 0), PRANDTL-REUSS" model:

Space of functions with bounded deformations  (P.M. SUQUET, 1978):
D(Q;RY) = {u e LN RY); e(u) € Meas(Q; RLLY)],

sym

where e(u) is the distributional symmetric gradient of wu.
The state-space is (not a Cartesian product, but):

Qer = {(u, ) € BD(: RY) x Meas(® REY):

Sym
e(u)—m € AR, u@iddS = —7on Iy},

Sym

where a ® b means the symetrised tensorial product %(a ® b+ b® a).
Energetics:

Epr(t, u,m) /(C (u)—m + 2e(w(t))):(e(u)—m)dx,

RPR(%) :/QR(%) dx with R(#) = 0p(#),
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Preliminary ingrediences q q
y ing Nonsimple materials

Perfect plasticity (Prandtl-Reuss model)

Energetic solutions to Prandtl-Reuss’ model:
(G.DAL MAso, A.DESIMONE, M.G.MORA, 2006)

Assume:

bir has a (d—2 dimensional) C2-boundary,

P be convex, bounded, closed neighbourhood of 0 € IRg:Vd,

C have the special structure so that, with dev e := e—(tre)l/d,

Ce = Cpdev e + s(tre)l with Cp:IRIX— IRI* positive definite, k>0,

dev dev

(ug, m0) € BD(; IRY) x Meas(Q; IR%XY) be stable at t = 0, and,

Sym
the Dirichlet loading w € WLL(1; WY/22(T . RY)).
Then:
@ there is an energetic solution (u, ) to (Qpr, Eprs Rer, Uos 0)-
@ The elastic stress 0 = C(e(u)—) is determined uniquely.

No uniqueness in terms of u and 7 can be expected, however.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Two “inelastic” scenarios on loading: 1) first plasticity, then damage (in Part I)
2) first damage, then plasticity  (now).

Yield stress undergoing damage  (well doable if ¢ rate dependent!),
hardening primarily not important for triggering damage
(perfect plasticity well alowed).
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Two “inelastic” scenarios on loading: 1) first plasticity, then damage (in Part I)
2) first damage, then plasticity  (now).

Yield stress undergoing damage  (well doable if ¢ rate dependent!),
hardening primarily not important for triggering damage
(perfect plasticity well alowed).

Rate dependent damage 1) allows for modelling also healing phenomena
2) avoids unphysically early jumps
(because, if ¢ fixed, plasticity (u, )
is a “nice” convex-type problem),
3) but needs L2-regularity of driving stress for damage
(here hyperstresses not undergoing damage)
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

The classical formulation of the Biot inclusion:
no gradient of 7, no hardening, but hyperstress b and healing force b'.

The governing equation/inclusions read as:

div((C(C)elediV h) +g=0 with h =HVe,, (momentum equilibrium)

9o (g:) > dev(C(¢)ea—divh) with e = e(u)—m (plastic flow rule)
Oa (gi) + =C'(¢)€al : €al
B ndlv(\V§|’—2vg) + N,y () 2 b'(6), (damage flow rule)

with the boundary conditions:

u = Wpjr on rDir7
(C(C)eel—dlv f)) r—divg(hA) = f on lMyeu,
V¢ri=0 and h(di®n) =0 onl
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Smooth time-dependent Dirichlet boundary conditions wp;,. on 'p;. which
allows an extension into @, let us denote it by up;,, such that

(C(g)e(UDir) — le hDir)'ﬁ — divs(hDirFi) = 0 on rNeu
hDir:(ﬁ® ﬁ) = 0 Wlth bDir = HVe(uDir) on r

for any admissible ¢, and making a substitution of u + up;, instead of u.
(does not change the traction force f)
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Smooth time-dependent Dirichlet boundary conditions wp;,. on 'p;. which
allows an extension into @, let us denote it by up;,, such that

(C(g)e(UDir) — le hDir)'ﬁ — divs(hDirFi) = 0 on rNeu
hDir:(ﬁ® ﬁ) = 0 Wlth bDir = HVe(uDir) on r

for any admissible ¢, and making a substitution of u + up;, instead of u.
(does not change the traction force f)

The state space:  {(u, () € BD(Q; IR?)xMeas(Q; R3.T) x W (Q);
e(u)—me HY{(Q; RZXY), Ulr,, © idS+m =0 on Foie |-

Sym
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Smooth time-dependent Dirichlet boundary conditions wp;,. on 'p;. which
allows an extension into @, let us denote it by up;,, such that
(C(g)e(UDir) — le hDir)'ﬁ — divs(hDirFi) = 0 on rNeu
hDir:(ﬁ® ﬁ) =0 with bDir = HVe(uDir) on

for any admissible ¢, and making a substitution of u + up;, instead of u.
(does not change the traction force f)

The state space:  {(u, () € BD(Q; IR?)xMeas(Q; R3.T) x W (Q);
e(u)—me HY{(Q; RZXY), Ulr,, © idS+m =0 on Foie |-

Sym
The governing functionals:
/Q %(C(C)(e(quuDir(t))fw) : (e(utupi(t))—7)
E(t,u,m,C) = +%HV(e(u+uDir(t))—7r) V(e(u+upic(t))—m) — b(¢)
s %|vg|’ —g(udx—[ F(B)udS ifce0,1] ae onQ,

I—Neu )
[%s) otherwise,

(6,8 = [ ol 35)] 00+ fo(5)
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Weak formulation: main fatures:
1) the plastic part (u,7): semistability + energy equality,

2) the damage part: Va—ﬁ not controlled, so we need:

. e . . . &)
div(]V¢|=2V() in duality with 3—§
(= the damage flow rule holds even a.e. Q).
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Weak formulation: main fatures:
1) the plastic part (u,7): semistability + energy equality,
2) the damage part: Va—ﬁ not controlled, so we need:
div(|V¢|™=2V¢) in duality with 2

(= the damage flow rule holds even a.e. Q).
The triple (u,, () with
u € B([0, T]; BD(Q; IRY)),
7 € B([0, T]; Meas(Q; IR9X)) N BV([0, T]; Meas(Q; R$X)),
¢ € B([0, T]; Wh(Q)) N HY(0, T; L2(2)) N C([0, T]xQ)
such that also
eo = e(u+tupy) —m € B([0, T]; H(Q; RY*?)) and

div (V¢ 2V¢) € LA(Q)

will be called a weak solution if:

T.Roubitek (Aug.30, 2016, HUB, CENTRAL) Plasticity and damage: PART Il



The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

1) the semi-stability holds:
E(t,u(t), m(t),¢(1)) < E(t, 0,7, ((t)) + R(¢(t); T — (), 0)

for all t € [0, T] and for all (7, 7) € BD(Q; IRY)xMeas(Q; R§X¢) with
ulp,, ©7dS+ 7 =0 on I'p; and with e(u)— TeHY(Q; ]ngxnfl)
2) the varlatlonal inequality

/Qa(v) n (%(C'(C)eel e — rdiv(|VCT2VC) — B(C) + g) (v - %) dxdt

t

9¢
> -
> /Qa<at> dxdt,
holds for all ve L?(Q) and some £ € L*(Q) such that & € Ny 15(¢) on Q,
3) the energy equality holds (with 3(z) := zda(z) single-valued, convex):

5(T,u(T),7r(T),C(T))+/[0T]XQ {55 o2 ﬂ(dxdt) /Q (%) dxdt
= 50, 0,70.G) + [ 2 (e u(6)7(0), (1)
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Main assumptions:
Q c IRY bounded C?-domain, by, has a (d—2) dimensional C2-boundary, & >0, r > d,
a: TR — IR convex, smooth on IR\{0}, a(0) =0, and 3e>0: €| > <a(-) < (14 ?)/e
b:[0,1] — IR continuously differentiable, non-decreasing, concave,
C: [0,1] — IRY*¥XdXd continuously differentiable, positive-semidefinite-valued,
Vi j,k,=1,...,d: Ciu(-) = Cjim(-) = Cui(-),

VeEIngXIg : C(-)e:e: [0,1] — IR non-decreasing, convex,

ICp(€), cs(¢):  C(¢)e: e =Cp(¢)deve: deve + cg(¢)(tre)?,
H positive definite, H;J'k/ = Hjikl = Hkl[j7

dHp, Hg : HVeZVe:HDVdeveEVdeve+HSVtre-Vtre,

S(¢) = v (¢)B1, oy :[0,1] — (0,00) continuous nondecreasing, B; C IRZX¢

dev
wpir € WH(0, T; H*/?(Tpir; RY)) and 3 upi € WHH(0, T; H(Q: IRY)) and upiclrp. = woir,
g e Whio, T; LY(; RY)), fe W0, T; L} (MTyew; RY)),
JosL: [0, T] = (R Ja>0: ospii=g on [0, T[xxew and
divogy, +f =0 and |devogy| < oy (0) —a on [0, T]xQ,
(uo, ™0, o) € BD(Q; RY)xMeas(; RIXNxWL(Q), 0< (<1 ae.on, and

a unit ball,

dev
Y(u,7) € BD(Q; RY) xMeas(Q; RGXY), e(B)—7€ H(QREXY), TOHdS+7 =0 on p;,

£(0, up, mo, o) <-E(0, @, 7, {o) + RA<o; 0,7 —0),
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Time discretisation by fractional-step strategy:

div(C(Ck_l) e, — divhk )—i—gT 0
with e — e(uhtupn (k) —mt, b5 HVeh gt im g(kn),
k__ k-1
NS(Ci—1)<¥) 9dev< (¢Ck1)ek . — divhk )
Ck_Ck71 , ) ,
0a(ST5T ) 4 ZC(CHYEh el v (VG 2VEE) + Mg y(cH) 3 B(cH)

together with the corresponding boundary conditions

l; =0 on lpy,
(C(¢Et)el . — divh) - ii — divy(h5i) = £¥, on Mye, with £f:= f(kT)
V¢E- =0 and b5(Ai®A) =0 onT.
k

to be solved first for (uX, %) and then for C¥ recursively for k =1,..., T /7.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Given (mk=1, ¢k=1):

A minimization problem to give (uX, 7¥):
Minimize  (u,m) ~ E(kT,u,m,¢k~1) + R(¢EL; m—nk=1)0)
subject to v € BD(Q;IR?), 7 € Meas(Q; R3X9),

dev

e(u)—re HH{QREY), u®ddS+m=0on My,
and second minimization problem to give (X
C Ck 1
Minimize ¢ s (kT uﬁ,wT,C)—i—TR(O 0, )
u
subject to (€ WH(Q), 0<(¢ <1 onQ,
Solutions exist by coercivity, convexity, and lower semicontinuity arguments.

If C" and —b’ are nondecreasing (again with respect to the Léwner's
ordering) and a is convex, these problems are convex.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

We test the discrete inclusions respectively by uf—uk=1, 7hk—7k=1 and ¢k—¢k-1.

Relying on the convexity of £(kT, -, -, ¢k~ 1) and of E(kT, uk, 7k ), we
obtain the estimates

E(kr, uk, 7%, 51 + / oy (CE )k k| (dx) < E(kr, uk~t mkt kLY,
Q

k_ k=1
E(kr, uk, mk k) + T/E(ﬁ) dx < E(kr, uk, wk k1)
@ T with 3(z) := z0a(z).
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

We test the discrete inclusions respectively by uf—uk=1, 7hk—7k=1 and ¢k—¢k-1.

Relying on the convexity of £(kT, -, -, ¢k~ 1) and of E(kT, uk, 7k ), we
obtain the estimates

E(kr, uk, 7%, 51 + / oy (CE )k k| (dx) < E(kr, uk~t mkt kLY,
Q

k_ k=1
E(kr, uk, mk k) + T/E(ﬁ) dx < E(kr, uk, wk k1)
Q T ith 3
with 3(z) := z0a(z).
By summing these estimates, we can enjoy the cancellation of the terms
+E&(k7, uk, 7%, ¢k=1), and thus obtain

k 1 k k—1
CC)

k—1 _k—1 rk—1
< 5(kT’uT » Tr 7(7 )

Ekr, uk, %, ¢) + R (¢, e

T

kT
= E((k=1)ruf ) + / 98 (¢, uk=t w1, k1Y at
k— 1)T3f

with the dissipation rate R defined as

ﬁ((;%,%) ::/ng(c) gﬂ(dx)+/ﬂﬁ<gi)dx.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

By the discrete Gronwall inequality, we obtain boundedness of
_ _ = T 5
SUPseo, 7] E(t, Uy, Tr, () and fo R(QT; d(;r;’ d(f; )dt.

Then, from the coercivity of £ and R, we thus obtain the estimates:

S C7
HﬁTHB([QT];Meaa( QGRIXY)) < ¢,

<C,

17 HB([o,T];BD(Q;]R'J))

€1, HB([o,T];Hl(Q;RSerg))

HE‘F||B([0,T];le’(Q))ﬁBV([O,T];Ll(Q))ﬂLOO(Q) <C.

The same estimate as for ¢, also holds for QT.
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The model
Perfect plasticity in nonsimple materials with damage

Weak formulation

Time discretisation, a-priori estimates, convergence

Having estimated the set 9a(%=) + 1C/({)&u, : &, — b'((r) in L2(Q)
uniformly in 7 > 0, we can estimate also div(|V¢X|"=2V (k) in L2(Q).
For this, we test the damage flow-rule

0a( ) L (ctyel e

—rdiv(|V¢ Ve )+Njo,(¢ ()2 b'(¢H)
by —div(|VC[2VCk)

T.Roubitek
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Having estimated the set 9a(%=) + 1C/({)&u, : &, — b'((r) in L2(Q)

uniformly in 7 > 0, we can estimate also div(|V¢X|"=2V (k) in L2(Q).
For this, we test the damage flow-rule

Ck—Ck_l
83( = TT )+ (C(C ) elT elT KJle(|V< |r 2v< )+N[0 1]( )9 bl(c )

by —div(|V¢X|"=2V (k). An important ingredient, written rather formally:

| Mo (€ (-aiv( V295 dx = — [ 08y ) iv( V29 )) d
/ (8910 1)(¢)) [ VEH |2V ¢ dx
/a S10.11(CF) - VCE VK™V ¢k dx > 0

< the positive-semidefineness of the (generalized) Jacobian 825[0,1]
(to be proved rigorously by a mollification of 6[071]).
Thus we obtain:

|div(|V ¢ |2 VEr) < C.

ey
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The model
Weak formulation

Time discretisation, a-priori estimates, convergence

Perfect plasticity in nonsimple materials with damage

With the notation &, = e(l,+0p ) — 7r, the discrete solution satisfies:

E(8,T,(2), 7 (1), C_(8)) < (8T, 7, C_(8)) + R(C_(£): 7 — 7o(£),0)

for all t € [0, T] and all admissible (u, 77), and
[ )+ (516,020 2 = ndiv(9E|29E,)
’ —b’(5)+5)(v— CT)d dt>/ (aCT)dxdt
T T Q at

holds for all v € L?(Q) and for some & € [2(Q) such that
&+ € Np,1j(¢7) a.e. on Q, and eventually the energy (im)balance holds:

E(T, u(T),mr(T), CT(T))+/T75(CT'd£ (ifrr)dt

< £0,00,70.G) + [ Dot (0) 2, (0. () .
Moreover, the a-priori estimate holds:

5 R S o a¢,
&z = (due t0 & €8/(Er) = 2€'(C Vo, w81, mot R din(|VE 29Er) — 0a(20))
T.Roubitek (Aug.30,2016, HUB, CENTRAL) ici
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The model

Perfect plasticity in nonsimple materials with damage Weak formulation

Convergence:

Time discretisation, a-priori estimates, convergence

there is a subsequence and (u, 7, ¢, &) such that

i (t) — u(t)

7 (t) = m(t)

€, (t) = e(tr (1)) =7 (t)
— e(u(t))—7(t) = ea(t)

¢ —¢

G-(t) = ¢(1)

& =&

weakly* in BD(Q; IRY) for any t € [0, T],
weakly* in Meas(2; IRdXd) for any t € [0, T],

dev

weakly in H*(Q; IngXH‘j) for any te(0, T,
strongly in L*°(Q) and
weakly in W(Q) for any t € [0, T],

weakly in L2(Q).

Moreover, any (u, 7, () obtained by such a way is a weak solution.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Proof: Step 1: Selection of a converging subsequence.
Banach selection principle:

O, — u  weakly* in L(0, T; BD(Q; RY)),
T, —m  weakly* in L(0, T; Meas(Q; R9X)) n BV([0, T]; L}(Q; RIZY))
Eolr = e(ly)—7r — e = e(u)—7 weakly* in L(0, T; H'(Q; RS:Y)),
G — ¢ weakly* in L(0, T; WH(Q)) N HY(0, T; L3(Q)),
div(|VE|2VE) — div(|VE|72VC)  weakly in [2(Q),
& — ¢ weakly in L%(Q).

Moreover, for the already selected subsequence, we have also
V¢ A(T) = VC(T) weakly in L"(Q; IRY).

Moreover, by the BV-estimates and the Helly's selection principle:
7(t) — m(t) weakly* in Meas(Q; IRZX9)

dev

G (t) — ¢(t) weakly in L2(Q) (hence weakly in W1 (Q), too).
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

By the compact embedding W1 (Q) € C(Q) and by the Arzela-Ascoli
modification of the Aubin-Lions theorem, we have the compact
embedding

Cueak([0, TT; WEHT(Q)) N HY(0, T; L2(Q)) € C([0, T]; C(Q)) = C(Q).

Thus we obtain ¢, — ¢ in C(Q).

However, we need the uniform convergence not of (; but of QT which
occurs in the discrete flow rule NS(( )( =) 2 dev(C(¢, )&, —div hk.

However, we cannot directly use the Arzela-Ascoli type assertion because
¢, & Cueax([0, T]; WLr(Q)). Instead, we need to estimate the difference
oy (¢, )|a”*| UY((T)|8’”| To this goal, relying on uniform continuity of
oy on [0,1], we need to prove also ¢ — ¢ in L>(Q).
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

BV([0, T]; L3(Q))-estimate of {¢_}-~0 = ¢ _(t) = (. (t) weakly in L*(Q)
Vte[0, T]. (Helly's selection principle)
= ¢ _(t) = ¢(t) weakly in Whr(Q), and by WL (Q) € C(Q) also
¢ (t) = ¢u(t) strongly in C(Q) for any tel0, T].

The sequence {¢_: [0, T] — L2(2)},~0 is “equicontinuous” (although
particular piecewise constant mappings QT are not continuous!) because

IS, (8)=¢, (#2)]] 20 <H/t2 9% 4 </ HaCT

%
< 1 2t 1) = |t1— |1/2H

%
ot

L2(Q) L2(Q)

forany 0< t; <t < T.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Assume that the selected sequence {C_},>0 7 (. in L°(0, T; C(2)).

Thus || =G|l o (0,7:c(@)) = € > 0 for some € and for all 7 > 0 and we
would get [[¢_(t-)—Cx(tr)||¢(q) = € for some .

By compactness of [0, T], we can further select a subsequence and some

t € [0, T] so that t, — t. Then we have ((t;) — C.(t) in C().

By the above proved equicontinuity, we have also ¢_(t-) — (.(t) weakly
in L?(Q). By the boundedness of {¢_(t-)}-0 in W(Q) € C(Q), we

have also ¢_(t-) — ¢.(t) in C(Q).
Then ¢ (t-)=Gu(tr)ll @) = 16:(8)—=C(t)ll (@) = 0. a contradiction.
Thus we proved: ¢ — (. strongly in L>(Q).

Moreover, (. = ¢ a.e. on @ (because (.(t) = ((t) at any continuity point t).

T.Roubitek (Aug.30, 2016, HUB, CENTRAL) Plasticity and damage: PART Il



The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Proof: Step 2: Energy inequality.
we want to pass to the limit in

T un(Mme(T). AT + [ R(C: G (if;)dt
< £0,10,70.G) + [ Do (e, (0) 2, (0. () .

The first term is easy by w-l.s.c. Further note that

auDlr

—(t,u,m,¢) = / C(¢) (e(utupi(t))—7) : e (t)>
—i—HV( (u+uDir(t))—w).Ve(a;?“(t)) —a(t)-u x—/r %(t)-udS,

thus the limit in the external-power-term is easy
(continuity + Lebesque theorem).

Thus the only difficult term is the dissipation.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

we have at disposal the estimate

(RN i TN S e .
with £, the modulus of Lipschitz continuity of oy on [0,1].
Then, using also ¢, — ¢ in C(Q) already proved, we obtain
|iminf/T7€(<  dmo dCT)dt_ I|m|nf/ —’ dxdt)
=0 Jo U\ dt dt 70 Jp ot
_J@O/Q(ay(g )= ‘ - ) +limind [ 4(0) 687” (dxdt)
> 0 +/ ‘a |(axds);
for the used weak* lower semicontinuity of % — /QUY(()‘ZZ‘(dth).

L. AMBROSIO, N. Fusco, D. PALLARA (2000), E. GiusTI (2003)
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Proof: Step 3: Limit passage in the semi-stability.

3?7 a mutual recovery sequence {(Ur,7;)}r>0 in the sense that

imsup (S(t,m, FrnC(8)) + R(C (1) FrTr(£),0) — E(6, T (£), 72 (1), <T(t)))
< &(t,u,m,((t)) + R(C_(t): m—m(t),0) — E(t, u(t), m(t), {(t))-
We choose

Ur =0,(t)+u—u(t) and 7,=7.(t)+7—7(t).
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Then:
T“gog(f, br, 77, ¢ (t)) + R(C_(t); Fr—7r(t),0) — E(t, Ur(t), T(t), ¢ (1))

:T”l‘o(/g %(C(g_r(t))(e(ﬂT+BT(t)+2uDir(t))77~r7—ff_r-r(t)) : (e(fir—Tir (£))— 77 +7- (1))
+ %HV(e(fJTJrBT(t)+2uDir(t))fﬁ'Tf7"r-r(t)) 2V (e(itr —r (£))—Fr+7- (£)) dx

+ /Q [0y (C_ () [Fr—Fr ()] (d) /Q g (t)- (e —ir (1)) dx — /r f(t)-(aT—aT(t»ds)

Neu
= lim ( [ 3C 60 (eir 30 (0)+ 20010 (8) == () = (e(li—u(£)~F+n(2))
+ %HV(e(uT+af(t)+2unir(t))—v"r7—v‘rf(t)) 1V (e(i—u(t)—F-+(t)) dx

+ /ﬁoy(g(t))|7~r7w<t)|(dx>) - /Q g(0)(a-u(0)dx— [ F(e)}(@-u(e))ds

MNeu
:‘/Q %(C(g_r(t))(e(f/-r—&-fl-r(t)+2uDir(t))—7"rT—7'r-,-(t)) ¢ (e(i—u(t))—7+m(t))
+ %HV(e(fl7—+l_l7—(t)+2uDir(t))fﬁ7—77Tr7—(t)) EV(e(Efu(t))ffr+7r(t)) dx
-*‘/ﬁffy(C)\7"T—7T(f)|(d><)—/Qg(t)'(l"l—lf(t))dx—/r f(t)-(a—u(t))dS

= £(8,5,7(8)) + R(C(E): 7 (£),0) ~ £(t, u(1), 7(£), (1)) )
Note that we used also (¢ _(t))|F—7(t)| — vy (§)|F—m(t)] in- Meas(Q)-
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Proof: Step 4: Limit passage in the damage flow rule.

2

/ a(v) + (E(C'(QT)EQLT L 8oty — £AIV(|VET2VE)
’ —b’(5)+5)(v— CT)ddt>/ (CT>d dt
oo o Vot
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Proof: Step 4: Limit passage in the damage flow rule.
/ a(v) + (fc'(gT)éel,T D &l — £ div(|VE] T2V
Q
- - CT / CT
/
_ = >
b(CT)+£T)(v )ddt 5 (at>d xdt

We need &, . — € strongly in L2(Q;Inger .
We know that V&, ,(t) — Ve (t) weakly in L2(Q; IR¥*4*9)
— here uniqueness of stresses is used!
(G.DAL Maso, A.DeSMONE, M.G.Mora 2006)
for simple materials without damage.)
Thus &1+ (t) — ea(t) strongly in L5~¢(Q; RZX?) if d < 3.

Sym

Then, by the uniform bounds in time and by Lebesgue’s theorem,
&1r — €q strongly even in LY/€(0, T; 3~¢(Q; RZ%Y)), > 0.

sym
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Proof: Step 4: Limit passage in the damage flow rule.
/ a(v) + (fc'(gT)éel,T D &l — £ div(|VE] T2V
Q
- - CT / CT
/
_ = >
b(CT)+£T)(v )ddt 5 (at>d xdt

We need &, — eq strongly in L?(Q; IngXH‘j
We know that V&, ,(t) — Ve (t) weakly in L2(Q; IR¥*4*9)
— here uniqueness of stresses is used!
(G.DAL Maso, A.DeSMONE, M.G.Mora 2006)
for simple materials without damage.)
Thus &1+ (t) — ea(t) strongly in L5~¢(Q; RZX?) if d < 3.

Sym

Then, by the uniform bounds in time and by Lebesgue’s theorem,
&1r — €q strongly even in LY/€(0, T; 3~¢(Q; RZ%Y)), > 0.

sym

Then the only difficult terms are /fo div |VC_T|”2V§T)% dxdt and
fQ & (— ac, ) dxdt because so far we know only the weak convergence of
dw(|v<7|f 2V§T) and of %z in [3(Q).
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

CT CT

dxdt

Iimsup/ div(|V¢ | 2VCT)

7—0

dxdt = —Ilmlnf/ |VE "2V V
glimsup/ =Vl —7|ng T)|" dx
7—0 ol r

o dxdt

1 r 1 r r—
< [ 2val - HIven) ax= / (VeI 2Ve) g
where we used V¢, (T) — V¢(T) weakly in L"(Q;IR?) and where the
last equality relies on the regularity property div(|V¢|"~2V() € L3(Q)
and can be proved either by a mollification in time by a time-difference
technique (G. GRUN, 1995) or in space.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

CT

Iimsup/ div(|V¢ | 2VCT)

7—0

dxdt = —Ilmlnf/ A/l v/dR v CT dxdt
< Iimsup/ =Vl - 7|ng )| dx
7—0 ol r
1 r 1 r r—2 C
< | VG| - S [vT)| dx = dw(|v<;\ V()5 dxdt
Q
where we used V(,(T) — V¢(T) weakly in L"(Q;IR?) and where the
last equality relies on the regularity property div(|V¢|"~2V() € L3(Q)

and can be proved either by a mollification in time by a time-difference
technique (G. GRUN, 1995) or in space.

The convergence in the inclusion &, € N[o,l](fT) is easy due to the
maximal monotonicity of Njgqj(-). Then

“Tng/Qf_r<_ 8CT> dxdt = IiT_s)gp </ 90,1 (o) dx—/6[0 y(G(T >
/5[0 () dx—/5[0 4(¢ ))dx—/(?§<—&) dxdt.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

To the uniqueness of the stresses:

absolute continuity valid like in the undamageable simple-material case
due to viscosity in damage flow rule and the argumentation is to be used
for the hyperstresses which are not explicitly subjected to damage:

1d
5 37 (VS —ef), V(e D)) + (C(O) (el -eD), e —e))
0
—-5(c (c)a—f( —e?). ) —el?)
_0<a§1| |H él)_eel ”L4(Q;Rdxd)

from which eS) = eélz) follows by Gronwall's inequality when used

positive-definiteness of C(-) and of H after integrated over [0, t].
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

To the uniqueness of the stresses:

absolute continuity valid like in the undamageable simple-material case
due to viscosity in damage flow rule and the argumentation is to be used
for the hyperstresses which are not explicitly subjected to damage:

N|

d
2l () (e -ef), e —ef)

from which eéll) = eéf) follows by Gronwall’s inequality when used
positive-definiteness of C
which, for H =0 and C’ = 0, reduces to the simple inequality for the
undamageable simple material as in (G.A.Mauvciy, 1992)

or (G.DAL Maso, A.DESIMONE, M.G.Mora 2006).
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Proof: Step 5: Energy equality.

1) The damage flow rule (which holds a.e. on Q) can be tested by 04 €L?(Q).
We again use [, 1|Véo|" — |V¢(T)|" dx = [, div(|V¢]"~2V() % dxdt.

Moreover, as & € 66[0 1](8—4) we have
Jo 65 dxdt = [, 6(¢(T)) — 6(¢(0))dx =0—0=0.

We thus obtain
/%|V§(T)]’—b( dx—l—/ ZC(¢)ew : eel+a(d<)dxdt
Q
Z/*|VC0| ~ b(G) dx
Q r
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

2) We test formally the momentum equilibrium by - and plastic flow rule by
Approximation of Lebesgue integrals by Rlemann s sums (an idea of
H.HAHN (Sitzungber.Math.Phys.KI.K.Akad.Wiss.Wien,1914)
used in the context of R.I.P. by

G.DAL MASO, G.A.FRANCFORT, R.TOADER (ARMA, 2005)
here modified for Stieltjes-type integral with the fixed L?-weight gi and
the above semistability.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

2) We test formally the momentum equilibrium by - and plastic flow rule by
Approximation of Lebesgue integrals by Rlemann s sums (an idea of
H.HAHN (Sitzungber.Math.Phys.KI.K.Akad.Wiss.Wien,1914)
used in the context of R.I.P. by

G.DAL MASO, G.A.FRANCFORT, R.TOADER (ARMA, 2005)
here modified for Stieltjes-type integral with the fixed L?-weight gi and

the above semistability.
Define &1 € L1([0, T]) and & € L2([0, T]; L2(; IRE:Y)) defined by
&1t [Is(t)II3, amee 0TI =R and

Gyt s(t) [0, T] = LRI,  s(t) = [D%—B(ﬁ)wm}(t,-),

¥n>0: a partition Oztg<t{7<...<t,7\7,n:T with  max t'—t! ; < so that

i=1,...,N,
Z/ﬂ 61(t],) — S1(t)|dt — 0

N,,
and Z/ ‘62(t1 1) 62 HLZ(Q Rg;nc{)dt — 0.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Define the piece-wise constant functions

Sry(t) = Syt ) for te(t/,t",), {=1,2.
We have

2
G1,(t) = ||62,,7(t)HL2(Q;Rgm) for a.a. t,
S1,y — &1 in L0, T),
&2, — & in L0, T; L2(RLY)).

sym

In particular, {&1,,},>0 is bounded in L*(0, T), so that
{&2.n}n>0 is bounded in L2(0, T; L2(Q; REY)).
—> d a subsequence such that

Ga,y — Gy weakly in L2(Q;IREXT),

Sym

and, in particular, the Lebesque-Stieltjes integral is approximated:

/62,n:%dxdt—>/62:%dxdt.
Q ot Q Ot
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Now we assume the partitions chosen so that the semistability holds at
all o<ty <..<tf _,<T

(possibly not in t;\’,n<T, while for tj = 0 it is to assume).
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Now we assume the partitions chosen so that the semistability holds at
7 7

all 0<.t1 <...<-t,\,rl<T . N

(possibly not in t,’(, < T, while for tj =0 it is to assume).

The semistability at ¢ ; tested by (u,7) at t, and summed up gives:

og/ﬂ@dﬁydmg—f&@wdﬂmx

+Z/m (e(E)—e(e) w+z/y )= (£ )] ().
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Now we assume the partitions chosen so that the semistability holds at
all o<ty <..<tf _,<T

(possibly not in t,’(, < T, while for tj =0 it is to assume).
The semistability at ¢ ; tested by (u,7) at t, and summed up gives:

og/ﬂ@dﬁydmg—f&@wdﬂmx

+Z/m (e(E)—e(e) w+z/y ()] (dx).
For limitting n — 0, we use that tN =T and tj=0 are fixed, and

Z/ (7 ): (e(t)—e(t,) dX—/GZna dxdt
Oe Oe Oe
%/ GQ.mdxdt/Qs.atdxdt/Q(]D)atB( )+0Dir>.adxdt

and Z/ 65()[w(t") — m(t1))] (dx) < Vars(m; 0, T) by definition.
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Altogether, for n — 0, we obtain the “inverse” energy inequality:
1 1
/ E(CE(T):S(T) - ECS(O):E(O)dX + Varg(m; 0, T)
Q

+/ aadd >0
oDijr: — dxdt B
@ Dir'ge =
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Altogether, for n — 0, we obtain the “inverse” energy inequality:
1 1
/ E(CE(T):S(T) - ECS(O):E(O)dX + Varg(m; 0, T)
Q
+/ 0 dxdt > 0
oDijr: — dxdt B
0 Dir 9t =

This is ultimately used for the limit passage with 7 — 0:

/h(ddt /Daaddt \ (OT)+/]DBEaEddt
X — . — dX = ar _—— X
" ot @ gl o ot ot
o 15} 15} 15} 15} 15}
gnminf/ég TTy ppr T <li 62 (D) + DT T e
ot ot ot 710 JQ ot ot
. 1 , 1
< lim sup (/ ~Ceo,r:€0,7 + 7|70, 7|” — =Cer(T):e+(T)dx
0 \Ja 2 2 o
3 T
+ /Q(B(ﬁf)*(UDir)-r):E dde)
1 1 Oe
< / —Cep:eg — 7Ca( ) e(T) dx+/ B(¥)—opip):— 5 dxdt
t
Oe
< Varg(m; 0, T)+/ ]D)— — dxdt.
ot ot
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The model
Weak formulation
Time discretisation, a-priori estimates, convergence

Perfect plasticity in nonsimple materials with damage

Altogether:
L , Omr Oer Oer de Oe
||m|nf/55( ) +D : dxdt:/ hﬂ-(dxdt)+/ D—:— dxdt
T0/Q ot at ot e} Q ot ot
so that 4 5
5;(ﬁ) — brx=the measure “ 5;(—Tr) " weakly* in Meas(Q),
ot ot
and
e+ ) Oe Oe

: :— strongly in L}(Q).
ot ot Dor g rongvin L@

The limit passage in the heat equation accomplished.
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The model
Weak formulation

Perfect plasticity in nonsimple materials with damage

Time discretisation, a-priori estimates, convergence

Altogether:
L , Omr Oer Oer de Oe
||m|nf/55( ) +D : dxdt:/ hﬂ-(dxdt)+/ D—:— dxdt
Ti0JQ ot ot ot Q Q ot ot
so that 4 5
5;(ﬁ) — brx=the measure “ 5;(—Tr) " weakly* in Meas(Q),
ot ot
and
DBET ) Oer Oe

D222 rongly in L1(Q)
. — . — stron n .
ot ot ot ot =

The limit passage in the heat equation accomplished.

The equilibrium equation and the “upper” energy inequality simple.

T.Roubitek
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The model
Perfect plasticity in nonsimple materials with damage Weak formulation

Time discretisation, a-priori estimates, convergence

Here, as C is not constant, we will still see the term (%(C’(C)eel:eel)%
which results by the formal substitution

0 01

C(C)ee]:ﬁeel = Ei

1, )
(50 Qeaea) G

note that (C(()ee]:%eel is not well defined since %eel is not well
controlled.

Thus we obtain

(C(C)eelzeel —

/ (C eel T) eel(T)—i- HVeel(T) Vee1(T)dX
1, . a¢
+ /Q %C(<o)ecl(0):ecl(0)+%Hveel(o)fvffcl(o)dx

Summing it with the previous contribution from damage then gives the
energy balance.
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Numerics: the lowest-order spatial discretisation by the conformal
finite-element method (FEM). In view of the used regularity
div(|V¢|"=2V() € L?, the straightforward discretisation therefore employs
P2-elements for v and ¢ and Pl-elements for .

Rigorously speaking, due to the assumed smoothness of €2, one should
consider FEM on a nonpolyhedral, curved domain. The two minimization
problems are then to be restricted on the corresponding
finite-dimensional subspaces, and the solution thus obtained is denoted
by uk,, 7, and ¢X,, with h > 0 denoting the mesh size.

Convergence for h — 0 and 7 — 0 just a modification of the above proof.
The explicit construction of the mutual recovery sequence takes
additionally a finite-element approximation:

Uy = Tpn(t) + NP (@ = u(t))  and T = Frn(t) + NP (F — (1))

with I'Ig,k) a projector onto the Pk-FEM space.
(S.BARTELS, A.MIELKE, T.R 2012)

T.Roubitek (Aug.30, 2016, HUB, CENTRAL) Plasticity and damage: PART Il



Numerics
Computational simulations
Some modifications

Numerics, simulations, modifications

Computational simulations.

400 m
initially partly
g Ip / damaged zone
_ A Iy
L [
D
Ip

Geometry used for the computational experiment. The Dirichlet conditions
have been prescribed on 'p;, moving horizontally in opposite directions

with the constant velocity £10~8m/s.
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Computational simulations.

400 m
initially partly
g Ip / damaged zone
_ A Iy
L [
D
Ip

Geometry used for the computational experiment. The Dirichlet conditions
have been prescribed on 'p;, moving horizontally in opposite directions
with the constant velocity £10~8m/s.

Isotropic material: C(1) ~ E,_ .= 27 GPa, Poisson’ ratio v = 0.2, C(0) = C(1)/10,
the elastic domain X(¢) := {0 € R9*Y; |o| < Co,} with o, = 2MPa,
the dissipation potential a(%2) := a122 ~ + & (% )2+ cb(Z% ")? with
a; = 10Pa, a = 0.1Pas, and ¢ = 100 kPas, while the damage stored
energy b(¢) = boC used by = 10~3Pa, and the damage length-scale

coefficient k = 107% J/m.

T.Roubitek (Aug.30, 2016, HUB, CENTRAL) Plasticity and damage: PART Il



Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Computational simulations.
400 m

initially partly

g . O Ip / damaged zone
o g
= 2 :\*OO_ I'n
. I
D

Geometry used for the computational experiment. The Dirichlet conditions
have been prescribed on 'p;, moving horizontally in opposite directions
with the constant velocity £10~8m/s.

Isotropic material: C(1) ~ E,_ .= 27 GPa, Poisson’ ratio v = 0.2, C(0) = C(1)/10,

Sowmg
the elastic domain X(¢) := {0 € R9*Y; |o| < Co,} with o, = 2MPa,
the dissipation potential a(22) := 2122 ~ 4 a,(2 7)2 + cb(22 )2 with
a; = 10Pa, a = 0.1Pas, and ¢ = 100 kPas, while the damage stored
energy b(¢) = boC used by = 10~3Pa, and the damage length-scale
coefficient k = 107% J/m.
The initial conditions: mo=0, (=1 (or (o=1/2 in a middle narrow horizontal stripe)
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Computational simulations.
400 m

initially partly

g . O Ip / damaged zone
o g
= 2 :\*OO_ I'n
. I
D

Geometry used for the computational experiment. The Dirichlet conditions
have been prescribed on 'p;, moving horizontally in opposite directions
with the constant velocity £10~8m/s.
Isotropic material: C(1) ~ E,_ .= 27 GPa, Poisson’ ratio v = 0.2, C(0) = C(1)/10,

Sowmg
the elastic domain X(¢) := {0 € R9*Y; |o| < Co,} with o, = 2MPa,
the dissipation potential a(22) := 2122 ~ 4 a,(2 7)2 + cb(22 )2 with
a; = 10Pa, a = 0.1Pas, and ¢ = 100 kPas, while the damage stored
energy b(¢) = boC used by = 10~3Pa, and the damage length-scale
coefficient k = 107% J/m.
The initial conditions: mo=0, (=1 (or (o=1/2 in a middle narrow horizontal stripe)

(Shortcuts in implementation: H = 0 and P1-FEM for ¢.)
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

— L] L]

attime t =1

o 1 o Se—oa = Sesos

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—— L] L

at time t = 2

o 1 o [y o [Ep—r

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—— L | L]

at time t = 3

o 1 o [y o [Ep—r

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

— (| oo

at time t = 4

o 1 o [y o [Ep—r

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—— L L

at time t =5

o E o SO o (e

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

— ¢ £ A

attime t =6

o E o SO o (e

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

— 4 & ¥

attime t =7

o E o SO o (e

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

— ) a

at time t = 8

o 1 o S 04 o Soe-0S

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .

T.Roubitek (Aug.30, 2016, HUB, CENTRAL) Plasticity and damage: PART Il



Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—— ¢ &9

at time t =9

o 1 o S 04 o Soe-0S

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

— ¢ a9

at time t = 10

o 1 o S 04 o Soe-0S

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

— ¢ e

at time t = 11

o 1 o Fe O o e

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .

T.Roubitek (Aug.30, 2016, HUB, CENTRAL) Plasticity and damage: PART Il



Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

———~ ¢ ¢ & W

at time t = 12

o 1 o Fe O o e

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—— ¢ ¢ A

at time t = 13

o 1 o Fe O o e

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

———~ ¢ AW

at time t = 14

o 1 o S o See0s

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 x.
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

———~ ¢ 7 -~

at time t = 15

o 1 o S o See0s

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 x.
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—— 7 A

at time t = 16

o 1 o S o See0s

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 x.

T.Roubitek (Aug.30, 2016, HUB, CENTRAL) Plasticity and damage: PART Il



Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

— 7

at time t = 17

o 1 = Ze—oa = Sesos

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—— 7

at time t = 18

o 1 = Ze—oa = Sesos

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—— 7 A

at time t = 19

o 1 = Ze—oa = Sesos

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |7| von-Mises stress |dev o|

——F 7

at time t = 20

o 1 o Erp—Ey o [Ep—r

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |7| von-Mises stress |dev o|

—F P

at time t = 21

o 1 o Erp—Ey o [Ep—r

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .

T.Roubitek (Aug.30, 2016, HUB, CENTRAL) Plasticity and damage: PART Il



Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |7| von-Mises stress |dev o|

——r P

at time t = 22

o 1 o Erp—Ey o [Ep—r

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—r o

at time t = 23

o 1 o e o e

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the spel:imen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

——r T

at time t = 24

o 1 o e o e

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the spel:imen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—T o el

at time t = 25

o 1 o e o e

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the spe_cimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ( plastic strain |r| von-Mises stress |dev o|

— o e

at time t = 26

o 1 o SO o See-0S

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ( plastic strain |r| von-Mises stress |dev o|

—r o o

at time t = 27

o 1 o SO o See-0S

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ( plastic strain |r| von-Mises stress |dev o|

— ol

at time t = 28

o 1 o SO o See-0S

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—— -

at time t = 29

o 1 o Se oa o Se-0s

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

——r o c—r -

at time t = 30

o 1 o Se oa o Se-0s

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
Computational simulations

Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

—r  c—r

at time t = 31

o 1 o Se oa o Se-0s

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics
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Numerics, simulations, modifications Some modifications

Experiment of the horizontally shifted plates: first stress increases, then rupture starts
propagating towards the center, and eventually everything goes into sliding regime.

damage ¢ plastic strain |r| von-Mises stress |dev o|

— T =

at time t = 32

o 1 o S O o e

Calculations and visualization: courtesy of Jan Valdman (Czech Acad. Sci.).

Deformation of the specimen depicted by displacement u magnified 25000 X .
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Numerics, simulations, modifications Some modifications

Energy inequality (in current time t) - convergence within two reflnements
» Omr OGr
S(t,uf(t),ﬂ'f(t),CT(t))_F/ (e T, 84 )dt<g(o s ) +/ S (oupm, )

1p 2 10¥

work of
external
load

dissipated
+stored
energy

105

The left-hand and the right-hand sides for three different time steps 7 = 10, 5, 1ks.
Less viscous damage = slower convergence of the energy residuum to 0: the left
flgure for ap = 0.1 MPas vs the right one for a = 10 MPas.

R x 10"
EErS

)
<8

Reaction-force evolution - converged already when energetics has .a substantial-gap.
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Numerics, simulations, modifications Some modifications

Applications in modelling of lithospheric faults
— a very narrow core vs. a wider damage zone around:

m damaged host rock
(several meters thick)

. granular fault gouge
(0.15-0.55 m thick)

prominent fracture
surface (<1 mm thick)

Field observations from an exhumed lithospheric fault.
F.M.CHESTER, J.S.CHESTER in Tectonophysics 295 (1998) 199-221.
(reprinted also in E.G.DAUB, J.M.CARLSON: Friction, Fracture, and Earthquakes)
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Numerics, simulations, modifications Some modifications

Yet, instead of (eel, () — C()ec:ea = 3A()E + p(¢)b, with Iy = trea, h = |eal|?

one considers  (ee1,¢) = 2A()IE + 1(Q)b—v()hVD.
V. LYAKHOVSKY & V.P. MYASNIKOV (1984)
later e.g. Y. BEN ZION, V. LYAKHOVSKY, Y. HAMIEL, Z. RECHES, etc. etc.
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Numerics
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Numerics, simulations, modifications Some modifications

Yet, instead of (eel, () — C()ec:ea = 3A()E + p(¢)b, with Iy = trea, h = |eal|?

one considers  (ee1,¢) = 2A()IE + 1(Q)b—v()hVD.
V. LYAKHOVSKY & V.P. MYASNIKOV (1984)
later e.g. Y. BEN ZION, V. LYAKHOVSKY, Y. HAMIEL, Z. RECHES, etc. etc.

Typically, A(¢) = Ao,
#(¢) = po — g,
7(¢) = m¢. /
The elastic stress is then (/\(C)f'y(()\/g)tr €1 + (2u(§)eelffy(§)ﬁ)eel.
>
The driving stress for damage cqam = 3N (¢)12 + /() h—' (O)h/VE
can now be positive even without the contribution of the b-term
= healing mechanism (even dominant)!
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Numerics, simulations, modifications Some modifications

Yet, instead of (eel, () — C()ec:ea = 3A()E + p(¢)b, with Iy = trea, h = |eal|?

one considers  (ee1,¢) = 2A()IE + 1(Q)b—v()hVD.
V. LYAKHOVSKY & V.P. MYASNIKOV (1984)
later e.g. Y. BEN ZION, V. LYAKHOVSKY, Y. HAMIEL, Z. RECHES, etc. etc.

Typically, A(¢) = Ao,
w(¢) = po — pa,
7(¢) = M.

The elastic stress is then (/\(C)f'y(()\/g)tr €1 + (2u(§)eelffy(§)%)eel.
>

The driving stress for damage cqam = 3N (¢)12 + /() h—' (O)h/VE
can now be positive even without the contribution of the b-term
= healing mechanism (even dominant)!

To preserve coercivity, one should modify it as softening under very large strain

MK +2p(Q) b — 29(OhVE
(eelaC) — L m

with € > 0 presumably small.

with j =trey and b = |€e1|2
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Numerics, simulations, modifications Some modifications

Some open problems:
Avoiding the concept of nonsimple materials seems nonsimple indeed.
Again complete damage does not seem to be investigated with plasticity

yet rate-dependent complete damage with diffusion is by
(C. HEINEMANN, C. KRrRAUS, WIAS Preprint 2012)

Homework (for tutorial):
Rate-independent damage without gradient (compensated by the
nonsimple-material regularization).
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Numerics, simulations, modifications Some modifications

Some references:

T.Roubitek

A.Mielke, T.Roubitek: Rate-Independent Systems - Theory and
Application. Springer, New York, 2015.

A.Mielke, T.Roubi¢ek, U.Stefanelli: I'-limits and relaxations for rate-
-independent evolutionary problems. Calc. Var. P.D.E. 31(2008),387-416.

A.Mielke, T.Roubi¢ek: Numerical approaches to rate-independent
processes and applications in inelasticity. Math. Modelling Numer.Anal.
43 (2009), 395-428.

T.Roubi¢ek: Rate independent processes in viscous solids at small strains.
Math. Methods Appl. Sci. 32 (2009), 825-862.

T.Roubitek: Nonlinear Partial Differential Equations with Applications.
2nd ed. Birkhauser, Basel, 2013.

T.Roubi¢ek: Thermodynamics of perfect plasticity. Disc. Cont. Dynam.
Syst. - 56 (2013), 193-214.

T.Roubi¢ek, J.Valdman: Perfect plasticity with damage and healing at
small strains, its modelling, analysis, and computer implementation.
SIAM J. Appl. Math. 76 (2016), 314-340.
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Numerics, simulations, modifications Some modifications

More on: www.karlin.mff.cuni.cz/ “roubicek/trpublic.htm
or: https://www.researchgate.net/profile/Tomas_Roubicek2

Thanks a lot for your attention.
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Numerics, simulations, modifications Some modifications

More on: www.karlin.mff.cuni.cz/ “roubicek/trpublic.htm
or: https://www.researchgate.net/profile/Tomas_Roubicek2

Vielen Dank fur lhre Aufmerksamkeit.
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