All Packages  Class Hierarchy  This Package  Previous  Next  Index

Class org.netlib.lapack.DSYSVX

java.lang.Object
   |
   +----org.netlib.lapack.DSYSVX

public class DSYSVX
extends Object
DSYSVX is a simplified interface to the JLAPACK routine dsysvx.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines.  Using this interface also allows you
to omit offset and leading dimension arguments.  However, because
of these conversions, these routines will be slower than the low
level ones.  Following is the description from the original Fortran
source.  Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DSYSVX uses the diagonal pivoting factorization to compute the * solution to a real system of linear equations A * X = B, * where A is an N-by-N symmetric matrix and X and B are N-by-NRHS * matrices. * * Error bounds on the solution and a condition estimate are also * provided. * * Description * =========== * * The following steps are performed: * * 1. If FACT = 'N', the diagonal pivoting method is used to factor A. * The form of the factorization is * A = U * D * U**T, if UPLO = 'U', or * A = L * D * L**T, if UPLO = 'L', * where U (or L) is a product of permutation and unit upper (lower) * triangular matrices, and D is symmetric and block diagonal with * 1-by-1 and 2-by-2 diagonal blocks. * * 2. The factored form of A is used to estimate the condition number * of the matrix A. If the reciprocal of the condition number is * less than machine precision, steps 3 and 4 are skipped. * * 3. The system of equations is solved for X using the factored form * of A. * * 4. Iterative refinement is applied to improve the computed solution * matrix and calculate error bounds and backward error estimates * for it. * * Arguments * ========= * * FACT (input) CHARACTER*1 * Specifies whether or not the factored form of A has been * supplied on entry. * = 'F': On entry, AF and IPIV contain the factored form of * A. AF and IPIV will not be modified. * = 'N': The matrix A will be copied to AF and factored. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices B and X. NRHS >= 0. * * A (input) DOUBLE PRECISION array, dimension (LDA,N) * The symmetric matrix A. If UPLO = 'U', the leading N-by-N * upper triangular part of A contains the upper triangular part * of the matrix A, and the strictly lower triangular part of A * is not referenced. If UPLO = 'L', the leading N-by-N lower * triangular part of A contains the lower triangular part of * the matrix A, and the strictly upper triangular part of A is * not referenced. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N) * If FACT = 'F', then AF is an input argument and on entry * contains the block diagonal matrix D and the multipliers used * to obtain the factor U or L from the factorization * A = U*D*U**T or A = L*D*L**T as computed by DSYTRF. * * If FACT = 'N', then AF is an output argument and on exit * returns the block diagonal matrix D and the multipliers used * to obtain the factor U or L from the factorization * A = U*D*U**T or A = L*D*L**T. * * LDAF (input) INTEGER * The leading dimension of the array AF. LDAF >= max(1,N). * * IPIV (input or output) INTEGER array, dimension (N) * If FACT = 'F', then IPIV is an input argument and on entry * contains details of the interchanges and the block structure * of D, as determined by DSYTRF. * If IPIV(k) > 0, then rows and columns k and IPIV(k) were * interchanged and D(k,k) is a 1-by-1 diagonal block. * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. * * If FACT = 'N', then IPIV is an output argument and on exit * contains details of the interchanges and the block structure * of D, as determined by DSYTRF. * * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) * The N-by-NRHS right hand side matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) * If INFO = 0, the N-by-NRHS solution matrix X. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * RCOND (output) DOUBLE PRECISION * The estimate of the reciprocal condition number of the matrix * A. If RCOND is less than the machine precision (in * particular, if RCOND = 0), the matrix is singular to working * precision. This condition is indicated by a return code of * INFO > 0, and the solution and error bounds are not computed. * * FERR (output) DOUBLE PRECISION array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) DOUBLE PRECISION array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The length of WORK. LWORK >= 3*N, and for best performance * LWORK >= N*NB, where NB is the optimal blocksize for * DSYTRF. * * IWORK (workspace) INTEGER array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, and i is * <= N: D(i,i) is exactly zero. The factorization has * has been completed, but the block diagonal * matrix D is exactly singular, so the solution and * error bounds could not be computed. * = N+1: the block diagonal matrix D is nonsingular, but * RCOND is less than machine precision. The * factorization has been completed, but the matrix * is singular to working precision, so the solution * and error bounds have not been computed. * * ===================================================================== * * .. Parameters ..


Constructor Index

 o DSYSVX()

Method Index

 o DSYSVX(String, String, int, int, double[][], double[][], int[], double[][], double[][], doubleW, double[], double[], double[], int, int[], intW)

Constructors

 o DSYSVX
 public DSYSVX()

Methods

 o DSYSVX
 public static void DSYSVX(String fact,
                           String uplo,
                           int n,
                           int nrhs,
                           double a[][],
                           double af[][],
                           int ipiv[],
                           double b[][],
                           double x[][],
                           doubleW rcond,
                           double ferr[],
                           double berr[],
                           double work[],
                           int lwork,
                           int iwork[],
                           intW info)

All Packages  Class Hierarchy  This Package  Previous  Next  Index