All Packages  Class Hierarchy  This Package  Previous  Next  Index

Class org.netlib.lapack.Dppsv

java.lang.Object
   |
   +----org.netlib.lapack.Dppsv

public class Dppsv
extends Object
Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DPPSV computes the solution to a real system of linear equations * A * X = B, * where A is an N-by-N symmetric positive definite matrix stored in * packed format and X and B are N-by-NRHS matrices. * * The Cholesky decomposition is used to factor A as * A = U**T* U, if UPLO = 'U', or * A = L * L**T, if UPLO = 'L', * where U is an upper triangular matrix and L is a lower triangular * matrix. The factored form of A is then used to solve the system of * equations A * X = B. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) * On entry, the upper or lower triangle of the symmetric matrix * A, packed columnwise in a linear array. The j-th column of A * is stored in the array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. * See below for further details. * * On exit, if INFO = 0, the factor U or L from the Cholesky * factorization A = U**T*U or A = L*L**T, in the same storage * format as A. * * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) * On entry, the N-by-NRHS right hand side matrix B. * On exit, if INFO = 0, the N-by-NRHS solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the leading minor of order i of A is not * positive definite, so the factorization could not be * completed, and the solution has not been computed. * * Further Details * =============== * * The packed storage scheme is illustrated by the following example * when N = 4, UPLO = 'U': * * Two-dimensional storage of the symmetric matrix A: * * a11 a12 a13 a14 * a22 a23 a24 * a33 a34 (aij = conjg(aji)) * a44 * * Packed storage of the upper triangle of A: * * AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] * * ===================================================================== * * .. External Functions ..


Constructor Index

 o Dppsv()

Method Index

 o dppsv(String, int, int, double[], int, double[], int, int, intW)

Constructors

 o Dppsv
 public Dppsv()

Methods

 o dppsv
 public static void dppsv(String uplo,
                          int n,
                          int nrhs,
                          double ap[],
                          int _ap_offset,
                          double b[],
                          int _b_offset,
                          int ldb,
                          intW info)

All Packages  Class Hierarchy  This Package  Previous  Next  Index