On the scale singularity set of Lorentzian Almost Einstein manifolds

Peter Schemel

January 27, 2012

An almost Einstein (AE) manifold $(\overline{M}, \overline{g}, \sigma)$ is a natural generalisation of an Einstein manifold, i.e. a manifold (M, g) for which $\operatorname{Ric} -\frac{\tau}{n}g = 0$, τ being the scalar curvature. It can be seen as a conformal compactification of such an Einstein manifold with $(M \simeq \overline{M} \setminus \Sigma, g = \sigma^{-2}\overline{g})$ and boundary $\Sigma = \sigma^{-1}(0)$. Since for a given AE-manifold the rescaled data $(\varphi^2 \overline{g}, \varphi \sigma)$ are also AE, the concept of AE manifolds is conformally invariant. By denoting the induced metric on Σ by $[\gamma] = [\overline{g}|_{\Sigma}]$, the following question arises. Given $(\Sigma, [\gamma])$, does there exist an AE-manifold $(\overline{M}, \overline{g}, \sigma)$ with $(\Sigma, [\gamma])$ as conformal boundary?

The focus of my talk will be on Lorentzian AE-manifolds which are conformally Ricci flat. It turnes out that for such an AE structure the boundary Σ locally must be a geodesic lightcone or a lightlike surface and the gradient of σ has certain properties which will be presented. In addition, special conditions for \bar{g} near the conformal boundary will be derived. The resulting Cauchy problem is that on a characteristic cone.