The Geometry of the Moduli Space of Curves of Genus 23

GAVRIL FARKAS

1 Introduction

The problem of describing the birational geometry of the moduli space \mathcal{M}_{g} of complex curves of genus g has a long history. Severi already knew in 1915 that \mathcal{M}_{g} is unirational for $g \leq 10$ (cf. [Sev]; see also [AC1] for a modern proof). In the same paper Severi conjectured that \mathcal{M}_{g} is unirational for all genera g. Then for a long period this problem seemed intractable (Mumford writes in $[\mathrm{Mu}]$, p.51:"Whether more \mathcal{M}_{g} 's, $g \geq 11$, are unirational or not is a very interesting problem, but one which looks very hard too, especially if g is quite large"). The breakthrough came in the eighties when Eisenbud, Harris and Mumford proved that \mathcal{M}_{g} is of general type as soon as $g \geq 24$ and that the Kodaira dimension of \mathcal{M}_{23} is ≥ 1 (see [HM], [EH3]). We note that \mathcal{M}_{g} is rational for $g \leq 6$ (see [Dol] for problems concerning the rationality of various moduli spaces).

Severi's proof of the unirationality of \mathcal{M}_{g} for small g was based on representing a general curve of genus g as a plane curve of degree d with δ nodes; this is possible when $d \geq 2 g / 3+2$. When the number of nodes is small, i.e. $\delta<(d+1)(d+2) / 6$, the dominant map from the variety of plane curves of degree d and genus g to \mathcal{M}_{g} yields a rational parametrization of the moduli space. The two conditions involving d and δ can be satisfied only when $g \leq 10$, so Severi's argument cannot be extended for other genera. However, using much more subtle ideas, Chang, Ran and Sernesi proved the unirationality of \mathcal{M}_{g} for $g=11,12,13$ (see [CR1], [Se1]), while for $g=15,16$ they proved that the Kodaira dimension is $-\infty$ (see [CR2,4]). The remaining cases $g=14$ and $17 \leq g \leq 23$ are still quite mysterious. Harris and Morrison conjectured in [HMo] that \mathcal{M}_{g} is uniruled precisely when $g<23$.

All these facts indicate that \mathcal{M}_{23} is a very interesting transition case. Our main result is the following:

Theorem 1 The Kodaira dimension of the moduli space of curves of genus 23 is ≥ 2.
We will also present some evidence for the hypothesis that the Kodaira dimension of \mathcal{M}_{23} is actually equal to 2 .
Acknowledgments: I am grateful to my advisor Gerard van der Geer, for proposing the problem and for continuous support and guidance. I thank Joe Harris for many inspiring discussions during my stay at Harvard. I also benefitted from conversations with Marc Coppens and Carel Faber.

2 Multicanonical linear systems and the Kodaira dimension of \mathcal{M}_{g}

We study three multicanonical divisors on \mathcal{M}_{23}, which are (modulo some boundary components) of Brill-Noether type and we conclude by looking at their relative position that $\kappa\left(\mathcal{M}_{23}\right) \geq 2$.

We review some notations. We shall denote by $\overline{\mathcal{M}}_{g}$ and $\overline{\mathcal{C}}_{g}$ the moduli spaces of stable and 1-pointed stable curves of genus g over \mathbb{C}. If C is a smooth algebraic curve of genus g, we consider for any r and d, the scheme whose points are the \mathfrak{g}_{d}^{r} 's on C, that is,

$$
G_{d}^{r}(C)=\left\{(\mathcal{L}, V): \mathcal{L} \in \operatorname{Pic}^{d}(C), V \subseteq H^{0}(C, \mathcal{L}), \operatorname{dim}(V)=r+1\right\}
$$

(cf. $[\mathrm{ACGH}]$) and denote the associated Brill-Noether locus in \mathcal{M}_{g} by

$$
\mathcal{M}_{g, d}^{r}:=\left\{[C] \in \mathcal{M}_{g}: G_{d}^{r}(C) \neq \emptyset\right\},
$$

and by $\overline{\mathcal{M}}_{g, d}^{r}$ its closure in $\overline{\mathcal{M}}_{g}$.
The distribution of linear series on algebraic curves is governed (to some extent) by the Brill-Noether number

$$
\rho(g, r, d):=g-(r+1)(g-d+r) .
$$

The Brill-Noether Theorem asserts that when $\rho(g, r, d) \geq 0$ every curve of genus g possesses a \mathfrak{g}_{d}^{r}, while when $\rho(g, r, d)<0$ the general curve of genus g has no \mathfrak{g}_{d}^{r} 's, hence in this case the Brill-Noether loci are proper subvarieties of \mathcal{M}_{g}. When $\rho(g, r, d)<0$, the naive expectation that $-\rho(g, r, d)$ is the codimension of $\mathcal{M}_{g, d}^{r}$ inside \mathcal{M}_{g}, is in general way off the mark, since there are plenty of examples of Brill-Noether loci of unexpected dimension (cf. [EH2]). However, we have Steffen's result in one direction (see [St]):

If $\rho(g, r, d)<0$ then each component of $\mathcal{M}_{g, d}^{r}$ has codimension at most $-\rho(g, r, d)$ in \mathcal{M}_{g}.

On the other hand, when the Brill-Noether number is not very negative, the BrillNoether loci tend to behave nicely. Existence of components of $\mathcal{M}_{g, d}^{r}$ of the expected dimension has been proved for a rather wide range (cf. [EH1]), namely for those g, r, d such that $\rho(g, r, d)<0$, and

$$
\rho(g, r, d) \geq \begin{cases}-g+r+3 & \text { if } r \text { is odd } \\ -r g /(r+2)+r+3 & \text { if } r \text { is even }\end{cases}
$$

We have a complete answer only when $\rho(g, r, d)=-1$. Eisenbud and Harris have proved in [EH2] that in this case $\mathcal{M}_{g, d}^{r}$ has a unique divisorial component, and using the previously mentioned theorem of Steffen's, we obtain the following result:

$$
\text { If } \rho(g, r, d)=-1 \text {, then } \overline{\mathcal{M}}_{g, d}^{r} \text { is an irreducible divisor of } \overline{\mathcal{M}}_{g} \text {. }
$$

We will also need Edidin's result (see [Ed2]) which says that for $g \geq 12$ and $\rho(g, r, d)=$ - 2 , all components of $\mathcal{M}_{g, d}^{r}$ have codimension 2. We can get codimension 1 BrillNoether conditions only for the genera g for which $g+1$ is composite. In that case we can write

$$
g+1=(r+1)(s-1), s \geq 3
$$

and set $d:=r s-1$. Obviously $\rho(g, r, d)=-1$ and $\overline{\mathcal{M}}_{g, d}^{r}$ is an irreducible divisor. Furthermore, its class has been computed (cf. [EH3]):

$$
\left[\overline{\mathcal{M}}_{g, d}^{r}\right]=c_{g, r, d}\left((g+3) \lambda-\frac{g+1}{6} \delta_{0}-\sum_{i=1}^{[g / 2]} i(g-i) \delta_{i}\right),
$$

where $c_{g, r, d}$ is a positive rational number equal to $3 \mu /(2 g-4)$, with μ being the number of \mathfrak{g}_{d}^{r} 's on a general pointed curve $\left(C_{0}, q\right)$ of genus $g-2$ with ramification sequence $(0,1,2, \ldots, 2)$ at q. For $g=23$ we have the following possibilities:

$$
(r, s, d)=(1,13,12),(11,3,32),(2,9,17),(7,4,27),(3,7,20),(5,5,24)
$$

It is immediate by Serre duality, that cases $(1,13,12)$ and $(11,3,32)$ yield the same divisor on \mathcal{M}_{23}, namely the 12 -gonal locus \mathcal{M}_{12}^{1}; similarly, cases $(2,9,17)$ and $(7,4,27)$ yield the divisor \mathcal{M}_{17}^{2} of curves having a \mathfrak{g}_{17}^{2}, while cases $(3,7,20)$ and $(5,5,24)$ give rise to \mathcal{M}_{20}^{3}, the divisor of curves having a \mathfrak{g}_{20}^{3}. Note that when the genus we are referring to is clear from the context, we write $\mathcal{M}_{d}^{r}=\mathcal{M}_{g, d}^{r}$.

By comparing the classes of the Brill-Noether divisors to the class of the canonical divisor $K_{\overline{\mathcal{M}}_{g, \text { reg }}}=13 \lambda-2 \delta_{0}-3 \delta_{1}-2 \delta_{2}-\cdots-2 \delta_{[g / 2]}$, at least in the case when $g+1$ is composite we can infer that

$$
K_{\overline{\mathcal{M}}_{g, \text { reg }}}=a\left[\overline{\mathcal{M}}_{g, d}^{r}\right]+b \lambda+\left(\text { positive combination of } \delta_{0}, \ldots, \delta_{[g / 2]}\right)
$$

where a is a positive rational number, while $b>0$ as long as $g \geq 24$ but $b=0$ for $g=23$. As it is well-known that λ is big on $\overline{\mathcal{M}}_{g}$, it follows that \mathcal{M}_{g} is of general type for $g \geq 24$ and that it has non-negative Kodaira dimension when $g=23$. Specifically for $g=23$, we get that there are positive integer constants m, m_{1}, m_{2}, m_{3} such that:

$$
\begin{equation*}
m K=m_{1}\left[\overline{\mathcal{M}}_{12}^{1}\right]+E, m K=m_{2}\left[\overline{\mathcal{M}}_{17}^{2}\right]+E, m K=m_{3}\left[\overline{\mathcal{M}}_{20}^{3}\right]+E, \tag{1}
\end{equation*}
$$

where E is the same positive combination of $\delta_{1}, \ldots, \delta_{11}$.
Proposition 2.1 (Eisenbud-Harris, [EH3]) There exists a smooth curve of genus 23 that possesses a \mathfrak{g}_{12}^{1}, but no \mathfrak{g}_{17}^{2}. It follows that $\kappa\left(\mathcal{M}_{23}\right) \geq 1$.

Harris and Mumford proved (cf. [HM]) that $\overline{\mathcal{M}}_{g}$ has only canonical singularities for $g \geq$ 4, hence $H^{0}\left(\overline{\mathcal{M}}_{g, \text { reg }}, n K\right)=H^{0}\left(\widetilde{\mathcal{M}}_{g}, n K\right)$ for each $n \geq 0$, with $\widetilde{\mathcal{M}_{g}}$ a desingularization of $\overline{\mathcal{M}}_{g}$. We already know that $\operatorname{dim}\left(\operatorname{Im} \phi_{m K}\right) \geq 1$, where $\phi_{m K}: \overline{\mathcal{M}}_{23}--\rightarrow \mathbb{P}^{\nu}$ is the multicanonical map, m being as in (1). We will prove that $\kappa\left(\mathcal{M}_{23}\right) \geq 2$. Indeed, let us assume that $\operatorname{dim}\left(\operatorname{Im} \phi_{m K}\right)=1$. Denote by $C:=\overline{\operatorname{Im} \phi_{m K}}$ the Kodaira image of $\overline{\mathcal{M}}_{23}$.

We reach a contradiction by proving two things:

- α) The Brill-Noether divisors $\mathcal{M}_{12}^{1}, \mathcal{M}_{17}^{2}$ and \mathcal{M}_{20}^{3} are mutually distinct.
- β) There exist smooth curves of genus 23 which belong to exactly two of the BrillNoether divisors from above.
This suffices in order to prove Theorem 1: since $\overline{\mathcal{M}}_{12}^{1}, \overline{\mathcal{M}}_{17}^{2}$ and $\overline{\mathcal{M}}_{20}^{3}$ are part of different multicanonical divisors, they must be contained in different fibres of the multicanonical map $\phi_{m K}$. Hence there exists different points $x, y, z \in C$ such that

$$
\mathcal{M}_{12}^{1}=\overline{\phi^{-1}(x)} \cap \mathcal{M}_{23}, \mathcal{M}_{17}^{2}=\overline{\phi^{-1}(y)} \cap \mathcal{M}_{23}, \mathcal{M}_{20}^{3}=\overline{\phi^{-1}(z)} \cap \mathcal{M}_{23}
$$

It follows that the set-theoretic intersection of any two of them will be contained in the base locus of $\left|m K_{\overline{\mathcal{M}}_{23}}\right|$. In particular:

$$
\begin{equation*}
\operatorname{supp}\left(\mathcal{M}_{12}^{1}\right) \cap \operatorname{supp}\left(\mathcal{M}_{17}^{2}\right)=\operatorname{supp}\left(\mathcal{M}_{17}^{2}\right) \cap \operatorname{supp}\left(\mathcal{M}_{20}^{3}\right)=\operatorname{supp}\left(\mathcal{M}_{20}^{3}\right) \cap \operatorname{supp}\left(\mathcal{M}_{12}^{1}\right) \tag{2}
\end{equation*}
$$

and this contradicts β). We complete the proof of α) and β) in Section 5 .

3 Deformation theory for \mathfrak{g}_{d}^{r} 's and limit linear series

We recall a few things about the variety parametrising \mathfrak{g}_{d}^{r} 's on the fibres of the universal curve (cf. [AC2]), and then we recap on the theory of limit linear series (cf. [EH1], [Mod]), which is our main technique for the study of \mathcal{M}_{23}.

Given g, r, d and a point $[C] \in \mathcal{M}_{g}$, there is a connected neighbourhood U of $[C]$, a finite ramified covering $h: \mathcal{M} \rightarrow U$, such that \mathcal{M} is a fine moduli space of curves (i.e. there exists $\xi: \mathcal{C} \rightarrow \mathcal{M}$ a universal curve), and a proper variety over \mathcal{M},

$$
\pi: \mathcal{G}_{d}^{r} \rightarrow \mathcal{M}
$$

which parametrizes classes of couples (C, l), with $[C] \in \mathcal{M}$ and $l \in G_{d}^{r}(C)$, where we have made the identification $C=\xi^{-1}([C])$.
Let (C, l) be a point of \mathcal{G}_{d}^{r} corresponding to a curve C and a linear series $l=(\mathcal{L}, V)$, where $\mathcal{L} \in \operatorname{Pic}^{d}(C), V \subseteq H^{0}(C, \mathcal{L})$, and $\operatorname{dim}(V)=r+1$. By choosing a basis in V, one has a morphism $f: C \rightarrow \mathbb{P}^{r}$. The normal sheaf of f is defined through the exact sequence

$$
\begin{equation*}
0 \longrightarrow T_{C} \longrightarrow f^{*}\left(T_{\mathbb{P}^{r}}\right) \longrightarrow N_{f} \longrightarrow 0 \tag{3}
\end{equation*}
$$

By dividing out the torsion of N_{f} one gets to the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{K}_{f} \longrightarrow N_{f} \longrightarrow N_{f}^{\prime} \longrightarrow 0 \tag{4}
\end{equation*}
$$

where the torsion sheaf \mathcal{K}_{f} (the cuspidal sheaf) is based at those points $x \in C$ where $d f(x)=0$, and N_{f}^{\prime} is locally free of rank $r-1$. The tangent space $T_{(C, l)}\left(\mathcal{G}_{d}^{r}\right)$ fits into an exact sequence (cf. [AC2]):

$$
\begin{equation*}
0 \longrightarrow \mathbb{C} \longrightarrow \operatorname{Hom}(V, V) \longrightarrow H^{0}\left(C, N_{f}\right) \longrightarrow T_{(C, l)}\left(\mathcal{G}_{d}^{r}\right) \longrightarrow 0 \tag{5}
\end{equation*}
$$

from which we have that $\operatorname{dim} T_{(C, l)}\left(\mathcal{G}_{d}^{r}\right)=3 g-3+\rho(g, r, d)+h^{1}\left(C, N_{f}\right)$.

Proposition 3.1 Let C be a curve and $l \in G_{d}^{r}(C)$ a base point free linear series. Then the variety \mathcal{G}_{d}^{r} is smooth and of dimension $3 g-3+\rho(g, r, d)$ at the point (C, l) if and only if $H^{1}\left(C, N_{f}\right)=0$.

Remark: The condition $H^{1}\left(C, N_{f}\right)=0$ is automatically satisfied for $r=1$ as N_{f} is a sheaf with finite support. Thus \mathcal{G}_{d}^{1} is smooth of dimension $2 g+2 d-5$. It follows that \mathcal{G}_{d}^{1} is birationally equivalent to the d-gonal locus \mathcal{M}_{d}^{1} when $d<(g+2) / 2$.

Limit linear series try to answer questions of the following kind: what happens to a family of \mathfrak{g}_{d}^{r} 's when a smooth curve specializes to a reducible curve? Limit linear series solve such problems for a class of reducible curves, those of compact type. A curve C is of compact type if its dual graph is a tree. A curve C is tree-like if, after deleting edges leading from a node to itself, the dual graph becomes a tree.

Let C be a smooth curve of genus g and $l=(\mathcal{L}, V) \in G_{d}^{r}(C), \mathcal{L} \in \operatorname{Pic}^{d}(C), V \subseteq$ $H^{0}(C, \mathcal{L})$, and $\operatorname{dim}(V)=r+1$. Fix $p \in C$ a point. By ordering the finite set $\left\{\operatorname{ord}_{p}(\sigma)\right\}_{\sigma \in V}$ one gets the vanishing sequence of l at p :

$$
a^{l}(p): 0 \leq a_{0}^{l}(p)<\ldots<a_{r}^{l}(p) \leq d
$$

The ramification sequence of l at p

$$
\alpha^{l}(p): 0 \leq \alpha_{0}^{l}(p) \leq \ldots \leq \alpha_{r}^{l}(p) \leq d-r
$$

is defined as $\alpha_{i}^{l}(p)=a_{i}^{l}(p)-i$ and the weight of l at p is

$$
w^{l}(p)=\sum_{i=0}^{r} \alpha_{i}^{l}(p) .
$$

A Schubert index of type (r, d) is a sequence of integers $\beta: 0 \leq \beta_{0} \leq \ldots \beta_{r} \leq d-r$. If α and β are Schubert indices of type (r, d) we write $\alpha \leq \beta \Longleftrightarrow \alpha_{i} \leq \beta_{i}, i=0, \ldots, r$. The point p is said to be a ramification point of l if $w^{l}(p)>0$. The linear series l is said to have a cusp at p if $\alpha^{l}(p) \geq(0,1, \ldots, 1)$. For C a tree-like curve, $p_{1}, \ldots, p_{n} \in C$ smooth points and $\alpha^{1}, \ldots, \alpha^{n}$ Schubert indices of type (r, d), we define

$$
G_{d}^{r}\left(C,\left(p_{1}, \alpha^{1}\right), \ldots\left(p_{n}, \alpha^{n}\right)\right):=\left\{l \in G_{d}^{r}(C): \alpha^{l}\left(p_{1}\right) \geq \alpha^{1}, \ldots, \alpha^{l}\left(p_{n}\right) \geq \alpha^{n}\right\}
$$

This scheme can be realized naturally as a determinantal variety and its expected dimension is

$$
\rho\left(g, r, d, \alpha^{1}, \ldots, \alpha^{n}\right):=\rho(g, r, d)-\sum_{i=1}^{n} \sum_{j=0}^{r} \alpha_{j}^{i} .
$$

If C is a curve of compact type, a crude limit \mathfrak{g}_{d}^{r} on C is a collection of ordinary linear series $l=\left\{l_{Y} \in G_{d}^{r}(Y): Y \subseteq C\right.$ is a component $\}$, satisfying the following compatibility condition: if Y and Z are components of C with $\{p\}=Y \cap Z$, then

$$
a_{i}^{l_{Y}}(p)+a_{r-i}^{l_{Z}}(p) \geq d, \text { for } i=0, \ldots r .
$$

If equality holds everywhere, we say that l is a refined limit \mathfrak{g}_{d}^{r}. The 'honest' linear series $l_{Y} \in G_{d}^{r}(Y)$ is called the Y-aspect of the limit linear series l.

We will often use the additivity of the Brill-Noether number: if C is a curve of compact type, for each component $Y \subseteq C$, let q_{1}, \ldots, q_{s} be the points where Y meets the other components of C. Then for any limit \mathfrak{g}_{d}^{r} on C we have the following inequality:

$$
\begin{equation*}
\rho(g, r, d) \geq \sum_{Y \subseteq C} \rho\left(l_{Y}, \alpha^{l_{Y}}\left(q_{1}\right), \ldots, \alpha^{l_{Y}}\left(q_{s}\right)\right) \tag{6}
\end{equation*}
$$

with equality if and only if l is a refined limit linear series.
It has been proved in [EH1] that limit linear series arise indeed as limits of ordinary linear series on smooth curves. Suppose we are given a family $\pi: \mathcal{C} \rightarrow B$ of genus g curves, where $B=\operatorname{Spec}(R)$ with R a complete discrete valuation ring. Assume furthermore that \mathcal{C} is a smooth surface and that if $0, \eta$ denote the special and generic point of B respectively, the central fibre C_{0} is reduced and of compact type, while the generic geometric fibre C_{η} is smooth and irreducible. If $l_{\eta}=\left(\mathcal{L}_{\eta}, V_{\eta}\right)$ is a \mathfrak{g}_{d}^{r} on C_{η}, there is a canonical way to associate a crude limit series l_{0} on C_{0} which is the limit of l_{η} in a natural way: for each component Y of C_{0}, there exists a unique line bundle \mathcal{L}^{Y} on \mathcal{C} such that

$$
\mathcal{L}_{\mid C_{\eta}}^{Y}=\mathcal{L}_{\eta} \text { and } \operatorname{deg}_{Z}\left(\mathcal{L}_{\mid Z}^{Y}\right)=0
$$

for any component Z of C_{0} with $Z \neq Y$. (This implies of course that $\operatorname{deg}_{Y}\left(\mathcal{L}_{\left.\right|_{Y}}^{Y}\right)=d$). Define $V^{Y}=V_{\eta} \cap H^{0}\left(\mathcal{C}, \mathcal{L}^{Y}\right) \subseteq H^{0}\left(C_{\eta}, \mathcal{L}_{\eta}\right)$. Clearly, V^{Y} is a free R-module of rank $r+1$.
Moreover, the composite homomorphism

$$
V^{Y}(0) \rightarrow\left(\pi_{*} \mathcal{L}^{Y}\right)(0) \rightarrow H^{0}\left(C_{0}, \mathcal{L}_{\left.\right|_{C_{0}}}^{Y}\right) \rightarrow H^{0}\left(Y, \mathcal{L}_{\left.\right|_{Y}}^{Y}\right)
$$

is injective, hence $l_{Y}=\left(\mathcal{L}_{\mid Y}^{Y}, V^{Y}(0)\right)$ is an ordinary \mathfrak{g}_{d}^{r} on Y. One proves that $l=\left\{l_{Y}\right.$: Y component of $\left.C_{0}\right\}$ is a limit linear series.

If C is a reducible curve of compact type, l a limit \mathfrak{g}_{d}^{r} on C, we say that l is smoothable if there exists $\pi: \mathcal{C} \rightarrow B$ a family of curves with central fibre $C=C_{0}$ as above, and $\left(\mathcal{L}_{\eta}, V_{\eta}\right)$ a \mathfrak{g}_{d}^{r} on the generic fibre C_{η} whose limit on C (in the sense previously described) is l.
Remark: If a stable curve of compact type C, has no limit \mathfrak{g}_{d}^{r} 's, then $[C] \notin \overline{\mathcal{M}}_{g, d}^{r}$. If there exists a smoothable limit \mathfrak{g}_{d}^{r} on C, then $[C] \in \overline{\mathcal{M}}_{g, d}^{r}$.

Now we explain a criterion due to Eisenbud and Harris (cf. [EH1]), which gives a sufficient condition for a limit \mathfrak{g}_{d}^{r} to be smoothable. Let l be a limit \mathfrak{g}_{d}^{r} on a curve C of compact type. Fix $Y \subseteq C$ a component, and $\left\{q_{1}, \ldots, q_{s}\right\}=Y \cap \overline{(C-Y)}$. Let

$$
\pi: \mathcal{Y} \rightarrow B, \tilde{q}_{i}: B \rightarrow \mathcal{Y}
$$

be the versal deformation space of $\left(Y, q_{1}, \ldots q_{s}\right)$. The base B can be viewed as a small $(3 g(Y)-3+s)$-dimensional polydisk. Using general theory one constructs a proper scheme over B,

$$
\sigma: \mathcal{G}_{d}^{r}\left(\mathcal{Y} / B ;\left(\tilde{q}_{i}, \alpha^{l_{Y}}\left(q_{i}\right)\right)_{i=1}^{s}\right) \rightarrow B
$$

whose fibre over each $b \in B$ is $\sigma^{-1}(b)=G_{d}^{r}\left(Y_{b},\left(\tilde{q}_{i}(b), \alpha^{l_{Y}}\left(q_{i}\right)\right)_{i=1}^{s}\right)$. One says that l is dimensionally proper with respect to Y, if the Y-aspect l_{Y} is contained in some component \mathcal{G} of $\mathcal{G}_{d}^{r}\left(\mathcal{Y} / B ;\left(\tilde{q}_{i}, \alpha^{l_{Y}}\left(q_{i}\right)\right)_{i=1}^{s}\right)$ of the expected dimension, i.e.

$$
\operatorname{dim} \mathcal{G}=\operatorname{dim} B+\rho\left(l_{Y}, \alpha^{l_{Y}}\left(q_{1}\right), \ldots \alpha^{l_{Y}}\left(q_{s}\right)\right)
$$

One says that l is dimensionally proper, if it is dimensionally proper with respect to any component $Y \subseteq C$. The 'Regeneration Theorem' (cf. [EH1]) states that every dimensionally proper limit linear series is smoothable.

The next result is a 'strong Brill-Noether Theorem', i.e. it not only asserts a BrillNoether type statement, but also singles out the locus where the statement fails.
Proposition 3.2 (Eisenbud-Harris) Let C be a tree-like curve and for any component $Y \subseteq C$, denote by $q_{1}, \ldots, q_{s} \in Y$ the points where Y meets the other components of C. Assume that for each Y the following conditions are satisfied:
a. If $g(Y)=1$ then $s=1$.
b. If $g(Y)=2$ then $s=1$ and q is not a Weierstrass point.
c. If $g(Y) \geq 3$ then $\left(Y, q_{1}, \ldots, q_{s}\right)$ is a general s-pointed curve.

Then for $p_{1}, \ldots p_{t} \in C$ general points, $\rho\left(l, \alpha^{l}\left(p_{1}\right), \ldots, \alpha^{l}\left(p_{t}\right)\right) \geq 0$ for any limit linear series on C.
Simple examples involving pointed elliptic curves show that the condition $\rho(g, r, d) \geq$ $\sum_{i=1}^{t} w^{l}\left(p_{i}\right)$ does not guarantee the existence of a linear series $l \in G_{d}^{r}(C)$ with prescribed ramification at general points $p_{1}, p_{2}, \ldots, p_{t} \in C$. The appropriate condition in the pointed case can be given in terms of Schubert cycles. Let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{r}\right)$ be a Schubert index of type (r, d) and

$$
\mathbb{C}^{d+1}=W_{0} \supset W_{1} \supset \ldots \supset W_{d+1}=0
$$

a decreasing flag of linear subspaces. We consider the Schubert cycle in the Grassmanian,

$$
\sigma_{\alpha}=\left\{\Lambda \in G(r+1, d+1): \operatorname{dim}\left(\Lambda \cap W_{\alpha_{i}+i}\right) \geq r+1-i, i=0, \ldots, r\right\}
$$

For a general t-pointed curve $\left(C, p_{1}, \ldots, p_{t}\right)$ of genus g, and $\alpha^{1}, \ldots, \alpha^{t}$ Schubert indices of type (r, d), the necessary and sufficient condition that C has a \mathfrak{g}_{d}^{r} with ramification α^{i} at p_{i} is that

$$
\begin{equation*}
\sigma_{\alpha^{1}} \cdot \ldots \cdot \sigma_{\alpha^{t}} \cdot\left(\sigma_{(0,1, \ldots, 1)}\right)^{g} \neq 0 \text { in } H^{*}(G(r+1, d+1), \mathbb{Z}) \tag{7}
\end{equation*}
$$

In the case $t=1$ this condition can be made more explicit (cf. [EH3]): a general pointed curve (C, p) of genus g carries a \mathfrak{g}_{d}^{r} with ramification sequence $\left(\alpha_{0}, \ldots, \alpha_{r}\right)$ at p, if and only if

$$
\begin{equation*}
\sum_{i=0}^{r}\left(\alpha_{i}+g-d+r\right)_{+} \leq g \tag{8}
\end{equation*}
$$

where $x_{+}=\max \{x, 0\}$. One can make the following simple but useful observation:

Proposition 3.3 Let (C, p, q) be a general 2-pointed curve of genus g and $\left(\alpha_{0}, \ldots, \alpha_{r}\right)$ a Schubert index of type (r, d). Then C has a \mathfrak{g}_{d}^{r} having ramification sequence $\left(\alpha_{0}, \ldots, \alpha_{r}\right)$ at p and a cusp at q if and only if

$$
\sum_{i=0}^{r}\left(\alpha_{i}+g+1-d+r\right)_{+} \leq g+1
$$

Proof: The condition for the existence of the \mathfrak{g}_{d}^{r} with ramification α at p and a cusp at q is that $\sigma_{\alpha} \cdot\left(\sigma_{(0,1, \ldots, 1)}\right)^{g+1} \neq 0$ (cf. (7)). According to the Littlewood-Richardson rule (see $[\mathrm{F}]$), this is equivalent with $\sum_{i=0}^{r}\left(\alpha_{i}+g+1-d+r\right)_{+} \leq g+1$.

4 A few consequences of limit linear series

We investigate the Brill-Noether theory of a 2-pointed elliptic curve (see also [EH4]), and we prove that $\overline{\mathcal{M}}_{g, d}^{r} \cap \Delta_{1}$ is irreducible for $\rho(g, r, d)=-1$.
Proposition 4.1 Let (E, p, q) be a two-pointed elliptic curve. Consider the sequences

$$
a: a_{0}<a_{1}<\ldots a_{r} \leq d, \quad b: b_{0}<b_{1}<\ldots b_{r} \leq d
$$

1. For any linear series $l=(\mathcal{L}, V) \in G_{d}^{r}(E)$ one has that $\rho\left(l, \alpha^{l}(p), \alpha^{l}(q)\right) \geq-r$. Furthermore, if $\rho\left(l, \alpha^{l}(p), \alpha^{l}(q)\right) \leq-1$, then $p-q \in \operatorname{Pic}^{0}(E)$ is a torsion class.
2. Assume that the sequences a and b satisfy the inequalities: $d-1 \leq a_{i}+b_{r-i} \leq d, i=$ $0, \ldots, r$. Then there exists at most one linear series $l \in G_{d}^{r}(E)$ such that $a^{l}(p)=a$ and $a^{l}(q)=b$. Moreover, there exists exactly one such linear series $l=\left(\mathcal{O}_{E}(D), V\right)$ with $D \in E^{(d)}$, if and only if for each $i=0, \ldots, r$ the following is satisfied: if $a_{i}+b_{r-i}=d$, then $D \sim a_{i} p+b_{r-i} q$, and if $\left(a_{i}+1\right) p+b_{r-i} q \sim D$, then $a_{i+1}=a_{i}+1$.

Proof: In order to prove 1. it is enough to notice that for dimensional reasons there must be sections $\sigma_{i} \in V$ such that $\operatorname{div}\left(\sigma_{i}\right) \geq a_{i}^{l}(p) p+a_{r-i}^{l}(q) q$, therefore, $a_{i}^{l}(p)+a_{r-i}^{l}(q) \leq d$. By adding up all these inequalities, we get that $\rho\left(l, \alpha^{l}(p), \alpha^{l}(q)\right) \geq-r$. Furthermore, $\rho\left(l, \alpha^{l}(p), \alpha^{l}(q)\right) \leq-1$ precisely when for at least two values $i<j$ we have equalities $a_{i}+b_{r-i}=d, a_{j}+b_{r-j}=d$, which means that there are sections $\sigma_{i}, \sigma_{j} \in V$ such that $\operatorname{div}\left(\sigma_{i}\right)=a_{i} p+b_{r-i} q, \operatorname{div}\left(\sigma_{j}\right)=a_{j} p+b_{r-j} q$. By subtracting, we see that $p-q \in \operatorname{Pic}^{0}(E)$ is torsion. The second part of the Proposition is in fact Prop.5.2 from [EH4].

Proposition 4.2 Let g, r, d be such that $\rho(g, r, d)=-1$. Then the intersection $\overline{\mathcal{M}}_{g, d}^{r} \cap$ Δ_{1} is irreducible.

Proof: Let Y be an irreducible component of $\overline{\mathcal{M}}_{g, d}^{r} \cap \Delta_{1}$. Either $Y \cap \operatorname{Int} \Delta_{1} \neq \emptyset$, hence $Y=$ $\overline{Y \cap \operatorname{Int} \Delta_{1}}$, or $Y \subseteq \Delta_{1}-\operatorname{Int} \Delta_{1}$. The second alternative never occurs. Indeed, if $Y \subseteq \Delta_{1}-\operatorname{Int} \Delta_{1}$, then since $\operatorname{codim}\left(Y, \overline{\mathcal{M}_{g}}\right)=2, Y$ must be one of the irreducible components of $\Delta_{1}-\operatorname{Int} \Delta_{1}$. The components of $\Delta_{1}-\operatorname{Int} \Delta_{1}$ correspond to curves with two nodes. We list these components (see [Ed1]):

- For $1 \leq j \leq g-2, \Delta_{1 j}$ is the closure of the locus in $\overline{\mathcal{M}}_{g}$ whose general point corresponds to a chain composed of an elliptic curve, a curve of genus $g-j-1$, and a curve of genus j.
- The component Δ_{01}, whose general point corresponds to the union of a smooth elliptic curve and an irreducible nodal curve of genus $g-2$.
- The component $\Delta_{0, g-1}$ whose general point corresponds to the union of a smooth curve of genus $g-1$ and an irreducible rational curve.

As the general point of $\Delta_{1, j}, \Delta_{0,1}$ or $\Delta_{0, g-1}$ is a tree-like curve which satisfies the conditions of Prop.3.2 it follows that such a curve satisfies the 'strong' Brill-Noether Theorem, hence $\Delta_{1, j} \nsubseteq \overline{\mathcal{M}}_{g, d}^{r}, \Delta_{0,1} \nsubseteq \overline{\mathcal{M}}_{g, d}^{r}$ and $\Delta_{0, g-1} \nsubseteq \overline{\mathcal{M}}_{g, d}^{r}$, a contradiction. So, we are left with the first possibility: $Y=\overline{Y \cap \operatorname{Int} \Delta_{1}}$. We are going to determine the general point $[C] \in Y \cap \operatorname{Int} \Delta_{1}$. Let $X=C \cup E, g(C)=g-1, E$ elliptic, $E \cap C=\{p\}$ such that X carries a limit \mathfrak{g}_{d}^{r}, say l. By the additivity of the Brill-Noether number, we have:

$$
-1=\rho(g, r, d) \geq \rho(l, C, p)+\rho(l, E, p)
$$

Since $\rho(l, E, p) \geq 0$, it follows that $\rho(l, C, p) \leq-1$, so $w^{l_{C}}(p) \geq r$. Let us denote by

$$
\beta: \mathcal{C}_{g-1} \times \mathcal{C}_{1} \rightarrow \operatorname{Int} \Delta_{1}
$$

the natural map given by $\beta([C, p],[E, q])=[X:=C \cup E / p \sim q]$. We claim that if we choose X generically, then $\alpha_{0}^{l_{C}}(p)=0$. If not, p is a base point of l_{C} and after removing the base point we get that $[C] \in \mathcal{M}_{g-1, d-1}^{r}$. Note that $\rho(g-1, r, d-1)=-2$, so $\operatorname{dim} \mathcal{M}_{g-1, d-1}^{r}=3 g-8$ (cf. [Ed2]). If we denote by $\pi: \mathcal{C}_{g-1} \rightarrow \mathcal{M}_{g-1}$ the morphism which 'forgets the point', we get that

$$
\operatorname{dim} \beta\left(\pi^{-1}\left(\mathcal{M}_{g-1, d-1}^{r}\right) \times \mathcal{C}_{1}\right)=3 g-6<\operatorname{dim} Y,
$$

a contradiction. Hence, for the generic $[X] \in Y$ we must have $\alpha_{0}^{l_{C}}(p)=0$, so $a_{r}^{l_{E}}(p)=d$. Since an elliptic curve cannot have a meromorphic function with a single pole, it follows that $a_{r-1}^{l_{E}}(p) \leq d-2$ and this implies $\alpha^{l_{C}}(p) \geq(0,1, \ldots, 1)$, i.e. l_{C} has a cusp at p. Thus, if we introduce the notation

$$
\mathcal{C}_{g-1, d}^{r}(0,1, \ldots, 1)=\left\{[C, p] \in \mathcal{C}_{g-1}: G_{d}^{r}(C,(p,(0,1, \ldots, 1))) \neq \emptyset\right\}
$$

then $Y \subseteq \overline{\beta\left(\mathcal{C}_{g-1, d}^{r}(0,1 \ldots, 1) \times \mathcal{C}_{1}\right)}$. On the other hand, it is known (cf. [EH2]) that $\mathcal{C}_{g-1, d}^{r}(0,1, \ldots, 1)$ is irreducible of dimension $3 g-6$ (that is, codimension 1 in \mathcal{C}_{g-1}), so we must have $Y=\overline{\beta\left(\mathcal{C}_{g-1, d}^{r}(0,1, \ldots, 1) \times \mathcal{C}_{1}\right)}$, which not only proves that $\overline{\mathcal{M}}_{g, d}^{r} \cap \Delta_{1}$ is irreducible, but also determines the intersection.

5 The Kodaira dimension of \mathcal{M}_{23}

In this section we prove that $\kappa\left(\mathcal{M}_{23}\right) \geq 2$ and we investigate closely the multicanonical linear systems on $\overline{\mathcal{M}}_{23}$. We now describe the three multicanonical Brill-Noether divisors from Section 2.

5.1 The divisor $\overline{\mathcal{M}}_{12}^{1}$

There is a stratification of \mathcal{M}_{23} given by gonality:

$$
\mathcal{M}_{2}^{1} \subseteq \mathcal{M}_{3}^{1} \subseteq \ldots \subseteq \mathcal{M}_{12}^{1} \subseteq \mathcal{M}_{23}
$$

For $2 \leq d \leq g / 2+1$ one knows that $\mathcal{M}_{k}^{1}=\mathcal{M}_{g, k}^{1}$ is an irreducible variety of dimension $2 g+2 d-5$. The general point of $\mathcal{M}_{g, d}^{1}$ corresponds to a curve having a unique \mathfrak{g}_{d}^{1}.

5.2 The divisor $\overline{\mathcal{M}}_{17}^{2}$

The Severi variety $V_{d, g}$ of irreducible plane curves of degree d and geometric genus g, where $0 \leq g \leq\binom{ d-1}{2}$, is an irreducible subscheme of $\mathbb{P}^{d(d+3) / 2}$ of dimension $3 d+g-1$ (cf. [H], [Mod]). Inside $V_{d, g}$ we consider the open dense subset $U_{d, g}$ of irreducible plane curves of degree d having exactly $\delta=\binom{d-1}{2}-g$ nodes and no other singularities. There is a global normalization map

$$
m: U_{d, g} \rightarrow \mathcal{M}_{g}, m([Y]):=[\tilde{Y}], \tilde{Y} \text { is the normalization of } Y .
$$

When $d-2 \leq g \leq\binom{ d-1}{2}, d \geq 5, U_{d, g}$ has the expected number of moduli, i.e.

$$
\operatorname{dim} m\left(U_{d, g}\right)=\min (3 g-3,3 g-3+\rho(g, 2, d))
$$

In our case we can summarize this as follows:
Proposition 5.1 There is exactly one component of \mathcal{G}_{17}^{2} mapping dominantly to \mathcal{M}_{17}^{2}. The general element $(C, l) \in \mathcal{G}_{17}^{2}$ corresponds to a curve C of genus 23 , together with a \mathfrak{g}_{17}^{2} which provides a plane model for C of degree 17 with 97 nodes.

5.3 The divisor $\overline{\mathcal{M}}_{20}^{3}$

Here we combine the result of Eisenbud and Harris (see [EH2]) about the uniqueness of divisorial components of \mathcal{G}_{d}^{r} when $\rho(g, r, d)=-1$, with Sernesi's (see [Se2]) which asserts the existence of components of the Hilbert scheme $H_{d, g}$ parametrizing curves in \mathbb{P}^{3} of degree d and genus g with the expected number of moduli, for $d-3 \leq g \leq$ $3 d-18, d \geq 9$.

Proposition 5.2 There is exactly one component of \mathcal{G}_{20}^{3} mapping dominantly to \mathcal{M}_{20}^{3}. The general point of this component corresponds to a pair (C, l) where C is a curve of genus 23 and l is a very ample \mathfrak{g}_{20}^{3}.

We are going to prove that the Brill-Noether divisors $\overline{\mathcal{M}}_{12}^{1}, \overline{\mathcal{M}}_{17}^{2}$ and $\overline{\mathcal{M}}_{20}^{3}$ are mutually distinct.

Theorem 2 There exists a smooth curve of genus 23 having a \mathfrak{g}_{17}^{2}, but no \mathfrak{g}_{20}^{3} 's. Equivalently, one has $\operatorname{supp}\left(\mathcal{M}_{17}^{2}\right) \nsubseteq \operatorname{supp}\left(\mathcal{M}_{20}^{3}\right)$.

Proof: It suffices to construct a reducible curve X of compact type of genus 23, which has a smoothable limit \mathfrak{g}_{17}^{2}, but no limit \mathfrak{g}_{20}^{3}. If $[C] \in \mathcal{M}_{23}$ is a nearby smoothing of X which preserves the \mathfrak{g}_{17}^{2}, then $[C] \in \mathcal{M}_{17}^{2}-\mathcal{M}_{20}^{3}$. Let us consider the following curve:

where $\left(C_{1}, p_{1}\right)$ and $\left(C_{2}, p_{2}\right)$ are general pointed curves of genus $11, E$ is an elliptic curve, and $p_{1}-p_{2}$ is a primitive 9 -torsion point in $\operatorname{Pic}^{0}(E)$
Step 1) There is no limit \mathfrak{g}_{20}^{3} on X. Assume that l is a limit \mathfrak{g}_{20}^{3} on X. By the additivity of the Brill-Noether number,

$$
-1 \geq \rho\left(l_{C_{1}}, p_{1}\right)+\rho\left(l_{C_{2}}, p_{2}\right)+\rho\left(l_{E}, p_{1}, p_{2}\right)
$$

Since $\left(C_{i}, p_{i}\right)$ are general points in \mathcal{C}_{11}, it follows from Prop.3.2 that $\rho\left(l_{C_{i}}, p_{i}\right) \geq 0$, hence $\rho\left(l_{E}, p_{1}, p_{2}\right) \leq-1$. On the other hand $\rho\left(l_{E}, p_{1}, p_{2}\right) \geq-3$ from Prop.4.1.

Denote by $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ the vanishing sequence of l_{E} at p_{1}, and by $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ that of l_{E} at p_{2}. The condition (8) for a general pointed curve $\left[\left(C_{i}, p_{i}\right)\right] \in \mathcal{C}_{11}$ to possess a \mathfrak{g}_{20}^{3} with prescribed ramification at the point p_{i} and the compatibility conditions between $l_{C_{i}}$ and l_{E} at p_{i} give that:

$$
\begin{equation*}
\left(14-a_{3}\right)_{+}+\left(13-a_{2}\right)_{+}+\left(12-a_{1}\right)_{+}+\left(11-a_{0}\right)_{+} \leq 11, \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(14-b_{3}\right)_{+}+\left(13-b_{2}\right)_{+}+\left(12-b_{1}\right)_{+}+\left(11-b_{0}\right)_{+} \leq 11 . \tag{10}
\end{equation*}
$$

1st case: $\quad \rho\left(l_{E}, p_{1}, p_{2}\right)=-3$. Then $a_{i}+b_{3-i}=20$, for $i=0, \ldots, 3$ and it immediately follows that $20\left(p_{1}-p_{2}\right) \sim 0$ in $\operatorname{Pic}^{0}(E)$, a contradiction.
2nd case: $\quad \rho\left(l_{E}, p_{1}, p_{2}\right)=-2$. We have two distinct possibilities here: i) $a_{0}+b_{3}=$ $20, a_{1}+b_{2}=20, a_{2}+b_{1}=20, a_{3}+b_{0}=19$. Then it follows that $a^{l_{E}}\left(p_{1}\right)=(0,9,18,19)$ and $a^{l_{E}}\left(p_{2}\right)=(0,2,11,20)$, while according to (9), $a_{3} \leq 15$, (because $\rho\left(l_{C_{1}}, p_{1}\right) \leq 1$), a contradiction. ii) $a_{0}+b_{3}=20, a_{1}+b_{2}=20, a_{2}+b_{1}=19, a_{3}+b_{0}=20$. Again, it follows that $a_{3}=a_{0}+18 \geq 15$, a contradiction.
3rd case: $\quad \rho\left(l_{E}, p_{1}, p_{2}\right)=-1$. Then $\rho\left(l_{C_{i}}, p_{i}\right)=0$ and l is a refined limit \mathfrak{g}_{20}^{3}. From (9) and (10) we must have: $a^{l_{E}}\left(p_{i}\right) \leq(11,12,13,14), i=1,2$. There are four possibilities: i) $a_{0}+b_{3}=a_{1}+b_{2}=20, a_{2}+b_{1}=a_{3}+b_{0}=19$. Then $a_{1}=a_{0}+9 \leq 12$, so $b_{3}=20-a_{0} \geq 17$, a contradiction. ii) $a_{0}+b_{3}=a_{2}+b_{1}=20, a_{2}+b_{1}=a_{3}+b_{0}=19$. Then $b_{3}=20-a_{0} \leq 14$, so $a_{2}=a_{0}+9 \geq 15$, a contradiction. iii) $a_{0}+b_{3}=a_{3}+b_{0}=$ 20, $a_{1}+b_{2}=a_{2}+b_{1}=19$. Then $b_{3}=19-a_{0} \leq 14$, so $a_{3} \geq a_{0}+9 \geq 15$, a contradiction. iv) $a_{0}+b_{3}=a_{3}+b_{0}=19, a_{1}+b_{2}=a_{2}+b_{1}=20$. Then $b_{3}=19-a_{0} \leq 14$, so
$a_{2} \geq a_{1}+9 \geq 15$, a contradiction again. We conclude that X has no limit \mathfrak{g}_{20}^{3}.
Step 2) There exists a smoothable limit \mathfrak{g}_{17}^{2} on X, hence $[X] \in \overline{\mathcal{M}}_{17}^{2}$. We construct a limit linear series l of type \mathfrak{g}_{17}^{2} on X, aspect by aspect: on C_{i} take $l_{C_{i}} \in G_{17}^{2}\left(C_{i}\right)$ such that $a^{l_{C_{i}}}\left(p_{i}\right)=(4,9,13)$. Note that in this case $\sum_{j=0}^{r}\left(\alpha_{j}+g-d+r\right)_{+}=g$, so (8) ensures the existence of such a \mathfrak{g}_{17}^{2}. On E we take $l_{E}=\left|V_{E}\right|$, where $\left|V_{E}\right| \subseteq$ $\left|4 p_{1}+13 p_{2}\right|=\left|4 p_{2}+13 p_{1}\right|$ is a \mathfrak{g}_{17}^{2} with vanishing sequence $(4,8,13)$ at p_{i}. Prop.4.1 ensures the existence of such a linear series. In this way l is a refined limit \mathfrak{g}_{17}^{2} on X with $\rho\left(l_{C_{i}}, p_{i}\right)=0, \rho\left(l_{E}, p_{1}, p_{2}\right)=-1$. We prove that l is dimensionally proper. Let $\pi_{i}: \mathcal{C}_{i} \rightarrow \Delta_{i}, \tilde{p}_{i}: \Delta_{i} \rightarrow \mathcal{C}_{i}$, be the versal deformation of $\left[\left(C_{i}, p_{i}\right)\right] \in \mathcal{C}_{11}$, and $\sigma_{i}: \mathcal{G}_{17}^{2}\left(\mathcal{C}_{i} / \Delta_{i},\left(\tilde{p}_{i},(4,8,11)\right)\right) \rightarrow \Delta_{i}$ the projection.

Since being general is an open condition, we have that σ_{i} is surjective and $\operatorname{dim} \sigma_{i}^{-1}(t)=$ $\rho\left(l_{C_{i}}, p_{i}\right)=0$, for each $t \in \Delta_{i}$, therefore

$$
\operatorname{dim} \mathcal{G}_{17}^{2}\left(\mathcal{C}_{i} / \Delta_{i},\left(\tilde{p}_{i},(4,8,11)\right)\right)=\operatorname{dim} \Delta_{i}+\rho\left(l_{C_{i}}, p_{i}\right)=31
$$

Next, let $\pi: \mathcal{C} \rightarrow \Delta, \tilde{p}_{1}, \tilde{p}_{2}: \Delta \rightarrow \mathcal{C}$ be the versal deformation of $\left(E, p_{1}, p_{2}\right)$. We prove that

$$
\operatorname{dim} \mathcal{G}_{17}^{2}\left(\mathcal{C} / \Delta,\left(\tilde{p}_{i},(4,7,11)\right)\right)=\operatorname{dim} \Delta+\rho\left(l_{E}, p_{1}, p_{2}\right)=1
$$

This follows from Prop.4.1, since a 2-pointed elliptic curve $\left(E_{t}, \tilde{p}_{1}(t), \tilde{p}_{2}(t)\right)$ has at most one \mathfrak{g}_{17}^{2} with ramification $(4,7,11)$ at both $\tilde{p}_{1}(t)$ and $\tilde{p}_{2}(t)$, and exactly one when $9\left(\tilde{p}_{1}(t)-\tilde{p}_{2}(t)\right) \sim 0$. Hence $\operatorname{Im} \mathcal{G}_{17}^{2}\left(\mathcal{C} / \Delta,\left(\tilde{p}_{i},(4,7,11)\right)\right)=\left\{t \in \Delta: 9\left(\tilde{p}_{1}(t)-\tilde{p}_{2}(t)\right) \sim\right.$ 0 in $\left.\operatorname{Pic}^{0}\left(E_{t}\right)\right\}$, which is a divisor on Δ, so the claim follows and l is a dimensionally proper \mathfrak{g}_{17}^{2}.

A slight variation of the previous argument gives us:
Proposition 5.3 We have $\operatorname{supp}\left(\overline{\mathcal{M}}_{17}^{2} \cap \Delta_{1}\right) \neq \operatorname{supp}\left(\overline{\mathcal{M}}_{20}^{3} \cap \Delta_{1}\right)$.
Proof: We construct a curve $[Y] \in \Delta_{1} \subseteq \overline{\mathcal{M}}_{23}$ which has a smoothable limit \mathfrak{g}_{17}^{2} but no limit \mathfrak{g}_{20}^{3}. Let us consider the following curve:

where $\left(C_{2}, p_{2}\right)$ is a general point of $\mathcal{C}_{11},\left(C_{1}, p_{1}, x\right)$ is a general 2-pointed curve of genus $10,\left(E_{1}, x\right)$ is general in \mathcal{C}_{1}, E is an elliptic curve, and $p_{1}-p_{2} \in \operatorname{Pic}^{0}(E)$ is a primitive 9 torsion. In order to prove that Y has no limit \mathfrak{g}_{20}^{3}, one just has to take into account that according to Prop.3.3, the condition for a general 1-pointed curve (C, z) of genus g, to have a \mathfrak{g}_{d}^{r} with ramification α at z is the same with the condition for a general 2-pointed
curve (D, x, y) of genus $g-1$ to have a \mathfrak{g}_{d}^{r} with ramification α at x and a cusp at y. Therefore we can repeat what we did in the proof of Theorem 2. Next, we construct l, a smoothable limit \mathfrak{g}_{17}^{2} on Y : take $l_{C_{2}} \in G_{17}^{2}\left(C_{2},\left(p_{2},(4,8,11)\right)\right), l_{E}=\left|V_{E}\right| \subseteq\left|4 p_{1}+13 p_{2}\right|$, with $\alpha^{l_{E}}\left(p_{i}\right)=(4,7,11)$, on E_{1} take $l_{E_{1}}=14 x+|3 x|$, and finally on C_{1} take $l_{C_{1}}$ such that $\alpha^{l_{C_{1}}}\left(p_{1}\right)=(4,8,11), \alpha^{l_{C_{1}}}(x)=(0,0,1)$. Prop.3.3 ensures the existence of $l_{C_{1}}$. Clearly, l is a refined limit \mathfrak{g}_{17}^{2} and the proof that it is smoothable is all but identical to the one in the last part of Theorem 2.

The other cases are settled by the following:
Theorem 3 There exists a smooth curve of genus 23 having a \mathfrak{g}_{12}^{1} but having no \mathfrak{g}_{17}^{2} nor \mathfrak{g}_{20}^{3}. Equivalently, $\operatorname{supp}\left(\mathcal{M}_{12}^{1}\right) \nsubseteq \operatorname{supp}\left(\mathcal{M}_{17}^{2}\right)$ and $\operatorname{supp}\left(\mathcal{M}_{12}^{1}\right) \nsubseteq \operatorname{supp}\left(\mathcal{M}_{20}^{3}\right)$.

Proof: We take the curve considered in [EH3]:

where $\left(C_{i}, p_{i}\right)$ are general points of \mathcal{C}_{11}, E is elliptic and $p_{1}-p_{2} \in \operatorname{Pic}^{0}(E)$ is a primitive 12-torsion. Clearly Y has a (smoothable) limit \mathfrak{g}_{12}^{1} : on C_{i} take the pencil $\left|12 p_{i}\right|$, while on E take the pencil spanned by $12 p_{1}$ and $12 p_{2}$. It is proved in [EH3] that Y has no limit \mathfrak{g}_{17}^{2} 's and similarly one can prove that Y has no limit \mathfrak{g}_{20}^{3} 's either. We omit the details. \square

Now we are going to prove that equation (2)

$$
\operatorname{supp}\left(\mathcal{M}_{12}^{1}\right) \cap \operatorname{supp}\left(\mathcal{M}_{17}^{2}\right)=\operatorname{supp}\left(\mathcal{M}_{17}^{2}\right) \cap \operatorname{supp}\left(\mathcal{M}_{20}^{3}\right)=\operatorname{supp}\left(\mathcal{M}_{20}^{3}\right) \cap \operatorname{supp}\left(\mathcal{M}_{12}^{1}\right)
$$

is impossible, and as explained before, this will imply that $\kappa\left(\mathcal{M}_{23}\right) \geq 2$. The main step in this direction is the following:

Proposition 5.4 There exists a stable curve of compact type of genus 23 which has a smoothable limit \mathfrak{g}_{20}^{3}, a smoothable limit \mathfrak{g}_{15}^{2} (therefore also a \mathfrak{g}_{17}^{2}), but has generic gonality, that is, it does not have any limit \mathfrak{g}_{12}^{1}.

Proof We shall consider the following stable curve X of genus 23:

where the E_{i} 's are elliptic curves, $\Gamma \subseteq \mathbb{P}^{2}$ is a general smooth plane septic and the points of attachment $\left\{p_{i}\right\}=\Gamma \cup E_{i}$ are general points of Γ.

Step 1) There is no limit \mathfrak{g}_{12}^{1} on X. Assume that l is a limit \mathfrak{g}_{12}^{1} on X. Since the elliptic curves E_{i} cannot have meromorphic functions with a single pole, we have that $a^{l_{E_{i}}}\left(p_{i}\right) \leq(10,12)$, hence $\alpha^{l_{\Gamma}}\left(p_{i}\right) \geq(0,1)$, that is, l_{Γ} has a cusp at p_{i} for $i=1, \ldots, 8$. We now prove that Γ has no \mathfrak{g}_{12}^{1} 's with cusps at the points p_{i}.

First, we notice that $\operatorname{dim} G_{12}^{1}(\Gamma)=\rho(15,1,12)=7$. Indeed, if we assume that $\operatorname{dim} G_{12}^{1}(\Gamma) \geq 8$, by applying Keem's Theorem (cf. [ACGH], p.200) we would get that Γ possesses a \mathfrak{g}_{4}^{1}, which is impossible since $\operatorname{gon}(\Gamma)=6$. (In general, if $Y \subseteq \mathbb{P}^{2}$ is a smooth plane curve, $\operatorname{deg}(Y)=d$, then gon $(Y)=d-1$, and the \mathfrak{g}_{d-1}^{1} computing the gonality is cut out by the lines passing through a point $p \in Y$, see [ACGH].) Next, we define the variety

$$
\Sigma=\left\{\left(l, q_{1}, \ldots, q_{8}\right) \in G_{12}^{1}(\Gamma) \times \Gamma^{8}: \alpha^{l}\left(q_{i}\right) \geq(0,1), i=1, \ldots, 8\right\}
$$

and denote by $\pi_{1}: \Sigma \rightarrow G_{12}^{1}(\Gamma)$ and $\pi_{2}: \Sigma \rightarrow \Gamma^{8}$ the two projections. For any $l \in G_{12}^{1}(\Gamma)$, the fibre $\pi_{1}^{-1}(l)$ is finite, hence $\operatorname{dim} \Sigma=\operatorname{dim} G_{12}^{1}(\Gamma)=7$, which shows that π_{2} cannot be surjective and this proves our claim.
Step 2) There exists a smoothable limit \mathfrak{g}_{15}^{2} on X, hence $[X] \in \overline{\mathcal{M}}_{15}^{2}$. We construct l, a limit \mathfrak{g}_{15}^{2} on X as follows: on Γ there is a (unique) \mathfrak{g}_{7}^{2}, and we consider $l_{\Gamma}=$ $\mathfrak{g}_{7}^{2}\left(p_{1}+\cdots+p_{8}\right)$, i.e. the $\Gamma-$ aspect l_{Γ} is obtained from the \mathfrak{g}_{7}^{2} by adding the base points p_{1}, \ldots, p_{8}. Clearly $a^{l_{\Gamma}}\left(p_{i}\right)=(1,2,3)$ for each i. On E_{i} we take $l_{E_{i}}=\mathfrak{g}_{3}^{2}\left(12 p_{i}\right)$ for $i=1, \ldots, 8$, where \mathfrak{g}_{3}^{2} is a complete linear series of the form $\left|2 p_{i}+x_{i}\right|$, with $x_{i} \in E_{i}-\left\{p_{i}\right\}$. Furthermore, $a^{l_{E_{i}}}\left(p_{i}\right)=(12,13,14)$, so $l=\left\{l_{\Gamma}, l_{E_{i}}\right\}$ is a refined limit \mathfrak{g}_{15}^{2} on X. One sees that $\rho\left(l_{E_{i}}, \alpha^{l_{E_{i}}}\left(p_{i}\right)\right)=1$ for all $i, \rho\left(l_{\Gamma}, \alpha^{l_{\Gamma}}\left(p_{1}\right), \ldots, \alpha^{l_{\Gamma}}\left(p_{8}\right)\right)=-15$, and $\rho(l)=-7$. We now prove that l is dimensionally proper.

Let $\pi_{i}: \mathcal{C}_{i} \rightarrow \Delta_{i}, \tilde{p}_{i}: \Delta_{i} \rightarrow \mathcal{C}_{i}$ be the versal deformation space of $\left(E_{i}, p_{i}\right)$, for $i=1, \ldots, 8$. There is an obvious isomorphism over Δ_{i}

$$
\mathcal{G}_{15}^{2}\left(\mathcal{C}_{i} / \Delta_{i},\left(\tilde{p}_{i},(12,12,12)\right)\right) \simeq \mathcal{G}_{3}^{2}\left(\mathcal{C}_{i} / \Delta_{i},\left(\tilde{p}_{i}, 0\right)\right)
$$

If $\sigma_{i}: \mathcal{G}_{3}^{2}\left(\mathcal{C}_{i} / \Delta_{i},\left(\tilde{p}_{i}, 0\right)\right) \rightarrow \Delta_{i}$ is the natural projection, then for each $t \in \Delta_{i}$, the fibre $\sigma_{i}^{-1}(t)$ is isomorphic to $\pi_{i}^{-1}(t)$, the isomorphism being given by

$$
\pi_{i}^{-1}(t) \ni q \mapsto\left|2 \tilde{p}_{i}(t)+q\right| \in G_{3}^{2}\left(\pi_{i}^{-1}(t)\right) .
$$

Thus, $\mathcal{G}_{3}^{2}\left(\mathcal{C}_{i} / \Delta_{i},\left(\tilde{p}_{i}, 0\right)\right)$ is a smooth irreducible surface, which shows that l is dimensionally proper w.r.t. E_{i}. Next, let us consider $\pi: \mathcal{X} \rightarrow \Delta, \tilde{p}_{1}, \ldots, \tilde{p}_{8}: \Delta \rightarrow \mathcal{X}$, the versal deformation of $\left(\Gamma, p_{1}, \ldots, p_{8}\right)$. We have to prove that

$$
\operatorname{dim} \mathcal{G}_{15}^{2}\left(\mathcal{X} / \Delta,\left(\tilde{p}_{i},(1,1,1)\right)\right)=\operatorname{dim} \Delta+\rho\left(l_{\Gamma}, \alpha^{l_{\Gamma}}\left(p_{i}\right)\right)=35
$$

There is an isomorphism over Δ,

$$
\mathcal{G}_{15}^{2}\left(\mathcal{X} / \Delta,\left(\tilde{p}_{i},(1,1,1)\right)\right) \simeq \mathcal{G}_{7}^{2}\left(\mathcal{X} / \Delta,\left(\tilde{p}_{i}, 0\right)\right)
$$

If $\pi_{0}: \mathcal{C} \rightarrow \mathcal{M}$ is the versal deformation space of Γ, then we denote by $\mathcal{G}_{7}^{2} \rightarrow \mathcal{M}$ the scheme parametrizing \mathfrak{g}_{7}^{2} 's on curves of genus 15 'nearby' Γ (See Section 3 for this
notation). Clearly $\mathcal{G}_{7}^{2}\left(\mathcal{X} / \Delta,\left(\tilde{p}_{i}, 0\right)\right) \simeq \mathcal{G}_{7}^{2} \times_{\mathcal{M}} \Delta$, so it suffices to prove that \mathcal{G}_{7}^{2} has the expected dimension at the point $\left(\Gamma, \mathfrak{g}_{7}^{2}\right)$. For this we use Prop.3.1. We have that $N_{\Gamma / \mathbb{P}^{2}}=\mathcal{O}_{\Gamma}(7), K_{\Gamma}=\mathcal{O}_{\Gamma}(4)$, hence

$$
H^{1}\left(\Gamma, N_{\Gamma / \mathbb{P}^{2}}\right) \simeq H^{0}\left(\Gamma, \mathcal{O}_{\Gamma}(-3)\right)^{\vee}=0
$$

so l is dimensionally proper w.r.t. Γ as well. We conclude that l is smoothable.
Step 3) There exists a smoothable limit \mathfrak{g}_{20}^{3} on X, that is $[X] \in \overline{\mathcal{M}}_{20}^{3}$. First we notice that there is an isomorphism $\Gamma \xrightarrow{\sim} G_{6}^{1}(\Gamma)$, given by

$$
\Gamma \ni p \mapsto\left|\mathfrak{g}_{7}^{2}-p\right| \in G_{6}^{1}(\Gamma)
$$

Consequently, there is a 2-dimensional family of \mathfrak{g}_{12}^{3} 's on Γ, of the form $\mathfrak{g}_{12}^{3}=\mathfrak{g}_{6}^{1}+\mathfrak{h}_{6}^{1}=$ $\left|2 \mathfrak{g}_{7}^{2}-p-q\right|$, where $p, q \in \Gamma$. Pick $l_{0}=l_{0}^{\prime}+l_{0}^{\prime \prime}$, with $l_{0}^{\prime}, l_{0}^{\prime \prime} \in G_{6}^{1}(\Gamma)$, a general \mathfrak{g}_{12}^{3} of this type. We construct l, a limit \mathfrak{g}_{20}^{3} on X, as follows: the Γ-aspect is given by $l_{\Gamma}=l_{0}\left(p_{1}+\cdots p_{8}\right)$, and because of the generality of the chosen l_{0} we have that $\rho\left(l_{\Gamma}, \alpha^{l_{\Gamma}}\left(p_{1}\right), \ldots, \alpha^{l_{\Gamma}}\left(p_{8}\right)\right)=-9$. The E_{i}-aspect is given by $l_{E_{i}}=\mathfrak{g}_{4}^{3}\left(16 p_{i}\right)$, where $\mathfrak{g}_{4}^{3}=\left|3 p_{i}+x_{i}\right|$, with $x_{i} \in E_{i}-\left\{p_{i}\right\}$, for $i=1, \ldots, 8$. It is clear that $\rho\left(l_{E_{i}}, \alpha^{l_{E_{i}}}\left(p_{i}\right)\right)=1$ and that $l^{\prime}=\left\{l_{\Gamma}, l_{E_{i}}\right\}$ is a refined limit \mathfrak{g}_{20}^{3} on X.

In order to prove that l^{\prime} is dimensionally proper, we first notice that l^{\prime} is dimensionally proper w.r.t. the elliptic tails E_{i}. We now prove that l^{\prime} is dimensionally proper w.r.t. Γ. As in the previous step, we consider $\pi: \mathcal{X} \rightarrow \Delta, \tilde{p}_{1}, \ldots, \tilde{p}_{8}: \Delta \rightarrow \mathcal{X}$, the versal deformation of $\left(\Gamma, p_{1}, \ldots, p_{8}\right)$ and $\pi_{0}: \mathcal{C} \rightarrow \mathcal{M}$, the versal deformation space of Γ. There is an isomorphism over Δ

$$
\mathcal{G}_{20}^{3}\left(\mathcal{X} / \Delta,\left(\tilde{p}_{1}, \alpha^{l_{\Gamma}}\left(p_{1}\right), \ldots,\left(\tilde{p}_{8}, \alpha^{l_{\Gamma}}\left(p_{8}\right)\right)\right) \simeq \mathcal{G}_{12}^{3}(\mathcal{C} / \mathcal{M}) \times_{\mathcal{M}} \Delta\right.
$$

It suffices to prove that $\mathcal{G}_{12}^{3}=\mathcal{G}_{12}^{3}(\mathcal{C} / \mathcal{M})$ has a component of the expected dimension passing through $\left(\Gamma, l_{0}\right)$. In this way, the genus 23 problem is turned into a deformation theoretic problem in genus 15. Denote as usual by $\sigma: \mathcal{G}_{12}^{3} \rightarrow \mathcal{M}$ the natural projection. According to Prop.3.1, it will be enough to exhibit an element $(C, l) \in \mathcal{G}_{20}^{3}$, sitting in the same component as $\left(\Gamma, l_{0}\right)$, such that the linear system l is base point free and simple, and if $\phi_{1}: C \rightarrow \mathbb{P}^{3}$ is the map induced by l, then $H^{1}\left(C, N_{\phi_{1}}\right)=0$. Certainly we cannot take C to be a smooth plane septic because in this case $H^{1}\left(C, N_{\phi_{1}}\right) \neq 0$, as one can easily see. Instead, we consider the 6 -gonal locus in a neighbourhood of the point $[\Gamma] \in \mathcal{M}_{15}$, or equivalently, the 6 -gonal locus in \mathcal{M}, the versal deformation space of Γ. One has the projection $\mathcal{G}_{6}^{1} \rightarrow \mathcal{M}$ and the scheme \mathcal{G}_{6}^{1} is smooth (and irreducible) of dimension $37(=2 g+2 d-5 ; g=15, d=6)$. We denote by

$$
\mu: \mathcal{G}_{6}^{1} \times \mathcal{M} \mathcal{G}_{6}^{1} \rightarrow \mathcal{M}, \quad \mu\left(\left[C, l, l^{\prime}\right]\right)=[C]
$$

There is a stratification of \mathcal{M} given by the number of pencils: for $i \geq 0$ we define,

$$
\mathcal{M}(i)^{0}:=\left\{[C] \in \mathcal{M}: C \text { possesses } i \text { mutually independent, base-point-free } \mathfrak{g}_{6}^{1} \text { 's }\right\}
$$

and $\mathcal{M}(i):=\overline{\mathcal{M}(i)^{0}}$. The strata $\mathcal{M}(i)^{0}$ are constructible subsets of \mathcal{M}, the first stratum $\mathcal{M}(1)=\operatorname{Im}\left(\mathcal{G}_{6}^{1}\right)$ is just the 6 -gonal locus; the stratum $\mathcal{M}(2)$ is irreducible
and $\operatorname{dim} \mathcal{M}(2)=g+4 d-7=32$ (cf. [AC1]). We denote by $\mathcal{M}_{\text {sept }}:=\overline{m\left(U_{7,15}\right) \cap \mathcal{M}}$, the closure of the locus of smooth plane septics in \mathcal{M}, and by $\mathcal{M}_{o c t}:=\overline{m\left(U_{8,15}\right) \cap \mathcal{M}}$, the closure of the locus of curves which are normalizations of plane octics with 6 nodes. Since the Severi varieties $U_{7,15}$ and $U_{8,15}$ are irreducible, so are the loci $\mathcal{M}_{\text {sept }}$ and $\mathcal{M}_{\text {oct }}$. Furthermore $\operatorname{dim} \mathcal{M}_{\text {sept }}=27$ and $\operatorname{dim} \mathcal{M}_{\text {oct }}=30$. We prove that $\mathcal{M}_{\text {sept }} \subseteq$ $\mathcal{M}_{\text {oct }}$. Indeed, let us pick $Y \subseteq \mathbb{P}^{2}$ a smooth plane septic, and $L \subseteq \mathbb{P}^{2}$ a general line, $L \cdot Y=p_{1}+\cdots+p_{7}$. Denote $Z:=C \cup L$, $\operatorname{deg}(Z)=8, p_{a}(Z)=21$. We consider the node p_{7} unassigned, while $p_{1}, \ldots p_{6}$ are assigned. By using [Ta] Theorem 2.13, there exists a flat family of plane curves $\pi: \mathcal{Z} \rightarrow B$ and a point $0 \in B$, such that $Z_{0}=\pi^{-1}(0)=Z$, while for $0 \neq b \in B$, the fibre Z_{b} is an irreducible octic with nodes $p_{1}(b), \ldots p_{6}(b)$, and such that $p_{i}(b) \rightarrow p_{i}$, when $b \rightarrow 0$, for $i=1, \ldots, 6$. If $\mathcal{Z}^{\prime} \rightarrow B$ is the family resulting by normalizing the surface \mathcal{Z}, and $\eta: \mathcal{Z}^{\prime \prime} \rightarrow B$ is the stable family associated to the semistable family $\mathcal{Z}^{\prime} \rightarrow B$, then we get that $\eta^{-1}(0)=Y$, while $\eta^{-1}(b)$ is the normalization of Z_{b} for $b \neq 0$. This proves our contention.

Since $\mathcal{M}_{\text {oct }}$ is irreducible there is a component \mathcal{A} of $\mathcal{G}_{6}^{1} \times_{\mathcal{M}} \mathcal{G}_{6}^{1}$, such that $\mu(\mathcal{A}) \supseteq$ $\mathcal{M}_{\text {oct }}$. The general point of \mathcal{A} corresponds to a curve C and two base-point-free pencils $l^{\prime}, l^{\prime \prime} \in G_{6}^{1}(C)$ such that if $f^{\prime}: C \rightarrow \mathbb{P}^{1}$ and $f^{\prime \prime}: C \rightarrow \mathbb{P}^{1}$ are the corresponding morphisms, then

$$
\phi=\left(f^{\prime}, f^{\prime \prime}\right): C \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

is birational. Since $[\Gamma] \in \mu(\mathcal{A})$ we can assume that $\left[\Gamma, l_{0}^{\prime}, l_{0}^{\prime \prime}\right] \in \mathcal{A}$. As a matter of fact, we can start the construction of a limit \mathfrak{g}_{20}^{3} on the genus 23 curve X, by taking any pair of base-point free pencils $\left(l_{0}^{\prime}, l_{0}^{\prime \prime}\right) \in G_{6}^{1}(\Gamma) \times G_{6}^{1}(\Gamma)$ such that $\operatorname{dim}\left|l_{0}^{\prime}+l_{0}^{\prime \prime}\right|=3$, the argument does not change.

We denote by $\eta: \mathcal{A} \rightarrow \mathcal{G}_{12}^{3}$ the map given by $\eta\left(C, l^{\prime}, l^{\prime \prime}\right):=\left(C, l^{\prime}+l^{\prime \prime}\right)$. The fact that η maps to \mathcal{G}_{12}^{3} follows from the base-point-free-pencil-trick.

We are going to show that given a general point $[C] \in \mathcal{M}_{\text {oct }}$ and $\left(C, l, l^{\prime}\right) \in \mu^{-1}([C])$, the condition $H^{1}\left(C, N_{\phi_{1}}\right)=0$ is satisfied, hence \mathcal{G}_{12}^{3} is smooth of the expected dimension at the point $\left(C, l+l^{\prime}\right)$. This will prove the existence of a component of \mathcal{G}_{12}^{3} passing through $\left(\Gamma, l_{0}\right)$ and having the expected dimension. We take $\bar{C} \subseteq \mathbb{P}^{2}$, a general point of $U_{8,15}$, with nodes $p_{1}, \ldots, p_{6} \in \mathbb{P}^{2}$ in general position. Theorem 3.2 from [AC1] ensures that there exists a plane octic having 6 prescribed nodes in general position. Let $\nu: C \rightarrow \bar{C}$ be the normalization map, $\nu^{-1}\left(p_{i}\right)=q_{i}^{\prime}+q_{i}^{\prime \prime}$ for $i=1, \ldots, 6$. Choose two nodes, say p_{1} and p_{2}, and denote by $\mathfrak{g}_{6}^{1}=\left|H-q_{1}^{\prime}-q_{1}^{\prime \prime}\right|$ and $\mathfrak{h}_{6}^{1}=\left|H-q_{2}^{\prime}-q_{2}^{\prime \prime}\right|$, the linear series obtained by projecting \bar{C} from p_{1} and p_{2} respectively. Here $H \in\left|\nu^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)\right|$ is an arbitrary line section of C. The morphism induced by $\left(\mathfrak{g}_{6}^{1}, \mathfrak{h}_{6}^{1}\right)$ is denoted by $\phi: C \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$, and $\phi_{1}=s \circ \phi: C \rightarrow \mathbb{P}^{3}$, with $s: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ the Segre embedding. There is an exact sequence over C

$$
\begin{equation*}
0 \longrightarrow N_{\phi} \longrightarrow N_{\phi_{1}} \longrightarrow \phi^{*} N_{\mathbb{P}^{1} \times \mathbb{P}^{1} / \mathbb{P}^{3}} \longrightarrow 0 \tag{11}
\end{equation*}
$$

We can argue as in [AC2] p.473, that for a general $\left(C, \mathfrak{g}_{6}^{1}, \mathfrak{h}_{6}^{1}\right)$ with $[C] \in \mathcal{M}_{\text {oct }}$, we have $h^{1}\left(C, N_{\phi}\right)=0$. Indeed, let us denote by \mathcal{A}_{0} the open set of \mathcal{A} corresponding to points $\left(X, l, l^{\prime}\right)$ such that $\chi: X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$, the morphism associated to the pair of pencils (l, l^{\prime}) is birational, and by $\mathcal{U} \subseteq \mathcal{A}_{0}$ the variety of those points $\left(X, l, l^{\prime}\right) \in \mathcal{A}_{0}$ such that
$H^{1}\left(X, N_{\chi}\right) \neq 0$. Define

$$
\mathcal{V}:=\left\{x=\left(X, l, l^{\prime}, \mathcal{F}, \mathcal{F}^{\prime}\right):\left(X, l, l^{\prime}\right) \in \mathcal{U}, \mathcal{F} \text { is a frame for } l, \mathcal{F}^{\prime} \text { is a frame for } l^{\prime}\right\} .
$$

We may assume that for a generic $x \in \mathcal{U}$, the corresponding pencils l and l^{\prime} are base-point-free. Suppose that \mathcal{U} has a component of dimension α. For any $x \in \mathcal{V}$,

$$
T_{x}(\mathcal{V}) \subseteq H^{0}\left(X, N_{\chi}\right), \text { and } \operatorname{dim} T_{x}(\mathcal{V}) \geq \alpha+2 \operatorname{dim} P G L(2)=\alpha+6
$$

If \mathcal{K}_{χ} is the cuspidal sheaf of χ and $N_{\chi}^{\prime}=N_{\chi} / \mathcal{K}_{\chi}$, then according to [AC1] Lemma 1.4, for a general point $x \in \mathcal{V}$ one has that,

$$
T_{x}(\mathcal{V}) \cap H^{0}\left(X, \mathcal{K}_{\chi}\right)=0
$$

from which it follows that $\alpha \leq g-6$. If not, one would have that $h^{0}\left(X, N_{\chi}^{\prime}\right) \geq g+1$, and therefore by Clifford's Theorem, $h^{1}\left(X, N_{\chi}\right)=h^{1}\left(X, N_{\chi}^{\prime}\right)=0$, which contradicts the definition of \mathcal{U}. Since clearly $\operatorname{dim} \mathcal{M}_{\text {oct }}>g-6$, we can assume that $h^{1}\left(C, N_{\phi}\right)=0$, for the general $[C] \in \mathcal{M}_{o c t}$. Therefore, by taking cohomology in (11), we get that

$$
H^{1}\left(C, N_{\phi_{1}}\right)=H^{1}\left(C, \mathcal{O}_{C}(2)\right),
$$

where $\mathcal{O}_{C}(1)=\phi_{1}^{*} \mathcal{O}_{\mathbb{P}^{3}}(1)$. By Serre duality,

$$
\begin{equation*}
H^{1}\left(C, \mathcal{O}_{C}(2)\right)=0 \Longleftrightarrow\left|K_{C}-2 \mathfrak{g}_{6}^{1}-2 \mathfrak{h}_{6}^{1}\right|=\emptyset \tag{12}
\end{equation*}
$$

Since $K_{C}=5 H-\sum_{i=1}^{6}\left(q_{i}^{\prime}+q_{i}^{\prime \prime}\right)$, equation (12) becomes

$$
\begin{equation*}
\left|H+q_{1}^{\prime}+q_{1}^{\prime \prime}+q_{2}^{\prime}+q_{2}^{\prime \prime}-\sum_{i=3}^{6}\left(q_{i}^{\prime}+q_{i}^{\prime \prime}\right)\right|=\emptyset \tag{13}
\end{equation*}
$$

If $L=\overline{p_{1} p_{2}} \subseteq \mathbb{P}^{2}$, we can write $\nu^{*}(L)=q_{1}^{\prime}+q_{1}^{\prime \prime}+q_{2}^{\prime}+q_{2}^{\prime \prime}+x+y+z+t$, and (13) is rewritten as

$$
\left|2 H-x-y-z-t-\sum_{i=3}^{6}\left(q_{i}^{\prime}+q_{i}^{\prime \prime}\right)\right|=\emptyset
$$

So, one has to show that there are no conics passing through the nodes p_{3}, p_{4}, p_{5} and p_{6} and also through the points in $L \cdot \bar{C}-2 p_{1}-2 p_{2}$. Because $[\bar{C}] \in U_{8,15}$ is general we may assume that x, y, z and t are distinct, smooth points of \bar{C}. Indeed, if the divisor $x+y+z+t$ on \bar{C} does not consist of distinct points, or one of its points is a node, we obtain that \bar{C} has intersection number 8 with the line L at 5 points or less. But according to $[\mathrm{DH}]$, the locus in the Severi variety

$$
\left\{[X] \in U_{d, g}: X \text { has total intersection number } m+3 \text { with a line at } m \text { points }\right\}
$$

is a divisor on $U_{d, g}$, so we may assume that $[\bar{C}]$ lies outside this divisor. Now, if x, y, z and t are distinct and smooth points of \bar{C}, a conic satisfying (13) would necessarily be a degenerate one, and one gets a contradiction with the assumption that the nodes
p_{1}, \ldots, p_{6} of \bar{C} are in general position.
Remark: We have a nice geometric characterization of some of the strata \mathcal{M}_{i}. First, by using Zariski's Main Theorem for the birational projection $\mathcal{G}_{6}^{1} \rightarrow \mathcal{M}(1)$, one sees that $[C] \in \mathcal{M}(1)_{\text {sing }}$ if and only if either $[C] \in \mathcal{M}(2)^{0}$, or C possesses a \mathfrak{g}_{6}^{1} such that $\operatorname{dim}\left|2 \mathfrak{g}_{6}^{1}\right| \geq 3$. In the latter case, the \mathfrak{g}_{6}^{1} is a specialization of 2 different \mathfrak{g}_{6}^{1} 's in some family of curves, hence $\mathcal{M}(2)=\mathcal{M}(1)_{\text {sing }}(c f[\mathrm{Co} 2])$. As a matter of fact, Coppens has proved that for $4 \leq k \leq[(g+1) / 2]$ and $8 \leq g \leq(k-1)^{2}$, there exists a k-gonal curve of genus g carrying exactly 2 linear series \mathfrak{g}_{k}^{1}, so the general point of $\mathcal{M}(2)$ corresponds to a curve C of genus 15 , having exactly 2 base-point-free \mathfrak{g}_{6}^{1} 's. Furthermore, using Coppens' classification of curves having many pencils computing the gonality (see [Co1]), we have that $\mathcal{M}(6)=\mathcal{M}_{o c t}$, and $\mathcal{M}(i)=\mathcal{M}_{\text {sept }}$, for each $i \geq 7$.

Now we are in a position to complete the proof of Theorem 1:
Proof of Theorem 1 According to (2), it will suffice to prove that there exists a smooth curve $[Y] \in \mathcal{M}_{23}$ which carries a \mathfrak{g}_{20}^{3}, a \mathfrak{g}_{17}^{2} but has no \mathfrak{g}_{12}^{1} 's. In the proof of Prop.5.4 we constructed a stable curve of compact type $[X] \in \overline{\mathcal{M}}_{23}$ such that $[X] \in \overline{\mathcal{M}}_{17}^{2} \cap \overline{\mathcal{M}}_{20}^{3}$, but $[X] \notin \overline{\mathcal{M}}_{12}^{1}$. If we prove that $[X] \in \overline{\mathcal{M}_{17}^{2} \cap \mathcal{M}_{20}^{3}}$, that is, there are smoothings of X which preserve both the \mathfrak{g}_{17}^{2} and the \mathfrak{g}_{20}^{3}, we are done. One can write $\overline{\mathcal{M}}_{17}^{2} \cap \overline{\mathcal{M}}_{20}^{3}=Y_{1} \cup \ldots \cup Y_{s}$, where Y_{i} are irreducible codimension 2 subvarieties of $\overline{\mathcal{M}}_{23}$. Assume that $[X] \in Y_{1}$. If $Y_{1} \cap \mathcal{M}_{23} \neq \emptyset$, then $[X] \in Y_{1}=\overline{Y_{1} \cap \mathcal{M}_{23}} \subseteq \overline{\mathcal{M}_{17}^{2} \cap \mathcal{M}_{20}^{3}}$, and the conclusion follows. So we may assume that $Y_{1} \subseteq \overline{\mathcal{M}}_{23}-\mathcal{M}_{23}$. Because $[X] \in \Delta_{1}-\bigcup_{j \neq 1} \Delta_{j}$, we must have $Y \subseteq \Delta_{1}$. It follows that $\overline{\mathcal{M}}_{17}^{2} \cap \Delta_{1}$ and $\overline{\mathcal{M}}_{20}^{3} \cap \Delta_{1}$ have Y_{1} as a common component. According to Prop.4.2, both intersections $\overline{\mathcal{M}}_{17}^{2} \cap \Delta_{1}$ and $\overline{\mathcal{M}}_{20}^{3} \cap \Delta_{1}$ are irreducible, hence $\overline{\mathcal{M}}_{17}^{2} \cap \Delta_{1}=\overline{\mathcal{M}}_{20}^{3} \cap \Delta_{1}=Y_{1}$, which contradicts Prop.5.3. Theorem 1 now follows.

6 The slope conjecture and \mathcal{M}_{23}

In this final section we explain how the slope conjecture in the context of \mathcal{M}_{23} implies that $\kappa\left(\mathcal{M}_{23}\right)=2$, and then we present evidence for this.

The slope of $\overline{\mathcal{M}}_{g}$ is defined as $s_{g}:=\inf \left\{a \in \mathbb{R}_{>0}:|a \lambda-\delta| \neq \emptyset\right\}$, where $\delta=$ $\delta_{0}+\delta_{1}+\cdots+\delta_{[g / 2]}, \lambda \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right) \otimes \mathbb{R}$. Since λ is big, it follows that $s_{g}<\infty$. If \mathbb{E} is the cone of effective divisors in $\operatorname{Div}\left(\overline{\mathcal{M}}_{g}\right) \otimes \mathbb{R}$, we define the slope function $s: \mathbb{E} \rightarrow \mathbb{R}$ by the formula

$$
s_{D}:=\inf \left\{a / b: a, b>0 \text { such that } \exists c_{i} \geq 0 \text { with }[D]=a \lambda-b \delta-\sum_{i=0}^{[g / 2]} c_{i} \delta_{i}\right\}
$$

for an effective divisor D on $\overline{\mathcal{M}}_{g}$. Clearly $s_{g} \leq s_{D}$ for any $D \in \mathbb{E}$. When $g+1$ is composite, we obtain the estimate $s_{g} \leq 6+12 /(g+1)$ by using the Brill-Noether divisors $\overline{\mathcal{M}}_{g, d}^{r}$, with $\rho(g, r, d)=-1$.
Conjecture 1 ([HMo]) We have that $s_{g} \geq 6+12 /(g+1)$ for each $g \geq 3$, with equality when $g+1$ is composite.

Harris and Morrison also stated (in a somewhat vague form) that for composite $g+1$, the Brill-Noether divisors not only minimize the slope among all effective divisors, but they also single out those irreducible $D \in \mathbb{E}$ with $s_{D}=s_{g}$.

The slope conjecture has been proved for $3 \leq g \leq 11, g \neq 10$ (cf. [HMo], [CR3,4], [Tan]). A strong form of the conjecture holds for $g=3$ and $g=5$: on $\overline{\mathcal{M}}_{3}$ the only irreducible divisor of slope $s_{3}=9$ is the hyperelliptic divisor, while on $\overline{\mathcal{M}}_{5}$ the only irreducible divisor of slope $s_{5}=8$ is the trigonal divisor (cf. [HMo]). Conjecture 1 would imply that $\kappa\left(\mathcal{M}_{g}\right)=-\infty$ for all $g \leq 22$. For $g=23$, we rewrite (1) as

$$
\begin{equation*}
n K_{\overline{\mathcal{M}}_{23}}=\frac{n}{c_{23, r, d}}\left[\overline{\mathcal{M}}_{g, d}^{r}\right]+8 n \delta_{1}+\sum_{i=2}^{11} \frac{(i(23-i)-4)}{2} n \delta_{i} \quad(n \geq 1) \tag{14}
\end{equation*}
$$

(see Section 2 for the coefficients $c_{g, r, d}$). As Harris and Morrison suggest, we can ask the question whether the class of any $D \in \underset{R}{\mathbb{E}}$ with $s_{D}=s_{g}$ is (modulo a sum of boundary components Δ_{i}) proportional to $\left[\overline{\mathcal{M}}_{23, d}^{r}\right]$, and whether the sections defining (multiples of) $\overline{\mathcal{M}}_{23, d}^{r}$ form a maximal algebraically independent subset of the canonical ring $R\left(\overline{\mathcal{M}}_{23}\right)$. If so, it would mean that the boundary divisor $8 n \delta_{1}+(1 / 2) \sum_{i=2}^{11} n(i(23-$ $i)-4) \delta_{i}$ is a fixed part of $\left|n K_{\overline{\mathcal{M}}_{23}}\right|$. Moreover, using our independence result for the three Brill-Noether divisors, it would follow that $h^{0}\left(\overline{\mathcal{M}}_{23}, n K_{\overline{\mathcal{M}}_{23}}\right)$ grows quadratically in n, for n sufficiently high and sufficiently divisible, hence $\kappa\left(\mathcal{M}_{23}\right)=2$. We would also have that $\Sigma \cap \mathcal{M}_{23}=\mathcal{M}_{12}^{1} \cap \mathcal{M}_{17}^{2} \cap \mathcal{M}_{20}^{3}$, with Σ the common base locus of all the linear systems $\left|n K_{\overline{\mathcal{M}}_{23}}\right|$.

Evidence for these facts is of various sorts: first, one knows (cf. [Tan], [CR3]) that $\left|n K_{\overline{\mathcal{M}}_{23}}\right|$ has a large fixed part in the boundary: for each $n \geq 1$, every divisor in $\left|n K_{\overline{\mathcal{M}}_{23}}\right|$ must contain Δ_{i} with multiplicity $16 n$ when $i=1,19 n$ when $i=2$, and $(21-i) n$ for $i=3, \ldots, 9$ or 11 . The results for Δ_{1} and Δ_{2} are optimal since these multiplicities coincide with those in (14). Note that $\left[\Delta_{1}\right]=2 \delta_{1}$.

Next, one can show that certain geometric loci in \mathcal{M}_{23} which are contained in all three Brill-Noether divisors, are contained in Σ as well. The method is based on the trivial observation that for a family $f: X \rightarrow B$ of stable curves of genus 23 with smooth general member, if $B . K_{\overline{\mathcal{M}}_{23}}<0$ (or equivalently, slope $(X / B)=\delta_{B} / \lambda_{B}>13 / 2$), then $\phi(B) \subseteq \Sigma$, where $\phi: B \rightarrow \overline{\mathcal{M}}_{23}, \phi(b)=\left[X_{b}\right]$, is the associated moduli map. We have that:

- One can fill up the d-gonal locus $\overline{\mathcal{M}}_{d}^{1}$ with families $f: X \rightarrow B$ of stable curves of genus g such that slope (X / B) is $8+4 / g$ in the hyperelliptic case, and $>6+12 /(g+1)$ in the trigonal and tetragonal case (cf. [Sta]). For $g=23$ it follows that $\mathcal{M}_{4}^{1} \subseteq \Sigma$. Note that this result is not optimal if we believe the slope conjecture since we know that $\mathcal{M}_{8}^{1} \subseteq \mathcal{M}_{12}^{1} \cap \mathcal{M}_{17}^{2} \cap \mathcal{M}_{20}^{3}$. (The inclusion $\mathcal{M}_{8}^{1} \subseteq \mathcal{M}_{20}^{3}$ is a particular case of a result from $[\mathrm{CM}]$.)
- We take a pencil of nodal plane curves of degree d with f assigned nodes in general position such that $\binom{d-1}{2}-f=23$, and with b base points, where $4 f+b=d^{2}$. After blowing-up the base points, we have a pencil $Y \rightarrow \mathbb{P}^{1}$ with fibre $\left[Y_{t}\right] \in \overline{\mathcal{M}}_{d}^{2}$. For this pencil $\lambda_{\mathbb{P}^{1}}=\chi\left(\mathcal{O}_{Y}\right)+23-1=23$ and $\delta_{\mathbb{P}^{1}}=c_{2}(Y)+88=91+b+f$. The condition $\delta_{\mathbb{P}^{1}} / \lambda_{\mathbb{P}^{1}}>13 / 2$ is satisfied precisely when $d \leq 10$, hence taking into account that such
pencils fill up \mathcal{M}_{d}^{2}, we obtain that $\mathcal{M}_{10}^{2} \subseteq \Sigma$. Note that $\mathcal{M}_{10}^{2} \subseteq \mathcal{M}_{8}^{1}$, and as mentioned above, the 8 -gonal locus is contained in the intersection of the Brill-Noether divisors. - In a similar fashion we can prove that $\mathcal{M}_{23, \gamma}(2)$, the locus of curves of genus 23 which are double coverings of curves of genus γ is contained in Σ for $\gamma \leq 5$.

The fact that the slopes of other divisors on $\overline{\mathcal{M}}_{23}$ (or on $\overline{\mathcal{M}}_{g}$ for arbitrary g) consisting of curves with special geometric characterization, are larger than $6+12 /(g+$ $1)$, lends further support to the slope hypothesis. In another paper we will compute the class of other divisors on $\overline{\mathcal{M}}_{23}$: the closure in $\overline{\mathcal{M}}_{23}$ of the locus

$$
\left\{[C] \in \mathcal{M}_{23}: C \text { possesses a } \mathfrak{g}_{13}^{1} \text { with two different triple points }\right\}
$$

and the closure of the locus
$\left\{[C] \in \mathcal{M}_{23}: C\right.$ has a \mathfrak{g}_{18}^{2} with a 5 -fold point, i.e. $\exists D \in C^{(5)}$ such that $\left.\mathfrak{g}_{18}^{2}(-D)=\mathfrak{g}_{13}^{1}\right\}$.
In each case we will show that the slope estimate holds.

References

[AC1] E. Arbarello, M. Cornalba, Footnotes to a paper of Beniamino Segre, Math. Ann. 256(1981), 341-362.
[AC2] E. Arbarello, M. Cornalba, A few remarks about the variety of irreducible plane curves of given degree and genus, Ann. Scient. Ec. Norm. Sup.(4) 16(1983), no.3, 467-488.
[ACGH] E. Arbarello, M. Cornalba, P. Griffiths, J. Harris, Geometry of algebraic curves, Grundlehren der Mathematischen Wissenschaften, 267, Springer Verlag, 1985.
[CR1] M.C. Chang, Z. Ran, Unirationality of the moduli space of curves of genus 11,13 (and 12), Invent. Math. 76(1984), no.1, 41-54.
[CR2] M.C. Chang, Z. Ran, The Kodaira dimension of the moduli space of curves of genus 15, J. Diff. Geom. 24(1986), 205-220.
[CR3] M.C. Chang, Z. Ran, Divisors on $\overline{\mathcal{M}}_{g}$ and the cosmological constant, in: Mathematical aspects of string theory (S.-T. Yau ed.), Singapore, World Scientific, 386-393.
[CR4] M.C. Chang, Z. Ran, On the slope and Kodaira dimension of $\overline{\mathcal{M}}_{g}$ for small g, J. Diff. Geom. 34(1991), 267-274.
[Co1] M. Coppens, On G. Martens' characterization of smooth plane curves, Bull. London Math. Soc. 20(1988), no.3, 217-220.
[Co2] M. Coppens, The existence of k-gonal curves possessing exactly two linear systems g_{k}^{1}, Math. Ann. 307(1997), 291-297.
[CM] M. Coppens, G. Martens, Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg 69(1999), 347-371.
[DH] S. Diaz, J. Harris, Geometry of Severi variety, Trans. Amer. Math. Soc. 309(1988), no.1, 1-34.
[Dol] I. Dolgachev, Rationality of fields of invariants, Proc. Sym. Pure Math., Vol. 46, Part 2, 1985.
[Ed1] D. Edidin, The codimension-two homology of the moduli space of curves is algebraic, Duke Math. J., 67(1992), no.2, 241-272.
[Ed2] D. Edidin, Brill-Noether theory in codimension two, J. Algebraic Geometry, 2(1993), no.1, 25-67.
[EH1] D. Eisenbud, J. Harris, Limit linear series: basic theory, Invent. Math. 85(1986), no.2, 337-371.
[EH2] D. Eisenbud, J. Harris, Irreducibility of some families of linear series with Brill-Noether number -1, Ann. Scient. Ec. Norm. Sup.(4) 22(1989), no.1, 33-53.
[EH3] D. Eisenbud, J. Harris, The Kodaira dimension of the moduli space of curves of genus ≥ 23, Invent. Math. 90(1987), no.2, 359-387.
[EH4] D. Eisenbud, J. Harris, Existence, decomposition and limits of certain Weierstrass points, Invent. Math. 87(1987), no.3, 495-515.
[F] W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2nd Series, Springer Verlag, 1997.
[H] J. Harris, On the Severi problem, Invent. Math. 84(1986), no.3, 445-461.
[HMo] J. Harris, I. Morrison, Slopes of effective divisors on the moduli space of stable curves, Invent. Math. 99(1990), no.2, 321-355.
[HM] J. Harris, D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67(1982), no.1, 23-88.
[Mod] J. Harris, I. Morrison, Moduli of curves, Graduate Texts in Mathematics, 187, Springer Verlag, 1998.
$[\mathrm{Mu}]$ D. Mumford, Curves and their Jacobians, The University of Michigan Press, Ann Arbor, Mich., 1975.
[Se1] E. Sernesi, L'unirazionalità della varieta dei moduli delle curve di genere dodici, Ann. Scuola Norm. Sup. Pisa, Cl. Sci(4), 8(1981), no.3, 405-439.
[Se2] E. Sernesi, On the existence of certain families of curves, Invent. Math. 75(1984), no.1, 25-57.
[Sev] F. Severi, Sulla classificazione delle curve algebriche e sul teorema di esistenza di Riemann, Rend. R. Acc. Naz. Lincei, (5), 24(1915), 877-888.
[St] F. Steffen, A generalized principal ideal theorem with applications to Brill-Noether theory, Invent. Math. 132(1998), no.1, 73-89.
[Sta] Z. Stankova-Frenkel, Moduli of trigonal curves, alg-geom/9710015.
[Ta] A. Tannenbaum, Families of algebraic curves with nodes, Compositio Math. 41(1980), no.1, 107-126.
[Tan] S.-L. Tan, On the slopes of the moduli space of curves, Internat. J. Math. 9(1998), no. 1, 119-127.

Korteweg-de Vries Institute for Mathematics, University of Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
e-mail: farkas@wins.uva.nl

