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1 Introduction

The problem of describing the birational geometry of the moduli space Mg of complex
curves of genus g has a long history. Severi already knew in 1915 that Mg is unirational
for g ≤ 10 (cf. [Sev]; see also [AC1] for a modern proof). In the same paper Severi
conjectured that Mg is unirational for all genera g. Then for a long period this problem
seemed intractable (Mumford writes in [Mu], p.51:“Whether more Mg’s, g ≥ 11, are
unirational or not is a very interesting problem, but one which looks very hard too,
especially if g is quite large”). The breakthrough came in the eighties when Eisenbud,
Harris and Mumford proved that Mg is of general type as soon as g ≥ 24 and that the
Kodaira dimension of M23 is ≥ 1 (see [HM], [EH3]). We note that Mg is rational for
g ≤ 6 (see [Dol] for problems concerning the rationality of various moduli spaces).

Severi’s proof of the unirationality of Mg for small g was based on representing
a general curve of genus g as a plane curve of degree d with δ nodes; this is possible
when d ≥ 2g/3 + 2. When the number of nodes is small, i.e. δ < (d + 1)(d + 2)/6, the
dominant map from the variety of plane curves of degree d and genus g to Mg yields
a rational parametrization of the moduli space. The two conditions involving d and δ
can be satisfied only when g ≤ 10, so Severi’s argument cannot be extended for other
genera. However, using much more subtle ideas, Chang, Ran and Sernesi proved the
unirationality of Mg for g = 11, 12, 13 (see [CR1], [Se1]), while for g = 15, 16 they
proved that the Kodaira dimension is −∞ (see [CR2,4] ). The remaining cases g = 14
and 17 ≤ g ≤ 23 are still quite mysterious. Harris and Morrison conjectured in [HMo]
that Mg is uniruled precisely when g < 23.

All these facts indicate that M23 is a very interesting transition case. Our main
result is the following:

Theorem 1 The Kodaira dimension of the moduli space of curves of genus 23 is ≥ 2.

We will also present some evidence for the hypothesis that the Kodaira dimension of
M23 is actually equal to 2.
Acknowledgments: I am grateful to my advisor Gerard van der Geer, for proposing
the problem and for continuous support and guidance. I thank Joe Harris for many
inspiring discussions during my stay at Harvard. I also benefitted from conversations
with Marc Coppens and Carel Faber.
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2 Multicanonical linear systems and the Kodaira

dimension of Mg

We study three multicanonical divisors on M23, which are (modulo some boundary
components) of Brill-Noether type and we conclude by looking at their relative position
that κ(M23) ≥ 2.

We review some notations. We shall denote by Mg and Cg the moduli spaces of
stable and 1-pointed stable curves of genus g over C. If C is a smooth algebraic curve
of genus g, we consider for any r and d, the scheme whose points are the gr

d’s on C,
that is,

Gr
d(C) = {(L, V ) : L ∈ Pic d(C), V ⊆ H0(C,L), dim(V ) = r + 1},

(cf. [ACGH]) and denote the associated Brill-Noether locus in Mg by

Mr
g,d := {[C] ∈ Mg : Gr

d(C) 6= ∅},

and by M
r

g,d its closure in Mg.
The distribution of linear series on algebraic curves is governed (to some extent) by

the Brill-Noether number

ρ(g, r, d) := g − (r + 1)(g − d + r).

The Brill-Noether Theorem asserts that when ρ(g, r, d) ≥ 0 every curve of genus g pos-
sesses a gr

d, while when ρ(g, r, d) < 0 the general curve of genus g has no gr
d’s, hence in

this case the Brill-Noether loci are proper subvarieties of Mg. When ρ(g, r, d) < 0, the
naive expectation that −ρ(g, r, d) is the codimension of Mr

g,d inside Mg, is in general
way off the mark, since there are plenty of examples of Brill-Noether loci of unexpected
dimension (cf. [EH2]). However, we have Steffen’s result in one direction (see [St]):

If ρ(g, r, d) < 0 then each component of Mr
g,d has codimension at most −ρ(g, r, d)

in Mg.

On the other hand, when the Brill-Noether number is not very negative, the Brill-
Noether loci tend to behave nicely. Existence of components of Mr

g,d of the expected
dimension has been proved for a rather wide range (cf. [EH1]), namely for those g, r, d
such that ρ(g, r, d) < 0, and

ρ(g, r, d) ≥

{
−g + r + 3 if r is odd;

−rg/(r + 2) + r + 3 if r is even.

We have a complete answer only when ρ(g, r, d) = −1. Eisenbud and Harris have
proved in [EH2] that in this case Mr

g,d has a unique divisorial component, and using
the previously mentioned theorem of Steffen’s, we obtain the following result:

If ρ(g, r, d) = −1, then M
r

g,d is an irreducible divisor of Mg.
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We will also need Edidin’s result (see [Ed2] ) which says that for g ≥ 12 and ρ(g, r, d) =
−2, all components of Mr

g,d have codimension 2. We can get codimension 1 Brill-
Noether conditions only for the genera g for which g + 1 is composite. In that case we
can write

g + 1 = (r + 1)(s − 1), s ≥ 3

and set d := rs − 1. Obviously ρ(g, r, d) = −1 and M
r

g,d is an irreducible divisor.
Furthermore, its class has been computed (cf. [EH3] ):

[M
r

g,d] = cg,r,d


(g + 3)λ −

g + 1

6
δ0 −

[g/2]∑

i=1

i(g − i)δi


 ,

where cg,r,d is a positive rational number equal to 3µ/(2g−4), with µ being the number
of gr

d’s on a general pointed curve (C0, q) of genus g − 2 with ramification sequence
(0, 1, 2, . . . , 2) at q. For g = 23 we have the following possibilities:

(r, s, d) = (1, 13, 12), (11, 3, 32), (2, 9, 17), (7, 4, 27), (3, 7, 20), (5, 5, 24).

It is immediate by Serre duality, that cases (1, 13, 12) and (11, 3, 32) yield the same
divisor on M23, namely the 12-gonal locus M1

12; similarly, cases (2, 9, 17) and (7, 4, 27)
yield the divisor M2

17 of curves having a g2
17, while cases (3, 7, 20) and (5, 5, 24) give rise

to M3
20, the divisor of curves having a g3

20. Note that when the genus we are referring
to is clear from the context, we write Mr

d = Mr
g,d.

By comparing the classes of the Brill-Noether divisors to the class of the canonical
divisor KMg,reg

= 13λ − 2δ0 − 3δ1 − 2δ2 − · · · − 2δ[g/2], at least in the case when g + 1
is composite we can infer that

KMg,reg
= a[M

r

g,d] + bλ + ( positive combination of δ0, . . . , δ[g/2]),

where a is a positive rational number, while b > 0 as long as g ≥ 24 but b = 0 for
g = 23. As it is well-known that λ is big on Mg, it follows that Mg is of general type
for g ≥ 24 and that it has non-negative Kodaira dimension when g = 23. Specifically
for g = 23, we get that there are positive integer constants m,m1,m2,m3 such that:

mK = m1[M
1

12] + E, mK = m2[M
2

17] + E, mK = m3[M
3

20] + E, (1)

where E is the same positive combination of δ1, . . . , δ11.

Proposition 2.1 (Eisenbud-Harris, [EH3]) There exists a smooth curve of genus
23 that possesses a g1

12, but no g2
17. It follows that κ(M23) ≥ 1.

Harris and Mumford proved (cf. [HM]) that Mg has only canonical singularities for g ≥

4, hence H0(Mg,reg, nK) = H0(M̃g, nK) for each n ≥ 0, with M̃g a desingularization
of Mg. We already know that dim(ImφmK) ≥ 1, where φmK : M23 −− →Pν is the
multicanonical map, m being as in (1). We will prove that κ(M23) ≥ 2. Indeed, let
us assume that dim(ImφmK) = 1. Denote by C := ImφmK the Kodaira image of M23.
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We reach a contradiction by proving two things:
• α) The Brill-Noether divisors M1

12,M
2
17 and M3

20 are mutually distinct.
• β) There exist smooth curves of genus 23 which belong to exactly two of the Brill-
Noether divisors from above.
This suffices in order to prove Theorem 1: since M

1

12, M
2

17 and M
3

20 are part of different
multicanonical divisors, they must be contained in different fibres of the multicanonical
map φmK . Hence there exists different points x, y, z ∈ C such that

M1
12 = φ−1(x) ∩M23, M2

17 = φ−1(y) ∩M23, M3
20 = φ−1(z) ∩M23.

It follows that the set-theoretic intersection of any two of them will be contained in
the base locus of |mKM23

|. In particular:

supp(M1
12) ∩ supp(M2

17) = supp(M2
17) ∩ supp(M3

20) = supp(M3
20) ∩ supp(M1

12),
(2)

and this contradicts β). We complete the proof of α) and β) in Section 5.

3 Deformation theory for gr
d’s and limit linear series

We recall a few things about the variety parametrising gr
d’s on the fibres of the universal

curve (cf. [AC2]), and then we recap on the theory of limit linear series (cf. [EH1],
[Mod]), which is our main technique for the study of M23.

Given g, r, d and a point [C] ∈ Mg, there is a connected neighbourhood U of [C], a
finite ramified covering h : M → U , such that M is a fine moduli space of curves (i.e.
there exists ξ : C → M a universal curve), and a proper variety over M,

π : Gr
d → M

which parametrizes classes of couples (C, l), with [C] ∈ M and l ∈ Gr
d(C), where we

have made the identification C = ξ−1([C]) .
Let (C, l) be a point of Gr

d corresponding to a curve C and a linear series l = (L, V ),
where L ∈ Picd(C), V ⊆ H0(C,L), and dim(V ) = r + 1. By choosing a basis in V ,
one has a morphism f : C → Pr. The normal sheaf of f is defined through the exact
sequence

0 −→ TC −→ f ∗(TPr) −→ Nf −→ 0. (3)

By dividing out the torsion of Nf one gets to the exact sequence

0 −→ Kf −→ Nf −→ N ′
f −→ 0, (4)

where the torsion sheaf Kf (the cuspidal sheaf) is based at those points x ∈ C where
df(x) = 0, and N ′

f is locally free of rank r− 1. The tangent space T(C,l)(G
r
d) fits into an

exact sequence (cf. [AC2]):

0 −→ C −→ Hom(V, V ) −→ H0(C,Nf ) −→ T(C,l)(G
r
d) −→ 0, (5)

from which we have that dim T(C,l)(G
r
d) = 3g − 3 + ρ(g, r, d) + h1(C,Nf ).
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Proposition 3.1 Let C be a curve and l ∈ Gr
d(C) a base point free linear series. Then

the variety Gr
d is smooth and of dimension 3g − 3 + ρ(g, r, d) at the point (C, l) if and

only if H1(C,Nf ) = 0.

Remark: The condition H1(C,Nf ) = 0 is automatically satisfied for r = 1 as Nf is
a sheaf with finite support. Thus G1

d is smooth of dimension 2g +2d−5. It follows that
G1

d is birationally equivalent to the d-gonal locus M1
d when d < (g + 2)/2.

Limit linear series try to answer questions of the following kind: what happens to a
family of gr

d’s when a smooth curve specializes to a reducible curve? Limit linear series
solve such problems for a class of reducible curves, those of compact type. A curve C
is of compact type if its dual graph is a tree. A curve C is tree-like if, after deleting
edges leading from a node to itself, the dual graph becomes a tree.

Let C be a smooth curve of genus g and l = (L, V ) ∈ Gr
d(C), L ∈ Picd(C), V ⊆

H0(C,L), and dim(V ) = r + 1. Fix p ∈ C a point. By ordering the finite set
{ordp(σ)}σ∈V one gets the vanishing sequence of l at p:

al(p) : 0 ≤ al
0(p) < . . . < al

r(p) ≤ d.

The ramification sequence of l at p

αl(p) : 0 ≤ αl
0(p) ≤ . . . ≤ αl

r(p) ≤ d − r

is defined as αl
i(p) = al

i(p) − i and the weight of l at p is

wl(p) =
r∑

i=0

αl
i(p).

A Schubert index of type (r, d) is a sequence of integers β : 0 ≤ β0 ≤ . . . βr ≤ d− r. If
α and β are Schubert indices of type (r, d) we write α ≤ β ⇐⇒ αi ≤ βi, i = 0, . . . , r.
The point p is said to be a ramification point of l if wl(p) > 0. The linear series l is
said to have a cusp at p if αl(p) ≥ (0, 1, . . . , 1). For C a tree-like curve, p1, . . . , pn ∈ C
smooth points and α1, . . . , αn Schubert indices of type (r, d), we define

Gr
d(C, (p1, α

1), . . . (pn, α
n)) := {l ∈ Gr

d(C) : αl(p1) ≥ α1, . . . , αl(pn) ≥ αn}.

This scheme can be realized naturally as a determinantal variety and its expected
dimension is

ρ(g, r, d, α1, . . . , αn) := ρ(g, r, d) −
n∑

i=1

r∑

j=0

αi
j.

If C is a curve of compact type, a crude limit gr
d on C is a collection of ordinary linear

series l = {lY ∈ Gr
d(Y ) : Y ⊆ C is a component}, satisfying the following compatibility

condition: if Y and Z are components of C with {p} = Y ∩ Z, then

alY
i (p) + alZ

r−i(p) ≥ d, for i = 0, . . . r.
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If equality holds everywhere, we say that l is a refined limit gr
d. The ‘honest’ linear

series lY ∈ Gr
d(Y ) is called the Y -aspect of the limit linear series l.

We will often use the additivity of the Brill-Noether number: if C is a curve of
compact type, for each component Y ⊆ C, let q1, . . . , qs be the points where Y meets
the other components of C. Then for any limit gr

d on C we have the following inequality:

ρ(g, r, d) ≥
∑

Y ⊆C

ρ(lY , αlY (q1), . . . , αlY (qs)), (6)

with equality if and only if l is a refined limit linear series.
It has been proved in [EH1] that limit linear series arise indeed as limits of ordinary

linear series on smooth curves. Suppose we are given a family π : C → B of genus
g curves, where B = Spec(R) with R a complete discrete valuation ring. Assume
furthermore that C is a smooth surface and that if 0, η denote the special and generic
point of B respectively, the central fibre C0 is reduced and of compact type, while the
generic geometric fibre Cη is smooth and irreducible. If lη = (Lη, Vη) is a gr

d on Cη,
there is a canonical way to associate a crude limit series l0 on C0 which is the limit of
lη in a natural way: for each component Y of C0, there exists a unique line bundle LY

on C such that
LY

|Cη
= Lη and degZ(LY

|Z
) = 0,

for any component Z of C0 with Z 6= Y . (This implies of course that degY (LY
|Y

) = d).

Define V Y = Vη ∩ H0(C,LY ) ⊆ H0(Cη,Lη). Clearly, V Y is a free R-module of rank
r + 1.
Moreover, the composite homomorphism

V Y (0) → (π∗L
Y )(0) → H0(C0,L

Y
|C0

) → H0(Y,LY
|Y

)

is injective, hence lY = (LY
|Y

, V Y (0)) is an ordinary gr
d on Y . One proves that l = {lY :

Y component of C0} is a limit linear series.
If C is a reducible curve of compact type, l a limit gr

d on C, we say that l is
smoothable if there exists π : C → B a family of curves with central fibre C = C0

as above, and (Lη, Vη) a gr
d on the generic fibre Cη whose limit on C (in the sense

previously described) is l.
Remark: If a stable curve of compact type C, has no limit gr

d’s, then [C] /∈ M
r

g,d. If

there exists a smoothable limit gr
d on C, then [C] ∈ M

r

g,d.
Now we explain a criterion due to Eisenbud and Harris (cf. [EH1]), which gives a

sufficient condition for a limit gr
d to be smoothable. Let l be a limit gr

d on a curve C of

compact type. Fix Y ⊆ C a component, and {q1, . . . , qs} = Y ∩ (C − Y ). Let

π : Y → B, q̃i : B → Y

be the versal deformation space of (Y, q1, . . . qs). The base B can be viewed as a small
(3g(Y ) − 3 + s)-dimensional polydisk. Using general theory one constructs a proper
scheme over B,

σ : Gr
d(Y/B; (q̃i, α

lY (qi))
s
i=1) → B
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whose fibre over each b ∈ B is σ−1(b) = Gr
d(Yb, (q̃i(b), α

lY (qi))
s
i=1). One says that l

is dimensionally proper with respect to Y , if the Y -aspect lY is contained in some
component G of Gr

d(Y/B; (q̃i, α
lY (qi))

s
i=1) of the expected dimension, i.e.

dim G = dim B + ρ(lY , αlY (q1), . . . α
lY (qs)).

One says that l is dimensionally proper, if it is dimensionally proper with respect to
any component Y ⊆ C. The ‘Regeneration Theorem’ (cf. [EH1]) states that every
dimensionally proper limit linear series is smoothable.

The next result is a ‘strong Brill-Noether Theorem’, i.e. it not only asserts a Brill-
Noether type statement, but also singles out the locus where the statement fails.

Proposition 3.2 (Eisenbud-Harris) Let C be a tree-like curve and for any compo-
nent Y ⊆ C, denote by q1, . . . , qs ∈ Y the points where Y meets the other components
of C. Assume that for each Y the following conditions are satisfied:

a. If g(Y ) = 1 then s = 1.

b. If g(Y ) = 2 then s = 1 and q is not a Weierstrass point.

c. If g(Y ) ≥ 3 then (Y, q1, . . . , qs) is a general s-pointed curve.

Then for p1, . . . pt ∈ C general points, ρ(l, αl(p1), . . . , αl(pt)) ≥ 0 for any limit linear
series on C.

Simple examples involving pointed elliptic curves show that the condition ρ(g, r, d) ≥∑t
i=1 wl(pi) does not guarantee the existence of a linear series l ∈ Gr

d(C) with prescribed
ramification at general points p1, p2, . . . , pt ∈ C. The appropriate condition in the
pointed case can be given in terms of Schubert cycles. Let α = (α0, . . . , αr) be a
Schubert index of type (r, d) and

Cd+1 = W0 ⊃ W1 ⊃ . . . ⊃ Wd+1 = 0

a decreasing flag of linear subspaces. We consider the Schubert cycle in the Grass-
manian,

σα = {Λ ∈ G(r + 1, d + 1) : dim(Λ ∩ Wαi+i) ≥ r + 1 − i, i = 0, . . . , r}.

For a general t-pointed curve (C, p1, . . . , pt) of genus g, and α1, . . . , αt Schubert indices
of type (r, d), the necessary and sufficient condition that C has a gr

d with ramification
αi at pi is that

σ
α1 · . . . · σαt · (σ(0,1,... ,1)

)g 6= 0 in H∗(G(r + 1, d + 1), Z). (7)

In the case t = 1 this condition can be made more explicit (cf. [EH3]): a general
pointed curve (C, p) of genus g carries a gr

d with ramification sequence (α0, . . . , αr) at
p, if and only if

r∑

i=0

(αi + g − d + r)+ ≤ g, (8)

where x+ = max{x, 0}. One can make the following simple but useful observation:
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Proposition 3.3 Let (C, p, q) be a general 2-pointed curve of genus g and (α0, . . . , αr)
a Schubert index of type (r, d). Then C has a gr

d having ramification sequence (α0, . . . , αr)
at p and a cusp at q if and only if

r∑

i=0

(αi + g + 1 − d + r)+ ≤ g + 1.

Proof: The condition for the existence of the gr
d with ramification α at p and a cusp

at q is that σα · (σ
(0,1,... ,1)

)g+1 6= 0 (cf. (7)). According to the Littlewood-Richardson
rule (see [F]), this is equivalent with

∑r
i=0(αi + g + 1 − d + r)+ ≤ g + 1. 2

4 A few consequences of limit linear series

We investigate the Brill-Noether theory of a 2-pointed elliptic curve (see also [EH4]),
and we prove that M

r

g,d ∩ ∆1 is irreducible for ρ(g, r, d) = −1.

Proposition 4.1 Let (E, p, q) be a two-pointed elliptic curve. Consider the sequences

a : a0 < a1 < . . . ar ≤ d, b : b0 < b1 < . . . br ≤ d.

1. For any linear series l = (L, V ) ∈ Gr
d(E) one has that ρ(l, αl(p), αl(q)) ≥ −r.

Furthermore, if ρ(l, αl(p), αl(q)) ≤ −1, then p − q ∈ Pic0(E) is a torsion class.
2. Assume that the sequences a and b satisfy the inequalities: d−1 ≤ ai +br−i ≤ d, i =
0, . . . , r. Then there exists at most one linear series l ∈ Gr

d(E) such that al(p) = a and
al(q) = b. Moreover, there exists exactly one such linear series l = (OE(D), V ) with
D ∈ E(d), if and only if for each i = 0, . . . , r the following is satisfied: if ai + br−i = d,
then D ∼ ai p + br−i q, and if (ai + 1) p + br−i q ∼ D, then ai+1 = ai + 1.

Proof: In order to prove 1. it is enough to notice that for dimensional reasons there must
be sections σi ∈ V such that div(σi) ≥ al

i(p) p+al
r−i(q) q, therefore, al

i(p)+al
r−i(q) ≤ d.

By adding up all these inequalities, we get that ρ(l, αl(p), αl(q)) ≥ −r. Furthermore,
ρ(l, αl(p), αl(q)) ≤ −1 precisely when for at least two values i < j we have equalities
ai + br−i = d, aj + br−j = d, which means that there are sections σi, σj ∈ V such
that div(σi) = ai p + br−i q, div(σj) = aj p + br−j q. By subtracting, we see that
p− q ∈ Pic0(E) is torsion. The second part of the Proposition is in fact Prop.5.2 from
[EH4]. 2

Proposition 4.2 Let g, r, d be such that ρ(g, r, d) = −1. Then the intersection M
r

g,d ∩
∆1 is irreducible.

Proof: Let Y be an irreducible component of M
r

g,d∩∆1. Either Y ∩Int∆1 6= ∅, hence Y =

Y ∩ Int∆1, or Y ⊆ ∆1 − Int∆1. The second alternative never occurs. Indeed, if
Y ⊆ ∆1 − Int∆1, then since codim (Y,Mg) = 2, Y must be one of the irreducible
components of ∆1 − Int∆1. The components of ∆1 − Int∆1 correspond to curves with
two nodes. We list these components (see [Ed1]):
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• For 1 ≤ j ≤ g − 2, ∆1j is the closure of the locus in Mg whose general point
corresponds to a chain composed of an elliptic curve, a curve of genus g − j − 1,
and a curve of genus j.

• The component ∆01, whose general point corresponds to the union of a smooth
elliptic curve and an irreducible nodal curve of genus g − 2.

• The component ∆0,g−1 whose general point corresponds to the union of a smooth
curve of genus g − 1 and an irreducible rational curve.

As the general point of ∆1,j, ∆0,1 or ∆0,g−1 is a tree-like curve which satisfies the
conditions of Prop.3.2 it follows that such a curve satisfies the ‘strong’ Brill-Noether
Theorem, hence ∆1,j * M

r

g,d, ∆0,1 * M
r

g,d and ∆0,g−1 * M
r

g,d, a contradiction. So,

we are left with the first possibility: Y = Y ∩ Int∆1. We are going to determine the
general point [C] ∈ Y ∩ Int∆1. Let X = C ∪ E, g(C) = g − 1, E elliptic, E ∩ C = {p}
such that X carries a limit gr

d, say l. By the additivity of the Brill-Noether number,
we have:

−1 = ρ(g, r, d) ≥ ρ(l, C, p) + ρ(l, E, p).

Since ρ(l, E, p) ≥ 0, it follows that ρ(l, C, p) ≤ −1, so wlC (p) ≥ r. Let us denote by

β : Cg−1 × C1 → Int∆1

the natural map given by β([C, p], [E, q]) = [X := C ∪ E/p ∼ q]. We claim that if
we choose X generically, then αlC

0 (p) = 0. If not, p is a base point of lC and after
removing the base point we get that [C] ∈ Mr

g−1,d−1. Note that ρ(g− 1, r, d− 1) = −2,
so dim Mr

g−1,d−1 = 3g− 8 (cf. [Ed2]). If we denote by π : Cg−1 → Mg−1 the morphism
which ‘forgets the point’, we get that

dim β(π−1(Mr
g−1,d−1) × C1) = 3g − 6 < dim Y,

a contradiction. Hence, for the generic [X] ∈ Y we must have αlC
0 (p) = 0, so alE

r (p) = d.
Since an elliptic curve cannot have a meromorphic function with a single pole, it follows
that alE

r−1(p) ≤ d − 2 and this implies αlC (p) ≥ (0, 1, . . . , 1), i.e. lC has a cusp at p.
Thus, if we introduce the notation

Cr
g−1,d(0, 1, . . . , 1) = {[C, p] ∈ Cg−1 : Gr

d(C, (p, (0, 1, . . . , 1))) 6= ∅},

then Y ⊆ β(Cr
g−1,d(0, 1. . . . , 1) × C1). On the other hand, it is known (cf. [EH2]) that

Cr
g−1,d(0, 1, . . . , 1) is irreducible of dimension 3g−6 (that is, codimension 1 in Cg−1), so

we must have Y = β(Cr
g−1,d(0, 1, . . . , 1) × C1), which not only proves that M

r

g,d ∩∆1 is
irreducible, but also determines the intersection. 2

5 The Kodaira dimension of M23

In this section we prove that κ(M23) ≥ 2 and we investigate closely the multicanonical
linear systems on M23. We now describe the three multicanonical Brill-Noether divisors
from Section 2.
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5.1 The divisor M
1
12

There is a stratification of M23 given by gonality:

M1
2 ⊆ M1

3 ⊆ . . . ⊆ M1
12 ⊆ M23.

For 2 ≤ d ≤ g/2 + 1 one knows that M1
k = M1

g,k is an irreducible variety of dimension
2g + 2d − 5. The general point of M1

g,d corresponds to a curve having a unique g1
d.

5.2 The divisor M
2
17

The Severi variety Vd,g of irreducible plane curves of degree d and geometric genus g,
where 0 ≤ g ≤

(
d−1
2

)
, is an irreducible subscheme of Pd(d+3)/2 of dimension 3d + g − 1

(cf. [H], [Mod]). Inside Vd,g we consider the open dense subset Ud,g of irreducible plane
curves of degree d having exactly δ =

(
d−1
2

)
−g nodes and no other singularities. There

is a global normalization map

m : Ud,g → Mg, m([Y ]) := [Ỹ ], Ỹ is the normalization of Y.

When d − 2 ≤ g ≤
(

d−1
2

)
, d ≥ 5, Ud,g has the expected number of moduli, i.e.

dim m(Ud,g) = min(3g − 3, 3g − 3 + ρ(g, 2, d)).

In our case we can summarize this as follows:

Proposition 5.1 There is exactly one component of G2
17 mapping dominantly to M2

17.
The general element (C, l) ∈ G2

17 corresponds to a curve C of genus 23, together with a
g2

17 which provides a plane model for C of degree 17 with 97 nodes.

5.3 The divisor M
3
20

Here we combine the result of Eisenbud and Harris (see [EH2]) about the uniqueness
of divisorial components of Gr

d when ρ(g, r, d) = −1, with Sernesi’s (see [Se2]) which
asserts the existence of components of the Hilbert scheme Hd,g parametrizing curves
in P3 of degree d and genus g with the expected number of moduli, for d − 3 ≤ g ≤
3d − 18, d ≥ 9.

Proposition 5.2 There is exactly one component of G3
20 mapping dominantly to M3

20.
The general point of this component corresponds to a pair (C, l) where C is a curve of
genus 23 and l is a very ample g3

20.

We are going to prove that the Brill-Noether divisors M
1

12,M
2

17 and M
3

20 are mutually
distinct.

Theorem 2 There exists a smooth curve of genus 23 having a g2
17, but no g3

20’s. Equiv-
alently, one has supp(M2

17) * supp(M3
20).
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Proof: It suffices to construct a reducible curve X of compact type of genus 23, which
has a smoothable limit g2

17, but no limit g3
20. If [C] ∈ M23 is a nearby smoothing of X

which preserves the g2
17, then [C] ∈ M2

17 −M3
20. Let us consider the following curve:










C1

p1 p2

J
J

J
J

J
JJ

C2

E

X := C1 ∪ C2 ∪ E,

where (C1, p1) and (C2, p2) are general pointed curves of genus 11, E is an elliptic curve,
and p1 − p2 is a primitive 9-torsion point in Pic0(E)
Step 1) There is no limit g3

20 on X. Assume that l is a limit g3
20 on X. By the

additivity of the Brill-Noether number,

−1 ≥ ρ(lC1 , p1) + ρ(lC2 , p2) + ρ(lE, p1, p2).

Since (Ci, pi) are general points in C11, it follows from Prop.3.2 that ρ(lCi
, pi) ≥ 0,

hence ρ(lE, p1, p2) ≤ −1. On the other hand ρ(lE, p1, p2) ≥ −3 from Prop.4.1.
Denote by (a0, a1, a2, a3) the vanishing sequence of lE at p1, and by (b0, b1, b2, b3)

that of lE at p2. The condition (8) for a general pointed curve [(Ci, pi)] ∈ C11 to possess
a g3

20 with prescribed ramification at the point pi and the compatibility conditions
between lCi

and lE at pi give that:

(14 − a3)+ + (13 − a2)+ + (12 − a1)+ + (11 − a0)+ ≤ 11, (9)

and

(14 − b3)+ + (13 − b2)+ + (12 − b1)+ + (11 − b0)+ ≤ 11. (10)

1st case: ρ(lE, p1, p2) = −3. Then ai + b3−i = 20, for i = 0, . . . , 3 and it immediately
follows that 20(p1 − p2) ∼ 0 in Pic0(E), a contradiction.
2nd case: ρ(lE, p1, p2) = −2. We have two distinct possibilities here: i) a0 + b3 =
20, a1 + b2 = 20, a2 + b1 = 20, a3 + b0 = 19. Then it follows that alE(p1) = (0, 9, 18, 19)
and alE(p2) = (0, 2, 11, 20), while according to (9), a3 ≤ 15, (because ρ(lC1 , p1) ≤ 1), a
contradiction. ii) a0 + b3 = 20, a1 + b2 = 20, a2 + b1 = 19, a3 + b0 = 20. Again, it follows
that a3 = a0 + 18 ≥ 15, a contradiction.
3rd case: ρ(lE, p1, p2) = −1. Then ρ(lCi

, pi) = 0 and l is a refined limit g3
20. From

(9) and (10) we must have: alE(pi) ≤ (11, 12, 13, 14), i = 1, 2. There are four possibil-
ities: i) a0 + b3 = a1 + b2 = 20, a2 + b1 = a3 + b0 = 19. Then a1 = a0 + 9 ≤ 12, so
b3 = 20 − a0 ≥ 17, a contradiction. ii) a0 + b3 = a2 + b1 = 20, a2 + b1 = a3 + b0 = 19.
Then b3 = 20 − a0 ≤ 14, so a2 = a0 + 9 ≥ 15, a contradiction. iii) a0 + b3 = a3 + b0 =
20, a1 +b2 = a2 +b1 = 19. Then b3 = 19−a0 ≤ 14, so a3 ≥ a0 +9 ≥ 15, a contradiction.
iv) a0 + b3 = a3 + b0 = 19, a1 + b2 = a2 + b1 = 20. Then b3 = 19 − a0 ≤ 14, so
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a2 ≥ a1 + 9 ≥ 15, a contradiction again. We conclude that X has no limit g3
20.

Step 2) There exists a smoothable limit g2
17 on X, hence [X] ∈ M

2

17. We construct
a limit linear series l of type g2

17 on X, aspect by aspect: on Ci take lCi
∈ G2

17(Ci)
such that alCi (pi) = (4, 9, 13). Note that in this case

∑r
j=0(αj + g − d + r)+ = g,

so (8) ensures the existence of such a g2
17. On E we take lE = |VE|, where |VE| ⊆

|4p1 + 13p2| = |4p2 + 13p1| is a g2
17 with vanishing sequence (4, 8, 13) at pi. Prop.4.1

ensures the existence of such a linear series. In this way l is a refined limit g2
17 on

X with ρ(lCi
, pi) = 0, ρ(lE, p1, p2) = −1. We prove that l is dimensionally proper.

Let πi : Ci → ∆i, p̃i : ∆i → Ci, be the versal deformation of [(Ci, pi)] ∈ C11, and
σi : G2

17(Ci/∆i, (p̃i, (4, 8, 11))) → ∆i the projection.
Since being general is an open condition, we have that σi is surjective and dim σ−1

i (t) =
ρ(lCi

, pi) = 0, for each t ∈ ∆i, therefore

dim G2
17(Ci/∆i, (p̃i, (4, 8, 11))) = dim ∆i + ρ(lCi

, pi) = 31.

Next, let π : C → ∆, p̃1, p̃2 : ∆ → C be the versal deformation of (E, p1, p2). We prove
that

dim G2
17(C/∆, (p̃i, (4, 7, 11))) = dim ∆ + ρ(lE, p1, p2) = 1.

This follows from Prop.4.1, since a 2-pointed elliptic curve (Et, p̃1(t), p̃2(t)) has at
most one g2

17 with ramification (4, 7, 11) at both p̃1(t) and p̃2(t), and exactly one when
9(p̃1(t) − p̃2(t)) ∼ 0. Hence ImG2

17(C/∆, (p̃i, (4, 7, 11))) = {t ∈ ∆ : 9(p̃1(t) − p̃2(t)) ∼
0 in Pic0(Et)}, which is a divisor on ∆, so the claim follows and l is a dimensionally
proper g2

17. 2

A slight variation of the previous argument gives us:

Proposition 5.3 We have supp(M
2

17 ∩ ∆1) 6= supp(M
3

20 ∩ ∆1).

Proof: We construct a curve [Y ] ∈ ∆1 ⊆ M23 which has a smoothable limit g2
17 but

no limit g3
20. Let us consider the following curve:










J
J

J
J

J
JJ

x

p1 p2

E1

C1 C2

E

Y := C1 ∪ C2 ∪ E1 ∪ E,

where (C2, p2) is a general point of C11, (C1, p1, x) is a general 2-pointed curve of genus
10, (E1, x) is general in C1, E is an elliptic curve, and p1−p2 ∈ Pic0(E) is a primitive 9-
torsion. In order to prove that Y has no limit g3

20, one just has to take into account that
according to Prop.3.3, the condition for a general 1-pointed curve (C, z) of genus g, to
have a gr

d with ramification α at z is the same with the condition for a general 2-pointed
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curve (D, x, y) of genus g − 1 to have a gr
d with ramification α at x and a cusp at y.

Therefore we can repeat what we did in the proof of Theorem 2. Next, we construct l, a
smoothable limit g2

17 on Y : take lC2 ∈ G2
17(C2, (p2, (4, 8, 11))), lE = |VE| ⊆ |4p1 + 13p2|,

with αlE(pi) = (4, 7, 11), on E1 take lE1 = 14x + |3x|, and finally on C1 take lC1

such that αlC1 (p1) = (4, 8, 11), αlC1 (x) = (0, 0, 1). Prop.3.3 ensures the existence of lC1 .
Clearly, l is a refined limit g2

17 and the proof that it is smoothable is all but identical
to the one in the last part of Theorem 2. 2

The other cases are settled by the following:

Theorem 3 There exists a smooth curve of genus 23 having a g1
12 but having no g2

17

nor g3
20. Equivalently, supp(M1

12) * supp(M2
17) and supp(M1

12) * supp(M3
20).

Proof: We take the curve considered in [EH3]:










C1

p1 p2

J
J

J
J

J
JJ

C2

E

Y := C1 ∪ C2 ∪ E,

where (Ci, pi) are general points of C11, E is elliptic and p1−p2 ∈ Pic0(E) is a primitive
12-torsion. Clearly Y has a (smoothable) limit g1

12: on Ci take the pencil |12pi|, while
on E take the pencil spanned by 12p1 and 12p2. It is proved in [EH3] that Y has no limit
g2

17’s and similarly one can prove that Y has no limit g3
20’s either. We omit the details.2

Now we are going to prove that equation (2)

supp(M1
12) ∩ supp(M2

17) = supp(M2
17) ∩ supp(M3

20) = supp(M3
20) ∩ supp(M1

12)

is impossible, and as explained before, this will imply that κ(M23) ≥ 2. The main step
in this direction is the following:

Proposition 5.4 There exists a stable curve of compact type of genus 23 which has
a smoothable limit g3

20, a smoothable limit g2
15 (therefore also a g2

17), but has generic
gonality, that is, it does not have any limit g1

12.

Proof We shall consider the following stable curve X of genus 23:

. . .

Γ

E1 E2 E8

p1 p2 p8

X := Γ ∪ E1 ∪ . . . ∪ E8,

where the Ei’s are elliptic curves, Γ ⊆ P2 is a general smooth plane septic and the
points of attachment {pi} = Γ ∪ Ei are general points of Γ.
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Step 1) There is no limit g1
12 on X. Assume that l is a limit g1

12 on X. Since the
elliptic curves Ei cannot have meromorphic functions with a single pole, we have that
alEi (pi) ≤ (10, 12), hence αlΓ(pi) ≥ (0, 1), that is, lΓ has a cusp at pi for i = 1, . . . , 8.
We now prove that Γ has no g1

12’s with cusps at the points pi.
First, we notice that dim G1

12(Γ) = ρ(15, 1, 12) = 7. Indeed, if we assume that
dim G1

12(Γ) ≥ 8, by applying Keem’s Theorem (cf. [ACGH], p.200) we would get that
Γ possesses a g1

4, which is impossible since gon(Γ) = 6. (In general, if Y ⊆ P2 is a
smooth plane curve, deg(Y ) = d, then gon (Y ) = d − 1, and the g1

d−1 computing the
gonality is cut out by the lines passing through a point p ∈ Y, see [ACGH].) Next, we
define the variety

Σ = {(l, q1, . . . , q8) ∈ G1
12(Γ) × Γ8 : αl(qi) ≥ (0, 1), i = 1, . . . , 8}

and denote by π1 : Σ → G1
12(Γ) and π2 : Σ → Γ8 the two projections. For any

l ∈ G1
12(Γ), the fibre π−1

1 (l) is finite, hence dim Σ = dim G1
12(Γ) = 7, which shows that

π2 cannot be surjective and this proves our claim.

Step 2) There exists a smoothable limit g2
15 on X, hence [X] ∈ M

2

15. We construct
l, a limit g2

15 on X as follows: on Γ there is a (unique) g2
7, and we consider lΓ =

g2
7(p1 + · · · + p8), i.e. the Γ− aspect lΓ is obtained from the g2

7 by adding the base
points p1, . . . , p8. Clearly alΓ(pi) = (1, 2, 3) for each i. On Ei we take lEi

= g2
3(12pi)

for i = 1, . . . , 8, where g2
3 is a complete linear series of the form |2pi + xi|, with

xi ∈ Ei − {pi}. Furthermore, alEi (pi) = (12, 13, 14), so l = {lΓ, lEi
} is a refined limit

g2
15 on X. One sees that ρ(lEi

, αlEi (pi)) = 1 for all i, ρ(lΓ, αlΓ(p1), . . . , αlΓ(p8)) = −15,
and ρ(l) = −7. We now prove that l is dimensionally proper.

Let πi : Ci → ∆i, p̃i : ∆i → Ci be the versal deformation space of (Ei, pi), for
i = 1, . . . , 8. There is an obvious isomorphism over ∆i

G2
15(Ci/∆i, (p̃i, (12, 12, 12))) ' G2

3(Ci/∆i, (p̃i, 0)).

If σi : G2
3(Ci/∆i, (p̃i, 0)) → ∆i is the natural projection, then for each t ∈ ∆i, the fibre

σ−1
i (t) is isomorphic to π−1

i (t), the isomorphism being given by

π−1
i (t) 3 q 7→ |2p̃i(t) + q| ∈ G2

3(π
−1
i (t)).

Thus, G2
3(Ci/∆i, (p̃i, 0)) is a smooth irreducible surface, which shows that l is dimen-

sionally proper w.r.t. Ei. Next, let us consider π : X → ∆, p̃1, . . . , p̃8 : ∆ → X , the
versal deformation of (Γ, p1, . . . , p8). We have to prove that

dim G2
15(X /∆, (p̃i, (1, 1, 1))) = dim ∆ + ρ(lΓ, αlΓ(pi)) = 35.

There is an isomorphism over ∆,

G2
15(X /∆, (p̃i, (1, 1, 1))) ' G2

7(X /∆, (p̃i, 0)).

If π0 : C → M is the versal deformation space of Γ, then we denote by G2
7 → M

the scheme parametrizing g2
7’s on curves of genus 15 ‘nearby’ Γ (See Section 3 for this
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notation). Clearly G2
7(X /∆, (p̃i, 0)) ' G2

7 ×M ∆, so it suffices to prove that G2
7 has

the expected dimension at the point (Γ, g2
7). For this we use Prop.3.1. We have that

NΓ/P2 = OΓ(7), KΓ = OΓ(4), hence

H1(Γ, NΓ/P2) ' H0(Γ,OΓ(−3))∨ = 0,

so l is dimensionally proper w.r.t. Γ as well. We conclude that l is smoothable.

Step 3) There exists a smoothable limit g3
20 on X, that is [X] ∈ M

3

20. First we
notice that there is an isomorphism Γ

∼
−→ G1

6(Γ), given by

Γ 3 p 7→ |g2
7 − p| ∈ G1

6(Γ).

Consequently, there is a 2-dimensional family of g3
12’s on Γ, of the form g3

12 = g1
6 +h1

6 =
|2g2

7 − p − q|, where p, q ∈ Γ. Pick l0 = l′0 + l′′0 , with l′0, l
′′
0 ∈ G1

6(Γ), a general g3
12

of this type. We construct l, a limit g3
20 on X, as follows: the Γ-aspect is given

by lΓ = l0(p1 + · · · p8), and because of the generality of the chosen l0 we have that
ρ(lΓ, αlΓ(p1), . . . , αlΓ(p8)) = −9. The Ei-aspect is given by lEi

= g3
4(16pi), where

g3
4 = |3pi + xi|, with xi ∈ Ei − {pi}, for i = 1, . . . , 8. It is clear that ρ(lEi

, αlEi (pi)) = 1
and that l′ = {lΓ, lEi

} is a refined limit g3
20 on X.

In order to prove that l′ is dimensionally proper, we first notice that l′ is dimen-
sionally proper w.r.t. the elliptic tails Ei. We now prove that l′ is dimensionally proper
w.r.t. Γ. As in the previous step, we consider π : X → ∆, p̃1, . . . , p̃8 : ∆ → X , the
versal deformation of (Γ, p1, . . . , p8) and π0 : C → M, the versal deformation space of
Γ. There is an isomorphism over ∆

G3
20(X /∆, (p̃1, α

lΓ(p1), . . . , (p̃8, α
lΓ(p8))) ' G3

12(C/M) ×M ∆.

It suffices to prove that G3
12 = G3

12(C/M) has a component of the expected dimension
passing through (Γ, l0). In this way, the genus 23 problem is turned into a deformation
theoretic problem in genus 15. Denote as usual by σ : G3

12 → M the natural projection.
According to Prop.3.1, it will be enough to exhibit an element (C, l) ∈ G3

20, sitting in
the same component as (Γ, l0), such that the linear system l is base point free and
simple, and if φ1 : C → P3 is the map induced by l, then H1(C,Nφ1) = 0. Certainly
we cannot take C to be a smooth plane septic because in this case H1(C,Nφ1) 6= 0, as
one can easily see. Instead, we consider the 6-gonal locus in a neighbourhood of the
point [Γ] ∈ M15, or equivalently, the 6-gonal locus in M, the versal deformation space
of Γ. One has the projection G1

6 → M and the scheme G1
6 is smooth (and irreducible)

of dimension 37(= 2g + 2d − 5; g = 15, d = 6). We denote by

µ : G1
6 ×M G1

6 → M, µ([C, l, l′]) = [C].

There is a stratification of M given by the number of pencils: for i ≥ 0 we define,

M(i)0 := {[C] ∈ M : C possesses i mutually independent, base-point-free g1
6’s },

and M(i) := M(i)0. The strata M(i)0 are constructible subsets of M, the first
stratum M(1) = Im (G1

6) is just the 6-gonal locus; the stratum M(2) is irreducible
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and dim M(2) = g + 4d − 7 = 32 (cf. [AC1]). We denote by Msept := m(U7,15) ∩M,

the closure of the locus of smooth plane septics in M, and by Moct := m(U8,15) ∩M,
the closure of the locus of curves which are normalizations of plane octics with 6
nodes. Since the Severi varieties U7,15 and U8,15 are irreducible, so are the loci Msept

and Moct. Furthermore dim Msept = 27 and dim Moct = 30. We prove that Msept ⊆
Moct. Indeed, let us pick Y ⊆ P2 a smooth plane septic, and L ⊆ P2 a general line,
L · Y = p1 + · · · + p7. Denote Z := C ∪ L, deg (Z) = 8, pa(Z) = 21. We consider
the node p7 unassigned, while p1, . . . p6 are assigned. By using [Ta] Theorem 2.13,
there exists a flat family of plane curves π : Z → B and a point 0 ∈ B, such that
Z0 = π−1(0) = Z, while for 0 6= b ∈ B, the fibre Zb is an irreducible octic with nodes
p1(b), . . . p6(b), and such that pi(b) → pi, when b → 0, for i = 1, . . . , 6. If Z ′ → B is
the family resulting by normalizing the surface Z, and η : Z ′′ → B is the stable family
associated to the semistable family Z ′ → B, then we get that η−1(0) = Y , while η−1(b)
is the normalization of Zb for b 6= 0. This proves our contention.

Since Moct is irreducible there is a component A of G1
6 ×M G1

6 , such that µ(A) ⊇
Moct. The general point of A corresponds to a curve C and two base-point-free pencils
l′, l′′ ∈ G1

6(C) such that if f ′ : C → P1 and f ′′ : C → P1 are the corresponding
morphisms, then

φ = (f ′, f ′′) : C → P1 × P1

is birational. Since [Γ] ∈ µ(A) we can assume that [Γ, l′0, l
′′
0 ] ∈ A. As a matter of fact,

we can start the construction of a limit g3
20 on the genus 23 curve X, by taking any

pair of base-point free pencils (l′0, l
′′
0) ∈ G1

6(Γ) × G1
6(Γ) such that dim|l′0 + l′′0 | = 3, the

argument does not change.
We denote by η : A → G3

12 the map given by η(C, l′, l′′) := (C, l′ + l′′). The fact
that η maps to G3

12 follows from the base-point-free-pencil-trick.
We are going to show that given a general point [C] ∈ Moct and (C, l, l′) ∈ µ−1([C]),

the condition H1(C,Nφ1) = 0 is satisfied, hence G3
12 is smooth of the expected dimension

at the point (C, l + l′). This will prove the existence of a component of G3
12 passing

through (Γ, l0) and having the expected dimension. We take C ⊆ P2, a general point
of U8,15, with nodes p1, . . . , p6 ∈ P2 in general position. Theorem 3.2 from [AC1]
ensures that there exists a plane octic having 6 prescribed nodes in general position.
Let ν : C → C be the normalization map, ν−1(pi) = q′i + q′′i for i = 1, . . . , 6. Choose
two nodes, say p1 and p2, and denote by g1

6 = |H − q′1 − q′′1 | and h1
6 = |H − q′2 − q′′2 |, the

linear series obtained by projecting C from p1 and p2 respectively. Here H ∈ |ν∗OP2(1)|
is an arbitrary line section of C. The morphism induced by (g1

6, h
1
6) is denoted by

φ : C → P1 ×P1, and φ1 = s ◦φ : C → P3, with s : P1 ×P1 → P3 the Segre embedding.
There is an exact sequence over C

0 −→ Nφ −→ Nφ1 −→ φ∗NP1×P1/P3 −→ 0. (11)

We can argue as in [AC2] p.473, that for a general (C, g1
6, h

1
6) with [C] ∈ Moct, we have

h1(C,Nφ) = 0. Indeed, let us denote by A0 the open set of A corresponding to points
(X, l, l′) such that χ : X → P1 × P1, the morphism associated to the pair of pencils
(l, l′) is birational, and by U ⊆ A0 the variety of those points (X, l, l′) ∈ A0 such that
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H1(X,Nχ) 6= 0. Define

V := {x = (X, l, l′,F ,F ′) : (X, l, l′) ∈ U , F is a frame for l, F ′ is a frame for l′}.

We may assume that for a generic x ∈ U , the corresponding pencils l and l′ are base-
point-free. Suppose that U has a component of dimension α. For any x ∈ V,

Tx(V) ⊆ H0(X,Nχ), and dim Tx(V) ≥ α + 2 dim PGL(2) = α + 6.

If Kχ is the cuspidal sheaf of χ and N ′
χ = Nχ/Kχ, then according to [AC1] Lemma 1.4,

for a general point x ∈ V one has that,

Tx(V) ∩ H0(X,Kχ) = 0,

from which it follows that α ≤ g − 6. If not, one would have that h0(X,N ′
χ) ≥ g + 1,

and therefore by Clifford’s Theorem, h1(X,Nχ) = h1(X,N ′
χ) = 0, which contradicts

the definition of U . Since clearly dim Moct > g−6, we can assume that h1(C,Nφ) = 0,
for the general [C] ∈ Moct. Therefore, by taking cohomology in (11), we get that

H1(C,Nφ1) = H1(C,OC(2)),

where OC(1) = φ∗
1OP3(1). By Serre duality,

H1(C,OC(2)) = 0 ⇐⇒ |KC − 2g1
6 − 2h1

6| = ∅. (12)

Since KC = 5H −
∑6

i=1(q
′
i + q′′i ), equation (12) becomes

|H + q′1 + q′′1 + q′2 + q′′2 −
6∑

i=3

(q′i + q′′i )| = ∅. (13)

If L = p1p2 ⊆ P2, we can write ν∗(L) = q′1 + q′′1 + q′2 + q′′2 + x + y + z + t, and (13) is
rewritten as

|2H − x − y − z − t −
6∑

i=3

(q′i + q′′i )| = ∅.

So, one has to show that there are no conics passing through the nodes p3, p4, p5 and
p6 and also through the points in L · C − 2p1 − 2p2. Because [C] ∈ U8,15 is general we
may assume that x, y, z and t are distinct, smooth points of C. Indeed, if the divisor
x + y + z + t on C does not consist of distinct points, or one of its points is a node,
we obtain that C has intersection number 8 with the line L at 5 points or less. But
according to [DH], the locus in the Severi variety

{[X] ∈ Ud,g : X has total intersection number m + 3 with a line at m points }

is a divisor on Ud,g, so we may assume that [C] lies outside this divisor. Now, if x, y, z
and t are distinct and smooth points of C, a conic satisfying (13) would necessarily
be a degenerate one, and one gets a contradiction with the assumption that the nodes
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p1, . . . , p6 of C are in general position. 2

Remark: We have a nice geometric characterization of some of the strata Mi. First,
by using Zariski’s Main Theorem for the birational projection G1

6 → M(1), one sees
that [C] ∈ M(1)sing if and only if either [C] ∈ M(2)0, or C possesses a g1

6 such that
dim |2g1

6| ≥ 3. In the latter case, the g1
6 is a specialization of 2 different g1

6’s in some
family of curves, hence M(2) = M(1)sing (cf [Co2]). As a matter of fact, Coppens has
proved that for 4 ≤ k ≤ [(g+1)/2] and 8 ≤ g ≤ (k−1)2, there exists a k-gonal curve of
genus g carrying exactly 2 linear series g1

k, so the general point of M(2) corresponds to
a curve C of genus 15, having exactly 2 base-point-free g1

6’s. Furthermore, using Cop-
pens’ classification of curves having many pencils computing the gonality (see [Co1]),
we have that M(6) = Moct, and M(i) = Msept, for each i ≥ 7.

Now we are in a position to complete the proof of Theorem 1:
Proof of Theorem 1 According to (2), it will suffice to prove that there exists a smooth
curve [Y ] ∈ M23 which carries a g3

20, a g2
17 but has no g1

12’s. In the proof of Prop.5.4

we constructed a stable curve of compact type [X] ∈ M23 such that [X] ∈ M
2

17∩M
3

20,

but [X] /∈ M
1

12. If we prove that [X] ∈ M2
17 ∩M3

20, that is, there are smooth-
ings of X which preserve both the g2

17 and the g3
20, we are done. One can write

M
2

17∩M
3

20 = Y1∪ . . .∪Ys, where Yi are irreducible codimension 2 subvarieties of M23.

Assume that [X] ∈ Y1. If Y1 ∩ M23 6= ∅, then [X] ∈ Y1 = Y1 ∩M23 ⊆ M2
17 ∩M3

20,
and the conclusion follows. So we may assume that Y1 ⊆ M23 − M23. Because

[X] ∈ ∆1 −
⋃

j 6=1 ∆j, we must have Y ⊆ ∆1. It follows that M
2

17 ∩ ∆1 and M
3

20 ∩ ∆1

have Y1 as a common component. According to Prop.4.2, both intersections M
2

17 ∩∆1

and M
3

20 ∩ ∆1 are irreducible, hence M
2

17 ∩ ∆1 = M
3

20 ∩ ∆1 = Y1, which contradicts
Prop.5.3. Theorem 1 now follows. 2

6 The slope conjecture and M23

In this final section we explain how the slope conjecture in the context of M23 implies
that κ(M23) = 2, and then we present evidence for this.

The slope of Mg is defined as sg := inf {a ∈ R>0 : |aλ − δ| 6= ∅}, where δ =
δ0 + δ1 + · · · + δ[g/2], λ ∈ Pic(Mg) ⊗ R. Since λ is big, it follows that sg < ∞. If E is
the cone of effective divisors in Div(Mg) ⊗ R, we define the slope function s : E → R
by the formula

sD := inf {a/b : a, b > 0 such that ∃ci ≥ 0 with [D] = aλ − bδ −

[g/2]∑

i=0

ciδi},

for an effective divisor D on Mg. Clearly sg ≤ sD for any D ∈ E. When g + 1 is
composite, we obtain the estimate sg ≤ 6 + 12/(g + 1) by using the Brill-Noether
divisors M

r

g,d, with ρ(g, r, d) = −1.

Conjecture 1 ([HMo]) We have that sg ≥ 6+12/(g+1) for each g ≥ 3, with equality
when g + 1 is composite.

18



Harris and Morrison also stated (in a somewhat vague form) that for composite g + 1,
the Brill-Noether divisors not only minimize the slope among all effective divisors, but
they also single out those irreducible D ∈ E with sD = sg.

The slope conjecture has been proved for 3 ≤ g ≤ 11, g 6= 10 (cf. [HMo], [CR3,4],
[Tan]). A strong form of the conjecture holds for g = 3 and g = 5: on M3 the only
irreducible divisor of slope s3 = 9 is the hyperelliptic divisor, while on M5 the only
irreducible divisor of slope s5 = 8 is the trigonal divisor (cf. [HMo]). Conjecture 1
would imply that κ(Mg) = −∞ for all g ≤ 22. For g = 23, we rewrite (1) as

nKM23
=

n

c23,r,d

[M
r

g,d] + 8n δ1 +
11∑

i=2

(i(23 − i) − 4)

2
n δi (n ≥ 1), (14)

(see Section 2 for the coefficients cg,r,d). As Harris and Morrison suggest, we can ask
the question whether the class of any D ∈ E with sD = sg is (modulo a sum of
boundary components ∆i) proportional to [M

r

23,d], and whether the sections defining

(multiples of) M
r

23,d form a maximal algebraically independent subset of the canonical

ring R(M23). If so, it would mean that the boundary divisor 8nδ1+(1/2)
∑11

i=2 n(i(23−
i) − 4)δi is a fixed part of |nKM23

|. Moreover, using our independence result for the

three Brill-Noether divisors, it would follow that h0(M23, nKM23
) grows quadratically

in n, for n sufficiently high and sufficiently divisible, hence κ(M23) = 2. We would
also have that Σ∩M23 = M1

12 ∩M2
17 ∩M3

20, with Σ the common base locus of all the
linear systems |nKM23

|.
Evidence for these facts is of various sorts: first, one knows (cf. [Tan], [CR3])

that |nKM23
| has a large fixed part in the boundary: for each n ≥ 1, every divisor

in |nKM23
| must contain ∆i with multiplicity 16n when i = 1, 19n when i = 2, and

(21 − i)n for i = 3, . . . , 9 or 11. The results for ∆1 and ∆2 are optimal since these
multiplicities coincide with those in (14). Note that [∆1] = 2δ1.

Next, one can show that certain geometric loci in M23 which are contained in all
three Brill-Noether divisors, are contained in Σ as well. The method is based on the
trivial observation that for a family f : X → B of stable curves of genus 23 with smooth
general member, if B.KM23

< 0 (or equivalently, slope(X/B) = δB/λB > 13/2), then

φ(B) ⊆ Σ, where φ : B → M23, φ(b) = [Xb], is the associated moduli map. We have
that:
• One can fill up the d-gonal locus M

1

d with families f : X → B of stable curves of
genus g such that slope(X/B) is 8+4/g in the hyperelliptic case, and > 6+12/(g +1)
in the trigonal and tetragonal case (cf. [Sta]). For g = 23 it follows that M1

4 ⊆ Σ.
Note that this result is not optimal if we believe the slope conjecture since we know
that M1

8 ⊆ M1
12 ∩ M2

17 ∩ M3
20. (The inclusion M1

8 ⊆ M3
20 is a particular case of a

result from [CM].)
• We take a pencil of nodal plane curves of degree d with f assigned nodes in general
position such that

(
d−1
2

)
− f = 23, and with b base points, where 4f + b = d2. After

blowing-up the base points, we have a pencil Y → P1 with fibre [Yt] ∈ M
2

d. For this
pencil λP1 = χ(OY ) + 23 − 1 = 23 and δP1 = c2(Y ) + 88 = 91 + b + f . The condition
δP1/λP1 > 13/2 is satisfied precisely when d ≤ 10, hence taking into account that such
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pencils fill up M2
d, we obtain that M2

10 ⊆ Σ. Note that M2
10 ⊆ M1

8, and as mentioned
above, the 8-gonal locus is contained in the intersection of the Brill-Noether divisors.
• In a similar fashion we can prove that M23,γ(2), the locus of curves of genus 23 which
are double coverings of curves of genus γ is contained in Σ for γ ≤ 5.

The fact that the slopes of other divisors on M23 (or on Mg for arbitrary g)
consisting of curves with special geometric characterization, are larger than 6+12/(g+
1), lends further support to the slope hypothesis. In another paper we will compute
the class of other divisors on M23: the closure in M23 of the locus

{[C] ∈ M23 : C possesses a g1
13 with two different triple points},

and the closure of the locus

{[C] ∈ M23 : C has a g2
18 with a 5-fold point, i.e. ∃D ∈ C(5) such that g2

18(−D) = g1
13}.

In each case we will show that the slope estimate holds.
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