


KOSZUL DIVISORS ON MODULI SPACES OF CURVES

By GAVRIL FARKAS

Abstract. Given a moduli space, how can one construct the “best” (in the sense of higher dimensional
algebraic geometry) effective divisor on it? We show that, at least in the case of the moduli space
of curves, the answer is provided by the Koszul divisor defined in terms of the syzygies of the
parameterized objects. In this paper, we find a formula for the slopes of all Koszul divisors onMg.
In particular, we obtain the first infinite series of counterexamples to the Harris-Morrison Slope
Conjecture and we prove the Maximal Rank Conjecture in the case when the Brill-Noether number
of the corresponding linear series equals 0. We also find shorter proofs for the formulas of the class
of the Brill-Noether and Gieseker-Petri divisors. Finally, we improve most of Logan’s results on the
Kodaira dimension of the moduli spaces Mg,n of pointed stable curves.

1. Introduction. In this paper we describe a general method of construct-
ing special effective divisors on various moduli spaces using the syzygies of
the parametrized objects. The method can be applied to a wide range of moduli
problems with the property that the coarse moduli space has canonical singular-
ities hence pluricanonical forms extend over any desingularization of the moduli
space. Here we treat the case of the moduli stacks Mg,n and we develop the
intersection theory machinery necessary to understand the compactification and
compute the class of these Koszul divisors. Our main result (Theorem 1.1) pro-
vides the first infinite sequence of actual (as opposed to virtual) counterexamples
to the Harris-Morrison Slope Conjecture and encodes in a single formula virtually
all known divisor class calculations on Mg.

The idea of using geometric divisors to study the geometry of a moduli
space can be traced back to Harris and Mumford (cf. [HM]) who, in the course
of their proof that Mg is of general type for odd genus g = 2k − 1 ≥ 25,

studied the Hurwitz divisor M1
g,k := {[C] ∈ Mg: ∃ C k:1→ P1} consisting of

curves with a pencil g1
k . By computing the class of M1

g,k and comparing it in
to KMg

, they showed that when g ≥ 25, the canonical class is a combination

with positive coefficients of [M1
g,k], the Hodge class λ (which is big and nef)

and various boundary classes. Later, numerous other divisor class calculations
were carried out. Eisenbud and Harris considered the Petri divisors on M2k−2
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consisting of curves C of genus 2k − 2 having a pencil A ∈ W1
k (C) which vi-

olates the Petri Theorem, which then they used to show that Mg is of general
type for even g ≥ 24 (cf. [EH3]). Logan introduced pointed Brill-Noether divi-
sors on Mg,g consisting of curves [C, x1, . . . , xg] ∈ Mg,g with the property that
h0(C,OC(x1 + · · · + xg)) ≥ 2 (cf. [Log]) and used them to determine the Kodaira
type of Mg,n for various g and n.

More recently, in [FP] in our work on the Harris-Morrison Slope Conjecture,
we reinterpreted the condition that a curve [C] ∈ M10 lie on a K3 surface as
saying that there exists a linear system L = KC(−g1

6) ∈ W4
12(C) such that the

embedded curve C
|L|
↪→ P4 is not projectively normal. Using this description we

computed the class of the compactification of the divisor K10 of curves with this
property and showed that s(K10) = 7, thus contradicting the Slope Conjecture.
In [F2] we generalized this construction to cover all cases g = 6i + 10 and we
obtained a (sometimes virtual) Hurwitz type divisor on M6i+10 defined in terms
of linear series g3i+4

9i+12 = KC(−g1
3p+6) residual to a pencil of minimal degree. This

locus, when a divisor, always has slope < 6 + 12/(g + 1) thus violating the Slope
Conjecture (see [HMo] and [FP] for background on the effective cone of Mg and
for the significance of the Harris-Morrison Conjecture). Around the same, Khosla
provided a different type of example of a divisor on Mg having exceptionally
small slope (cf. [Kh]): on M21 the closure of the locus of curves [C] ∈ M21

possessing an embedding C ↪→ P6 given by a g6
24 such that C lies on a quadric,

is a divisor whose slope is less than the slope of the Harris-Mumford divisor
M1

21,11.
The aims of this paper are (1) to give a unified framework for doing divisor

class calculation on Mg,n and (2) to provide (empirical) evidence that syzygy
divisors may be the answer to the riddle: Given a moduli space, what is the
most intrinsic, most natural and from the point of view of birational geometry,
most useful effective divisor on it? We prove that virtually all interesting known
divisors on Mg (the Harris-Mumford divisor, the Petri divisor and all known
counterexamples to the Harris-Morrison Conjecture) can be treated in a unified
way and are particular instances of a single syzygy type construction. In [F3]
we shall further illustrate this ideology by studying moduli spaces of curves with
various level structures from the point of view of syzygies.

We fix integers i ≥ 0 and s ≥ 1 and set r := 2s + si + i, g := rs + s and
d := rs + r. We denote by Gr

d the stack parametrizing pairs [C, L] with [C] ∈Mg

and L ∈ Wr
d(C) and denote by σ: Gr

d → Mg the natural projection. Since
ρ(g, r, d) = 0, by general Brill-Noether theory, the general curve of genus g will
have finitely many gr

d’s and there exists a unique irreducible component of Gr
d

which maps onto Mg.
We denote by Ki,j(C, L) the (i, j)-th Koszul cohomology group of the pair

[C, L] ∈ Gr
d and define a stratification of Gr

d with strata Ug,i := {(C, L) ∈
Gr

d: Ki,2(C, L) = 0}. We then set Zg,i := σ∗(Ug,i).
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THEOREM 1.1. If σ: G̃r
d → M̃g is the compactification of Gr

d given by limit
linear series on tree-like curves, then there exists a natural morphism between
torsion free sheaves of the same rank φ: A → B over G̃r

d such that Zg,i is the
image of the degeneracy locus of φ. The class of the pushforward to M̃g of the
virtual degeneracy locus of φ is given by

σ∗(c1(B −A)) ≡ aλ− b0 δ0 − b1 δ1 − · · · − b[g/2] δ[g/2],

where a, b0, . . . , b[g/2] are explicitly given coefficients such that b1 = 12b0 − a and

s (σ∗(c1(B −A))) =
a
b0

= 6
f (s, i)

(i + 2) s h(s, i)
,

with

f (s, i) = (i4 + 8i3 + 24i2 + 32i + 16)s7 + (i4 + 4i3 − 16i− 16)s6

− (i4 + 7i3 + 13i2 − 12)s5 − (i4 + 2i3 + i2 + 14i + 24)s4

+ (2i3 + 2i2 − 6i− 4)s3 + (i3 + 17i2 + 50i + 41)s2

+ (7i2 + 18i + 9)s + 2i + 2

and

h(s, i) = (i3 + 6i2 + 12i + 8)s6 + (i3 + 2i2 − 4i− 8)s5 − (i3 + 7i2 + 11i + 2)s4

−(i3 − 5i)s3 + (4i2 + 5i + 1)s2 + (i2 + 7i + 11)s + 4i + 2.

Furthermore, we have that 6 < a
b0
< 6 + 12

g+1 whenever s ≥ 2. If the morphism φ is

generically nondegenerate, then Zg,i is a divisor on Mg which gives a counterex-
ample to the Slope Conjecture for g = s(2s + si + i + 1).

For a precise definition of the partial compactification M̃g ⊂ Mg of Mg

we refer to Section 2. Since codim(Mg −M̃g,Mg) ≥ 2, it makes no difference
whether the computation of [Zg,i] is carried out over M̃g or Mg. Despite its
complicated appearance, the slope computed in Theorem 1.1 encodes a surprising
amount of information about Mg. In particular, for suitable choices of s and i it
specializes to the divisor class calculations carried out in [HM], [EH3], [Kh], [FP]
and [F2] which were originally obtained using a variety of ad hoc techniques.
The first interesting case is s = 1, g = 2i + 3 when gr

d = g
g−1
2g−2 = KC (the canonical

bundle is the only g
g−1
2g−2 on a curve of genus g). We can relate the locus Z2i+3,i

to more classical loci in M2i+3 using Green’s Conjecture which predicts that for
any smooth curve C one has the equivalence Kl,2(C, KC) = 0 ⇔ l < Cliff(C).
Although Green’s Conjecture for arbitrary curves is still open, Voisin proved
it for generic curves of given gonality (cf. [V1], [V2]). In our case this gives
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a set-theoretic identification between Z2i+3,i and the locus M1
2i+3,i+2 of (i + 2)-

gonal curves. Thus Theorem 1.1 provides a new way of calculating the class of
the compactification of the Brill-Noether divisor first computed by Harris and
Mumford (cf. [HM]):

COROLLARY 1.2. The slope of the Harris-Mumford divisorM1
2i+3,i+2 onM2i+3

consisting of curves which cover P1 with degree ≤ i + 2 is given by the formula

s(M1
2i+3,i+2) =

6(i + 3)
i + 2

= 6 +
12

g + 1
.

For s = 2 and g = 6i + 10 (that is, in the case h1(L) = 2 when Gr
d is

isomorphic to a Hurwitz stack parameterizing covers of P1), we recover the main
result from [F2]:

COROLLARY 1.3. The slope of the divisorZ6i+10,i onM6i+10 consisting of curves
possessing a pencil g1

3i+6 such that if L = KC(−g1
3i+6) ∈ W3i+4

9i+12(C) denotes the

residual linear system, then C
|L|
↪→ P3i+4 fails to satisfy the Green-Lazarsfeld property

(Ni), is given by the formula:

s(Z6i+10,i) =
3(4i + 7)(6i2 + 19i + 12)
(12i2 + 31i + 18)(i + 2)

.

In the case i = 0 we have complete results in the sense that (1) we show that
Zg,0 is an actual divisor on Mg and (2) we can compute the entire class [Zg,0]
rather than the λ, δ0 and δ1 coefficients. In particular we show that bj ≥ b0 for
j ≥ 1, hence the slope of Zg,0 is always computed by the λ and δ0 coefficients.

THEOREM 1.4. For g = s(2s + 1), r = 2s, d = 2s(s + 1) the slope of the virtual
class of the locus of those curves [C] ∈Mg for which there exists L ∈ Wr

d(C) such

that the embedded curve C
|L|
↪→ Pr sits on a quadric hypersurface, is

s(Zs(2s+1),0) =
a
b0

=
3(16s7 − 16s6 + 12s5 − 24s4 − 4s3 + 41s2 + 9s + 2)

s(8s6 − 8s5 − 2s4 + s2 + 11s + 2)
.

Note that this locus has been first considered by D. Khosla who, using a
different approach, was able to compute the coefficients a and b0 (cf. [Kh]).
Showing that the degeneration loci Zg,i are actual divisors on Mg can be very
difficult in practice (for instance, the statement that Z2i+3,i is a divisor on M2i+3

is essentially Green’s Conjecture for a generic curve of odd genus). Apart from
the case s = 1 (settled by Voisin in [V2]), the only cases where it was pre-
viously known that Zg,i is an actual divisor were s = 2, i = 0 (cf. [FP], this
being the K3 divisor on M10), s = 2, i = 1, 2 (cf. [F2]) and when s = 3, i = 0
(cf. [Kh]) - these last three cases having been settled using Macaulay. Here we
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show that for i = 0 the degeneracy loci Zg,0 are honest divisors on Mg, that is, the
map φ: A → B described in Theorem 1.1 is generically nondegenerate. This pro-
vides the first infinite sequence of actual (as opposed to virtual) counterexamples
to the Harris-Morrison Slope Conjecture [HMo]:

THEOREM 1.5. For an integer s ≥ 2 we set r := 2s, d := 2s(s + 1) and g :=
s(2s + 1). Then φ: A → B is a generically nondegenerate map between vector
bundles over G̃r

d having the same rank and its degeneracy locus

Zg,0 := {[C] ∈Mg: ∃L ∈ Wr
d(C) such that C

|L|
↪→ Pr is not projectively normal}

is a divisor on Mg of slope

s(Zg,0) =
3(16s7 − 16s6 + 12s5 − 24s4 − 4s3 + 41s2 + 9s + 2)

s(8s6 − 8s5 − 2s4 + s2 + 11s + 2)

contradicting the Slope Conjecture.

As an application of the techniques developed for proving Theorem 1.1 we
compute the class of the Gieseker-Petri divisors on Mg. Recall that Petri’s The-
orem asserts that for a general curve [C] ∈Mg and for an arbitrary line bundle
L on C, the multiplication map

µ0(L): H0(L)⊗ H0(KC ⊗ L∨) → H0(KC)

is injective (see [EH1] and [Laz] for two very different, relatively short proofs).
The map µ0(L) governs the deformation theory of sections of the line bundle
L. It is well-known that Gr

d(C) is smooth of expected dimension ρ(g, r, d) at a
point [L] ∈ Wr

d(C) if and only if µ0(L) is injective. The locus in Mg where the
Petri Theorem fails breaks up into numerous components and its geometry is still
quite mysterious (see [F1], [EH3]). For integers r, s ≥ 1 we set again d := rs + r
and g := rs + s, so that ρ(g, r, d) = 0. Like in [F1] we define the Gieseker-Petri
locus

GPr
g,d := {[C] ∈Mg: ∃L ∈ Wr

d(C) such that µ0(L) is not injective}.

THEOREM 1.6. For d = rs + r and g = rs + s, the class of the Gieseker-Petri
divisor in Mg is given by the formula:

GPr
g,d ≡

cr(s− 1)r
(r + s + 1)(rs + s− 2)(rs + s− 1)

aλ− b0δ0 − b1δ1 −
[g/2]∑
j=2

bjδj

 ,
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where cr is an explicitly given constant defined in Lemma 2.6,

a = r2s2(4s + r + rs + 10) + s2(5rs + 24r + 2s + 15) + 21s + 26rs + 7r2s + 2r + 2,

b0 =
s(s + 1)(r + 1)(r + 2)(rs + s + 4)

6
,

b1 = (rs + s− 1)(3rs2 + 2s2 + r2s2 + 7s + 6rs + r2s + 2r + 2),

and bj ≥ b1 for j ≥ 2. In particular we have the following expression for the slope:

s(GPr
g,d) = 6 +

12
g + 1

+
6(s + r + 1)(rs + s− 2)(rs + s− 1)

s(s + 1)(r + 1)(r + 2)(rs + s + 4)(rs + s + 1)
.

Theorem 1.6 shows that the Gieseker-Petri divisors satisfy the Slope Conjec-
ture, that is, s(GPr

g,d) ≥ 6 + 12/(g + 1). This is consistent with Proposition 2.2
from [FP] stating that any effective divisor on Mg violating the Slope Conjecture
would have to contain the locus Kg ⊂ Mg of curves lying on K3 surfaces and
with Lazarsfeld’s result (cf. [Laz]) that a general [C] ∈ Kg satisfies Petri’s The-
orem. For s = 2, Theorem 1.6 specializes to Eisenbud and Harris’s computation
originally used to show that Mg is of general type for large even genus (cf.
[EH3], Theorem 2):

COROLLARY 1.7. For g = 2r + 2, the Gieseker-Petri divisor GPr
2r+2,3r can be

interpreted as the branch locus of the generically finite map σ: Gr
3r →M2r+2 from

the Hurwitz stack Gr
3r = G1

r+2 of covers of degree r + 2 and one has the following
expression for its class:

GPr
2r+2,3r ≡ cr

6r2 + 25r + 20
2r + 1

λ− (r + 1)(r + 2)
2r + 1

δ0 − (3r + 4)δ1 −
r+1∑
j=2

bjδj

 ,

where bj > 1 for j ≥ 2.

In Section 4 we describe five different ways of constructing Koszul divisors
on Mg,n. The direct analogue of Theorem 1.1 in the pointed case is the following
statement:

THEOREM 1.8. Fix positive integers g and i such that

n :=
2g + i + 1

2
+

√
(i + 1)2 + 4ig + 8g

2

is an integer. Then the locus

Syzg,n := {[C, x1, . . . , xn] ∈Mg,n: Ki,2 (C,OC(x1 + · · · + xn)) = 0}
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is a virtual divisor on Mg,n, and the class of its compactification is given by the
formula:

Syzg,n ≡
1

n− g− i

(
n− g− 1

i

)

×

−(n + g− 1)λ + (3g− n + i + 1)
n∑

j=1

ψj − 0 · δirr−
∑
j,t≥0

∑
|S|=t

bj:tδj:S

,

where bj:t > 1 are explicitly determined coefficients.

Another infinite sequence of interesting divisors on Mg,n can be obtained by
using the Gaussian-Wahl map associated to a line bundle on a curve. Recall that
if L is a line bundle on a curve C, the Wahl map

ψL: ∧2H0(C, L) → H0(C, KC ⊗ L⊗2)

is defined by the formula ψL( f ∧ g) := f · dg− g · df . The Gaussian ψL measures
deformations of the cone over the curve C embedded in projective space by the
linear system |L| and it is known that if C lies on a K3 surface then the Wahl
map ψKC cannot be surjective (cf. [Wa]). Furthermore, the divisor Z10,0 on M10

can be viewed as the global degeneracy locus corresponding to the Wahl map
for canonical curve of genus 10 (see [FP] for details and further references). If
[C, x1, . . . , xn] ∈ Mg,n, we set Γ := x1 + · · · + xn ∈ Cn for the divisor of marked
points.

THEOREM 1.9. Fix an integer g such that

n :=
2g + 3 +

√
24g + 1

2

is an integer. Then the locus

Wahlg,n := {[C, x1, . . . , xn] ∈Mg,n: ψΓ:

∧2 H0(OC(Γ)) → H0(KC ⊗OC(2Γ)) is degenerate}

is a divisor on Mg,n and its compactification has the following class:

Wahlg,n = −(n− g− 1)λ + (n− g− 1)
n∑

j=1

ψj − δirr −
∑
j,t≥0

bj:t

∑
|S|=t

δj:S,

where bj:t > 1 are explicitly determined coefficients.

Note that although the divisors Syzg,n and Wahlg,n live on Mg,n’s for some very
particular choices of n, using the forgetful and clutching maps Mg,n →Mg,n−1
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and Mi,n1 ×Mg−i,n2 →Mg,n1+n2 one immediately has explicit Koszul divisors
on Mg,n for all g and n.

Among other syzygetic ways of producing divisors on Mg,n we single the
one using the Minimal Resolution Conjecture (cf. Theorem 4.2), which can be
thought of as a generalization of the divisor of higher Weierstrass points and
which is especially useful in the case of a large number of marked points. An
immediate application of the calculations in Section 4 is the following result
about the Kodaira type of Mg,n:

THEOREM 1.10. For integers g = 4, . . . , 21, the moduli spaceMg,n is of general
type for all n ≥ f (g) where f (g) is described in the following table.

g 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
f (g) 16 15 16 15 14 13 11 12 13 11 10 10 9 9 9 7 6 4

This result represents an improvement of Logan’s Theorem 5.1 for g = 4 −
6, 10, 14 − 16, 18 − 22, the entries for the remaining values of g being those
from [Log].

Acknowledgments. I am grateful to Sean Keel for many discussions over
the years on topics related to this circle of ideas.

2. Constructing divisors of small slope using syzygies. For a projective
variety X and a line bundle L on X we denote by Ki,j(X, L) the Koszul cohomology
group obtained from the complex

∧i+1H0(L)⊗H0(L⊗( j−1))−→∧i H0(L)⊗ H0(L⊗j)−→∧i−1 H0(L)⊗ H0(L⊗( j+1)),

where the maps are the Koszul differentials (cf. [Gr]). Assume L is globally
generated and ML is the vector bundle on X defined by the exact sequence

0 → ML → H0(L)⊗OX → L → 0.

A simple argument using the exact sequences

0 −→ ∧aML ⊗ L⊗b → ∧aH0(L)⊗ L⊗b −→ ∧a−1ML ⊗ L⊗(b+1) −→ 0

for various a and b, shows that there is an identification

Ka,b(X, L) =
H0( ∧a ML ⊗ L⊗b)

Image{∧a+1H0(L)⊗ H0(L⊗(b−1))} .(1)
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From now on we fix integers i ≥ 0 and s ≥ 1 and set

r := 2s + si + i, g := rs + s, and d := rs + r.

We introduce the open substack M0
g of Mg corresponding to curves [C] ∈ Mg

such that Wr
d−1(C) = ∅ and Wr+1

d (C) = ∅. Then codim(Mg −M0
g,Mg) ≥ 2.

We denote by Picd the degree d Picard stack over Mg (precisely, the étale
sheafification of the Picard functor). In particular if Picd

Mg
is the coarse moduli

space associated to Picd, then for any Mg-scheme T →Mg originating from a
family of genus g curves X → T , the fibre product T ×Mg Picd

Mg
is the relative

Picard algebraic space Picd
X/T. We denote by Gr

d ⊂ Picd the stack parameterizing
pairs [C, L] with [C] ∈ Mg and L ∈ Wr

d(C) and by σ: Gr
d → Mg the natural

projection. Since ρ(g, r, d) = 0, by general Brill-Noether theory, the general curve
of genus g will have finitely many gr

d’s and there exists a unique irreducible
component of Gr

d which maps onto Mg. Moreover, the image of any component
of Gr

d having dimension ≥ 3g− 2 is a substack of codimension ≥ 2 in Mg (cf.
Corollary 2.5), thus one can ignore these extraneous components of Gr

d when
doing divisor class calculations on Mg.

We shall define a determinantal substack of Gr
d consisting of those pairs

[C, L] satisfying the condition Ki,2(C, L) = 0. We denote by π: M0
g,1 → M0

g
the universal curve and by L a universal Poincaré bundle on the fibre product
M0

g,1×M0
g
Gr

d (In the case such anL does not exist, we pass to an étale surjection

Σ → Gr
d such that Σ is a scheme andM0

g,1×M0
g
Σ admits a Poincaré bundle and we

carry out the construction at this level. In the end our construction does not depend
on the choice of Σ, see also [Est2], Section 6.2). If p1: M0

g,1 ×M0
g
Gr

d →M0
g,1

and p2: M0
g,1 ×M0

g
Gr

d → Gr
d are the natural projections, then E := p2∗(L) is a

vector bundle of rank r + 1 and there is a tautological embedding of the pullback
of the universal curve M0

g,1 ×M0
g
Gr

d into the projective bundle u: P(E) → Gr
d.

We define the vector bundle F on P(E) by the sequence

0 −→ F −→ u∗(E) −→ OP(E)(1) −→ 0,

and we further introduce two vector bundles A and B over Gr
d by setting

A := u∗
(
∧iF ⊗OP(E)(2)

)
, and B := u∗

(
∧iF ⊗OM0

g,1×M0
g
Gr

d
(2)
)

.

If C
|L|→ Pr is the map corresponding to a point [C, L] ∈ Gr

d, then

A(C, L) = H0(Pr,∧iMPr (2)) and B(C, L) = H0(C,∧iML ⊗ L2)

and there is a vector bundle morphism φ: A → B given by restriction. Grauert’s
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Theorem guarantees that both A and B are vector bundles over Gr
d and their

ranks are

rank(A) = (i + 1)

(
r + 2
i + 2

)
and rank(B) =

(
r
i

)(
− id

r
+ 2d + 1− g

)

(We use that ML is a stable vector bundle, see [F2], Proposition 2.1 and this
implies that H1(∧iML⊗L⊗2) = 0, hence rank(B) can be computed from Riemann-
Roch). Because of the way we chose g, r and d we can see that rank(A) = rank(B).

While the construction of A and B clearly depends on the choice of the
Poincaré bundle L (and of Σ), it is easy to check that the vector bundle
HomOGr

d
(A,B) on Gr

d as well as the morphism φ ∈ H0(Gr
d, HomOGr

d
(A,B))

are independent of such choices. More precisely, let us denote by Ξ the collec-
tion of pairs α := (πα,Lα) where πα: Σα → Gr

d is an étale surjective morphism
from a scheme Σα and Lα is a Poincaré bundle on p2,α: M0

g,1 ×M0
g

Σα → Σα.

Recall that if Σ → Gr
d is an étale surjection from a scheme and L and L′ are two

Poincaré bundles on p2: M0
g,1 ×M0

g
Σ → Σ, then the sheaf N := p2∗Hom(L,L′)

is invertible and there is a canonical isomorphism L ⊗ p∗2N ∼= L′. For every
α ∈ Ξ we construct the morphism between vector bundles of the same rank
φα: Aα → Bα over Σα as above. Then since a straightforward cocycle condition
is met, we find that there exists a vector bundle HomOGr

d
(A,B) on Gr

d together

with a section φ ∈ H0(Gr
d, HomOGr

d
(A,B)) such that for every α = (πα,Lα) ∈ Ξ

we have that π∗α(HomOGr
d
(A,B)) = HomOΣα

(Aα,Bα) and π∗α(φ) = φα.

THEOREM 2.1. The cycle Ug,i := {(C, L) ∈ Gr
d: Ki,2(C, L) = 0} is the degener-

acy locus of vector bundle map φ: A → B over Gr
d.

Proof. Along the same lines as the proof of Proposition 2.5 in [F2].

Thus Zg,i := σ∗(Ug,i) is a virtual divisor on Mg when g = s(2s + si + i + 1).

Remark 2.2. Using (1) it is easy to prove that for every (C, L) ∈ Gr
d one

have the vanishing of Koszul cohomology groups Ka,0(C, L) = 0 for all a ≥ 1
and Ka,b(C, L) = 0 for all b ≥ 3. Thus the only nontrivial Koszul type conditions
one could impose on Gr

d involve the groups Ka,1(C, L) and Ka,2(C, L). Because
ML is a stable vector bundle on C, it is straightforward to show using (1) that

dim Ki,2(C, L)− dim Ki+1,1(C, L) =

(
r
i

)
(2d − id

r
+ 1− g)− (i + 1)

(
r + 2
i + 2

)
.

For our choices of g, r and d, it follows that dim Ki+1,1(C, L) = dim Ki,2(C, L),
hence Ug,i can also be defined as the locus where Ki+1,1(C, L) fails to vanish.
This shows that, at least in the case of curves, there are no other Koszul divisors
except Ug,i.
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To prove Theorem 1.1 we shall extend the determinantal structure of Zg,i

over a substack of Mg whose complement has codimension ≥ 2. We denote by

M̃g := M0
g ∪

(
∪[g/2]

j=0 ∆0
j

)
the locally closed substack of Mg obtained by adding

to M0
g the open subsets ∆0

j ⊂ ∆j for 1 ≤ j ≤ [g/2] consisting of 1-nodal genus g
curves C ∪y D, with [C] ∈ Mg−j and [D, y] ∈ Mj,1 being Brill-Noether general
curves, and the locus ∆0

0 ⊂ ∆0 containing 1-nodal irreducible genus g curves
C′ = C/q ∼ y, where [C, q] ∈ Mg−1 is a Brill-Noether general pointed curve
and y ∈ C, together with their degenerations consisting of unions of a smooth
genus g − 1 curve and a nodal rational curve. One can then extend the finite
covering σ: Gr

d →M0
g to a proper, generically finite map

σ: G̃
r
d → M̃g

by letting G̃r
d be the space of limit gr

d’s on the curves from M̃g which are all
tree-like (see [EH2], Theorem 3.4 for the construction of the variety of limit
linear series and also [Oss] for a more functorial approach which in the case
ρ(g, r, d) = 0 leads to the Eisenbud-Harris space). Strictly speaking, Eisenbud and
Harris have only constructed the space of refined limit gr

d’s. Using the observation
that when ρ(g, r, d) = 0 every crude nonrefined limit gr

d on a curve of compact
type C∪y D, where [C] ∈Mj and [D] ∈Mg−j can be canonically interpreted as
a refined limit gr

d on the pre-stable curve C ∪y1 P1 ∪y2 D obtained from C ∪y D
by inserting a single P1 at the node y, their construction can be easily adapted to
cover the case of crude gr

d’s as well. Note that since all limit gr
d’s are dimensionally

proper (cf. [EH2], Corollary 3.7), every limit linear series from G̃r
d is smoothable.

To compute the class [Zg,i], we intersect Zg,i with test curves in the boundary
of Mg which are defined as follows: we fix a Brill-Noether general curve C of
genus g− 1, a general point q ∈ C and a general elliptic curve E. We define two
1-parameter families

C0 := {C/y ∼ q: y ∈ C} ⊂ ∆0 ⊂Mg and(2)

C1 := {C ∪y E: y ∈ C} ⊂ ∆1 ⊂Mg.

It is well known that these families intersect the generators of Pic(Mg) as follows:

C0 · λ = 0, C0 · δ0 = −(2g− 2), C0 · δ1 = 1 and C0 · δa = 0 for a ≥ 2,

and

C1 · λ = 0, C1 · δ0 = 0, C1 · δ1 = −(2g− 4), C1 · δa = 0 for a ≥ 2.

Next, we fix 2 ≤ j ≤ [g/2], a general curve C of genus j and a general curve
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pointed curve (D, y) of genus g − j. We define the 1-parameter family Cj :=
{C ∪y D: y ∈ C} ⊂ ∆j ⊂Mg. We have that

Cj · λ = 0, Cj · δa = 0 for a = j and Cj · δj = −(2j− 2).

We review the notation used in the theory of limit linear series (see [EH2]). If X
is a tree-like curve and l is a limit gr

d on X, for a component Y of X we denote
by lY = (LY , VY ⊂ H0(LY )) the Y-aspect of l. For a point y ∈ Y we denote by
{alY

i (y)}i=0,...,r the vanishing sequence of l at y, by {αlY
i (y) = alY

i (y) − i}i=0,...,r

the ramification sequence and by ρ(lY , y) := ρ(g, r, d)−∑r
i=0 α

lY
i (y) the adjusted

Brill-Noether number with respect to y.

PROPOSITION 2.3. (1) Let C1
y = C∪y E be an element of ∆0

1. If (lC, lE) is a limit gr
d

on C1
y , then VC = H0(LC) and LC ∈ Wr

d(C) has a cusp at y. If y ∈ C is a general point,
then lE =

(
OE(dy), (d − r − 1)y + |(r + 1)y|

)
, that is, lE is uniquely determined. If

y ∈ C is one of the finitely many points for which there exists LC ∈ Wr
d(C) such that

ρ(LC, y) = −1, then lE(−(d− r− 2)y) is a gr
r+2 with vanishing sequence at y being

≥ (0, 2, 3, . . . , r, r + 2). Moreover, at the level of 1-cycles we have the identification
σ∗(C1) ≡ X + ν T, where

X := {(y, L) ∈ C ×Wr
d(C): h0(C, L(−2y)) ≥ r},

T ∼= P
(
H0(OE((r + 2)y))/H0(OE(ry))

)
is the curve consisting of gr

r+2’s on E with
vanishing≥ (0, 2, . . . , r, r + 2) at the fixed point y ∈ E and ν is an explicitly known
positive integer.

(2) Let C0
y = C/y ∼ q be an element of ∆0

0. Then limit linear series of type
gr

d on C0
y are in 1:1 correspondence with complete linear series L on C of type

gr
d satisfying the condition h0(C, L ⊗ OC(−y − q)) = h0(C, L) − 1. There is an

isomorphism between the cycle σ∗(C0) of gr
d’s on all curves C0

y with y ∈ C and the
smooth curve

Y := {(y, L) ∈ C ×Wr
d(C): h0(C, L(−y− q)) ≥ r}.

Proof. Part (1) is similar to the proof of Proposition 3.3 from [F2] and we
omit the details. For part (2), we claim that for any limit gr

d on a curve C0
y

where y ∈ C, the underlying torsion free sheaf is actually locally free. Indeed,
otherwise the underlying sheaf would be of the form ν∗(L), where ν: C → Cy

0
is the normalization map and L ∈ Wr

d−1(C). But [C] ∈ Mg−1 is assumed to be
Brill-Noether general, hence Wr

d−1(C) = ∅.

Throughout this paper we routinely use basic facts from Schubert calculus
which we briefly recall. If G(r, d) denotes the Grassmannian of r-planes in Pd



KOSZUL DIVISORS ON MODULI SPACES OF CURVES 831

and

C
d+1 = V0 ⊃ V1 ⊃ · · · ⊃ Vr+1 = 0

is a decreasing flag, then for any Schubert index 0 ≤ α0 ≤ · · · ≤ αr ≤ d− r, we
define the Schubert cycle

σ(α0,...,αr) := {Λ ∈ G(r, d): dim(Λ ∩ Vαi+i) ≥ r + 1− i, for i = 0, . . . , r}.

(This differs slightly from the standard notation from e.g. [FuPr], but it seems
better suited for dealing with ramification sequences of linear series.) Often we
use the fact that if (α0, . . . ,αr) is a Schubert index and g is an integer such that
rg +

∑r
i=0 αi = (r + 1)(d − r), then there is an identity in H∗(G(r, d)):

σ(α0,...,αr) · σg
(0,1,...,1) = g!

∏
i<j (αj − αi + j− i)∏r

i=0 (g− d + i + αi + r)!
.(3)

PROPOSITION 2.4. Let [C] ∈ Mj be a general curve with g − 2 ≥ j ≥ [g/2]
and Cj ⊂ ∆j ⊂ Mg the associated test curve of type ( j, g − j). Then one has the
following equality of 1-cycles in G̃r

d:

σ∗(Cj) =
∑

(α0,...,αr)∈P1

Ng−j,α · Xj,α +
∑

(β0,...,βr)∈P2

Mj,β · Yg−j,β

+
∑

(β0,...,βr)∈P3

Qg−j,β · Uj,β ,

where we introduce the following notations: P1 := {(0 ≤ α0 ≤ · · · ≤ αr ≤
s):
∑r

i=0 αi = j},

P2 := {(0 ≤ β0 ≤ · · · ≤ βr ≤ s + 1):
∑r

i=0 βi = j + 1,βr−1 ≤ s},

P3 := {(0 = β0 < β1 ≤ · · · ≤ βr ≤ s + 1):
∑r

i=0 βi = r + 1 + j},

Mj,β := σj
(0,1,...,1) · σ(β0,...,βr) ∈ H∗(G(r, r + j)) for β ∈ P2,

Ng−j,α := σg−j
(0,1,...,1) · σ( j−αr ,...,j−α0) ∈ H∗(G(r, d)) for α ∈ P1,

Qg−j,β := σg−j
(0,1,...,1) · σ( j+1−βr ,...,j+1−β1,j+1) ∈ H∗(G(r, d)) for β ∈ P3,

Xj,α := {(y, LC) ∈ C × Picr+j(C): αLC
i (y) ≥ αi for i = 0 . . . r}, α ∈ P1,

Yg−j,β := {lD ∈ Gr
d(D): αlD

i (y) ≥ j− βr−i for i = 0 . . . r}, β ∈ P2,

Uj,β := {(y, lC) ∈ C × Gr
r+j+1(C): αlC (y) ≥ (0,β1, . . . ,βr)}, for β ∈ P3.

Proof. Suppose that l = (lC, lD) is a limit gr
d on C ∪y D. It is easy to see that

the generic point of any component of σ∗(Cj) corresponds to a refined limit gr
d,
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so we may assume that l is refined as well. If (α0, . . . ,αr) is the ramification
sequence of lC at y, then the condition that [D, y] ∈ Mg−j,1 carries a gr

d with
ramification sequence at y being at least (d − r − αr, . . . , d − r − α0), is that
σg−j

(0,1,...,1) ·σ(d−r−αr ,...,d−r−α0) = 0 ∈ H∗(G(r, d)). Using the Littlewood-Richardson
rule, we find that this implies that αr ≤ rs + s − j. A similar reasoning can
be used for C. Degenerating C to a stable curve consisting of a rational spine
and j elliptic tails, we obtain that if there exists a point y ∈ C and a gr

d with
ramification sequence (α0, . . . ,αr) at y, then either y specializes to a point on
the rational spine in which case we find the condition σj

(0,1,...,1) · σ(α0,...,αr) =
0 ∈ H∗(G(r, d)) which implies that α0 ≥ rs − j, or else, y specializes to a
point on one of the elliptic tails in which case we find that there must exist
two indices 0 ≤ e < f ≤ r with αe ≥ αe−1 + 1 and αf ≥ αf−1 + 1, such that
σj−1

(0,1,...,1) · σ(α0+1,αe−1+1,αe,αe+1+1,...,αf−1+1,αf ,αf +1+1,...,αr+1) = 0. This last condition
leads to the inequality α0 ≥ max{0, rs− j− 1}.

Suppose we are in the first case, that is, α0 ≥ rs− j and moreover ρ(lC, y) =
ρ(lD, y) = 0, which is the situation which occurs for a generic choice of y ∈
C. Then lC(−(rs − j)y) = |LC|, where LC ∈ Picr+j(C) with α

LC
r (y) ≤ s and∑r

i=0 α
LC
i (y) = j, that is, (LC, y) ∈ Xj,α. If α0 ≥ rs − j but now ρ(lC, y) = −1

and ρ(lD, y) ≤ 1, then {αLC
i (y) − (rs − j)}i=0...r must be one of the partitions

from the set P2. Choosing such a partition, we have Mj,β choices for the C-
aspect, while lD ∈ Yg−j,αLC (y)−(rs−j). Finally let us assume that we are in the case

α
lC
0 (y) = rs− j− 1. Then necessarily αlC

1 (y) ≥ rs− j, ρ(lC, y) = ρ(lD, y) = 0 and

lC(−(rs − j − 1)y) ∈ Uj,β , where βi := α
lC
i (y) − (rs − j − 1) for i = 0 . . . r. This

accounts for the third sum in σ∗(Cj). Arguing along the lines of [EH4], Lemma
3.4, G̃r

d is smooth along σ∗(Cj) and since all limit gr
d described in this proof are

smoothable, we obtain that the claimed formula holds at the level of 1-cycles
(including multiplicities).

The next corollary shows that ”ghost” components of G̃r
d having dimension

> 3g− 3, do not matter in the calculation of [σ∗(Gi,2 −Hi,2)].

COROLLARY 2.5. In the case ρ(g, r, d) = 0, every irreducible component of Z
of G̃r

d such that dim(Z) ≥ 3g− 2 has the property that dim σ(Z) ≤ 3g− 5.

Proof. For a general [C] ∈ Mg, the scheme Wr
d(C) is reduced and 0-

dimensional, thus every component of G̃r
d mapping dominantly onto M̃g must

have dimension 3g − 3. Suppose that Z is a component of dimension at least
3g − 2 such that σ(Z) is a divisor on M̃g. Then for any [C] ∈ σ(Z) we have
that dim σ−1([C]) ≥ 2. Since this property does not hold along any of the curves
σ∗(Cj) for any 0 ≤ j ≤ [g/2] (see Proposition 2.4), it follows that σ(Z) is
disjoint from the test curves Cj ⊂ Mg for all j ≥ 0. This implies then that
[σ(Z)] = 0 ∈ Pic(M̃g), hence σ(Z) = 0 (use that the Satake compactification of
Mg has boundary of codimension 2). This is a contradiction.
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Let C be a Brill-Noether general curve of genus g− 1 (recall that g = rs + s
and d = rs + r). Then dim Wr

d(C) = r and it is easy to see that C carries no
gr

d−1’s or gr+1
d ’s, hence every L ∈ Wr

d(C) corresponds to a complete and base
point free linear series. We denote by L a Poincaré bundle on C × Picd(C) and
by π1: C × Picd(C) → C and π2: C × Picd(C) → Picd(C) the projections.
We define the cohomology class η = π∗1([point]) ∈ H2(C × Picd(C)), and if
δ1, . . . , δ2g ∈ H1(C,Z) ∼= H1(Picd(C),Z) is a symplectic basis, then we set

γ := −
g∑
α=1

(
π∗1(δα)π∗2(δg+α)− π∗1(δg+α)π∗2(δα)

)
.

We have the formula (cf. [ACGH], p. 335) c1(L) = dη + γ, corresponding to the
Hodge decomposition of c1(L). We also record that γ3 = γη = 0, η2 = 0 and
γ2 = −2ηπ∗2(θ). On Wr

d(C) we have the tautological rank r + 1 vector bundle
E := (π2)∗(L|C×Wr

d(C)). The Chern numbers of E can be computed using the
Harris-Tu formula (cf. [HT]): if we write

∑r
i=0 ci(E∨) = (1 + x1) · · · (1 + xr+1),

then for every class ζ ∈ H∗(Picd(C),Z) one has the formula. (Note that there is
a confusing sign error in the formula (1.4) in [HT]: the formula is correct as it
is appears in [HT], if the xj’s denote the Chern roots of the dual of the kernel
bundle.)

xi1
1 · · · x

ir+1
r+1 ζ = det

(
θg−1+r−d+ij−j+l

(g− 1 + r − d + ij − j + l)!

)
1≤j,l≤r+1

ζ.

If we use the expression of the Vandermonde determinant, we get the formula

det

(
1

(aj + l− 1)!

)
1≤j,l≤r+1

=
Πj>l (al − aj)
Πr+1

j=1 (aj + r)!
.

By repeatedly applying this formula we compute all the intersection numbers on
Wr

d(C) which we shall need:

LEMMA 2.6. If ci := ci(E∨) we have the following identities in H∗(Wr
d(C),Z):

(1) cr−1θ = r(s+1)
2 cr

(2) cr−2θ
2 = r(r−1)(s+1)(s+2)

6 cr

(3) cr−2c1θ = r(s+1)
2

(
1 + (r−2)(r+2)(s+2)

3(s+r+1)

)
cr

(4) cr−1c1 = (1 + (r−1)(r+2)(s+1)
2(s+r+1) )cr

(5) cr = 1! 2!···(r−1)! (r+1)!
(s−1)! (s+1)! (s+2)!···(s+r)!θ

g−1.

We point out that the constant cr equals the number of linear series gr
d on a

general curve of genus g (note that ρ(g, r, d) = 0). In Section 3 we shall use the
following result:
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LEMMA 2.7. If [C] ∈ Mg−1, then one has the following identity in
H∗(Wr

d(C),Z):

c1

(
R1π2∗(L|C×Wr

d(C))
)

= θ − c1(E∨).

Proof. Let us recall how one can obtain a determinantal structure on Wr
d(C).

Once we fix a divisor D ∈ Ce of degree e >> 0, Wr
d(C) is the degeneracy

locus of rank d + e− g + 1− r of the vector bundle map (π2)∗
(
L ⊗O(π∗1D)

)
→

(π2)∗
(
L ⊗O(π∗1D)|π∗1 (D)

)
. Consequently, we have an exact sequence of vector

bundles over Wr
d(C):

0 −→ E −→ (π2)∗
(
L ⊗O(π∗1D)

)
−→ (π2)∗

(
L ⊗O(π∗1D)|π∗1 D

)
−→ R1π2∗(L|C×Wr

d(C)) −→ 0,

from which the claim follows by using that (π2)∗
(
L ⊗O(π∗D)|π∗1 D

)
is numeri-

cally trivial while ct
(
(π2)∗(L ⊗O(π∗1D))

)
= e−θ (cf. [EH3] or [ACGH]).

For integers 0 ≤ a ≤ r and b ≥ 2 we shall define vector bundles Ga,b and
Ha,b over σ−1(M0

g∪∆0
0∪∆0

1) ⊂ G̃r
d which over the locus corresponding to smooth

curves have fibres

Ga,b(C, L) = H0(C,∧aML ⊗ L⊗b) and Ha,b(C, L) = H0(Pr,∧aMPr (b))

for each (C, L) ∈ Gr
d giving a map C

|L|→ Pr. Clearly Gi,2|Gr
d

= B and Hi,2|Gr
d

= A,
where A and B are the vector bundles introduced in Theorem 2.1. Partially
extending these bundles over the boundary of G̃r

d will enable us to compute the
λ, δ0 and δ1 coefficients of Zg,i and determine the slope s(Zg,i).

PROPOSITION 2.8. For each b ≥ 2 there exists a vector bundle G0,b over σ−1

(M0
g ∪ ∆0

0 ∪ ∆0
1) ⊂ G̃r

d having rank bd + 1 − g whose fibres admit the following
description:

• For (C, L) ∈ Gr
d, we have that G0,b(C, L) = H0(C, L⊗b).

• For t = (C ∪y E, L) ∈ σ−1(∆0
1), where L ∈ Wr

d(C) has a cusp at y ∈ C, we
have that

G0,b(t) = H0(C, L⊗b(−2y)) + C · ub ⊂ H0(C, L⊗b),

where u ∈ H0(C, L) is any section such that ordy(u) = 0.
• For t = (C/y ∼ q, L) ∈ σ−1(∆0

0), where q, y ∈ C and L ∈ Wr
d(C) is such that

h0(C, L(−y− q)) = h0(L)− 1, we have that

G0,b(t) = H0(C, L⊗b(−y− q))⊕ C · ub ⊂ H0(C, L⊗b),

where u ∈ H0(C, L) is a section such that ordy(u) = ordq(u) = 0.
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Proof. Very similar to Proposition 3.9 in [F2].

Having defined the vector bundles G0,b we now define inductively all vector
bundles Ga,b by the exact sequence

0 −→ Ga,b −→ ∧aG0,1 ⊗ G0,b
da,b−→ Ga−1,b+1 −→ 0.(4)

To define Ha,b is even easier. We set H0,b := SymbG0,1 for all b ≥ 1 and we
define Ha,b inductively via the exact sequence

0 −→ Ha,b −→ ∧aH0,1 ⊗ SymbH0,1 −→ Ha−1,b+1 −→ 0.(5)

The surjectivity of the right map in (5) is obvious, whereas to prove that da,b

is surjective, one argues like in [F2], Proposition 3.10. There is a natural vector
bundle morphism φa,b: Ha,b → Ga,b. Moreover rank(Hi,2) = rank(Gi,2) and the
degeneracy locus of φi,2 is the codimension one compactification of Zg,i over
M0

g ∪ ∆0
0 ∪ ∆0

1.
We prove a technical result we shall use later for extending the bundles G0,b

with b ≥ 2 over the boundary of Gr
d. It can be interpreted as saying that on a

suitably general curve, the ramification points of a linear series are distinct from
those of its higher order powers.

PROPOSITION 2.9. Fix integers s ≥ 2, r ≥ 2s and a partition 0 ≤ β0 ≤ β1 ≤
· · · ≤ βr ≤ s such that

∑r
i=0 βi = γ. Let (D, y) be a general pointed curve of

genus γ ≥ 3s. Then for every line bundle LD ∈ Picγ+r(D) satisfying the conditions
α

LD
i (y) = βi for 0 ≤ i ≤ r, we have that

H0
(

D, KD ⊗ L⊗(−2)
D ⊗OD(ay)

)
= 0, for all a ≤ 2(r + s).

Proof. Clearly it suffices to prove the theorem in the case a = 2(r + s). We
degenerate (D, y) to a stable curve E0∪. . .∪Eγ−1, consisting of a string of elliptic
curves such that Ei−1 ∩ Ei = {pi} for 1 ≤ i ≤ γ − 1. Moreover, we assume that
y = p0 specializes to a point lying on E0 and that the differences pi − pi−1 ∈
Pic0(Ei−1) are not torsion for all 1 ≤ i ≤ γ − 1. We assume by contradiction
that H0

(
D, KD ⊗ L⊗(−2)

D ⊗OD(2(r + s)y)
)
= 0 for some LD ∈ Picγ+r(D) and

denote by LEi ∈ Picγ+r(Ei) the Ei-aspect of the induced limit linear series gr
r+γ

on ∪γ−1
i=0 Ei satisfying the ramification conditions α

LE0
t (p0) = αt for 0 ≤ t ≤ r.

Fix an integer 1 ≤ i ≤ γ − 1. By the additivity of the Brill-Noether number, we
have that ρ(LEi−1

, pi, pi−1) = 0 and there exists an integer 0 ≤ k ≤ r such that

α
LEi
t (pi) = α

LEi−1
t (pi−1) + 1 for t = k while α

LEi
k (pi) = α

LEi−1
k (pi−1). In particular,

LEi−1
= OEi−1

(
(α

LEi−1
k (pi−1) + k) · pi−1 + (γ + r − k − α

LEi−1
k (pi−1)) · pi

)
,
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that is LEi−1
corresponds to a divisor supported only at the points pi−1 and pi.

Our assumption implies that for all 0 ≤ i ≤ γ − 1 there exist sections

0 = ρi ∈ H0
(

Ei,OEi(2(r + s + i)pi + 2(γ − i− 1)pi+1)⊗ L⊗(−2)
Ei

)
)

satisfying the compatibility conditions

ordpi(ρi) ≥ ordpi−1
(ρi−1) and ordpi(ρi−1) + ordpi(ρi) = 2s− 2.

We reach a contradiction once we show that

ordpγ−1 (ργ−1) > 2s− 2 = deg(OEγ−1 (2(r + s + γ − 1)pγ−1 ⊗ L⊗(−2)
Eγ−1

))

which gives that ργ−1 = 0. Assume now that ordpi+1
(ρi+1) = ordpi(ρi) for some

0 ≤ i ≤ γ− 2. Then ordpi(ρi) + ordpi+1
(ρi) = 2s− 2, hence the section ρi vanishes

only at pi and pi+1 ∈ Ei and ordpi(ρi) = 2b for some integer b ≥ 0. We must have
that LEi = OEi((r+s+i−b)·pi +(γ−i−s−b)·pi+1) (we use that pi+1−pi ∈ Pic0(Ei)
is not torsion). In particular r + s + i − b is one entry in the vanishing sequence
aLEi (pi) and the vanishing sequence aLEi+1 (pi+1) is obtained from aLi(pi) by raising
all entries by 1, except for r +s+ i−b which remains unmodified. Obviously then,
the number r + s + i + 1− b cannot appear in the vanishing sequence aLEi+1 (pi+1).
But this implies that ordpi+2

(ρi+2) ≥ ordpi+1
(ρi+1) + 1. This argument shows that

as we trace the nondecreasing sequence of vanishing orders {ordpi(ρi)}γ−1
i=0 along

any group of 3 consecutive components Ei−1, Ei and Ei+1, we will find at least 2
along which ordpi(ρi) jumps. Since γ ≥ 3s, we find that ordpγ−1 (ργ−1) > 2s− 2
and this brings about a contradiction.

Next we extend Ga,b and Ha,b over the divisors σ−1(∆0
j ) for [g/2] ≤ j ≤ g−2.

PROPOSITION 2.10. (1) For g = rs + s, d = rs + r and b ≥ 1, there exists a vector
bundle G0,b defined over G̃r

d, extending the already constructed vector bundle G0,b

over σ−1(M0
g ∪ ∆0

0 ∪ ∆0
1) and such that if t = (C ∪y D, lC, lD) ∈ σ−1(∆0

j ), where
g(C) = j ≥ [s(r + 1)/2], g(D) = g− j ≥ 2 and (lC, lD) is a limit gr

d on C ∪y D, then

G0,b(t) = H0(C ∪y D, L⊗b),

with

L := (LC = lC(−(rs− j)y), LD = lD(−( j + r)y)) ∈ Picj+r(C)× Picrs−j(D),

in the case s(r + 1)/2 ≤ j ≤ s(r − 1) = g− 2s, and

L := (LC = lC(−(g− j + r)y), LD = lD(−( j− s)y)) ∈ Picj−s(C)× Picrs+s−j+r(D),

in the case s(r − 1) < j ≤ s(r + 1)− 2.
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(2) For each 0 ≤ a ≤ r, b ≥ 1 there exists a vector bundle Ha,b over G̃r
d

restricting to the already defined vector bundleHa,b over σ−1(M0
g∪∆0

0∪∆0
1), such

thatH0,b = Symb(G0,1) for all b ≥ 1 and which also has the property that the exact
sequences (5) remain exact over G̃r

d.
(3) For each 0 ≤ a ≤ r, b ≥ 1, there exists a torsion free sheaf Ga,b over

G̃r
d that restricts to the vector bundle Ga,b over σ−1(M0

g ∪ ∆0
0 ∪ ∆0

1), which for
a = 0 agrees with the vector bundle G0,b defined above, and which has the property
that the vector bundle morphisms φa,b defined over σ−1(M0

g ∪ ∆0
0 ∪ ∆0

1) extend to

morphisms φa,b: Ha,b → Ga,b over G̃r
d.

Proof. We start with an arbitrary point t = (C ∪y D, lC, lD) ∈ σ∗(Cj) where
we assume first that [g/2] ≤ j ≤ rs− s. We set LC := lC(−(rs− j)y) ∈ Picr+j(C)
and LD := lD(−(r + j)y) ∈ Picrs−j(D). If L = (LC, LD) ∈ Picrs+r(C ∪y D), the
essential observation is that because [C] ∈ Mj and [D, y] ∈ Mg−j,1 are Brill-

Noether general, we always have that rs + r − 1 ≤ alC
0 (y) + alD

r (y) ≤ rs + r,
hence h0(LC) ≥ r, h0(LD) ≤ 1 and h0(C ∪y D, L) = r + 1 (see Proposition 2.4).
If p: M̃g,1 ×M̃g

G̃r
d → G̃r

d is the universal curve over G̃r
d, we denote by P a

Poincaré bundle of relative degree d = rs + r enjoying the following properties:

(1) For each [g/2] ≤ j ≤ g− 2, P|p−1(σ−1(∆0
j )) parameterizes line bundles of

bidegree (r + j, rs− j) on curves of type C ∪y D where g(C) = j and g(D) = g− j.
(2) If τj: σ−1(∆0

j ) → M̃g,1 ×M̃g
G̃r

d denotes the section which assigns the

single node corresponding to every curve from σ−1(∆0
j ), then τ∗j (P) = Oσ−1(∆0

j ).

Note that since the divisors σ−1(∆0
i ) and σ−1(∆0

j ) are disjoint for [g/2] ≤
i < j ≤ g − 2, the construction can be carried out over a fixed divisor ∆0

j at

a time. Since h0(p−1(t),P|p−1(t)) = h0(C ∪y D, L) = r + 1 for each t ∈ G̃r
d, by

Grauert’s Theorem, G0,1 := p∗(P) is a locally free sheaf which satisfies our first
requirement. For b ≥ 2 we define G0,b = p∗(P⊗b). Based on degree considerations
we have that H1(L⊗b

C ) = H1(L⊗b
C ⊗ OC(−y)) = 0. Using Proposition 2.9 we see

that H1(L⊗b
D ) = 0, hence h0(C ∪ D, L⊗b) = h0(L⊗b

C ) + h0(L⊗b
D ) − 1 = bd + 1 − g.

Grauert’s Theorem implies that G0,b is locally free for all b.
In the remaining case when rs− s + 1 ≤ j ≤ g− 2, that is, 2 ≤ g(D) ≤ s− 1,

we define LC := lC(−(rs + s + r − j)y) ∈ Picj−s(C) and LD := lD(−( j − s)y) ∈
Picrs+s−j+r(D). Then h0(LC) ≤ 1, h0(LD) ≥ r and h0(C∪y D, L) = r+1. Proposition
2.9 gives again that h1(L⊗b

C ) = 0 for all b ≥ 2, hence h0(C∪D, L⊗b) = bd + 1− g.
This time , we denote by P the Poincaré bundle parametrizing line bundles of
bidegree ( j− s, rs + s + r− j) on curves of type C ∪y D and then G0,b := p∗(P⊗b)
is locally free in this case too because of Grauert’s Theorem.

To define Ga,b for a ≥ 1, we introduce the sheaf M := Ker{p∗(p∗(P)) → P}
and then we set Ga,b := p∗( ∧a M⊗ P⊗b). The morphism φ0,b is simply the
natural map Symbp∗(P) → p∗(P⊗b), and to define these maps for a ≥ 1 we use
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that the vector bundles Ha,b fit into exact sequences of type (5) and then proceed
inductively.

Remark 2.11. Just like in the case of the vector bundles A and B defined
initially over Gr

d (cf. Section 2), the sheaves Ha,b,Ga,b depend on the choice of
a Poincaré bundle, whereas Hom O

G
r
d
(Ha,b,Ga,b) and

φa,b ∈ H0
(

G
r
d, Hom O

G
r
d
(Ha,b,Ga,b)

)

are independent of such a choice. Moreover, since the projection p: M̃g,1 ×M̃g

G̃r
d → G̃r

d has a canonical section over each divisor σ−1(∆0
j ) where [g/2] ≤ j ≤

g−1, it is possible to choose the Poincaré bundle P|p−1(σ−1(∆0
j )) in an unambiguous

way (which is precisely what we did in the proof of Proposition 2.10) and then
Ha,b|σ−1(∆0

j ) and Ga,b|σ−1(∆0
j ) are unamb iguously defined as vector bundles over

σ−1(∆0
j ). This is of course a minor point which plays no role in the calculation

of σ∗(c1(Gi,2 −Hi,2)) ∈ A1(M̃g).

We now determine the class of the curves X and Y defined in Proposition
2.3:

PROPOSITION 2.12. Let C be a Brill-Noether general curve of genus g− 1 and
q ∈ C a general point. We denote by π2: C ×Wr

d(C) → Wr
d(C) the projection and

set ci := (π2)∗
(
ci(E∨)

)
.

(1) The class of the curve X = {(y, L) ∈ C × Wr
d(C): h0(C, L(−2y)) ≥ r} is

given by

[X] = cr + cr−1(2γ + (2d + 2g− 4)η)− 6cr−2 ηθ.

(2) The class of the curve Y = {(y, L) ∈ C×Wr
d(C): h0(C, L(−y− q)) ≥ r} is

given by

[Y] = cr + cr−1(γ + (d − 1)η)− 2cr−2 ηθ.

Proof. We realize both X and Y as degeneracy loci over C × Wr
d(C) and

compute their classes using the Thom-Porteous formula. For each (y, L) ∈ C ×
Wr

d(C) we have a natural map

H0(C, L|2y)∨ → H0(C, L)∨

which globalizes to a vector bundle map ζ: J1(L)∨ → (π2)∗(E∨). Clearly X =
Z1(ζ), hence

[X] =
[

ct(π∗2(E∨))
ct(J1(L)∨)

]
r

.
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From the exact sequence defining the jet bundle of L

0 −→ π∗1(KC)⊗ L → J1(L) → L → 0

we obtain that ct(J1(L∨))−1 = 1 + 2γ + 2dη+ (2g−4)η−6ηθ, which quickly leads
to the desired expression for [X]. The calculation of [Y] is entirely similar and
we skip it.

We also need the following intersection theoretic result:

LEMMA 2.13. For each j ≥ 2 we have the following formulas:
(1) c1(G0,j |X) = −j2θ − (2g− 4)η − j(dη + γ).
(2) c1(G0,j |Y ) = −j2θ + η.

Proof. We observe that for all j ≥ 2, H1(L⊗j) = 0, hence (π2)∗(L⊗j) is a
vector bundle over Picd(C). Riemann-Roch applied to the map π2: C×Picd(C) →
Picd(C) yields c1

(
(π2)∗(L⊗j)

)
= −j2θ. If we denote by u, v: C×C× Picd(C) →

C × Picd(C) the two projections and by ∆ ⊂ C × C × Picd(C) the diagonal, we
have the following exact sequences

0 −→ u∗(v
∗(L⊗j)⊗ I2

∆)|X −→ G0,j|X −→ L⊗j
|X −→ 0

and

0 −→ u∗(v
∗(L⊗j)⊗ I2

∆) −→ (π2)∗(L⊗j) −→ J1(L⊗j) −→ 0

(and an entirely similar situation for G0,j|Y ) from which both claims follow
easily.

Now we are in a position to prove Theorem 1.1:

Proof of Theorem 1.1. Since codim(Mg −M̃g,Mg) ≥ 2, it makes no differ-
ence whether we compute the class σ∗(Gi,2−Hi,2) on M̃g or on Mg and we can
write

σ∗(Gi,2 −Hi,2) = Aλ− B0 δ0 − B1 δ1 − · · · − B[g/2] δ[g/2] ∈ Pic(Mg),(6)

where λ, δ0, . . . , δ[g/2] are the generators of Pic(Mg). We start with the following:

Claim. One has the relation A− 12B0 + B1 = 0.

We pick a general curve [C, q] ∈ Mg−1,1 and at the fixed point q we attach
to C a Lefschetz pencil of plane cubics. If we denote by R ⊂ Mg the resulting
curve, then R · λ = 1, R · δ0 = 12, R · δ1 = −1 and R · δj = 0 for j ≥ 2. The
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relation A− 12B0 + B1 = 0 follows once we show that σ∗(R) · c1(Gi,2 −Hi,2) = 0.
To achieve this we check that G0,b|σ∗(R) is trivial and then use (4) and (5). We
take [C∪q E] ∈Mg to be an arbitrary curve from R, where E is an elliptic curve.
The pointed curve [C, q] being Brill-Noether general, limit gr

d’s on C ∪q E are in
1 : 1 correspondence with linear series L ∈ Wr

d(C) having a cusp at q (This is a
statement independent of the j-invariant of E, in particular, it also holds for the
12 rational nodal curves in the pencil). Furthermore, the fibre of G0,b|σ∗(∆0

1) over
each point from σ∗(R) consists of the global sections of the genus g − 1 aspect
of the limit gr

d and the claim now follows.
Now we determine explicitly the coefficients A, B0 and B1. We fix a general

curve [C, q] ∈ Mg−1,1 and construct the test curves C1 ⊂ ∆1 and C0 ⊂ ∆0.
Using the notation from Proposition 2.3, we write that σ∗(C0) · c1(Gi,2 −Hi,2) =
c1(Gi,2|Y )−c1(Hi,2|Y ) and σ∗(C1) ·c1(Gi,2−Hi,2) = c1(Gi,2|X)−c1(Hi,2|X) (the other
component T of σ∗(C1) does not appear because G0,b|T is trivial for all b ≥ 1).
On the other hand

C0 ·σ∗(c1(Gi,2−Hi,2)) = (2g−2)B0−B1 and C1 ·σ∗(c1(Gi,2−Hi,2)) = (2g−4)B1,

while we already know that A− 12B0 + B1 = 0. Next we use the relations

c1(Gi,2) =
i∑

l=0

(−1)lc1( ∧i−l G0,1 ⊗ G0,l+2) =
i∑

l=0

(−1)l

(
r + 1
i− l

)
c1(G0,l+2)

+
i∑

l=0

(−1)l ((l + 2)(rs + r) + 1− rs− s)

(
r

i− l− 1

)
c1(G0,1),

and

c1(Hi,2) =
i∑

l=0

(−1)lc1( ∧i−l G0,1 ⊗ Syml+2G0,1)

=
i∑

l=0

(−1)l

((
r

i− l− 1

)(
r + l + 2

l + 2

)
+

(
r + 1
i− l

)(
r + l + 2

r + 1

))
c1(G0,1)

=

(
2s + is + i

i

)
(s + 1)(i + 2)c1(G0,1),

which when restricted to X and Y , enable us (also using Lemma 2.13), to obtain
explicit expressions for c1(Gi,2 − Hi,2)|X and c1(Gi,2 − Hi,2)|Y in terms of the
classes η, θ, γ and c1 = π∗2(c1(E∨)). Intersecting these classes with [X] and [Y]
and using Lemma 2.6, we finally get a linear system of 3 equations in A, B0 and
B1 which leads to the stated formulas for the first three coefficients.
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Next we prove that when i = 0, we can get a formula for the slope of
Zs(2s+1),0: precisely we show that if we write σ∗(c1(G0,2 −H0,2)) = Aλ− B0δ0 −
· · ·−B[g/2]δ[g/2], then Bj ≥ B0 for all j ≥ 1. In particular, s

(
σ∗(c1(G0,2 −H0,2))

)
=

A/B0 which has already been computed in Theorem 1.1. We note that the proof
uses in an essential way the divisor class calculation from Theorem 4.6.

Proof of Theorem 1.4. Using the convention Bg−j = Bj for g/2 ≤ j ≤ g − 1,
we show that Bj ≥ B0 only when s(2s + 1)/2 ≤ j ≤ s(2s − 1). The case 2s2 ≤
j ≤ s(2s + 1) − 1 is dealt with in a similar fashion. To compute Bj we intersect
the class σ∗(c1(G0,2−H0,2)) with Cj. Then we use that [Yg−j,β] · c1(G0,2−H0,2) =
[Uj,γ] · c1(G0,2 −H0,2) = 0, for all β ∈ P2, γ ∈ P3, to obtain that

(2j−2)Bj = σ∗(Cj) ·c1(G0,2−H0,2) =
∑

(α0,...,αr)∈P1

Ng−j,α
(
[Xj,α] · c1(G0,2 −H0,2)

)
.

We fix a Schubert index (α0 ≤ · · · ≤ αr) ∈ P1 and denote by π1: Xj,α → C and
π2: Xj,α → Picr+j(C) the two projection maps. As before, L is the Poincaré bundle
on C×Picr+j(C). There is an isomorphism of bundles G0,1|Xj,α

= π∗2 ((π2)∗(L))|Xj,α
obtained by globalizing the projection isomorphism at the level of spaces of
sections H0(C ∪y D, L) ∼= H0(C, LC) valid for each point (y, LC) ∈ Xj,α. (We

recall that L = (LC, LD) ∈ Pic2s+j(C) × Pic2s2−j(D)). For b ≥ 2, we have a
surjective morphism of vector bundles G0,b|Xj,α

� π∗2
(

(π2)∗(L⊗b)
)
|Xj,α

whose

kernel is a trivial bundle along Xj,α. Thus one has that c1(G0,b|Xj,α
) = −b2θ|Xj,α

and c1(H0,2|Xj,α
) = c1(Sym2G0,1|Xj,α

) = −(2s + 2)θ|Xj,α
, therefore

(2j− 2)Bj = (2s− 2)
∑

(α0,...,αr)∈P1

Ng−j,α ([Xj,α] · θ).(7)

The class of the curve Xj,α can be computed using the generalized Giambelli
formula (cf. [FuPr], pg. 15-17) as follows: If Jαr+r−1(L)� · · ·� Jαi+i−1(L)�
· · · � Jα0−1(L) is the flag of jet bundles corresponding to the ramification se-
quence (α0, . . . ,αr), then

Xj,α = {(y, L) ∈ C × Picr+j(C): rk{π∗2 ((π2)∗(L)) (y, L) → Jαi+i−1(L)(y, L)}
≤ i for all i}

and then [Xj,α] is given by the determinant of the (αr×αr)-matrix having entries

aik = cr+1−l+k−i

(
π∗2 ((π2)∗(L))

Jαl+l−1(L)

)
, for all αl−1 ≤ i ≤ αl, 0 ≤ l ≤ r

and 1 ≤ j ≤ αr.
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Since

ci

(
π∗2((π2)∗(L))

Ja−1(L)

)
=
θi

i!
+

θi−1

(i− 1)!
(aγ + a( j + r)η + a(a− 1)( j− 1)η)

− θi−1

(i− 2)!
a(a + 1)η,

clearly [Xj,α] is a linear combination of θj, θj−1η and θj−1γ in H2j(C×Picr+j(C)).
The intersection number [Xj,α] · θ can be interpreted as the number of line bun-
dles LC ∈ Picr+j(C) satisfying the condition α

LC
i (y) ≥ αi for i = 0, . . . , r at an

unspecified point y ∈ C, and which, moreover, are also ramified at a fixed point
q ∈ C, that is, aLC

r (q) ≥ r + 1.
Using this interpretation, the quantity

∑
α∈P1

Ng−j,α([Xg−j,α] · θ) can be ex-
pressed as the intersection number C̃j ·Lin

r
d(1) over the moduli space Mg,1. Here

Linr
d(1) is the divisor on Mg,1 consisting of pointed curves [C, q] such that there

exists L ∈ Wr
d(C) with h0(C, L⊗OC(−(r +1)q) ≥ 1, while C̃j = {C∪y D, q}y∈C ⊂

∆j:1 ⊂ Mg,1 is the test curve obtained by varying the point of attachment y on
the genus j component, while the marked point q ∈ C remains fixed. The class
of Lin

r
d(1) is computed in the course of the proof of Theorem 4.6 and one has

Lin
r
d(1) ≡ µ

(g + 3)λ− g + 1
6

δirr −
g−1∑
j=1

δj:1


+ν

−λ + ψ −
g−1∑
j=1

(
g− j + 1

2

)
δj:1

 ,

where

ν =
r(r + 2)

(rs + s− 1)(rs + s + 1)

and

µ =
r(r + 1)(r + 2)(s− 1)(s + 1)(rs + s + 4)

2(s + r + 1)(rs + s− 2)(rs + s− 1)(rs + s + 1)
.

Since C̃j · ψ = 1, C̃j · δg−j:1 = 1 (the only point of intersection corresponds to
y = q ∈ C), C̃j · δj:1 = −(2j− 1), while C̃j · λ = C̃j · δi:1 = 0 for i = j, g− j, we can
compute that

Bj

cr
=

s− 1
( j− 1)cr

∑
α∈P1

Ng−j,α([Xj,α] · θ) =
s− 1

( j− 1)cr
C̃j · Lin

r
d(1)
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=
4(s− 1)j

(
2js3 + js2 − 2js− 2j + 4s3 + 4s2 − 3s

)
(2s2 + s− j)

(2s2 + s− 2)(3s + 1)(2s− 1)( j− 1)

≥ B0

cr
=

s(8s6 − 8s5 − 2s4 + s2 + 11s + 2)
3(2s2 + s− 2)(3s + 1)(2s− 1)

.

This finishes the proof and shows that s(σ∗(G0,2 −H0,2)) = A/B0.

As we have already pointed out, Theorem 1.1 produces only virtual divisors
on Mg of slope less than 6 + 12/(g + 1). To get actual divisors one has to show
that the vector bundle map φ: Hi,2 → Gi,2 is generically nondegenerate. We carry
this out in the case i = 0 and we produce for the first time an infinite sequence
of genuine counterexamples to the Slope Conjecture.

Proof of Theorem 1.5. From Brill-Noether theory one knows that there exists
a unique component of G̃r

d which maps onto M̃g. Moreover, if (C, L) ∈ Gr
d is

such that L ∈ Wr
d(C) − Wr+1

d (C) corresponds to an embedding C ⊂ Pr, then
a sufficient condition for the smoothness of Gr

d at [C, L] is that H1(NC/Pr ) =
0, and then, the differential (dσ)[C,L] is surjective if and only if the Petri map
µ0(C): H0(L) ⊗ H0(KC ⊗ L∨) → H0(KC) is injective (see e.g. [AC1]). In our
situation, it is then enough to produce a Brill-Noether-Petri general smooth curve
C ⊂ P2s having degree 2s(s + 1) and genus s(2s + 1) such that C does not sit
on any quadrics, that is H0(IC/P2s(2)) = H1(IC/P2s(2)) = 0. We carry this out
inductively: For each 0 ≤ a ≤ s, we construct a smooth nondegenerate curve
Ca ⊂ Ps+a with deg(Ca) =

(s+a+1
2

)
+a and g(Ca) =

(s+a+1
2

)
+a−s, h1(Ca,OCa(1)) = a

(or equivalently, h0(Ca,OCa(1)) = s + a + 1), and such that (1) Ca satisfies the
Petri Theorem (in particular one has that H1(Ca, NCa/Ps+a) = 0), and (2) the
multiplication map µ2: Sym2H0(Ca,OCa(1)) → H0(Ca,OCa(2)) is surjective (or
equivalently, an isomorphism).

To construct C0 ⊂ Ps we consider the White surface S = Bl{p1,...,pδ}(P
2) ⊂ Ps

obtained by blowing-up P2 at general points p1, . . . , pδ ∈ P2 where δ =
(s+1

2

)
,

and embedding it via the linear system |sh −∑δ
i=1 Epi |. Here h is the class of a

line on P2. It is known that S ⊂ Ps is a projectively Cohen-Macaulay surface
and its ideal is generated by the (3 × 3)-minors of a certain (3 × s)-matrix of
linear forms (see e.g. [GG] even though these surfaces have been studied in the
classical literature by T.G. Room in [R]). The Betti diagram of S ⊂ Ps is the
same as that of the ideal of (3× 3)-minors of a (3× s)-matrix of indeterminates.
In particular, we have that Hi(IS/Ps(2)) = 0 for i = 0, 1. On S we consider a

generic smooth curve C ≡ (s + 1)h−∑δ
i=1 Epi . We find that the embedded curve

C ⊂ S ⊂ Ps has deg(C) =
(s+1

2

)
and g(C) =

(s
2

)
. From the exact sequence

0 −→ IS/Ps(1) −→ IC/Ps(1) −→ IC/S(1) −→ 0,

using also that H1(IS/Ps(1)) = 0 and that H1(IC/S(1)) = 0 (e.g. by Riemann-Roch),
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we find that H1(IC/Ps(1)) = 0 and H1(OC(1)) = 0, hence h0(OC(1)) = s + 1. Fur-
thermore, since H0(IS/Ps(2)) = H1(IS/Ps(2)) = 0, we obtain that H1(IC/Ps(2)) = 0.
Finally, since H1(OC(1)) = 0, it follows trivially that H1(NC/Ps) = 0 and µ0(C)
is injective, being a map with source the trivial vector space. Even though
[C] ∈ Mg(C) itself is not a Petri general curve, the map HC →Mg(C) from the
Hilbert scheme HC of curves C′ ⊂ Ps with deg(C′) = deg(C) and g(C′) = g(C),
is smooth and dominant around the point [C] ∈ HC, hence a generic deformation
[C0 ↪→ Ps] ∈ HC of [C ↪→ Ps] will be Petri general and still satisfy the condition
H1(IC0/Ps(2)) = 0.

Assume now that we have constructed a Petri general curve Ca ⊂ Ps+a with
all the desired properties. We pick general points p1, . . . , ps+a+2 ∈ Ca with the
property that if ∆ := p1 + · · · + ps+a+2 ∈ Syms+a+2Ca, then the variety

T := {(M, V) ∈ Ws+a+1
d(Ca)+s+a+2(Ca): dim

(
V ∩ H0(Ca, M ⊗OCa(−∆))

)
≥ s + a + 1}

of linear series having an (s+a+2)-fold point along ∆, has the expected dimension
ρ(g(Ca), s + a + 1, d(Ca) + s + a + 2)− (s + a + 1)2. We identify the projective space
Ps+a containing Ca with a hyperplane H ⊂ Ps+a+1 and choose a linearly normal
elliptic curve E ⊂ Ps+a+1 such that E ∩ H = {p1, . . . , ps+a+2}. The fact that such
an E exists is an easy consequence of the vanishing H1(NE/Ps+a+1(−1)) = 0 for
each elliptic curve E embedded by a complete linear series; the vanishing itself
is a consequence of the fact that NE/Ps+a+1 is a poly-stable vector bundle (cf.
[GL], Theorem 4.1), having the property that µ(NE/Ps+a+1(−1)) > 1). We now set
X := Ca ∪{p1,...,ps+a+2} E ↪→ Ps+a+1 and then deg(X) = pa(X) + s. From the exact
sequence

0 −→ OE(−p1 − · · · − ps+a+2) −→ OX −→ OCa −→ 0,

we can write that h0(OX(1)) ≤ h0(OCa(1))+h0(OE) = s+a+2, hence h0(OX(1)) =
s + a + 2 and h1(OX(1)) = a + 1. One can also write the exact sequence

0 −→ IE/Ps+a+1(1) −→ IX/Ps+a+1(2) −→ ICa/H(2) −→ 0,

from which we obtain that H1(IX/Ps+a+1(2)) = 0, hence by a dimension count we
also get that H0(IX/Ps+a+1(2)) = 0, that is, X and a general deformation of X inside
Ps+a+1 lie on no quadrics.

We now show that X ↪→ Ps+a+1 can be deformed to an embedding of a smooth
curve Ca+1 in Ps+a+1 such that H1(NCa+1/Ps+a+1) = 0. We choose an (s + a + 2)-
dimensional subspace H0(OCa(1)) ⊂ V ⊂ H0(OCa(1) ⊗ OCa(∆)) which gives a
map f : Ca → Ps+a+1 such that f (p1) = · · · = f (ps+a+2) = p. If we denote by P̃s+a+1

the blow-up of Ps+a+1 at p, by choosing V suitably we may assume that f lifts to
an embedding f̃ : Ca ↪→ P̃s+a+1 which projected from p gives rise to the original
embedding Ca ↪→ H. We consider another copy of Ps+a+1 which we denote by
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Ps+a+1
1 and we denote by Z the scheme obtained by gluing Ps+a+1

1 and P̃s+a+1

along H, where we identify the exceptional divisor of P̃s+a+1 with H ⊂ Ps+a+1 via
the projection from p. There is a natural map h: Z → Ps+a+1 which on Ps+a+1

1 is
the identity while on P̃s+a+1 is the projection from p. Via this map, the inclusion
X ↪→ Ps+a+1 lifts to an embedding X ↪→ Z. Note that Z is a degeneration of
Ps+a+1 something which can be seen by blowing-up the codimension 2 subscheme
H × {0} of Ps+a+1 × P1. If we denote by X the total space of the blow-up and
by ε: X → P1 the projection onto the second component, then for t = 0 we have
that ε−1(t) = Ps+a+1, whereas ε−1(0) = P ∪ E , where P is the strict transform of
Ps+a+1 × {0} which is isomorphic to Ps+a+1, while E = P(OH ⊕ OH(1)) is the
exceptional divisor, which is isomorphic to Ps+a+1 blown-up at a point. In the
special fibre, P and E are joined along a divisor which is H inside P.

Next we write down the standard exact sequences of normal bundles

0 −→ NE/Ps+a+1 ⊗OE(−∆) −→ NX/Z −→ N
Ca/P̃s+a+1 −→ 0

(the right-hand side map is restriction to the component Ca of X), and

0 −→ OCa(1)⊗OCa(2∆) −→ N
Ca/P̃s+a+1 −→ NCa/H −→ 0,

from which it easily follows that H1(NX/Z) = 0 (Use the hypothesis H1(NCa/Ps+a) =

0 and that H1
(

NE/Ps+a+1 ⊗OE(−∆)
)

= 0 because NE/Ps+a+1 is semi-stable). Thus

the space of deformations of X in Z is unobstructed of dimension h0(NX/Z). On
the other hand, by general theory the space T1

(X,Z) of infinitesimal deformations
of the pair (X, Z) has dimension at least χ(NX/Z) + 1 = h0(NX/Z) + 1. This shows
that there exists a deformation of (X, Z) in which Z deforms nontrivially. But
dim(T1

Z) = 1, that is, the only possible deformation of Z is the smoothing to
Ps+a+1 previously described, and in this deformation the map X ↪→ Z will deform
to an embedding Ca+1 ↪→ Ps+a+1 of a smooth curve, which proves our claim. We
are left with showing that the dimension estimate

dim
(

Ws+a+1
d(Ca+1)(Ca+1)

)
= ρ (g(Ca+1), s + a + 1, d(Ca+1))(8)

holds. Assuming that (8) has been proved, since the condition H1(NCa+1/Ps+a+1) =
0 guarantees the local smoothness of the scheme Gs+a+1

d(Ca+1), it follows that the
morphism Gs+a+1

d(Ca+1) → Mg(Ca+1) is dominant in a neighbourhood of the point
[Ca+1 ↪→ Ps+a+1]. Therefore the curve Ca+1 ⊂ Ps+a+1 can be chosen to be Petri
general as well, which enables us to continue the induction.

We return to proving (8) and denote by U the versal deformation space of
[X] ∈ Mg(Ca+1) and by φ: C → U the universal family such that φ−1(0) = X,
where 0 ∈ U . Then in a way similar to [EH2], Theorem 3.3, one can construct
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a quasi-projective variety σ: G̃s+a+1
d(Ca+1) → U of limit linear series such that for

points u ∈ U with Cu = φ−1(u) smooth, we have that σ−1(u) = Gs+a+1
d(Ca+1)(Cu),

whereas σ−1(0) consists of the following data: an underlying line bundle L on
X together with linear series {La, Va ∈ G(s + a + 2, H0(X, La))} and {LE, VE ∈
G(s + a + 2, H0(X, LE))} such that the following conditions are satisfied (see also
[Est], Theorem 1):

(1) The line bundles La and LE on X are suitable twists of L by multiples of the
divisor ∆: precisely there exists an integer l such that La|Ca = LE|Ca⊗OCa(l·∆) and
La|E = LE|E⊗OE(−l ·∆). Moreover deg(La|Ca)+deg(LE|E) = deg(Ca+1)+l(s+a+2).

(2) The restriction maps Va → H0(Ca, La|Ca) and VE → H0(E, LE|E) are both
injective.

(3) The restriction maps Va → H0(E, La|E) and VE → H0(Ca, LE|Ca) are both
nonzero.

(4) If l is the integer defined above and (a0 ≤ · · · ≤ as+a+1) denotes the
vanishing sequence of (La|Ca , Va+1) with respect to the divisor ∆ ∈ Syms+a+2Ca

while (b0 ≤ · · · ≤ bs+a+1) denotes the vanishing sequence of (LE|E, VE) with
respect to ∆ ∈ Syms+a+2E, then we have the inequalities ai + bs+a+1−i ≥ l for all
indices 0 ≤ i ≤ s + a + 1 (see also [Est], Proposition 6).

By construction we have the dimension estimate

dim(G) ≥ dim(U) + ρ (g(Ca+1), s + a + 1, d(Ca+1)) ,

(see also [EH2]), thus in order to prove (8) it suffices to show that

dim(σ−1(0)) = ρ (g(Ca+1), s + a + 1, d(Ca+1)) = ρ(g(Ca), s + a, d(Ca))− a

(here by dimension we mean the smallest dimension of an irreducible component).
It is now easy to describe the fibre σ−1(0) in a neighborhood of the point corre-
sponding to a smoothing of the embedding X ↪→ Ps+a+1: If {La, Va}, {LE, VE} is
a limit linear series on X, then the aspect corresponding to E is just a very ample
line bundle on X giving the embedding into Ps+a+1, that is, LE|Ca ∈ Ws+a

d(Ca)(Ca) and
LE|E = OE(∆), whereas the aspect corresponding to Ca is described by La|E = OE

and La|Ca = OCa(∆)⊗ LE|Ca (and in particular l = 1). The only possibility for the
vanishing sequences of the E and Ca aspects is that (a0, . . . , as+a+1) = (0, 1, . . . , 1)
and (b0, . . . , bs+a+1) = (0, . . . , 0, 1). This shows that locally, σ−1(0) is isomor-
phic to the variety of line bundles L ∈ Picd(Ca+1)(X) such that L|E = OE,
h0(X,L) ≥ s + a + 2 and h0(Ca,L|Ca(−∆)) ≥ s + a + 1 (Loosely speaking this
is the subscheme consisting of those La ∈ Ws+a

d(Ca)(Ca) for which there exists a
section τ ∈ P

(
H0(La ⊗O(∆))/H0(La)

)
which glues to the unique section of the

trivial bundle OE at the points of attachment p1, . . . , ps+a+2). Thus locally σ−1(0)
is a (C∗)s+a+1-bundle over the subvariety T of Ws+a+1

d(Ca+1) having an (s + a + 2)-
fold point along the divisor ∆, and by our inductive hypothesis we know that
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dim(T) = dim
(

Ws+a+1
d(Ca+1)(Ca)

)
− (s + a + 1)2. It follows that

dim(σ−1(0)) = dim(T) + s + a + 1 = ρ (g(Ca+1), s + a + 1, d(Ca+1)) ,

and this finishes the proof.

Remark 2.14. It is natural to wonder whether (8) could not be proved more
easily by showing directly that the Petri map µ0(X): H0(OX(1))⊗H0(ωX(−1)) →
H0(ωX) is injective. Indeed Theorem 1.3 from [CR] seems to imply this to be
the case based on the inductive hypothesis that µ0(Ca) is injective whereas
µ0(E) is injective for trivial reasons. That claim is incorrect: from the exact
sequence 0 −→ ωE −→ ωX −→ ωCa(∆) −→ 0, we find the isomorphism
H0(ωX(−1)) = H0(ωCa(−1) ⊗ OCa(∆)) and then a simple analysis shows that
H0(OE) ⊗ H0(ωCa(−1)) ⊂ H0(OX(1)) ⊗ H0(ωX(−1)) is an a-dimensional sub-
space lying entirely inside Ker(µ0(X)).

3. The class of the Gieseker-Petri divisors. In this section we prove The-
orem 1.6. We use the same strategy as in the previous section and we intersect
GPr

g,d with the test curves C0, C1 and Cj for [g/2] ≤ j ≤ g − 2. Recall that

we have constructed a rank r + 1 vector bundle G0,1 over the variety G̃r
d (cf.

Proposition 2.10). As usual, we denote by E the Hodge bundle over Mg.

PROPOSITION 3.1. There exists a rank s vector bundleN over G̃r
d together with

a morphism G0,1⊗N → σ∗(E⊗OM̃g
(δ1)) of vector bundles of the same rank over

G̃r
d such that the fibres of N admit the following description:
• If (C, L) ∈ Gr

d, then N (C, L) = H0(C, KC ⊗ L∨).
• If t = (C ∪y E, LC, lE) ∈ σ−1(∆0

1), where L ∈ Wr
d(C) is such that h0(L ⊗

OC(−2y)) = r, then N (t) = H0(C, KC ⊗ L∨C ⊗OC(2y)).
• If t = (C/y ∼ q, L) ∈ σ−1(∆0

0), where y, q ∈ C and L ∈ Wr
d(C) is a linear

series such that h0(L ⊗OC(−y − q)) = h0(L) − 1, then N (t) = H0(C, KC ⊗ L∨ ⊗
OC(y + q)).

• If t = (C ∪y D, lC, lD) ∈ σ−1(∆0
j ) where [g/2] ≤ j ≤ g− 2, g(C) = j, g(D) =

g−j, thenN (t) = H0(C∪yD,ωC∪D⊗L∨), where L = (lC(−(rs−j)y), lD(−( j+r)y)) ∈
Picj+r(C)× Picrs−j(D).

Note that over Gr
d the morphism G0,1 ⊗ N → σ∗(E ⊗ OM̃g

(δ1)) is simply

the Petri multiplication map. We start the proof of Theorem 1.6 by expanding
[GPr

g,d] in Pic(Mg):

GPr
g,d ≡ aλ− b0δ0 − · · · − b[g/2]δ[g/2].

We show that the coefficients a, b0 and b1 as well as s(GPr
g,d) can be read off

from the vector bundle map G0,1 ⊗ N → σ∗(E ⊗ OM̃g
(δ1)). Even though this
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bundle map is degenerate along the boundary components contained in σ∗(∆0
j )

with j ≥ 2, we can show that it is generically nondegenerate along σ∗(∆0
0) and

σ∗(∆0
1) which ultimately suffices to compute s(GPr

g,d).

PROPOSITION 3.2. One has the relation a − 12b0 + b1 = 0. Moreover, one has
the identity

GPr
g,d ≡ σ∗

(
c1(σ∗(E⊗OM̃g

(δ1))− c1(G0,1 ⊗N )
)

+
[g/2]∑
j=2

djδj,

where dj ≥ 0.

Proof. It is enough to show that if [C, y] ∈Mg−1,1 is a general pointed curve,
then for every L ∈ Wr

d(C) satisfying h0(L⊗OC(−2y)) = r, the multiplication map

µ0(L, y): H0(L)⊗ H0(KC ⊗ L∨ ⊗OC(2y)) → H0(KC ⊗OC(2y))

is an isomorphism. This shows that the morphism G0,1⊗N → σ∗(E⊗OM̃g
(δ1))

is nondegenerate along each component of the divisor σ−1(∆0
1) and the conclu-

sion follows. To show that µ0(L, y) is an isomorphism, we use a variation of
the degeneration considered by Eisenbud and Harris to prove the Gieseker-Petri
Theorem (cf. [EH1]). Precisely, we consider a 1-dimensional family π: C → B
of generically smooth pointed curves of genus g − 1 with a section τ : B →
C, degenerating to a curve of compact type C0 consisting of a string of ra-
tional components and g elliptic components E1, . . . , Eg such that the stable
model of C0 is E1 ∪p1 E2 ∪p2 E3 ∪ · · · ∪pg−1 Eg−1. We assume moreover that
the marked point specializes to a point p0 ∈ E1 and we choose our degener-
ation general enough such that pi − pi−1 ∈ Pic0(Ei) is not a torsion point for
all 1 ≤ i ≤ g − 1. By contradiction, we assume that for a general t ∈ B
there exists Lt ∈ Wr

d(π−1(t)) with h0 (π−1(t), Lt ⊗O(−2τ (t))
)

= r, such that
µ0(Lt, τ (t)) has nontrivial kernel. For 1 ≤ i ≤ g we denote by Li ∈ Picd(C0)
the limit line bundle of the Lt’s having the property that deg(Li

|Ej
) = 0 for i = j,

hence deg(Li
|Ei

) = d. Similarly, we define Mi ∈ Pic2g−2−d(C0) to be the limit
when t → 0 of Kπ−1(t) ⊗ L∨t ⊗ Oπ−1(t)(2τ (t)) uniquely characterized by the
property deg(Mi

|Ej
) = 0 for i = j and deg(Mi

|Ei
) = 2g − 2 − d. We denote by

{(Li
|Ei

, Vi ∈ G(r + 1, H0(Ei, L|Ei
)))} and by {(Mi

|Ei
, Wi ∈ G(r + 1, H0(Ei, M|Ei

)))}
the limit linear series on C0 corresponding to Lt and Kπ−1(t) ⊗ L∨t respectively
as t → 0. Reasoning along the lines of [EH1] or [F1], Proposition 5.2, for each
1 ≤ i ≤ g we find nontrivial elements

ρi ∈ Ker{Vi ⊗Wi → H0(Ei, Li ⊗Mi
|Ei

)}
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satisfying ordpi(ρi+1) ≥ ordpi−1
(ρi) + 2 for 1 ≤ i ≤ g− 1. Since both V1 and W1

have a cusp at p0 ∈ E1, it follows that ordp1 (ρ1) ≥ 2, hence ordpg−1 (ρg) ≥ 2g−2 =
deg(Lg

|Eg
) + deg(Mg

|Eg
), which is a contradiction because ρg−1 ∈ H0(Eg, Lg

|Eg
) ⊗

H0(Eg, Mg
|Eg

) being an element in the kernel of the multiplication map must be a
tensor of rank at least 4.

PROPOSITION 3.3. If cr is the constant defined in Lemma 2.6, then the δ1 coeffi-
cient in the expression of [GPr

g,d] is given by:

b1 = cr
r(s− 1)

(s + r + 1)(rs + s− 2)
(3rs2 + 2s2 + r2s2 + 7s + 6rs + r2s + 2r + 2).

Proof. We fix a general curve C of genus g− 1 and consider the associated
test curve C1 ⊂ ∆1. We view the curve X ⊂ C × Wr

d(C) defined in Proposition
2.12, as sitting inside G̃r

d. Then the projection π1: X → C is the restriction of
σ: G̃r

d → M̃g once we identify C with C1 (Note that the degree of π1 is precisely
cr). One can write the relation (2g−4)B1 = C1 ·GPr

g,d = c1(σ∗(E⊗OM̃g
(δ1)) |X)−

c1(G0,1 |X ⊗N |X) and we are going to compute each term in this expression.
The restriction E ⊗ OM̃g

(δ1)|C1 is identified with the vector bundle

(p2)∗(p∗1(KC) ⊗ O(2∆)), where p1, p2: C × C → C are the two projections and
∆ ⊂ C × C is the diagonal. Using Grothendieck-Riemann-Roch for the map p2,
we find that

c1(E⊗OM̃g
(δ1)|C1 ) = c1

(
(p2)!(p∗1(KC)⊗O(2∆))

)
= −2g + 4,

hence c1(σ∗(E) ⊗ OM̃g
(δ1))|X = −(2g − 4)cr (remember that we have set ci =

c1(E∨)).
The fibre N|X(y, L) is identified with H0(KC ⊗ L∨(2y)) = H1(L⊗O(−2y))∨.

Keeping in mind that we have introduced the vector bundle map ζ in Proposition
2.12, we have an exact sequence over X

0 −→ Ker(ζ)∨ −→ N∨|X −→ π∗2
(

R1π2∗(L|C×Wr
d(C))

)
−→ 0,

globalizing the cohomology exact sequence for each (y, L) ∈ C ×Wr
d(C)

· · · −→ H0(L)
ζ∨−→ H0(L|2y) −→ H1(L(−2y)) −→ H1(L) −→ 0.

Hence c1(N∨|X) = θ − c1(E∨) + c1(Ker(ζ)∨). Using Proposition 2.12 we can write
that

C1 · GPr
g,d = −(2g− 4)crη − (r + 1− s)c1 · [X] + (r + 1)c1(Ker(ζ)∨)

= −(2g− 4)crη − (r + 1− s)
(
(2d + 2g− 4)c1cr−1η − 6c1cr−2θη

)
+(r + 1)

(
(2d + 2g− 4)cr−1θη − 6cr−2θ

2η
)

+ (r + 1)c1(Ker(ζ)∨).
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To compute the Chern number c1(Ker(ζ)∨) we use once more [HT] and we find
the following relation in Htop(C ×Wr

d(C)):

c1(Ker(ζ)∨) = cr+1

(
π∗2(E∨)
J1(L∨)

)
= (2d + 2g− 4)crη − 6ηθcr−1.

Combining the last two relations and then applying Lemma 2.6 we obtain the
formula for b1.

PROPOSITION 3.4. The δ0 coefficient in the expression of [GPr
g,d] is given by:

b0 = cr
r(r + 1)(r + 2)(s− 1)s(s + 1)(rs + s + 4)

6(r + s + 1)(rs + s− 2)(rs + s− 1)
.

Proof. We pick a general curve C of genus g − 1 and consider the test
curve C0 ⊂ ∆0. Similarly to the proof of Proposition 3.3 we view the projection
π1: Y → C as the restriction of σ: G̃r

d → M̃g over C0. Then one has the relation

(2g− 2)b0 − b1 = C0 · GPr
g,d = c1(σ∗(E⊗OM̃g

(δ1))|Y )− c1(G0,1|Y ⊗N|Y ).

The Hodge bundle E⊗OM̃g
(δ1)|C0 is identified with (p2)∗

(
p∗1(KC)⊗O(∆ + Γq)

)
,

where Γq = {q} ×C, and it is easy to compute that c1(σ∗(E⊗OM̃g
(δ1))|Y ) = cr.

If we denote by υ the vector bundle morphism over Y which globalizes the maps
H0(L|y+q)∨ → H0(L)∨ for each (y, L) ∈ Y , we obtain an exact sequence of vector
bundles over Y

0 −→ Ker(υ)∨ −→ N∨|Y −→ π∗2
(

R1π2∗(L|C×Wr
d(C))

)
−→ 0,

from which we can compute c1(N∨|Y ) if we use [HT] which in this case reads

c1(Ker(υ∨)) = cr+1

(
π∗2(E∨)
F

)
,

where F is the vector bundle on C × Wr
d(C) with fibre F(y, L) = H0(L|y+q)∨.

Finally, we write

C0 · GPr
g,d = crη + ((r + 1)(θ − c1 + c1)) · [Y] + (r + 1)(cr(d − 1)− 2cr−1θ)η,

which eventually leads to the stated formula.
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To finish the proof of Theorem 1.6 it suffices to show that for [g/2] ≤ j ≤
g− 2, the coefficient of δj in the expression of

σ∗

(
c1(σ∗(E)⊗OM̃g

(δ1))− c1(G0,1 ⊗N )
)

always exceeds the coefficient of δ0, which equals b0 and was computed in
Proposition 3.4. This is a calculation along the lines of the proof of Theorem 1.4.
To keep the length of this paper under control, we skip the details.

4. Five ways of constructing Koszul divisors for pointed curves. In this
section we construct Koszul divisors on moduli spaces of pointed curves. As an
application we improve Logan’s results on which Mg,n’s are of general type.

We start by recalling a few things about divisor classes on Mg,n. For 0 ≤ i ≤
g and a set of indices S ⊂ {1, . . . , n}, the boundary divisor ∆i:S corresponds to the
closure of the locus of nodal curves C1∪C2, with C1 smooth of genus i, C2 smooth
of genus g− i, and such that the marked points sitting on C1 are precisely those
labeled by S. We also introduce the divisor ∆irr consisting of irreducible pointed
curves with one node. We denote by δi:S ∈ Pic(Mg,n) the class of ∆i:S and by
δirr that of ∆irr. For each 1 ≤ i ≤ n we define the tautological class ψi := c1(Li),
where Li is the line bundle on Mg,n with fibre Li([C, x1, . . . , xn]) = T∨xi

(C) over
each point [C, x1, . . . , xn] ∈ Mg,n. It is well known that when g ≥ 3, the Hodge
class λ, the boundaries δirr and δi:S, and the tautological classes ψi for 1 ≤ i ≤ n,
freely generate Pic(Mg,n).

4.1. Divisors defined in terms of the Minimal Resolution Conjecture. We
fix integers g, r ≥ 1 and 0 ≤ i ≤ g and set n := (2r + 1)(g− 1)− 2i. We define a
divisor on Mg,n consisting of smooth pointed curves (C, x1, . . . , xn) such that the
points x1, . . . , xn fail the Minimal Resolution Conjecture for the canonical curve

C
|KC|
↪→ Pg−1 (see [FMP] for background on MRC). Precisely we define the locus

Mrcr
g,i := {[C, x1, . . . , xn] ∈Mg,n:

h1(C,∧iMKC ⊗ K⊗(r+1)
C ⊗OC(−x1 − · · · − xn)) ≥ 1}.

If we denote by Γ := x1 + · · · + xn ∈ Cn, by Serre duality, the condition
appearing in the definition of Mrcr

g,i is equivalent to

h0
(

C,∧iM∨KC
⊗OC(Γ)⊗ K⊗(−r)

C

)
≥ 1 ⇐⇒ OC(Γ)⊗ K⊗(−r)

C ∈ Θ∧iM∨KC
,

where we recall that for a stable vector bundle E on C having slope ν(E) = ν ∈ Z,
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its theta divisor is the determinantal locus

ΘE := {η ∈ Picg−µ−1(C): h0(C, E ⊗ η) ≥ 1}.

The main result from [FMP] gives an identification Θ∧iM∨KC
= Cg−i−1−Ci, where

the right-hand side is one of the difference varieties associated to C. Thus one
has an alternative description of points in Mrcr

g,i: a point (C, x1, . . . , xn) ∈ Mrcr
g,i

if and only if there exists D ∈ Ci such that h0
(

C,OC(Γ + D)⊗ K⊗(−r)
C

)
≥ 1.

First we equip Mrcr
g,i with a determinantal scheme structure. We consider

the following cartesian diagram of stacks

X
q

−−−→ Mg,n�f
�π

Cg

p
−−−→ Mg

in which all the morphisms are smooth and p (hence also q) is proper. We denote
by ωp ∈ Pic(Cg) the relative dualizing sheaf of the universal curve p: Cg →Mg

and by E := p∗(ωp) the Hodge bundle. We define the vector bundle M over Cg

having rank g−1 as the kernel of the evaluation map p∗E −→ ωp. Thus for every
[C] ∈ Mg, we have M|p−1([C]) - MKC . For each 1 ≤ j ≤ n we have a section
qj: Mg,n −→ X of q given by qj([C, x1, . . . , xn]) = ([C, x1, . . . , xn], xj) ∈ X and
we set Ej := Im(qj), hence Ej is a relative divisor over Mg,n.

For integers 0 ≤ a ≤ i, b ≥ r + 2 and (a, b) = (0, r + 1) we define the vector
bundle

Aa,b := q∗

f ∗( ∧a M⊗ ω⊗b
p )⊗OX

− n∑
j=1

Ej

 ,

hence Aa,b([C, x1, . . . , xn]) = H0( ∧a MKC ⊗ K⊗b
C ⊗OC(−Γ)). To prove that Aa,b

is locally free over Mg,n, we use the fact that MKC is a semi-stable vector bundle

over C and that µ
(
∧aMKC ⊗ K⊗b

C (−Γ)
)
> 2g− 1, hence

R1q∗

f ∗( ∧a M⊗ ω⊗b
p )⊗OX

− n∑
j=1

Ej

 = 0

whenever b ≥ r + 2. To reach the same conclusion in the case of the sheaf A0,r+1,
we use that H1(K⊗(r+1)

C (−Γ))∨ = H0(OC(Γ)⊗ K⊗(−r)
C ) = 0, if Γ ∈ Cn lies outside

a subset of codimension ≥ 3. Furthermore there is a vector bundle map

φ: π∗( ∧i
E)⊗A0,r+1 → Ai−1,r+2
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which over each point [C, x1, . . . , xn] ∈Mg,n corresponds to the natural map

φ(C, Γ): ∧iH0(KC)⊗ H0
(

K⊗(r+1)
C ⊗OC(−Γ)

)
→ H0

(
∧i−1MKC ⊗ K⊗(r+2)

C ⊗OC(−Γ)
)

.

Note that rank(Ai−1,r+2) = rank
(
π∗( ∧i

E)⊗A0,r+1
)

= 2i
(g

i

)
and a simple ar-

gument using the exact sequence 0 −→ ∧iMKC −→ ∧iH0(KC) ⊗ OC −→
∧i−1MKC ⊗ KC −→ 0 shows that Mrcr

g,i is the degeneracy locus of the map φ.

PROPOSITION 4.1. The vector bundle morphismφ: π∗(∧i
E)⊗A0,r+1 → Ai−1,r+2

is generically nondegenerate. It follows that Mrcr
g,i is a divisor on Mg,n.

Proof. We show that φ is generically nondegenerate over the pull-back π∗(Hg)
of the hyperelliptic locus. We fix a hyperelliptic curve C of genus g and we denote
by L ∈ W1

2 (C) its hyperelliptic involution. By writing down the Euler sequence
on P1 one shows that MKC = (L∨)⊕(g−1), hence the condition H1( ∧i MKC ⊗
K⊗(r+1)

C ⊗ OC(−Γ)) = 0 is equivalent to H0 (OC(Γ)⊗ L⊗(i−r(g−1))) = 0. This
however is obvious because when Γ ∈ Cn is a general divisor of degree n then
OC(Γ)⊗ L⊗(i−r(g−1)) is a general line bundle of degree g− 1, therefore it has no
global sections.

The main result here is the computation of the class of Mrc
r
g,i:

THEOREM 4.2. When n = (2r + 1)(g − 1) − 2i, the locus Mrcr
g,i is a divisor

on Mg,n and the class of its compactification in Mg,n is given by the following
formula:

Mrc
r
g,i ≡

1
g− 1

(
g− 1

i

)aλ + c
n∑

j=1

ψj − birrδirr −
∑

j,s≥0,

bj:s

∑
|S|=s

δj:S

 ,

where

c = rg + g− i− r − 1,

birr = − 1
g− 2

((
r + 1

2

)
(g− 1)(g− 2) + i(i + 1 + 2r − rg− g)

)
,

a = − 1
g− 2

(
(g− 1)(g− 2)(6r2 + 6r + 1) + i(24r + 10i + 10− 10g− 12rg)

)
,

b0:s =

(
s + 1

2

)
(g− 1) + s(rg− r)− si, and bj:s ≥ b0:s for j ≥ 1.

Remark 4.3. For i = 0, n = (2r+1)(g−1), the divisor Mrc
r
g,0 specializes to the

locus of points [C, x1, . . . , x(2r+1)(g−1)] ∈Mg,(2r+1)(g−1) such that
∑(2r+1)(g−1)

j=1 xj ∈
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|K⊗r
C | and Theorem 4.2 gives that:

Mrc
r
g,0 ≡ −(6r2 + 6r + 1)λ + (r + 1)

(2r+1)(g−1)∑
j=1

ψj

 +

(
r + 1

2

)
δirr

−(2r + 3)
∑
|S|=2

δ0:S − · · · .

By letting all the marked points coalesce and using the standard formulas for
pushing forward products of tautological classes (cf. e.g. [FMP] or [Log], Theo-
rem 2.8), Theorem 4.2 offers a quick way of computing the class of the closure
of the locus Wr+1 of (r + 1)-Weierstrass points in Mg,1 which is the main result
of [CF].

First we determine the class of the locus Mrcr
g,i over the interior Mg,n. In

order to do this, we first recall a few well-known intersection theory relations
(see e.g. [HM]):

LEMMA 4.4. If q: X → Mg,n is the morphism defined earlier, one has the
following identities:

(i) q∗( f ∗c1(ωp)2) = 12λ.
(ii) q∗(q∗λ · f ∗c1(ωp)) = (2g− 2)λ.
(iii) q∗q∗(λ2) = 0.
(iv) q∗(c1(Ej) · q∗λ) = λ.
(v) q∗(c1(Ej) · f ∗c1(ωp)) = ψj.
(vi) q∗q∗c2(π∗(E)) = 0.
(vii) q∗(c1(Ej)2) = −ψj.

PROPOSITION 4.5. If a and b are the numbers defined in the statement of Theorem
4.2, we have the following relation in Pic(Mg,n):

Mrcr
g,i ≡

1
g− 1

(
g− 1

i

)aλ + b
n∑

j=1

ψj

 .

Proof. Since φ is generically nondegenerate (cf. Proposition 4.1), we have the
identity Mrcr

g,i ≡ c1(Ai−1,r+2)− c1(π∗( ∧i
E)⊗A0,r+1). To compute these Chern

classes we use Grothendieck-Riemann-Roch applied to the proper map q. For
simplicity we set D :=

∑n
j=1 Ej and F := f ∗

(
∧i−1M⊗ ω⊗(r+2)

p )⊗OX (−D)
)

.
Then we have that

c1(Ai−1,r+2) = q∗

[((
g− 1
i− 1

)
+ c1(F) +

c2
1(F)− 2c2(F)

2
+ · · ·

)

·
(

1− f ∗c1(ωp)
2

+
f ∗c2

1(ωp)
12

) + . . .

)]
.
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Using that c1(M) = p∗(λ)− c1(ωp), one obtains that

c1(F) =

(
g− 2
i− 2

)
q∗(λ)

+

(
(r + 2)

(
g− 1
i− 1

)
−
(

g− 2
i− 2

))
f ∗c1(ωp)−

(
g− 1
i− 1

)
c1(D).

We also use the identity

c2(F) = c2( f ∗ ∧i−1 M) +

((
g− 1
i− 1

)
− 1

)
c1( f ∗ ∧i−1 M)

·
(
(r + 2)f ∗c1(ωp)− c1(D)

)
+

1
2

(
g− 1
i− 1

)((
g− 1
i− 1

)
− 1

)(
(r + 2)f ∗c1(ωp)− c1(D)

)2 ,

which together with the formula c2(M) = c2
1(ωp) − c1(ωp) · p∗(λ) and Lemma

4.4, enable us to compute c1(Ai−1,r+2). In a similar fashion, we obtain from
Grothendieck-Riemann-Roch applied to the map q, that

c1(A0,r+1) = (6r2 + 6r + 1)λ− (r + 1)
n∑

j=1

ψj

and finally

c1(π∗ ∧i
E⊗A0,r+1) =

(
g
i

)
c1(A0,r+1) + ((2r + 1)(g− 1)− r)

(
g− 1
i− 1

)
λ,

which quickly leads to the stated formula.

To compute the remaining coefficients in [Mrc
r
g,i] we extend the vector bun-

dles Aa,b to sheaves over Mg,n as follows. We denote by q: Mg,n+1 → Mg,n

the projection dropping the (n + 1)-st marked point and by π: Mg,n →Mg the
forgetful map. We introduce the following twist of the Hodge bundle on Mg,n:

H := q∗

ωq ⊗OMg,n+1

 ∑
[g/2]≤j≤g−1

∑
|S|≤n

(g− j)∆j:S

 .

(In other words, the fibre of H over a pointed curve from π∗(∆j) where [g/2] ≤
j ≤ g, is the space of global sections of the genus j-aspect of the limit g

g−1
2g−2
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corresponding to the canonical linear series.) We then define

M := Ker{q∗(H) → OMg,n+1

 ∑
[g/2]≤j≤g−1

∑
|S|≤n

(g− j)∆j:s

}.

Furthermore, for each pair of integers 0 ≤ a ≤ i, b ≥ r + 2 or (a, b) = (0, r + 1),
we define

Aa,b := q∗

∧aM⊗ ω⊗b
q ⊗OMg,n+1

 ∑
[g/2]≤j≤g−1

∑
|S|≤n

((2b− 1)(g− j)− b)∆j:S

−
n∑

j=1

∆0:j,n+1

 .

(Obviously, this is an extension of the definition of Aa,b over Mg,n.) The twists
were chosen in such a way that we have exact sequences of the type

0 −→ Aa,b −→ ∧aH⊗A0,b −→ Aa−1,b+1 −→ 0,

at least in a dense open subset inside π−1(Mg ∪ ∆0 ∪ ∆1). Also, there exists a
morphism φ: ∧iH ⊗ A0,r+1 → Ai−1,r+2 which over Mg,n restricts to the vector
bundle map defined in Proposition 4.1.

Proof of Theorem 4.2. We expand the class of Mrc
r
g,i in Pic(Mg,n):

Mrc
r
g:i ≡ Aλ + B

n∑
j=1

ψj − Birrδirr −
∑
j,s≥0

Bj:s

∑
|S|=j

δj:S.

We have already determined the values of A and B. One can write down the
following relation in Pic(Mg,n):

c1(Ai−1,r+2 − ∧iH⊗A0,r+1) = [Mrc
r
g,i] +

∑
j,s≥0

dj,s

∑
|S|=s

δj:S,(9)

where dj,s is the multiplicity of the divisor ∆j:S in the degeneracy locus of φ. By
intersecting both sides of (9) with test curves in Mg,n, sometimes we are able
to show that φ is generically nondegenerate along ∆j:S (that is, dj:s = 0), and
then we explicitly determine the value of Bj:S in Theorem 4.2, otherwise we only
get lower bounds on Bj:S. We are only going to explain in detail the case of the
coefficient Birr the remaining ones being somewhat similar.
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We define a test curve in the boundary of Mg,n as follows. If [C, q, x1, . . . , xn]
∈Mg−1,n+1 is a general pointed curve, then we define the 1-dimensional family

C0
n := {[C/y ∼ q, x1, . . . , xn]}y∈C ⊂ ∆irr ⊂Mg,n.

The fibre of this family when the variable point y ∈ C hits the fixed marked
point xi for 1 ≤ i ≤ n is the pointed curve (C̃xi := C ∪x1,q P1, x̃1, x2, . . . , xn),
where x̃1 ∈ P1 (here we regard x1, x̃1, q ∈ P1 as three distinct points). One has
the identities

C0
n · δirr = −2g + 2,

C0
n · δ1:∅ = 1,

C0
n · ψi = 1 for 1 ≤ i ≤ n, C0

n · λ = C0
n · δi:S = 0 for (i, S) = (1, ∅).

By intersecting both sides of (9) with C0
n one can write down the identity C0

n ·
Mrc

r
g,i = (2g− 2)Birr + nB− B1:∅. On the other hand one also has the relation

A− 12Birr + B1:∅ = 0,

reflecting the fact that Mrc
r
g,i is physically disjoint from the curve {[C ∪q R, x1,

x2, . . . , xn]}R obtained by attaching to a fixed Brill-Noether general curve
[C, q, x1, . . . , xn] ∈ Mg−1,n+1 a pencil of plane cubics in which R denotes a
generic member. Thus determining Birr and B1:∅ boils down to (i) showing that φ
is generically nondegenerate along C0

n and (ii) estimating the intersection number
C0

n ·c1(Ai−1,r+2−∧iH⊗A0,r+1). By local analysis one can see that for 1 ≤ l ≤ i−1
there are exact sequences of bundles over C0

n

0 −→ Ai−l,r+l+1|C0
n
−→ ∧i−lH⊗A0,r+l+1|C0

n
−→ Ai−l−1,r+l+2|C0

n
−→ 0,

therefore we can write the identities

C0
n · c1(Ai−1,r+2) =

i∑
l=1

(−1)l−1c1

(
∧i−lH|C0

n
⊗A0,r+l+1|C0

n

)

=
i∑

l=1

(−1)l−1

((
g− 1

i− l− 1

)
((2r + 2l + 1)(g− 1)− n)c1(H|C0

n
)

+

(
g

i− l

)
c1(A0,r+l+1|C0

n
)

)
.

Next we describe the vector bundle A0,j|C0
n
. We identify C0

n with C via the map

C / y 0→ [C/y ∼ q, x1, . . . , xn] ∈Mg,n
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and denote by p1, p2: C×C → C the two projections, by ∆ ⊂ C×C the diagonal
and set Γq := {q} × C ⊂ C × C. Then for every j ≥ r we have the following
exact sequence of vector bundles on C:

0 −→ (p2)∗

p∗1(K⊗j
C )⊗OC×C

( j− 1)∆ + ( j− 1)Γq −
n∑

j=1

{xj} × C


−→ A0,j|C0

n

−→ (p2)∗

p∗1(K⊗j
C )⊗OC×C

j∆ + jΓq −
n∑

j=1

{xj} × C

⊗OΓq


⊗OC(−x1 − · · · − xn) −→ 0,

which quickly leads to the formula

c1(A0,j|C0
n
) = 1 + 2j− 2jrg− 2jg− j2 + j2g + 2jr + 2ji.

Since one also has that c1(H|C0
n
) = 1 (use that H(y) = H0(KC ⊗ OC(y + q)) for

each y ∈ C0
n under the identification described above), we obtain a formula for

C0
n ·Mrc

r
g,i and ultimately a formula for Birr. Dealing with the other coefficients

Bj:S is similar in general.

4.2. Divisors defined by imposing linear conditions on marked points.
Here we present another general construction that produces families of effective
divisors on Mg,n. Like in Section 2, we pick integers g, r, d ≥ 1 such that
ρ(g, r, d) = 0, therefore we can write d = rs + r and g = rs + s for some integer
s ≥ 1. We set n := r + 1 and define the following divisor on Mg,n:

Lin
r
d := {[C, x1, . . . , xr+1]: ∃L ∈ Wr

d(C)

such that h0(L⊗OC(−x1 − · · · − xr+1)) ≥ 1}.

We recall that we have introduced the number

N := cr = g!
1! 2! · · · r!

(g− d + r)! · · · (g− d + 2r)!
,

which counts linear series gr
d on a general curve of genus g (cf. [ACGH]). Our

main result is the computation of the class [Lin
r
d]:

THEOREM 4.6. Fix integers r, s ≥ 1 and set d := rs + r, g := rs + s. Then Lin
r
d

is an effective divisor on Mg,n and we have the following formula for its class in
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Pic(Mg,r+1):

Lin
r
d ≡

rcr

rs + s− 1

aλ + c
r+1∑
j=1

ψj − birrδirr −
∑
j,t≥0

bj:t

∑
|S|=t

δj:S

 ,

where

a =
(r + 2)(r2s3 − r2s + 2rs3 + 6rs2 − 2rs− 8r + s3 + 6s2 + 3s− 8)

2(s + r + 1)(rs + s− 2)
,

c =
s + 1

2
, birr =

(s− 1)(s + 1)(r + 1)(r + 2)(rs + s + 4)
12(s + r + 1)(rs + s− 2)

,

bj:0 =

j(r + 2)(rs(s2 − 1)(r + 2) + s(s2 − 2j− 3)
+(r + 1)(3s2 − js2 + 2j− 2))

2(r + s + 1)(rs + s− 2)
for j ≥ 1

b0:t =
t

2r
(trs + ts− t + r − s + 1) for 2 ≤ t ≤ r + 1,

b1:t =

(
t − 1

2

)
rs + s− 1

r
+

(s− 1)(s + 1)(r + 1)(r3s + 3r2s− 2s + 4)
2r(r + s + 1)(rs + s− 2)

for all t ≥ 1

and

bj:t ≥ b0:t for all j ≥ 2.

Remark 4.7. For s = 1 and r = g − 1, Theorem 4.6 specializes to Logan’s
formula for the class of the divisor Lin

g−1
2g−2 of points [C, x1, . . . , xg] ∈Mg,g with

h0(OC(x1 + · · · + xg)) ≥ 2. We have the formula (cf. [Log], Theorem 5.4):

Lin
g−1
2g−2 ≡ −λ +

g∑
j=1

ψj − 0 · δirr −
g∑

t=2

(
t + 1

2

)∑
|S|=t

δ0:S −
g∑

t=1

(
t
2

)∑
|S|=t

δ1:S − · · · .

In the next case, s = 2, g = 2r + 2 and d = 3r we get a new divisor on M2r+2,r+1

and our formula reads

Lin
r
3r ≡

1
2(2r + 1)

(3r + 5)(r + 2)λ + 3r
r+1∑
j=1

ψj −
(

r + 2
2

)
δirr(10)

−
∑
|S|=2

δ0:S − · · ·

 .
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Proof of Theorem 4.6. Proving that Linr
d is a divisor on Mg,r+1 follows im-

mediately from Brill-Noether theory: a general [C] ∈Mg has precisely N linear
series L ∈ Wr

d(C) and each of them is base point free and satisfies h0(L) = r+1 and
Linr

d consists of those (r +1)-tuples of points on C which are not in general linear
position with respect to some L ∈ Wr

d(C). We start the calculation of the class
of Lin

r
d by determining the coefficients of λ, δirr and ψj. To do this we use the

observation that if πn: Mg,n →Mg,n−1 is the projection forgetting the marked
point labeled by n and D is any divisor class on Mg,n, then for distinct labels
i, j = n, the λ, δirr and ψj coefficients of the divisors D on Mg,n and (πn)∗(D·δ0:in)
on Mg,n−1 are the same (see [FMP], Prop. 4.4). The divisor (πn)∗(D · δ0:in) can
be thought of as the locus of those points [C, x1, . . . , xn] ∈ D where the points
xi and xn are allowed to come together. Using this observation repeatedly, we
obtain that the divisor Lin

r
d(1) on Mg,1 obtained by letting all points x1, . . . , xn

come together, has the same λ and δirr coefficients as Linr
d. But clearly

Lin
r
d(1) = {[C, x] ∈Mg,1: ∃L ∈ Wr

d(C) such that h0(L⊗OC(−(r + 1)x)) ≥ 1},

that is, Linr
d(1) is generically the locus of ramification points in one of the finitely

many linear series gr
d on a given curve of genus g. By applying Theorem 4.1

from [EH4], we obtain that the class of Lin
r
d(1) can be written as a combination

Lin
r
d(1) ≡ µ · BN + ν · W , where

BN := (g + 3)λ− g + 1
6

δirr −
g−1∑
j=1

j(g− j)δj:1

is the pull-back from Mg of the class of the Brill-Noether divisor and

W := −λ +

(
g + 1

2

)
ψ −

g−1∑
j=1

(
g− j + 1

2

)
δj:1

is the class of the Weierstrass divisor. To determine the coefficients µ and ν we
use two test curves inside Mg,1. First we fix a genus g curve C and we let the
marked point vary along C. If we denote this curve by C̄ ⊂Mg,1, then the only
generator of Pic(Mg,1) which has nonzero intersection number with C̄ is ψ, and
C̄ · ψ = 2g− 2. On the other hand C̄ ·Lin

r
d(1) is the total number of ramification

points on all gr
d’s on C. This number is N(r + 1)(d + r(g−1)) (see e.g. [EH2], pg.

345), which shows that ν = N(r + 1)(d + r(g− 1))/((g− 1)g(g + 1)). To compute
µ we use a second test curve constructed as follows: we fix a 2-pointed elliptic
curve [E, x, y] ∈ M1,2 such that the class x − y ∈ Pic0(E) is not torsion, and a
fixed general curve [C] ∈ Mg−1. We define the family C̄1 := {(C ∪y E, x)}y∈C

(that is, the point of attachment varies on C). The only generator of Pic(Mg,1)
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meeting C̄1 nontrivially is δ1:1 = δg−1:∅, in which case C̄1 · δ1;1 = −2g + 4. The
calculation of C̄1 · Lin

r
d(1) is a standard exercise in the theory of limit linear

series. Suppose l = {lC, lE} is a limit gr
d on C ∪y E such that alE

r (x) ≥ r + 1. Then
because the class x− y ∈ Pic0(E) is not torsion, we must have that ρ(lE, x, y) = 0
and ρ(lC, y) = −1. An easy calculation shows that we must also have alE (x) =
(0, 1, . . . , r − 1, r + 1) and alC (y) = (0, 2, 3, . . . , r, r + 2), and moreover the aspect
lE is uniquely determined. Thus we have to count the number of points y ∈ C
such that there exists L ∈ Wr

d(C) with the property that h0(L(−2y)) ≥ r and
h0(L(−(r + 2)y)) ≥ 1.

To compute this number we further degenerate the curve C to a transverse
union R∪y1 E1 ∪ · · · ∪yg−1 Eg−1 consisting of a smooth rational spine R and g− 1
elliptic tails E1, . . . , Eg−1. Using Proposition 1.1 from [EH2] we see that the
point y has to specialize to one of the tails Ej, and without loss of generality we
assume that y ∈ E1 (all the intersection numbers we compute will be multiplied
by g − 1 to account for y lying on a different elliptic tail). Suppose now that
l = {lR, lE1 , . . . , lEg−1} is a limit gr

d on R ∪ E1 ∪ · · · ∪ Eg−1 such that alE1 (y) =
(0, 2, 3, . . . , r, r + 2). Then ρ(lR, y1, . . . , yg−1) = 0, ρ(lEj , xj) = 0 for 2 ≤ j ≤ g− 1
and ρ(lE1 , y1, y) = −1. A close inspection shows that there are three numerical
possibilities:

(α) alR(y1) = (0, 2, 4, 5, . . . , r, r + 1, r + 3) and then y1 − y ∈ Pic0(E1)[2].
This contribution will be equal to 3(g−1) multiplied by the number of gr

d’s on R
having ordinary cusps at g−2 general points and vanishing (0, 2, 4, . . . , r+1, r+3)
at another fixed point. By Schubert calculus this number equals the product of
Schubert cycles σg−2

(0,1,...,1) · σ(0,1,2,...,2,3) ∈ H∗(G(r, d)).

(β) alR(y1) = (0, 3, 4, . . . , r + 1, r + 2), in which case y− y1 ∈ Pic0(E1)[r + 2].
The number we get in this situation is (g− 1)((r + 2)2 − 1)σg−2

(0,1,...,1) · σ(0,2,...,2) ∈
H∗(G(r, d)).

(γ) alr (y) = (1, 2, 4, . . . , r +1, r +2) and then y−y1 ∈ Pic0(E1)[r]. We obtain a
final contribution of (g−1)(r2−1)σg−2

(0,1,...,1) ·σ(0,0,1,...,1) ∈ H∗(G(r, d−1)). Adding
all these together and using (3), we obtain that the total intersection number is

C̄1 · Lin
r
d(1) =

N r(r + 1)(r + 2)(rs + 2s2 − 4 + s)
s + r + 1

,

which leads to

µ =
Nr(r + 1)(r + 2)(s− 1)(s + 1)(rs + s + 4)

2(s + r + 1)(rs + s− 2)(rs + s− 1)(rs + s + 1)

and then the stated formulas for the λ and δirr coefficients. We also note that the
δj:∅ coefficient of Lin

r
d equals the δj:∅ = δg−j:1 coefficient of Lin

r
d(1) and this is

equal to j(g− j)µ+ j( j + 1)ν/2 and we obtain the desired expression for bj:0. Next
we determine the coefficient c of the ψj classes. We introduce the divisor Lin

r
d(2)



862 GAVRIL FARKAS

on Mg,2 obtained by letting x2, . . . , xr+1 coincide while keeping x1 apart. Then

Lin
r
d(2) = {[C, x1, x2]∈Mg,2: ∃L ∈ Wr

d(C) such that h0(L⊗OC(−x1 − rx2))≥1}

and we can write Lin
r
d(2) ≡ N(aλ+cψ1+c2ψ2−e12δ0:12−· · ·) (that is, the λ and ψ1

coefficients coincide with those of Lin
r
d). We intersect Lin

r
d(2) with two curves in

Mg,2: consider a curve C of genus g and define C̃1 := {[C, x1, x2]}{x2 moves on C}
and C̃2 := {[C, x1, x2]}{x1 moves on C}. Then C̃2 ·Lin

r
d(2) = N(c2 +(2g−1)c−e12) =

N(d−r) and C̃1 ·Lin
r
d(2) = N((2g−1)c2 +c−e12) = N(r+1)(d−1+(r−1)(g−1)).

(The first identity is obvious, for the second, use that what we are counting is
the total number of ramification points on all linear series L ⊗ OC(−x1), where
L ∈ Wr

d(C) and x1 ∈ C is a fixed general point.) We thus have a system of two
equations in the unknowns c, c2 and e12, but we can also use that e12 equals
the ψ coefficient of Lin

r
d(1) = (π2)∗(Lin

r
d(2) · δ0:12), where π2: Mg,2 → Mg,1

is the map forgetting the second point. Thus e12 = νg(g + 1)/2, which gives us
enough relations to determine c. We note that in this way we also determine
b0:2 = (2rs + r + s− 1)/(rs + s− 1).

To compute the coefficient bj:t for 1 ≤ t ≤ r + 1 we consider another test
curve defined as follows: we fix integers 1 ≤ j ≤ g−1 and 1 ≤ t ≤ r+1, together
with general pointed curves [C, y, x2, . . . , xt] ∈ Mj,t and [Y , y, xt+1, . . . , xr+1] ∈
Mg−j,r−t+2. We define the test curve C̄j,s := {C∪yY , x1, . . . , xt, xt+1, xr+1}x1∈C (thus
x1 is the moving point on the genus j component). Then we have the relation

C̄j,t · Lin
r
d = (2j + 2t − 3)c− (t − 1)b0:2 + bj:t − bj:t−1,(11)

which can be used to compute bj:t provided we know bj:t−1 (note that we have
already computed bj:∅ for all j).

We now describe directly the intersection cycle C̄j,t ·Lin
r
d. Since [C, y] ∈Mj,1

and [Y , y] ∈ Mg−j,1 are general, on the stable Y ∪y C there will be precisely
N limit gr

d’s which can be described as follows: We first choose a Schubert
(ramification) sequence max{0, j − t} ≤ α0 ≤ · · ·αr ≤ j such that

∑r
i=0 αi = rj.

Then we choose lY ∈ Gr
d(Y) having vanishing sequence (alY (y) = αi + i)0≤i≤r;

in fact there will be σg−j
(0,1,...,1) · σ(α0,...,αr) ∈ H∗(G(r, d)) such linear series. On C

we choose a complementary linear series lC ∈ Gr
d(C) with vanishing sequence

(alC
i (y) = rs + i − αi)0≤i≤r; there are σj

(0,1,...,1) · σ(rs−αr ,...,rs−α0) ∈ H∗(G(r, d))
choices. Every limit linear series on C∪yY appears in this way and the intersection
C̄j,t · Lin

r
d is everywhere transverse (cf. [EH3]). We also have the identity

N =
∑

j−t≤α0≤···≤αr≤j,
∑r

l=0
αl=j

(
σg−j

(0,1,...,1) · σ(α0,...,αr)

)
(12)

×
(
σj

(0,1,...,1) · σ(rs−αr ,...,rs−α0)

)
.
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If l = {lC, lY} is one of these N limit gr
d’s corresponding to a sequence (α0 ≤

· · · ≤ αr) as above, the condition that there exists x1 ∈ C such that the divisor
x1 + · · · + xr+1 is the specialization of a linear divisor with respect to a gr

d on
a nearby smooth curve, can be translated as follows: there exist sections σY ∈
|lY |,σC ∈ |lC| such that div(σY ) ≥ xt+1 + · · · + xr+1 and div(σC) ≥ x1 + . . . + xt;
the sections σC and σY being the limit linear series specializations of a single
section on a nearby smooth curve, they must also satisfy the compatibility relation
ordy(σY ) + ordy(σC) = rs + r. Because the fixed points xt+1, . . . , xr+1 ∈ Y are
general, they impose independent conditions on lY which quickly leads to the
equalities ordy(σY ) = alY

t−1(y) = αt−1 + t − 1, hence ordy(σC) = alC
r−t+1(y). Thus

div(σC) ≥ alC
r−t+1(y)+x2 + . . .+xb and up to multiplication by scalars, the sections

σC and σY are unique with this property. For each σC we have precisely d −
alC

r−t+1(y)− (t − 1) = αt−1 choices for x1 ∈ C. Therefore

C̄j,t · Lin
r
d =

∑
α0≤···≤αr

αt−1

(
σg−j

(0,1,...,1) · σ(α0,...,αr)

)
(13)

·
(
σj

(0,1,...,1) · σ(rs−αr ,...,rs−α0)

)
.

For j = 0 the only sequence (αl)0≤l≤r allowed is the sequence (0, . . . , 0) which
shows that C̄0:t · Lin

r
d = 0 for all 3 ≤ t ≤ r + 1. Since b0:2 has already been

determined, applying (11) we obtain the stated formulas for b0:t. Similarly, for
j = 1 the only sequence allowed is (0, 1, . . . , 1) and then C̄1:t ·Lin

r
d = N for t ≥ 2,

while C̄1:1 ·Lin
r
d = 0; this allows us to determine b1:t for all t. When j ≥ 2 for each

sequence (αl)0≤l≤r appearing in this sum, we have the inequalities rj =
∑r

l=0 αl ≤
tαt−1 + (r + 1− t)j, therefore αt−1 ≥ (t− 1)j/t and then C̄j,t ·Lin

r
d ≥ N(t− 1)j/t.

To obtain the desired bound on bj:t we use repeatedly (11) and we can write

bj:t − bj:0 =

(
t
2

)
b0:2 − (2bj + b2 − 2b)c +

t∑
l=1

C̄j,l · Lin
r
d.

Using the previous inequality we can now check that bj:t ≥ bj:0.

4.3. The divisor of n-fold points. We describe another way of constructing
effective divisors on Mg,n. Instead of looking at loci of points [C, x1, . . . , xn] ∈
Mg,n for which the points x1, . . . , xn become linearly dependent in a suitable
embedding of C, we can consider the loci where the marked points give rise to
an n-fold point on a suitable model of C. Given [C] ∈ Mg and a linear series
l = (L, V) ∈ Gr

d(C), we say that the divisor Γ := x1 + · · · + xn is an n-fold point
for C and l if dim

(
V ∩ H0(L⊗OC(−Γ))

)
≥ r.
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Definition 4.8. Fix integers g, r, d, n ≥ 1 such that ρ(g, r, d)− r(n− 1) = −1.
We define the locus of n-fold points in Mg,n

Nfold
r
g,d := {[C, x1, . . . , xn] ∈Mg,n: ∃L ∈ Wr

d(C)

with dim H0(L(−x1 − · · · − xn)) = r}.

We have computed the class of Nfoldr
g,d in the case r = 1. The calculation is

along the same lines as that of the class of Lin
r
d in Theorem 4.6:

THEOREM 4.9. Fix integers g ≥ 1 and n ≥ 0 such that d := (g + n)/2 ∈ Z.
The class of the compactification of the divisor Nfold1

g,d of n-fold points on Mg,n

is given by the formula:

Nfold
1
g,d ≡

(
10n

g− 2

(
g− 2
d − 1

)
− n

g

(
g
d

))
λ

+
n− 1
g− 1

(
g− 1
d − 1

)
n∑

j=1

ψj −
n

g− 2

(
g− 2
d − 1

)
δirr

−
∑
t≥2

t(n2 − g + tgn− tn)
2(g− 1)(g− d)

(
g− 1

d

)∑
|S|=t

δ0:S − · · · .

Proof. The coefficients of λ, δirr and ψj (1 ≤ j ≤ n) in the expansion of

Nfold
1
g,d equal the coefficients of λ, δirr and ψ respectively in the expansion of

the divisor Nfold
1
g,d(1) on Mg,1 obtained from Nfold

1
g,d by letting the points

x1, . . . , xn ∈ C coalesce. Clearly,

Nfold
1
g,d(1) := {[C, x] ∈Mg,1: ∃L ∈ W1

d (C) with h0(C, L(−n · x)) ≥ 1},

and this is a ”pointed” Brill-Noether divisor on Mg,1 in the sense of [EH4].
To compute the class of its compactification in Mg,1 once again we use [EH4],

Theorem 4.1 and write Nfold
1
g,d(1) ≡ µ ·BN +ν ·W , where the divisor classes BN

and W have the same significance as in the proof of Theorem 4.6. By applying
[Log], Theorem 4.5, we find that

µ =
6n

(g + 1)(g− 2)

(
g− 2
d − 1

)
and ν =

n(n− 1)(n + 1)
g(g− 1)(g + 1)

(
g
d

)
.

The remaining coefficients of [Nfold
1
g,d] are determined by intersecting the locus

Nfold
1
g,d with the fibral test curves lying entirely in the boundary divisors of

Mg,n. The calculation is straightforward and relies on Section 3 from [Log]. We
skip these details.
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5. The Kodaira dimension of Mg,n. In this section we prove Theorem
1.10. We treat each case individually but for each g we only work out the case of
the minimal n = n(g) for which our methods show that Mg,n(g) is of general type.
From this it follows automatically that Mg,n is of general type for all g ≥ g(n)
(see [Log], Theorem 2.4).

Proof of Theorem 1.10. [M4,16] and [M6,16]. We consider the divisor Mrc2
4,0

on M4,15 introduced in Theorem 4.2. We have seen that Mrc
2
4,0 ≡ −37λ +

3
∑1

j=1 5ψj +3δirr−7
∑
|S|=2 δ0:S−· · · . We consider the maps πj: M4,16 →M4,15

obtained by forgetting the marked point labeled by 1 ≤ j ≤ 16. Then there exists
a constant α > 0 such that

16∑
j=1

(πj)
∗(Mrc

2
4,0) ≡ α

−37λ +
45
16

1∑
j=1

6ψj + 3δirr −
13
2

∑
|S|=2

δ0:S − · · ·

 .

The class of the Petri divisor on M4 being (up to a > 0 constant) 17λ−2δirr−· · ·,
we obtain that KM4,16

is big, being a positive combination of
∑16

j=1 (πj)∗(Mrc
2
4:0),

the pull-back of the Petri class, an ample class and boundary divisors. The same
argument works in the case of M6,16 except that we start with the divisor Mrc

1
6,0

on M6,15 which is pulled back to M6,16 in all possible ways.
[M5,15]. On M5,12 we have the identity of divisor classes

Mrc
1
5,0 ≡ −13λ + 2

1∑
j=1

2ψj + δirr − 5
∑
|S|=2

δ0:S − · · · .

Pulling this class back to M5,15 in all possible ways by forgetting sets of three
marked points, we obtain that the class −66λ+ 42

5

∑15
j=1 ψj + 5δirr−· · · is effective

on M5,15. Using the Brill-Noether class 8λ−δirr−· · · on M5, we get that KM5,15

is a big class.
[M18,9]. We use our divisor Lin

8
24: there is a positive constant α such that

αLin
8
24 ≡ 290λ + 24

9∑
j=1

ψj − 45δirr − · · · .

On the other hand the class of the multiple of the Petri divisor GP8
18,24 on M18

is equal to 302
45 λ − δ0 −

∑9
j=1 bjδj, where bj > 1 for j ≥ 1. It follows that we

can write KM18,9
as a positive combination of multiples of Lin

8
24, π∗(GP8

18,24),

boundary divisors and an ample class on M18,9.
[M19,7] and [M14,10]. In these cases we use the divisors of n-fold points,

Nfold
1
19,13 on M19,7 and Nfold

1
14,12 on M14,10 respectively. Using Theorem 4.9
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we see that the canonical bundle of Mg,n can be written as a positive combination
of these divisors, the pull-back of the Brill-Noether divisor from M19 and M14

respectively, a suitable ample class and boundary divisors.
[M15,10]. We use a slightly different technique. On M15,11 we have the

divisor Nfold
1
15,13 of points [C, x1, . . . , x11] such that x1 + · · · + x11 appears in a

fibre of a g1
13 on C. We push this divisor down to M15,10 by letting two of the

points xj ∈ C coalesce, that is, we define

E :=
1
11

10∑
j=1

(πj)∗(Nfold
1
15,13 · δ0:j,11),

where πj: M15,11 →M15,10 forgets the marked point labeled by j. It is easy to
check using Theorem 4.9 that

E ≡ 33λ +
396
5

10∑
j=1

ψj − 11δirr

− · · ·
(

use that (πj)∗(ψj · δ0:j,11) = (πj)∗(ψ11 · δ0:j,11) = 0
)

.

It turns out that KM15,11
is in the span of E,π∗(M3

15,14), an ample class and
boundaries.

[M20,6]. From [Log] Theorem 5.4, one knows that the class −λ+ 22
3

∑6
j=1 ψj−

0 · δirr − · · · is effective on M20,6. Next, if χi,j: M20,6 →M21 denotes the map
which associates to a 6-pointed curve of genus 20 a nodal curve of genus 21
obtained by identifying the marked points labeled i and j, we also get that the
class

∑
i<j

χ∗i,j(Z21,0) ≡ c

2459
377

λ +
1
3

6∑
j=1

ψj − δirr − · · ·

 ,

with c > 0, is also effective on M20,6. The conclusion now follows easily.
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