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Abstract. Let p1, . . . , p9 be the points in A2(Q) ⊂ P2(Q) with coordinates

(−2, 3), (−1,−4), (2, 5), (4, 9), (52, 375), (5234, 37866), (8,−23), (43, 282),
(1

4
,−33

8

)
respectively. We prove that, for any genus g, a plane curve of degree 3g having a g-tuple
point at p1, . . . , p8, and a (g − 1)-tuple point at p9, and no other singularities, exists and is
a Brill-Noether general curve of genus g, while a general curve in that g-dimensional linear
system is a Brill-Noether-Petri general curve of genus g.

1. Introduction.

The Petri Theorem asserts that for a general curve C of genus g > 1, the multiplication map

µ0,L : H0(C,L)⊗H0(C,ωC ⊗ L−1)→ H0(C,ωC)

is injective for every line bundle L on C. While the result, which immediately implies the Brill-
Noether Theorem, holds for almost every curve [C] ∈ Mg, so far no explicitly computable
examples of smooth curves of arbitrary genus satisfying this theorem have been known.
Indeed, there are two types of known proofs of the Petri Theorem. These are: the proofs
by degeneration due to Griffiths-Harris [12], Gieseker [11], and Eisenbud-Harris [8], or the
recent proof using tropical geometry [5], which by their nature, shed little light on the explicit
smooth curves which are Petri general; and the elegant proof by Lazarsfeld [15], asserting
that every hyperplane section of a polarised K3 surface (X,H) of degree 2g−2, such that the
hyperplane class [H] is indecomposable is a Brill-Noether general curve, while a general curve
in the linear system |H| is Petri general. However, there are no known concrete examples of
polarised K3 surfaces of arbitrary degree satisfying the requirement above. It is a non-trivial
instance of a theorem of André [1], [16], that there exists polarised K3 surfaces of degree
2g − 2 over a number field, having Picard number one. While the above mentioned results
are all in characteristic zero, it has been observed by Welters [22] that a minor modification
of the proof in [8], proves the Petri Theorem in positive characteristic as well.

This work originated from the paper [2], where a number of explicit families of curves lying
on the projective plane or on a ruled elliptic surface were constructed. For these curves the
question of whether they satisfy the Brill-Noether-Petri condition arises naturally. Among
these families one, already studied by du Val [7], is particularly interesting. Curves in this
family naturally sit on the blow-up of the projective plane in nine points.

The aim of this paper is to show that, by using the methods from [15] and [19], coupled with
Nagata’s classical results [17] on the effective cone of the blown-up projective plane, these
curves provide explicit examples of Brill-Noether-Petri general curves of any genus. They
also provide computable examples of Brill-Noether general curves of any genus.
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In [21], Treibich sketches a construction of Brill-Noether (but not necessarily Petri) curves of
any given genus.

We set the notation we are going to use throughout this note. We denote by S′ the blow-up
of P2 at nine points p1, . . . , p9 which are 3g-general (see the Definition 2.2 below), and we let
E1, . . . , E9 be the exceptional curves of this blow-up. We have that

−KS′ ∼ 3`− E1 − · · · − E9 ,

where ` is the proper transform of a line in P2. As the points pi are general, there exists a
unique curve

(1.1) J ′ ∈ | −KS′ |
which corresponds to a smooth plane cubic passing through the pi’s. We next consider the
linear system on S′

Lg :=
∣∣3g`− gE1 − · · · − gE8 − (g − 1)E9

∣∣.
This is a g-dimensional system whose general element is a smooth genus g curve. Since for
each curve C ′ ∈ Lg, we have that C ′ · J ′ = 1, the point {p} := C ′ ∩ J ′ is independent of
C ′ and is thus a base point of the linear system Lg. Precisely, p ∈ J ′ is determined by the
equation OJ ′

(
gp1 + . . .+ gp8 + (g − 1)p9 + p

)
= OJ ′(3g`|J ′).

Let σ : S −→ S′ be the blow-up of S′ at p, We denote again by E1, . . . , E9 the inverse images
of the exceptional curves on S′ and by E10 the exceptional curve of σ. We let J be the strict
transform of J ′ and C the strict transform of C ′, so that we can write

(1.2)

−KS ∼ J ∼ 3`− E1 − · · · − E10,

C ∼ 3g`− gE1 − · · · − gE8 − (g − 1)E9 − E10 ,

C · J = 0 .

The linear system |C| is base-point-free and maps S to a surface S ⊂ Pg having canonical
sections and a single elliptic singularity resulting from the contraction of J . As we mentioned
above, this linear system was first studied by Du Val in [7].

Definition 1.1. A curve in the linear system |C| as in (1.2) is called a Du Val curve.

In [2] it is proved that Brill-Noether-Petri general curves whose Wahl map

ν :
2∧
H0(C,ωC)→ H0(C,ω⊗3

C )

is not surjective, are hyperplane sections of a K3 surface, or limits of such, and it is shown
that one such limit could be the surface S we just described. This is one of the reasons why
it is interesting to determine whether Du Val curves are Brill-Noether-Petri general. In this
note we answer this question in the affirmative.

Theorem 1.2. A general Du Val curve C ⊂ S satisfies the Brill-Noether-Petri Theorem.

This, on the one hand, gives a strong indication that the result in [2] is the best possible.
On the other hand, and more importantly, Theorem 1.2 provides a very concrete example of
a Brill-Noether-Petri curve for every value of the genus. Since the locus of 3g-general sets of
9 points is Zariski open in the symmetric product (P2)(9), we can choose p1, . . . , p9 to have
rational coefficients. Then Theorem 1.2 implies the following result, which answers a question
raised by Harris-Morrison in [14] p.343, in connection with the Lang-Mordell Conjecture:
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Corollary 1.3. For every g, there exist smooth Brill-Noether-Petri general curves C of genus
g defined over Q.

In Section 5 we make Theorem 1.2 and Corollary 1.3 explicit by proving that the following
set of 9 points in A2(Q) ⊂ P2(Q), lying on the elliptic curve y2 = x3 + 17, is 3g-general, for
every g, in particular they can be used to construct Petri general curves of any genus:

(−2, 3), (−1,−4), (2, 5), (4, 9), (52, 375), (5234, 37866), (8,−23), (43, 282),
(1

4
,−33

8

)
We give two proofs of Theorem 1.2. The first one, in Section 3, uses [17] and holds for every
3g-general set of points p1, . . . , p9 in P2. The second proof, presented in Section 4, works only
for a general sets of points p1, . . . , p9, and relies on the theory of limit linear series and the
proof of the Gieseker-Petri theorem in [8].

Acknowledgements. We are especially grateful to Bjorn Poonen for his help regarding
Section 5 and to Edoardo Sernesi for numerous conversations on the topic of surfaces with
canonical sections. We thank Daniele Agostini, Rob Lazarsfeld and Frank-Olaf Schreyer for
interesting discussions related to this circle of ideas. The last named author thanks the
participants of the Oberwolfach workshop on Singular curves on K3 surfaces and hyperkähler
manifolds for interesting conversations on the same topic. Finally, we thank the referee for
very helpful comments on the original version of this paper.

2. Preliminaries

As in the introduction, we denote by S′ the blow-up of P2 at nine points p1, . . . , p9 and let
E1, . . . , E9 be the corresponding exceptional curves on S′. We then consider the anticanonical
elliptic curve J ′ ⊂ S′ as in (1.1).

Definition 2.1. The points p1, . . . , p9 are said to be k-Cremona general for a positive integer
k, if there exists a single cubic curve passing through them and the surface S′ carries no
effective (−2)-curve of degree at most k. The points p1, . . . , p9 are Cremona general, if they
are k-Cremona general for any k > 0.

Nagata [17] has obtained an explicit characterization of the sets of Cremona special sets, which
we now explain. A permutation σ ∈ S9 gives rise to an isomorphism σ : Pic(S′) → Pic(S′)
induced by permuting the curves E1, . . . , E9. We define the following divisors on S′:

A1 := `− E1 − E2 − E3, A2 := 2`− E1 − · · · − E6,

A3 := 3`− 2E1 − E2 − · · · − E8 and B = 3`−
9∑
i=1

Ei.

It is shown in [17] Proposition 9 and Proposition 10, that a set p1, . . . , p9 consisting of
distinct points is k-Cremona general if and only if the following conditions are satisfied for
all permutations σ ∈ S9:

(2.1)
∣∣σ(nB + Ai)

∣∣ = ∅, for all n ≤ k − i
3

and i = 1, 2, 3.

Since the virtual dimension of each linear system
∣∣nB+Ai

∣∣ is negative, clearly a very general
set of points p1, . . . , p9 is Cremona general.
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We now recall the following classical definition:

Definition 2.2. The points p1, . . . , p9 are said to be k-Halphen special if there exists a plane
curve of degree 3d ≤ k having points of multiplicity d at p1, . . . , p9 and no further singularities.
We say that the set p1, . . . , p9 is k-general if it is simultaneously k-Cremona and k-Halphen
general.

The locus of k-special points defines a proper Zariski closed subvariety of the symmetric
product (P2)(9). If p1, . . . , p9 is a k-Halphen special set, then dim |dJ ′| = 1, thus S′ → P1 is

an elliptic surface with a fibre of multiplicity d ≤ k
3 . If Halph(k) ⊂ (P2)(9) denotes the locus

of k-special Halphen sets, then the quotient Halph(k)//SL(3) is a variety of dimension 9, see
[4] Remark 2.8.

The relevance of both Definitions 2.1 and 2.2 comes to the fore in the following result, which
is essentially due to Nagata [17], see also [6].

Proposition 2.3. The points p1, . . . , p9 are k-general if and only if, for every effective divisor
D on S′ such that

(2.2) D ∼ d`−
9∑
i=1

νiEi , νi ≥ 0 , and D · J ′ = 0,

where d ≤ k, one has D = mJ ′, for some m.

Proof. Clearly we may assume that D is irreducible. From the Hodge Index Theorem, it
follows that D2 ≤ 0. If D2 < 0, then by adjunction D is a smooth rational curve with
D2 = −2. But S′ has no (−2)-curves of degree at most k, for p1, . . . , p9 are k-Cremona
general. If D2 = 0, then applying again the Hodge Index Theorem we obtain that D⊥ = K⊥S′ ,
therefore D ∈ |J ′|. Thus, for an arbitrary effective divisor D, with D · J ′ = 0, we get that
D ∈ |mJ ′|, for some positive integer m ≤ k

3 . From the k-Halphen generality condition, we
obtain dim |mJ ′| = 0, hence D = mJ ′. The reverse implication follows directly from the
definition of a k-general nine-tuple of points. �

Recall Definition 1.1.

Lemma 2.4. If the points p1, . . . , p9 are 3-general, a general Du Val curve of genus g is
smooth and irreducible.

Proof. The linear system |C| on S satisfies the hypothesis of Theorem 3.1 in [13] and it is
then free of fixed divisors. In particular, since by hypothesis J is fixed, the general element
of |C| does not contain J . From Corollary 3.4 of [13] the linear system |C| is also base point
free. This property together with Bertini’s theorem and the fact that C2 > 0, implies that
the general element of C is irreducible and hence smooth.

�

3. A general Du Val curve is a Petri general curve.

Let |C| and S be as in the Introduction. By Lemma 2.4, a general element C of the linear
system |C| is smooth. Let L be a base-point-free line bundle on C with h0(C,L) = r+ 1 and
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consider the homomorphism µ0,L given by multiplication of global sections

µ0,L : H0(C,L)⊗H0(C,ωC ⊗ L−1) −→ H0(C,ωC)

The curve C is said to be a Brill-Noether-Petri general curve, if the map µ0,L is injective for
every line bundle L on C. Consider the Lazarsfeld-Mukai bundle defined by the sequence

0 −→ FL −→ H0(C,L)⊗OS −→ L −→ 0.

Note that H0(S, FL) = 0 and H1(S, FL) = 0. Setting, as usual, EL := F∨L , dually, we obtain
the exact sequence

(3.1) 0 −→ H0(C,L)∨ ⊗OS −→ EL −→ ωC ⊗ L−1 −→ 0.

Here we have used that ωS |C = OC . Clearly c1(EL) = OS(C), but unlike in the K3 situation,

on S we have that H1(S,EL) ∼= H0(C,L)∨ is (r + 1)-dimensional (rather than trivial).
Following closely Pareschi’s proof of Lazarsfeld’s Theorem, [19], [15], (see also Chapter XXI,
section 7 of [3]), one proves the following lemma.

Lemma 3.1. If h0(S, F∨L ⊗ FL) = 1, then Ker µ0,L = 0.

Proof. For the benefit of the reader we outline the proof of this Lemma following very closely
the treatment in [3]. By tensoring the exact sequence (3.1) by FL and taking cohomology,
since H0(S, FL) = 0 and H1(S, FL) = 0, we obtain

H0(S, F∨L ⊗ FL) ∼= H0
(
C,FL|C ⊗ ωC ⊗ L−1

)
.

The twist by ωC ⊗L−1 of the restriction FL|C of the Lazarsfeld-Mukai bundle to C sits in an
exact sequence

(3.2) 0 −→ OC −→ FL|C ⊗ ωC ⊗ L−1 −→ML ⊗ ωC ⊗ L−1 −→ 0

Moreover there is a canonical isomorphism Ker µ0,L
∼= H0(C,ML ⊗ ωC ⊗ L−1). Proposition

5.29 and diagrams (6.1) and (6.2) in [3] show that if η :Wr
d →Mg is the family of |L| = grd’s

over moduli, then the image of dη at a point [C,L], is contained in

(Imµ1)⊥ ⊂ H1(C, TC)

where
µ1 : Kerµ0 −→ H0(C,K2

C) = H1(C, TC)∨

is the Gaussian map defined by diagram (6.1) in [3]. We must show that the coboundary
map δ of the cohomology sequence (3.2) vanishes. Let U ⊂ |C| be the open subscheme
parametrising smooth Du Val curves in the linear system |C| on S, and let f : C → U ⊂ |C|
be the family of smooth curves parametrised by U . Since S is regular, the characteristic map
induces an isomorphism T[C](U) ∼= H0(C,NC/S). Consider the relative family

p :Wr
d(f)→ U

Since p is surjective and C is a general element of U , the differential

dp : T[C,L](Wr
d(f)) −→ T[C](U) = H0(C,NC/S)

is surjective. Since KS|C = OC , we have NC/S = ωC . Let ρ : H0(C,NC/S) → H1(C, TC) be
the Kodaira-Spencer map of the family f . We then get

Im(ρ ◦ dp) ⊂ Im(ρ) ∩ Im(µ1)⊥,

hence
Im(dp) ⊂ Im(ρ∨ ◦ µ1)⊥ ⊂ H0(C,NC/S).
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We set

µ1,S := ρ∨ ◦ µ1 : Kerµ0 → H1(C,ωC ⊗N∨C/S).

Since dp is surjective, we get

µ1,S = 0

In Lemma (7.9) of [3], using only the fact that KS|C is trivial on C, it is proved that µ1,S = δ
up to multiplication by a nonzero scalar. Hence the coboundary map δ is zero. �

Let us go back to the construction of S and S′, and recall the role played by the points
p1, . . . , p9. From the Riemann-Roch theorem on S′, these points are 3g-Halphen general if
and only if

(3.3) H0(J ′,OJ ′(kJ ′)) = H0
(
J,OJ(k(3`−E1−· · ·−E9))

)
= 0 , k = 1, . . . , g (J ∼= J ′)

Theorem 3.2. If p1, . . . , p9 is a 3g-general set, then the general element of |C| is a Brill-
Noether-Petri general curve.

Proof. We use the Lemma above. By contradiction, suppose there is a non-trivial endomor-
phism φ ∈ End(F∨L , F

∨
L ). As in Lazarsfeld’s proof, we may assume that φ is not of maximal

rank. Consider the blow-down σ : S → S′. We have

σ(E10) = p , σ : C ∼= σ(C) = C ′ , σ : J ∼= σ(J) = J ′

Notice that

(J ′)2 = 0 , J ′ · C ′ = 1

Let U := S \ E10
∼= S′ \ {p} =: V . Let F be the sheaf defined on S′ by the exact sequence

0 −→ F −→ H0(C,L)⊗OS′ −→ L −→ 0.

Since

0 −→ H0(C,L)∨ ⊗OS′ −→ F∨ −→ ωC ⊗ L−1(p) −→ 0

is exact, and L is special, F∨ is generated by global sections away from a finite set of points.
Consider the restriction

φ : F∨|V = F∨L|U −→ F∨L|U = F∨|V
By Hartogs’ Theorem, φ extends uniquely to a homomorphism

φ′ : F∨ −→ F∨,

which is non trivial and not of maximal rank. Let

E := Imφ′ , G := Cokerφ′ , G := G/T (G) ,

Set

A = c1(E) , B = c1(G) , T = c1(T (G)) ,

therefore

[C ′] = A+B + T.

Let us prove that A, B, and T are effective or trivial. The assertion for T is clear. As for A
and B it suffices to notice that E and G are generated by global sections away from a finite
set of points because they are positive rank torsion free quotients of F∨ .

Since (J ′)2 = 0, we have that

J ′ ·A ≥ 0 , J ′ ·B ≥ 0 , J ′ · T ≥ 0.
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Since C ′ · J ′ = 1, either J ′ ·A = 0 or J ′ ·B = 0. By Proposition 2.3, either

A = kJ ′ or B = hJ ′,

with k, h ≥ 0. Both cases lead to a contradiction. Suppose A = kJ ′. This means that
OJ ′(A) is a degree-zero line bundle. Let us show that it is the trivial bundle. Since E is
globally generated away from a finite set of points, the same holds for the restriction of its
determinant to J ′. Thus h0(J ′,OJ ′(A)) = h0(J ′,OJ ′(kJ ′)) 6= 0, which contradicts condition
(3.3). To summarize, the non-trivial endomorphism φ cannot exist in the first place and C
is a Brill-Noether-Petri general curve. �

Remark 3.3. If the set p1, . . . , p9 is 3d-Halphen special, the linear system |3d`− d
∑9

i=1Ei|
cuts out on C a g1

d. In particular, one can realize curves of arbitrary gonality as special Du
Val curves.

4. Lefschetz pencils of Du Val curves

In this section we determine the intersection numbers of a rational curve j : P1 →Mg induced
by a pencil of Du Val curves on S with the generators of the Picard group of the moduli
space Mg. Recall that λ denotes the Hodge class and δ0, . . . , δb g

2
c ∈ Pic(Mg) are the classes

corresponding to the boundary divisors of the moduli space. We denote by δ := δ0 + · · ·+δb g
2
c

the total boundary. For integers r, d ≥ 1, we denote by Mr
g,d the locus of curves [C] ∈ Mg

such that W r
d (C) 6= ∅. If ρ(g, r, d) = −1, in particular g + 1 must be composite, Mr

g,d is an

effective divisor. Eisenbud and Harris [9] famously computed the class of the closure of the
Brill-Noether divisors:

(4.1) [Mr
g,d] = cg.d,r

(
(g + 3)λ− g + 1

6
δ0 −

b g
2
c∑

i=1

i(g − i)δi
)
∈ Pic(Mg).

We retain the notation of the introduction and observe that the linear system

Λg−1 :=
∣∣3(g − 1)`− (g − 1)E1 − · · · − (g − 1)E8 − (g − 2)E9

∣∣
appears as a hyperplane in the g-dimensional linear system Lg on the surface S. It consists
precisely of the curves D + J ∈ Lg, where D ∈ Λg−1. We now choose a Lefschetz pencil in
Lg, which has 2g − 2 = C2 base points. Let X := Bl2g−2(S) be the blow-up of S at those
points and we denote by f : X → P1 the induced fibration, which gives rise to a moduli map

j : P1 →Mg.

We compute the numerical features of this Du Val pencil in the moduli space:

Theorem 4.1. The intersection numbers of the Du Val pencil with the generators of the
Picard group of Mg are given as follows:

j∗(λ) = g, j∗(δ0) = 6(g + 1), j∗(δ1) = 1, and j∗(δi) = 0 for i = 2, . . . ,
⌊g

2

⌋
.

As a consequence: j∗([Mr
g,d]) = 0.
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Proof. Using Grothendieck-Riemann-Roch, we have the following formulas valid for the mod-
uli map j induced by f : X → P1:

j∗(λ) = χ(X,OX) + g − 1, j∗(δ) = c2(X) + 4(g − 1).

Clearly χ(X,OX) = 1, therefore j∗(λ) = g. Furthermore, since X is P2 blown up at 2g + 8
points, c2(X) = 12χ(X,OX)−K2

X = 2g+11, and accordingly j∗(δ) = 6g+7. Of these 6g+7
singular curves in the pencil, there is precisely one of type D + J , where D is the proper
transform of a curve in the linear system Λg−1. Note that D · J = 1. Therefore j∗(δ1) = 1.
A parameter count also shows that a general Du Val pencil contains no curves in the higher
boundary divisors ∆i, where i ≥ 2, therefore j∗(δ0) = 6g + 6. Using (4.1), we now compute
j∗([Mr

g,d]) = 0, and finish the proof. �

We record the following immediate consequence of Theorem 4.1

Corollary 4.2. For any choice of nine distinct points p1, . . . , p9 ∈ P2, the Du Val pencil
j(P1) either lies entirely in or is disjoint from any Brill-Noether divisor Mr

g,d.

In particular, notice that when the points p1, . . . , p9 belong to the Halphen stratum Halp(3d),
then the elliptic pencil |dJ ′| on S′ cut out a pencil of degree d on each curve C ′, in particular
gon(C) ≤ d. Such Halphen surfaces S, appear as limits of polarised K3 surfaces (X,H),
where X carries an elliptic pencil |E| with E ·H = k. The enlargement of the Picard group
on the side of K3 surfaces correspond on the Du Val side to the points p1, . . . , p9 becoming
Halphen special.

Remark 4.3. Du Val curves of genus g form a unirational subvariety of dimension

min(g + 10, 3g − 3)

inside the moduli space Mg. In particular, for g = 7, one has a divisor Dv7 of Du Val
curves of genus 7. It would be interesting to describe this divisor and compute the class
[Dv7] ∈ Pic(M7).

4.1. Du Val curves are Petri general: a second proof. We now describe an alternative
approach, based on the theory of limit linear series, to prove a slightly weaker version of
Theorem 1.2. We retain throughout the notation of the Introduction. We denote by BN
(respectively GP) the proper subvariety of Mg consisting of curves [C] having a line bundle
L which violates the Brill-Noether (respectively the Gieseker-Petri) condition. Clearly BN ⊂
GP.

Theorem 4.4. Let S′ be the blow-up of P2 at nine general points p1, . . . , p9 and set as before

Lg :=
∣∣3g`− gE1 − · · · − gE8 − (g − 1)E9

∣∣.
Then a general curve C ′ ∈ Lg satisfies the Petri Theorem. Furthermore, an arbitrary irre-
ducible nodal curve C ′ ∈ Lg satisfies the Brill-Noether Theorem.

Proof. Assume by contradiction, that for a general choice of p1, . . . , p9 ∈ P2, there exists a
nodal curve C ′ ∈ Lg that violates the Brill-Noether condition. We let the points p1, . . . , p9

specialize to the base locus of a general pencil of plane cubics. Then S′ becomes a rational
elliptic surface π : S′ → P1 and E := E9 can be viewed as a section of π.

By a standard calculation, since π∗OS′ = OP1 , we compute that

h0(S′,OS′(gJ ′)) = h0(P1,OP1(g)) = g + 1.
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Similarly, since π∗(OS′(E)) = OP1 , we find that h0(S′,OS′(gJ ′ + E)) = g + 1. Therefore,
every element of the linear system Lg is of the form J1 + · · ·+ Jg + E, where Ji ∈ |OS′(J ′)|
are elliptic curves on S′ and Ji · E = 1, for i = 1, . . . , g.

Let ϕ :M0,g×M
g
1,1 →Mg be the map obtained by attaching to each g-pointed stable rational

curve [R, x1, . . . , xg] ∈ M0,g elliptic tails J1, . . . , Jg at the points x1, . . . , xg respectively.

The symmetric group Sg acts diagonally on the product M0,g ×M
g
1,1, by simultaneously

permuting the markings xi and the tails Ji for i = 1, . . . , g. The map ϕ is Sg-invariant.

Observe that the moduli map m : Lg 99KMg corresponding to the linear system Lg factors

via
(
M0,g ×M

g
1,1

)
/Sg. Since the morphism ϕ is regular, it follows that the variety of stable

limits of Lg, defined as the image π2(Σ) of the graph Lg
π1←− Σ

π2−→Mg of the rational map
m, is actually contained in Im(ϕ).

Using [9] Theorem 1.1, no curve lying Im(ϕ) carries a limit linear series grd with negative
Brill-Noether number (note that all the stable curves in Im(ϕ) are tree-like in the sense of
[9], so the theory of limit linear series applies to them). It follows that Im(ϕ) ∩BN = ∅.

Our hypothesis implies that we can find a family of Du Val curve f : C → (T, 0) over a
1-dimensional base, such that for the general fibre [f−1(t)] ∈ BN , whereas the central fibre
f−1(0) is a (possibly non-reduced) curve from the linear system Lg. Applying stable reduction
to f , we obtain a new family having in the central fibre a stable curve that lies simultaneously
in Im(ϕ) and in BN , which is a contradiction.

Furthermore, the proof of the Gieseker-Petri Theorem in [8], implies that for any choice
of elliptic tails [J1, x1] . . . , [Jg, xg] ∈ M

g
1,1, there exists [R, x1, . . . , xg] ∈ M0,g such that

ϕ
(

[R, x1, . . . , xg], [J1, x1], . . . , [Jg, xg]
)
6∈ GP. This implies that for general p1, . . . , p9 ∈ P2, a

general curve C ′ ∈ Lg satisfies Petri’s condition. �

Remark 4.5. The conclusion of Theorems 1.2 and 4.4 cannot be improved, in the sense that
it is not true that every smooth curve C ′ ∈ Lg verifies the Petri condition. The classes of the
closure of the divisorial components GPrg,d of GP corresponding to line bundles L ∈ W r

d (C)

such that g− (r+ 1)(g− d+ r) = 0, have been computed in [9] Section 5, when r = 1 and in
[10] Theorem 1.6 in general. Taking the pencil j : P1 →Mg considered in Theorem 4.1, we

immediately conclude that j∗([GPrg,d]) 6= 0.

5. An explicit system of nine general points

In this final section we show how, using standard techniques from the arithmetic of elliptic
curves, we can exhibit an explicit system of nine points verifying the genericity assumption
of Definition 2.2 for every k. Throughout this section we use the embedding A2(Q) ↪→ P2(Q).

We start with the elliptic curve E : y2 = x3 + 17, and we denote by p∞ := [0, 1, 0] ∈ E its
point at infinity and use the identification OE(1) = OE(3p∞). If q ∈ E, we denote by −q ∈ E
its inverse element using the group law of E, having p∞ as origin. Observe that the following
points belong to E(Q):

p1 = (−2, 3), p2 = (−1,−4), p3 = (2, 5), p4 = (4, 9), p5 = (52, 375),
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as well as,

p6 = (5234, 37866), p7 = (8,−23), p8 = (43, 282), and p9 =
(1

4
,−33

8

)
.

It is known that ±pi for i = 1, . . . , 8 are the only points in E(Z) − {0}. Using the explicit
formulas for the addition law on E, observe that p4 = p1 − p3, p2 = 2p1 − p3, p5 = 3p1 − p3,
p6 = 4p1 − 3p3, p7 = 2p1, p8 = 2p3 − p1 and p9 = p1 + p3. The following facts are known to
experts, we include an elementary proof for the sake of completeness.

Lemma 5.1. 1) One has E(Q)tors = 0.
2) One has an embedding Z · p1 ⊕ Z · p3 ↪→ E(Q)1.

Proof. For the first part, we use that if p is a prime not dividing the discriminant of E, one
has an embedding E(Q)tors ↪→ E(Fp), see for instance [20] Chapter 7. The curve E has good
reduction at the primes 5 and 7 (in fact, at any prime different from 2, 3 and 17). Therefore,
the torsion subgroup E(Q)tors injects into both E(F5) and E(F7), which are of orders 6 and
13, respectively. It follows that E(Q)tors is trivial. We remark that the same conclusion can
be obtained by applying the Nagell-Lutz Theorem.

We prove that the points p1 and p3 are independent in E(Q). Since E(Q)[2] = 0, it will
suffice to show that no linear combination np1 + mp3 of the points p1 = (−2, 3), p3 = (2, 5)
can be zero, where at least one of m,n ∈ Z is odd. This follows once we show that p1, p3, as
well as p4 = p1 − p3 = (4, 9) are non-zero in the quotient E(Z)/2E(Z). Recall [20] page 58,
that if p = (a, b) ∈ E(Q), then the x-coordinate of the point 2p ∈ E is given by

x(2p) =
a4 − 136

4a3 + 68
.

Assuming p1 ∈ 2E(Z), we obtain that the equation a4 − 136a = 8(a3 + 17) has an integral
solution, which is a contradiction. The proof that p3 6∈ 2E(Z) is identical. If p4 ∈ 2E(Z),
then the equation a4−136a = 16(a3 +17) has an integral solution, again a contradiction. �

Theorem 5.2. The points p1, . . . , p9 are k-general for every integer k.

Proof. The condition that the nine points are k-Halphen special for some k ≥ 0 is precisely
that p1 + · · ·+p9 ∈ E(Q)tors, that is, p1 + · · ·+p9 = 13p1−p3 = 0, which contradicts Lemma
5.1.

To show that the points are Cremona general, we unwind the conditions appearing in (2.1) in
terms of the group law on E. In turns out that if p1, . . . , p9 are Cremona general, then there
exists non-negative integers n1, . . . , n9, not all equal to zero, such that the linear equivalence
n1p1 + · · · + n9p9 ≡ (n1 + · · · + n9)p∞ holds, that is, n1p1 + · · · + n9p9 = 0 ∈ E. Since
with the exception of p4 = p1− p3, each of the points p1, . . . , p9 are combinations of the type
mp1 + np3, with m+ n > 0, we obtain that such a combination of p1 and p3 is equal to zero,
which contradicts the second part of Lemma 5.1. �
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