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For a K3 surface S, a smooth curve C ⊂ S and a globally generated linear series
A ∈ W r

d (C) with h0(C,A) = r + 1, the Lazarsfeld-Mukai vector bundle EC,A is defined
via the following elementary modification on S

(1) 0 −→ E∨
C,A −→ H0(C,A)⊗OS −→ A −→ 0.

The bundles EC,A have been introduced more or less simultaneously in the 80’s by
Lazarsfeld [L1] and Mukai [M1] and have acquired quite some prominence in algebraic
geometry. On one hand, they have been used to show that curves on general K3 sur-
faces verify the Brill-Noether theorem [L1], and this is still the only class of smooth
curves known to be general in the sense of Brill-Noether theory in every genus. When
ρ(g, r, d) = 0, the vector bundle EC,A is rigid and plays a key role in the classification of
Fano varieties of coindex 3. For g = 7, 8, 9, the corresponding Lazarsfeld-Mukai bundle
has been used to coordinatize the moduli space of curves of genus g , thus giving rise to
a new and more concrete model of Mg, see [M2], [M3], [M4]. Furthermore, Lazarsfeld-
Mukai bundles of rank two have led to a characterization of the locus in Mg of curves
lying on K3 surfaces in terms of existence of linear series with unexpected syzygies [F],
[V]. For a recent survey on this circle of ideas, see [A].

Recently, Lazarsfeld-Mukai bundles have proven to be effective in shedding some
light on an interesting conjecture of Mercat in Brill-Noether theory, see [FO1], [FO2],
[LMN]. Recall that the Clifford index of a semistable vector bundle E ∈ UC(n, d) on a
smooth curve C of genus g is defined as

γ(E) := µ(E)− 2

n
h0(C,E) + 2 ≥ 0.

Then the higher Clifford indices of the curve C are defined as the quantities

Cliffn(C) := min
{
γ(E) : E ∈ UC(n, d), d ≤ n(g − 1), h0(C,E) ≥ 2n

}
.

For any line bundle L on C such that hi(C,L) ≥ 2 for i = 0, 1, that is, contributing to
the Clifford index Cliff(C), by computing the invariants of the strictly semistable vector
bundle E := L⊗n, one finds Cliffn(C) ≤ Cliff(C). Mercat [Me1] predicted that for any
smooth curve C of genus g, the following equality

(Mn) : Cliffn(C) = Cliff(C).

should hold. Counterexamples to (M2) have been found on curves lying onK3 surfaces
that are special in Noether-Lefschetz sense, see [FO1], [FO2] and [LN2]. However, (M2)
is expected to hold for a general curve of genus g, and in fact even for a curveC lying on
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aK3 surface S such that Pic(S) = Z·C. For instance, it is known that (M2) holds on M11

outside a certain Koszul divisor (which also admits a Noether-Lefschetz realization),
see [FO2] Theorem 1.3. It is also known that (M2) holds generically on Mg for g ≤ 16,
see [FO1].

It has been proved in [LMN] that rank three restricted Lazarsfeld-Mukai bundles
invalidate statement (M3) in genus 9 and 11 respectively, that is, Mercat’s conjecture
in rank three fails generically on M9 and M11 respectively. This was then extended
in [FO2] Theorem 1.4, to show that on a K3 surface S with Pic(S) = Z · C, where
C2 = 2g − 2, if A ∈ W 2

d (C) is a linear system where d := ⌊2g+8
3 ⌋, the restriction to C

of the Lazarsfeld-Mukai bundle EC,A is stable and has Clifford index strictly less than
⌊g−1

2 ⌋, in particular, statement (M3) fails for the curve C. For further background on
this problem, we also refer to [Me1], [LN1] and [GMN].

The restricted Lazarsfeld-Mukai bundle E|C := EC,A⊗OC sits in the following exact
sequence

(2) 0 −→ QA −→ E|C −→ KC ⊗A∨ −→ 0,

where QA =M∨
A is the dual of the kernel bundle defined by the sequence

0 −→MA −→ H0(C,A)⊗OC −→ A −→ 0.

One then shows [V], [FO2] that the sequence (2) is exact on global sections, that is,

h0(C,E|C) = h0(C,KC ⊗A∨) + h0(C,QA) = g − d+ 2r + 1.

By choosing the degree d minimal such that W r
d (C) ̸= ∅, precisely d = r +

⌊ r(g+1)
r+1

⌋
, it

becomes clear that for sufficiently high g, one has

γ(E|C) < Cliff(C),

that is,E|C , when semistable, provides a counterexample to Mercat’s conjecture (Mr+1).
We prove the following result, extending to rank 4 a picture studied in smaller ranks in
the papers [M1], [V], respectively [FO2].

Theorem 0.1. Let S be a K3 surface with Pic(S) = Z · L, where L2 = 2g − 2 and write

g = 4i− 4 + ρ and d = 3i+ ρ,

with ρ ≥ 0 and i ≥ 6. Then for a general curve C ∈ |L| and a globally generated linear series
A ∈ W 3

d (C) with h0(C,A) = 4, the restriction to C of the Lazarsfeld-Mukai bundle EC,A is
stable.

Note that in Theorem 0.1, dim W 3
d (C) = ρ. The rank 3 version of this result was

proved in [FO2]. We record the following consequence of Theorem 0.1:

Corollary 0.2. For C ⊂ S with g ≥ 20 and Pic(S) = Z · C, we set d :=
⌊4g+14

3

⌋
and

A ∈ W 3
d (C) with h0(C,A) = 4. Then E|C is a stable rank 4 bundle with γ(E|C) < ⌊g−1

2 ⌋. It
follows that the statement (M4) fails for C.

The curvesC appearing in Corollary 0.2 are Brill-Noether general, that is, they satisfy
Cliff(C) = ⌊g−1

2 ⌋, see [L1]. We also show that under mild restrictions, on a very general
K3 surface, the extension (2) is non-trivial and the restricted Lazarsfeld-Mukai bundle
E|C is simple (see Theorem 1.3). We expect that the bundle E|C remains stable also for
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higher ranks r + 1 = h0(C,A), at least when Pic(S) = Z · C. However, our method of
proof based on the Bogomolov inequality, seem not to extend easily for r ≥ 4.

The second topic we discuss in this paper concerns the connection between normal
bundles of canonical curves and Mercat’s conjecture. For a smooth canonically embed-
ded curve C ⊂ Pg−1 of genus g, we consider the normal bundle NC := NC/Pg−1 , and
then we define the twist of the conormal bundle E := N∨

C ⊗K⊗2
C . By direct calculation

det(E) = K
⊗(g−5)
C and rk(E) = g − 2.

In particular, the vector bundle E contributes to Cliffg−2(C) if and only if g ≤ 8. Since
MKC

(−1) = ΩPg−1|C , the bundle E sits in the following exact sequence

(3) 0 −→ E −→MKC
⊗KC

γKC−→ K⊗3
C −→ 0,

where γKC
: H0(C,MKC

⊗KC) → H0(C,K⊗3
C ) is the Gaussian map of C, see [W]. The

map γKC
vanishes on symmetric tensors, hence Ker(γKC

) = I2(KC)⊕Ker(ψKC
), where

ψKC
:= γKC |∧2H0(C,KC )

:
2∧
H0(C,KC) → H0(C,K⊗3

C ),

and I2(KC) = K1,1(C,KC) is the space of quadrics containing the canonical curve C.
The map ψKC

has been studied intensely in the context of deformations in Pg of the
cone over the canonical curve C ⊂ Pg−1, see [W]. It is in particular known [CHM], [V]
that ψKC

is surjective for a general curve C of genus g ≥ 12.
We now specialize to the case g = 7, whenE contributes to Cliff5(C). Then rk(E) = 5

and det(E) = K⊗2
C , therefore µ(E) = 24

5 . It is easy to show that the Gaussian map
ψKC

is injective for every smooth curve C of genus 7 having maximal Clifford index
Cliff(C) = 3. In particular,

H0(C,E) = I2(KC)

is a 10-dimensional space, and γ(E) = 2 + 4
5 < Cliff(C). We establish the following

result:

Theorem 0.3. The normal bundle NC/P6 of every canonical curve C of genus 7 with maximal
Clifford index is stable. In particular, the Mercat conjecture (M5) fails for a general curve of
genus 7.

The proof of Theorem 0.3 uses in an essential way Mukai’s realisation [M3] of a
canonical curve C of genus 7 with Cliff(C) = 3 as a linear section of the 10-dimensional
spinorial variety OG(5, 10) ⊂ P15. In particular, the vector bundle E is the restriction
to C of the rank 5 spinorial bundle on OG(5, 10), which endows E with an extra struc-
ture that only exists in genus 7. Note that the normal bundle of every canonical curve
of genus at most 6 is unstable, and more generally, the normal bundle of a tetragonal
canonical curve of any genus is unstable (see also Section 3). In particular, we have the
following identification of cycles on M7:{

[C] ∈ M7 : NC is unstable
}
= M1

7,4,

where the right hand side denotes the tetragonal divisor on M7. We make the following
conjecture:
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Conjecture 0.4. The normal bundleNC of a general canonical curveC of genus g ≥ 7 is stable.

Note that the stability of the normal bundle NC/Pr of a curve of genus g is not
known even in the case of a non-special embedding C ↪→ Pr given by a line bundle
L ∈ Pic(C) of large degree. This is in stark contrast with the case of the kernel bundle
ML = ΩPr|C(1), whose stability easily follows by a filtration argument due to Lazars-
feld [L2]. For some very partial results in this direction, see [EL]. In general, one can
show by degenerating a canonical curve C ⊂ Pg−1 to the transversal union of two ra-
tional normal curves in Pg−1 meeting in g+1 points that NC is not too unstable. Due to
the fact that the slope µ(NC) is not an integer, this simple minded technique does not
seem to lead to a full solution.
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pitality during the preparation of this work. The second and third authors are partly
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1. SIMPLICITY OF RESTRICTED LAZARSFELD-MUKAI BUNDLES

We fix a K3 surface S, a smooth curve C ⊂ S of genus g and a globally generated
linear series A ∈ W r

d (C), with h0(C,A) = r + 1. Using the evaluation sequence (1), we
form the vector bundle F = FC,A; by dualizing, we obtain an exact sequence for the
dual bundle E = EC,A := F∨

C,A:

(4) 0 −→ H0(C,A)∨ ⊗OS −→ EC,A −→ KC ⊗A∨ −→ 0.

It is well-known [M1], [L1] that c1(E) = [C] and c2(E) = d; moreover h0(S, F ) = 0 and
h1(S,E) = h1(S, F ) = 0. Finally, one also has that

χ(S,E ⊗ F ) = 2− 2ρ(g, r, d);

in particular, if E is a simple bundle, then ρ(g, r, d) ≥ 0. Assuming furthermore that
Pic(S) = Z · C, it is also well-known that both E and F are C-stable bundles on S.

1.1. The rank 2 case. We begin by showing that in rank 2, irrespective of the structure
of Pic(S), a splitting of the restriction E|C can only be induced by an elliptic pencil on
the K3 surface.

Theorem 1.1. Let C ⊂ S be as above and a base point free pencil A ∈ W 1
d (C) of degree

2 < d < g − 1 with KC ⊗A∨ globally generated. The following conditions are equivalent:
(i) E|C ∼= A⊕ (KC ⊗A∨);

(ii) There exists an elliptic pencil N ∈ Pic(S) such that N |C = A.
(iii) h0(S,E ⊗ F ) < h0(C,E ⊗ F |C).

Corollary 1.2. With notation as above, if g ≤ 2d− 2 and A is not induced by an elliptic pencil
on S, then E|C is simple if and only if E is simple.

Note that it is easy to see that if E|C is simple, then E is also simple. It is also known
that if E is simple, then automatically g ≤ 2d− 2.
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Proof. (of Theorem 1.1) (ii)⇒(i). Let N be an elliptic pencil with N |C = A. Consider the
exact sequence

0 −→ N∨ −→ F −→ N(−C) −→ 0.

Its restriction to C gives a splitting of the dual of the sequence (2) characterizing E|C .
Observe that since d < g − 1, there is no morphism from A∨ to K∨

C ⊗A.

(i)⇒(ii). Conversely, suppose that E|C = A⊕ (KC ⊗A∨). Applying Hom(KC ⊗A∨, − )
to the sequence (1), we obtain an exact sequence

0 −→ Ext1(KC ⊗A∨, F ) −→ Ext1(KC ⊗A∨,H0(C,A)⊗OS) −→ Ext1(KC ⊗A∨, A).

Since the extension class [E] ∈ Ext1(KC ⊗ A∨,H0(C,A) ⊗ OS) maps to the trivial ex-
tension in Ext1(KC ⊗ A∨, A), it follows that there exists a rank 2 bundle G on S which
fits into a commutative diagram:

(5) 0

��

0

��
0 // F //

��

H0(A)⊗OS

��

// A // 0

0 // G

��

// E

��

// A // 0

KC ⊗A∨

��

KC ⊗A∨

��
0 0

Using that H0(S, F ) = H1(S, F ) = 0, we obtain H0(S,G) ∼= H0(C,KC ⊗ A∨). Since
h0(S,E) = h0(C,A) + h1(C,A) = h0(C,A) + h0(S,G), and h1(S,E) = 0, it follows that
H1(S,G) = 0. From the second row of (5), we find that H0(S,G(−C)) = 0.

Furthermore, we compute c1(G) = 0 and c2(G) = 2d− 2g + 2. So c2(G) < 0 = c21(G),
that is, G violates Bogomolov’s inequality, and then it sits in an extension

(6) 0 −→M −→ G −→M∨ ⊗ IΓ/S −→ 0,

where Γ is a zero-dimensional subscheme of S, and M ∈ Pic(S) is such that M2 > 0
and M · H > 0 for any ample line bundle H on S. In particular, H0(S,M∨) = 0, and
hence H0(S,M) ∼= H0(S,G) ∼= H0(C,KC ⊗A∨) ̸= 0. Moreover, since

h0(S,M∨ ⊗ IΓ/S) = h1(S,G) = 0,

it also follows that H1(S,M) = 0.
On the other hand H0(S, F ) = 0, which implies that the composed map

M −→ G −→ KC ⊗A∨

is non-zero; in fact, we claim that it is surjective, that is, M |C = KC ⊗A∨. Suppose that
M |C = KC ⊗ A∨(−D′), with D′ ̸= 0 an effective divisor on C. Since h0(S,G(−C)) = 0,
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we have h0(S,M(−C)) = 0, which implies h0(S,M) ≤ h0(C,M |C). Since we assumed
KC ⊗A∨ to be globally generated, we have that

h0(S,M) ≤ h0(C,KC ⊗A∨(−D′)) < h0(C,KC ⊗A∨) = h0(S,M),

a contradiction.
Setting N :=M∨(C), we have shown that N |C = A and there is an exact sequence

0 −→M∨ −→ N −→ A −→ 0.

Since h0(S,M∨) = h1(S,M∨) = 0, it follows that H0(S,N) = H0(C,A). To see that
N defines and elliptic pencil, we infer that the exact sequence above and the identity
h0(S,M) = h1(C,A) imply h1(S,N) = h2(S,N) = 0 and hence N2 = 0 from Riemann-
Roch.

(iii)⇒(i). From the sequence (1) twisted by E(−C) ∼= F , we obtain that

H0(S,E ⊗ F (−C)) ⊂ H0(C,A)⊗H0(S,E(−C)),

and, since F has no sections, it follows that H0(S,E ⊗ F (−C)) = 0. We have an exact
sequence

0 −→ H0(S,E ⊗ F ) −→ H0(S,E ⊗ F |C) −→ H1(S,E ⊗ F (−C)).

The hypothesis implies that H1(S,E ⊗ F (−C)) ̸= 0. From (1) twisted by E(−C) ∼= F ,
we obtain the exact sequence in cohomology

0 −→ H0(C,E|C ⊗K∨
C ⊗A) −→ H1(S,E⊗F (−C)) −→ H0(C,A)⊗H1(S,E(−C)) = 0,

therefore h0(C,E|C ⊗K∨
C ⊗A) ̸= 0. The sequence (2) yields to an exact sequence

0 = H0(C,K∨
C ⊗A⊗2) −→ H0(C,E|C ⊗K∨

C ⊗A) −→ H0(C,OC) → H1(C,K∨
C ⊗A⊗2).

ThenH0(C,E|C⊗K∨
C⊗A) → H0(C,OC) is an isomorphism and under the coboundary

map

H0(C,OC) ∋ 1 7→ 0 ∈ H1(C,K∨
C ⊗A⊗2),

that is, the sequence (2) is split.

Note that we also have h1(S,E⊗F (−C)) = 1 and h0(C,E⊗F |C) = h0(S,E⊗F )+1.

(i)⇒(iii). From the hypothesis and from the sequence (2), we find

h0(C,E|C ⊗A∨) = h0(C,KC ⊗A⊗(−2)) + 1.

Furthermore, h0(S,E ⊗ F ) = h0(C,E|C ⊗ A∨); twist (4) by F and use the vanishing of
h0(F ) and that of h1(F ).

On the other hand, since E|C ∼= A⊕KC ⊗A∨, we have

h0(C,E ⊗ F |C) = 2 + h0(C,KC ⊗A⊗(−2)),

hence h0(C,E ⊗ F |C) = h0(S,E ⊗ F ) + 1. �
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1.2. Lazarsfeld-Mukai bundles of higher rank. We study when the restrictionE|C is a
simple vector bundle. Our main tool is a variant of the Bogomolov instability theorem.

Theorem 1.3. Let S be a K3 surface and C ⊂ S a smooth curve of genus g ≥ 4 such that
Pic(S) = Z · C. We fix positive integers r and d such that

ρ(g, r, d) ≥ 0, g ≥ 2r + 4 and d ≤ 3r(g − 1)

2r + 2
.

Then for any linear series A ∈ W r
d (C) such that h0(C,A) = r + 1 and KC ⊗ A∨ is globally

generated, the restricted Lazarsfeld-Mukai bundle E|C is simple.

Note that in the special case ρ(g, r, d) = 0, the constraints from the previous statement
give rise to the bound g > 2r + 5.

Proof. Step 1. We first establish that the natural extension (2), that is,

0 −→ QA −→ E|C −→ KC ⊗A∨ −→ 0

is non-trivial. Assuming that (2) is trivial. Then there is an injective morphism from
KC ⊗A∨ to E|C and hence a surjective map F (C) → A. Then

G := Ker{F (C) → A}
is a vector bundle of rank r + 1 with Chern classes c1(G) = (r − 1)[C] and

c2(G) = c2(F (C))− c1(F (C)) · C + deg(A) = 2d+ r(r − 3)(g − 1).

We compute the discriminant of G

∆(G) = 2rk(G)c2(G)− (rk(G)− 1)c21(G) = 4d(r + 1)− 8r(g − 1) < 0,

hence G is unstable. Applying [HL] Theorem 7.3.4, there exists a subsheaf M ⊂ G with

ξ2M,G ≥ − ∆(G)

r(r + 1)2
,

where ξM,G = c1(M)/rk(M)− c1(G)/rk(G). Setting c1(M) = k · [C] and s := rk(M), the
previous inequality becomes(

k

s
− r − 1

r + 1

)2

(2g − 2) ≥ 8r(g − 1)− 4d(r + 1)

r(r + 1)2
.

Note that M destabilizes G, which coupled with the stability of F (C) yields

r − 1

r + 1
≤ k

s
<

r

r + 1
,

implying after manipulations 2d(r + 1) > 3(g − 1)r, thus contradicting the hypothesis.

Step 2. Assuming that E|C is non-simple, we deduce that the extension (2) splits. We
consider the exact sequence

H0(S,E ⊗ F ) −→ H0(C,E ⊗ F |C) −→ H1(S,E ⊗ F (−C)).
and it suffices to show that H1(S,E ⊗ F (−C)) = 0. Assuming this not to be the case,
twisting (1) by E(−C) induces the exact sequence

H0(C,A⊗ E|C ⊗K∨
C) −→ H1(S,E ⊗ F (−C)) −→ H0(C,A)⊗H1(S,E(−C)).
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Since H1(S,E(−C)) = 0, we obtain that H0(C,A⊗E|C ⊗K∨
C) ̸= 0. Furthermore, QA

is a stable bundle and since µ(QA ⊗A⊗K∨
C) < 0, we find that

H0(C,QA ⊗A⊗K∨
C) = 0,

hence we also have the sequence induced from (2) after twisting with A⊗K∨
C

0 −→ H0(C,E|C ⊗K∨
C ⊗A) −→ H0(C,OC) −→ H1(C,K∨

C ⊗A⊗QA).

We conclude that the coboundary map H0(C,OC) → H1(C,QA ⊗ A ⊗ K∨
C) is trivial,

that is, E|C ∼= QA ⊕ (KC ⊗A∨), which completes the proof. �

2. STABILITY OF RESTRICTED LAZARSFELD-MUKAI BUNDLES

2.1. The rank 2 case. If C ⊂ S is an ample curve, then with one exception (g = 10 and
C a smooth plane sextic), Cliff(C) is computed by a pencil, see [CP] Proposition 3.3. We
show that in rank 2 the semistability of the LM bundle is preserved under restriction.

Theorem 2.1. Let S be a K3 surface, C ⊂ S an ample curve of genus g ≥ 4 and A ∈ W 1
d (C)

a pencil computing Cliff(C). If EC,A is C-semistable on S, then E|C is also semistable on C.
Moreover, if EC,A is C-stable on S, then E|C is stable on C.

Proof. The proof of the stability is similar, and hence we discuss the semistability part
only. We write A = OC(D), where D is an effective divisor on C. Suppose E|C is
unstable and consider an exact sequence

0 −→ L1 −→ E|C −→ KC ⊗ L∨
1 −→ 0,

with deg(L1) ≥ g. Since L1 * A, the composed map L1 → E|C → KC ⊗ A∨ must
be non-zero, that is, L1 = KC(−D − D1), where D1 is an effective divisor on C. Set
d1 := deg(D1). Consider the elementary modification

(7) 0 −→ V −→ E −→ A(D1) −→ 0

induced by the composition E → E|C → A(D1). Then

c1(V ) = 0 and c2(V ) = 2d+ d1 − 2g + 2 < 0,

hence V is unstable with respect to any polarization and fits in an exact sequence

(8) 0 −→M −→ V −→M∨ ⊗ IΓ/S −→ 0,

where Γ ⊂ S is a 0-dimensional subscheme and M is a divisor class that intersects
positively any ample class on S and with M2 > 0. From (7) and (8) we find that
H0(S,M) ∼= H0(S, V ) and H0(S,M(−C)) = 0. Dualizing (7), we obtain the sequence

0 −→ F −→ V ∨ −→ KC(−D −D1) −→ 0,

from which, using that V ∼= V ∨, we obtain H0(S, V ) = H0(C,KC(−D −D1)).
We claim that Cliff(A(D1)) = Cliff(C). Recall that h0(S,E) = h0(C,A) + h1(C,A),

and, from the sequence (7) we write

h0(S,E) ≤ h0(C,A(D1)) + h1(C,A(D1)).

By assumption, the pencil A computes Cliff(C), which implies

Cliff(C) = g + 1− h0(A)− h1(A) ≥ g + 1− h0(A(D1))− h1(A(D1)) = Cliff(A(D1)).
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It follows that Cliff(A(D1)) = Cliff(C), in particularKC(−D−D1) is globally generated.
Clearly, M * F , hence the composition φ : M → V → KC(−D − D1) is non-zero

and one writes Im(φ) = KC(−D −D1 −D2), where D2 is an effective divisor on C. If
D2 ̸= 0, then one has the sequence of inequalities

h0(S,M) ≤ h0(C,KC(−D −D1 −D2)) < h0(C,KC(−D −D1)) = h0(S,M),

a contradiction. Therefore M |C = KC(−D − D1), Viewing M as a subsheaf of E, we
find µ(M) =M · C = deg(L1) > µ(E), thus bringing the proof to an end. �

Remark 2.2. If EC,A is stable, then it is simple and hence d = ⌊g+3
2 ⌋, see [L1]. Con-

versely, if C ′ ⊂ S is an ample curve of genus g and gonality ⌊g+3
2 ⌋, then it was shown

in [LC] that the LM bundle EC,A corresponding to a general curve C ∈ |OS(C
′)| and a

pencil A ∈W 1
⌊ g+3

2
⌋(C) is C-semistable (even stable when g is odd).

2.2. Stability of Lazarsfeld-Mukai bundles of rank four. We show that restrictions of
LM bundles of rank 4 on very general K3 surfaces of genus g ≥ 20 are stable. Similar
results were established in [V] and [FO2] for rank 2 and 3 respectively. We fix integers
i ≥ 6 and ρ ≥ 0 and write

g := 4i− 4 + ρ and d := 3i+ ρ,

so that ρ(g, 3, d) = ρ. Let S be a K3 surface and C ⊂ S a curve of genus g such that
Pic(S) = Z·C, and pick a globally generated linear seriesA ∈W 3

d (C) with h0(C,A) = 4.

Proof of Theorem 0.1. Our previous results show that E|C is simple, hence indecompos-
able. Suppose E|C is not stable and fix a maximal destabilizing sequence

0 −→M −→ E|C −→ N −→ 0.

Put dN := deg(N) and dM := deg(M) = 2g − 2− dN . Since M is destabilizing,

(9)
dM

rk(M)
≥ g − 1

2
,

dN
rk(N)

≤ g − 1

2
.

The bundle N , being a quotient of E, is globally generated. Since H0(C,E|∨C) =
0, clearly N ̸= OC , therefore h0(C,N) ≥ 2. From the inequalities (9) it follows that
rk(N) > 1, because C has maximal gonality.

Step 1. We prove that M is a line bundle. Assume that, on the contrary,

rk(M) = rk(N) = 2

and consider the elementary modification G := Ker{E → N}. Its Chern classes are
given as follows:

c1(G) = −[C], c2(G) = d+ dN − 2(g − 1),

and its discriminant equals ∆(G) = −64i + 110 + 8dN − 14ρ < 0, because of (9). In
particular, there exists a saturated subsheaf F ⊂ G which verifies the inequalities

(10) µ(G) ≤ µ(F ) < µ(E), and

(11) ξ2F,G ≥ −∆(G)

48
.
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Write c1(F ) = α · [C] and rk(F ) = β ≤ 3. The above inequality (11) becomes(
α

β
+

1

4

)2

(2g − 2) ≥ −∆(G)

48
.

We apply (10) for µ(F ) = α(2g − 2)/β and obtain

−1

4
≤ α

β
<

1

4
,

hence α = 0, and the inequality (11) reads in this case dN ≥ 5i − 10 + ρ. Recalling that
dN ≤ g − 1 = 4i− 5 + ρ, we obtain a contradiction whenever i ≥ 6.

Step 2. We construct an elementary modification, in order to reach a contradiction.

From (9), we have dM ≥ g−1
2 . The composite map M → E|C → KC ⊗A∨ is not zero,

for else M ↪→ QA and since µ(QA ⊗M∨) < 0, one contradicts the semistability of QA.
We set A1 := KC ⊗ A∨ ⊗M∨ and obtain a surjection F (C)|C → A ⊗ A1 inducing, as
before, an elementary modification

V := Ker{F (C) → A⊗A1}.

By direct computation we show that ∆(V ) < 0. Indeed, we compute

c1(V ) = 2 · [C], c2(V ) = d+ 2g − 2− dM , hence

∆(V ) = 8c2(V )− 3c21(V ) = 8(d− dM − g + 1) = 8(5− dM − i) < 0.

We obtain a destabilizing sheaf P ⊂ V , with rk(P ) = b ≤ 3 and c1(P ) := a · [C], such
that the following inequalities are both satisfied

(12)
(
a

b
− 1

2

)2

(2g − 2) ≥ −∆(V )

48
and µ(V ) ≤ µ(P ) < µ(F (C)).

The second inequality gives 1
2 ≤ a

b <
3
4 , which leaves two possibilities: either a = 1

and b = 2, when via (12) one finds that ∆(V ) ≥ 0, a contradiction, or else a = 2 and
b = 3, when inequalities (12) and (9) clash. �

3. NORMAL BUNDLE OF CANONICAL CURVES OF GENUS 7

The aim of this section is to prove Theorem 0.3 and we begin by recalling Mukai’s
results [M3] on canonical curves of genus 7. We choose a vector space U := C10 and a
non-degenerate quadratic form q : U → C, defining a smooth 8-dimensional quadric
Q ⊂ P(U) = P9.

The algebraic group Spin(U) corresponding to the Dynkin diagram D5 admits two
16-dimensional half-spin representations S+ and S−, which correspond to maximal
weights α+ and α− respectively. The homogeneous spaces V ± := Spin(U)/P (α±)
are both 10-dimensional and can be realized as the two irreducible components of the
Grassmannian Gq(5, U) of projective 4-planes inside P(U) which are isotropic with re-
spect to the quadratic form q. From now on, we set

V := V + ⊂ P(S+) = P15.
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Note that Aut(V ) = SO(10). If E is the restriction to V of the tautological bundle on
G(5, 10), one has an exact sequence of vector bundles on V :

(13) 0 −→ E∨ −→ U ⊗OV −→ E −→ 0.

By the adjunction formula, smooth curvilinear sections of V are canonical curves of
genus 7 and Mukai [M3] showed that each curve [C] ∈ M7 with Cliff(C) = 3 appears
in this way. Precisely, there is a birational map

α : G(7, 16)//SO(10) 99K M7, α(Λ) := [Λ ∩ V ],

where Λ ∼= P6. Given a curve [C] ∈ M7, the inverse α−1([C]) is constructed precisely
via the twist of the conormal bundle on C mentioned in the introduction.

Let C ⊂ P6 be a smooth canonical curve with Cliff(C) = 3, and set E := N∨
C/P6(2).

One has an identification H0(C,E) = I2(KC) and E is a globally generated bundle.
The tautological map

ϕE : C → G(5,H0(C,E))

is easily shown to be injective and its image lies on V . In particular, the vector bundle
E is the restricted spinorial bundle, that is, E = E|C and one has an exact sequence:

(14) 0 −→ E∨ −→ H0(C,E)⊗ C −→ E −→ 0.

Note that W 1
4 (C) = ∅, while W 1

5 (C) is a curve. We are going to make essential use of
the following fact:

Lemma 3.1. Let C as above and A ∈W 1
5 (C). Then there are no surjections E � A.

Proof. We proceed by contradiction. Assume that there is such a pencil A ∈ W 1
5 (C),

then use the base point free pencil trick to write the following diagram:

(15) 0 // E∨ //

��

H0(C,E)⊗OC

��

// E

��

// 0

0 // A∨ // H0(C,A)⊗OC
// A

��

// 0

0

In particular,H0(C,E⊗A∨) ̸= 0. Via the identificationH0(C,E) = I2(KC), this implies
that if L := KC ⊗A∨ ∈W 2

7 (C), then the multiplication map

Sym2H0(C,L) → H0(C,L⊗2)

is not injective. This is possible only if L is not birationally very ample, in particular, C
must be trigonal, which is not the case. �

We are now in a position to prove that E is a stable vector bundle.

Proof of Theorem 0.3. Suppose that 0 → F → E →M → 0 is a destabilizing sequence for
the vector bundleE, that is, with µ(F ) ≥ µ(E) = 24

5 . SinceE is globally generated, so is
any of its quotient, in particular M too. We distinguish several possibilities, depending
on the ranks that appear:
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(i) rk(F ) = 4 and M is line bundle. Then deg(F ) ≥ 20, hence deg(M) ≤ 4. Since C is
not tetragonal, h0(C,M) ≤ 1. Note that M ̸= OC , for H0(C,E∨) = 0. It follows that M
is not globally generated, a contradiction.
(ii) rk(F ) = 1 and we may assume that deg(F ) = 5. Suppose first that h0(C,F ) = 0,
therefore h0(C,KC ⊗ F∨) = 1, and hence KC ⊗ F∨ is not globally generated. Since one
has a surjection E∨(1) � KC ⊗ F∨, we reach a contradiction by observing that E∨(1)
is globally generated. Indeed, via Serre duality, this last statement is equivalent to the
equality h0(C,E(p)) = h0(C,E) = 10, for every point p ∈ C. From the exact sequence

0 −→ E(p) −→MKC
⊗KC(p) −→ K⊗3

C (p) −→ 0,

we obtain that H0(C,E(p)) = Ker
{
H0(C,MKC

⊗ KC(p)) → H0(C,K⊗3
C (p))

}
. The

conclusion follows, since H0(C,MKC
⊗KC) = H0(C,MKC

⊗KC(p)).
Suppose now that h0(C,F ) ≥ 1. The case h0(C,F ) ≥ 2 having been discarded in the

course of proving Lemma 3, we assume that h0(C,F ) = 1, hence h0(C,KC ⊗ F∨) = 2.
We obtain that the map Sym2H0(C,KC ⊗ F∨) → H0(C,K⊗2

C ⊗ F⊗(−2)) is not injective,
which contradicts the base point free pencil trick.
(iii) rk(F ) = 3, and then deg(F ) ≥ 15, hence deg(M) ≤ 9. This time we may assume
that F is stable. If M is not stable, we choose a line subbundle A ⊂ M of maximal
degree, which we pull-back under the surjection E �M , to obtain the exact sequence

0 −→ G −→ E −→M/A −→ 0.

We obtain that deg(M/A) ≤ deg(M)/2 ≤ 9/2, that is, deg(M/A) ≤ 4. In particular,
M/A is not globally generated, which is again a contradiction, so we can assume that
both F and M are stable vector bundles. Since h0(C,M) + h0(C,F ) ≥ h0(C,E) = 10,
the strategy is to use the fact that the Mercat statements (M2) and (M3) have been
established for curves C of genus 7 with maximal Clifford index, that is,

Cliff2(C) = Cliff3(C) = 3,

see [LN3] Theorem 4.5. In particular, if both F and M contribute to their respective
Clifford indices, that is, h0(C,F ) ≥ 6 and h0(C,M) ≥ 4 respectively, then we write

9

2
+ 3 ≤ 3

2
γ(F ) + γ(M) =

1

2

(
deg(F ) + deg(M)

)
− h0(C,F )− h0(C,M) + 5,

that is, h0(C,F ) + h0(C,M) ≤ 19
2 , a contradiction.

Assume now that one of the bundles F orM does not contribute to its Clifford index.
Since M is globally generated, h0(C,M) ≥ 2. We can have h0(C,M) = 2, only when
M = O⊕2

C , which is impossible, for O⊕2
C is not a direct summand of E. If h0(C,M) = 3,

then deg(M) ≥ 7, and one has equality if and only if M = QL, where L ∈ W 2
7 (C).

Assuming this to be the case, we choose two points p, q ∈ C that correspond to a node in
the plane model ϕL : C → P2, that is,A := L(−p−q) ∈W 1

5 (C). Then there is a surjection
QL � A, which by composition gives rise to a surjection E � A. This contradicts
Lemma 3. Thus we may assume that deg(M) ≥ 8, and accordingly, deg(F ) ≤ 16. Then
we compute

γ(F ) = µ(F )− 2

3
h0(C,F ) + 2 ≤ 16

3
− 14

3
+ 2 < Cliff(C),
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which again contradicts the equality Cliff3(C) = 3.

(iv) rk(F ) = 2, and then deg(F ) ≥ 10 and deg(M) ≤ 14. We may assume this time that
M is stable. If F is not stable, then it has a line subbundle A ↪→ F with deg(A) ≥ 5,
and we are back to case (ii). Thus both M and F are stable bundles, and we proceed
precisely like in case (iii).

�
It is instructive to remark that the normal of a canonical curve of genus g < 7 is never

stable. More generally we have the following:

Proposition 3.2. The normal bundle of a tetragonal canonical curve of genus g is unstable.

Proof. More generally, we begin with a k : 1 covering f : C → P1, and consider the rank
(k− 1)-vector bundle F∨ := f∗OC/OP1 on the projective line. Then π : X = P(F) → P1

is a scroll of dimension k − 1, which contains the canonical curve C and which can be
embedded by the tautological bundle OX(1) in Pg−1 as a variety of degree g − k + 1.
Denoting by H,R ∈ Pic(X) the class of the hyperplane section and that of the ruling
respectively, we have

KX ≡ −(k − 1)H + (g − k − 1)R,

whereas obviously C ·H = 2g− 2 and C ·R = k. We compute the degree of the normal
bundle NC/X and find:

deg(NC/X) = deg(TX|C) + deg(KC) = k(g + k − 1).

We write the usual exact sequence relating normal bundles

0 −→ NC/X −→ NC/Pg−1 −→ NX/Pg−1 ⊗OC −→ 0,

and compare the slopes

µ(NC/X) =
k(g + k − 1)

k − 2
and µ(NC/Pg−1) =

2(g − 1)(g + 1)

g − 2
.

We conclude that for k = 4 and g ≥ 6, the normal bundle NC/X is a destabilizing
subbundle of NC/Pg−1 . For g at most 5, every canonical curve of genus g is a complete
intersection which obviously produces a destabilizing line subbundle. �
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