
DU VAL CURVES AND THE POINTED BRILL-NOETHER THEOREM
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Abstract. We show that a general curve in an explicit class of what we call Du Val
pointed curves satisfies the Brill-Noether Theorem for pointed curves. Furthermore, we
prove that a generic pencil of Du Val pointed curves is disjoint from all Brill-Noether
divisors on the universal curve. This provides explicit examples of smooth pointed curves
of arbitrary genus defined over Q which are Brill-Noether general. A similar result is
proved for 2-pointed curves as well using explicit curves on elliptic ruled surfaces.

The pointed Brill-Noether Theorem concerns the study of linear series on a general
pointed algebraic curve [C, p] with prescribed ramification at the marked point p. Recall
that for a point p ∈ C and a linear series ℓ = (L, V ) ∈ Gr

d(C), one denotes by

αℓ(p) : 0 ≤ αℓ
0(p) ≤ . . . ≤ αℓ

r(p) ≤ d− r

the ramification sequence of ℓ at p. One says that p ∈ C is a ramification point of
ℓ if αℓ

r(p) > 0. For instance, the ramification points of the canonical linear series are
precisely the Weierstrass points of C. The total number of ramification points of ℓ, counted
with appropriate multiplicities, is given by the Plücker formula, see for instance [EH1]
Proposition 1.1. Fixing a Schubert index α : 0 ≤ α0 ≤ . . . ≤ αr ≤ d− r, one can ask when
a general pointed curve [C, p] of genus g carries a linear series ℓ ∈ Gr

d(C) with ramification

sequence αℓ(p) ≥ α. The locus Gr
d(C, p, α) of linear series on C satisfying this condition

is a generalized determinantal variety of expected dimension

ρ(g, r, d, α) := ρ(g, r, d) − w(α),

where ρ(g, r, d) := g − (r + 1)(g − d + r) and w(α) := α0 + · · · + αr is the weight of α.
It is proved in [EH2] Theorem 1.1 that for a general pointed curve [C, p] ∈ Mg,1, each
component of Gr

d(C, p, α), if nonempty, has dimension precisely ρ(g, r, d, α). Moreover,
[EH2] Proposition 1.2 establishes that Gr

d(C, p, α) 6= ∅ if and only if
r∑

i=0

max{αi + g − d+ r, 0} ≤ g.

The proofs in [EH2] rely on limit linear series and degeneration to the boundary of the
universal curve Cg := Mg,1. Up to now, no examples whatsoever of smooth pointed curves
[C, p] ∈ Cg verifying the pointed Brill-Noether Theorem have been known. This situation
contrasts the classical Brill-Noether Theorem; even though the original proof in [GH] used
degeneration to nodal curves, soon afterwards, in his well-known paper [Laz], Lazarsfeld
showed that sections of general polarized K3 surfaces are Brill-Noether-Petri general.
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Since curves in the polarization class of aK3 surface have no obvious distinguished marked
points, it is far from clear how to extend the results of [Laz] to the case of pointed curves.
In [ABFS], an explicit specialization of Lazarsfeld’s curves emerging from the paper [ABS]
is worked out. It is shown that suitably general singular plane curves of degree 3g having
multiplicity g at eight points in P2 and multiplicity g − 1 at a further ninth point verify
the Brill-Noether-Petri Theorem. Such curves, which belong to the closure in Mg of the
locus of curves lying on K3 surfaces, are called Du Val curves of genus g.

One aim of this paper is to show that the Du Val curves introduced in [ABFS] lead to
Brill-Noether general smooth pointed curves of any genus defined over Q. The essential ob-
servation is that, unlike curves on general K3 surfaces, Du Val curves have a distinguished
marked point with respect to which a pointed Brill-Noether Theorem can be established.

We begin by recalling the setting of [ABFS]. Let S′ be the blow-up of P2 at nine points
p1, . . . , p9 which are general in the sense of [ABFS] (see also Section 1 for the precise
definition). Let E1, . . . , E9 be the exceptional curves on S′. We denote by J ′ ∈ | −KS′ |
the unique smooth plane cubic passing through p1, . . . , p9 and consider the linear system
on S′

Lg :=
∣∣3gℓ− gE1 − · · · − gE8 − (g − 1)E9

∣∣,

where ℓ ∈ Pic(S′) is the proper transform of a line in P2. The main result of [ABFS] is
that a general curve C ′ ∈ Lg verifies the Brill-Noether-Petri Theorem. For each g ≥ 1,

the points p1, . . . , p9 determine a 10-th point p10 = p
(g)
10 which is the base point of Lg. In

fact, p10 ∈ C ′ · J ′, for every C ′ ∈ Lg. The point p10 is determined by the relation

(1) p10 = p
(g)
10 = −gp1 − · · · − gp8 − (g − 1)p9 ∈ J ′,

with respect to the group law of the elliptic curve. Under the genericity assumptions on

the points p1, . . . , p9 we started with, the points p
(g)
10 are distinct from one another, as well

as from p1, . . . , p9, see also Proposition 1. As in [ABFS], we set S := Blp10(S) and, by
slight abuse of notation, we denote by E1, . . . , E10 the corresponding exceptional curves.
If C is the strict transform of C ′, then |OS(C)| is a base point free linear system of curves
of genus g having a section induced by E10 (note that C ·E10 = 1).

A pointed Du Val curve is a smooth pointed curve [C, p] ∈ Cg, where C ⊂ S is as above
and {p} = C · E10. Before stating our main results, we recall that for a linear system
ℓ ∈ Gr

d(C) and points p1, . . . , pn ∈ C, the pointed Brill-Noether number is defined as

ρ(ℓ, p1, . . . , pn) := ρ(g, r, d) −w
(
αℓ(p1)

)
− · · · − w

(
αℓ(pn)

)
.

Theorem 1. A general pointed Du Val curve [C, p] verifies the pointed Brill-Noether

Theorem, that is, dimGr
d(C, p, α) = ρ(g, r, d, α), when Gr

d(C, p, α) 6= ∅. In particular, for

every linear system ℓ on C, one has ρ(ℓ, p) ≥ 0.

Since the points p1, . . . , p9 can be chosen to have rational coefficients, p = p
(g)
10 ∈ P2(Q)

and then [C, p] is also defined over Q. Hence, paralleling [ABFS] Corollary 1.3, our The-
orem 1 provides examples of Brill-Noether general pointed curves of arbitrary genus g
defined over Q.
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IfWg denotes the locus of Weierstrass points in Cg (known to be an irreducible divisor on

the universal curve), by direct calculation we show that the image of the family j : P1 → Cg

induced by a Lefschetz pencil of Du Val curves on S satisfies

j(P1) ∩Wg = ∅,

that is, for every pointed Du Val curve [C, p], the marked point p is not a Weierstrass
point of C. As we point out in Corollary 1, this implies that j(P1) is disjoint from all
pointed Brill-Noether divisors on Cg. We refer to Section 1 for detailed background on

pointed Brill-Noether divisors on Cg.

0.1. Brill-Noether general 2-pointed curves on elliptic ruled surfaces. The Brill-
Noether problem can be formulated for n-pointed curves [C, p1, . . . , pn] and concerns
the variety of linear series ℓ ∈ Gr

d(C) having prescribed ramification αℓ(pi) ≥ αi for
i = 1, . . . , n, given in terms of fixed Schubert indices α1, . . . , αn. In Section 2, using
decomposable elliptic ruled surfaces, we exhibit for the first time examples of smooth 2-
pointed curves of arbitrary genus verifying the 2-pointed Brill-Noether Theorem. The
construction is inspired by a very nice note of Treibich [Tre].

We start with an elliptic curve J and a non-torsion line bundle η ∈ Pic0(J). The
decomposable ruled surface

φ : Y := P(OJ ⊕ η) → J

is endowed with two disjoint sections J0 and J1 respectively. Pick a point r ∈ J and
denote by f := φ−1(r) the corresponding ruling of Y . We denote by s = s(g) ∈ J the
point determined by the equation OJ(s − r) = η⊗g. The linear system |gJ0 + f | consists
of curves of genus g and has two base points, namely

{p} := φ−1(r) · J1 and {q} := φ−1(s) · J0,

respectively. We establish the following result:

Theorem 2. The 2-pointed curve [C, p, q] ∈ Mg,2, where C ∈ |gJ0+f | is a general element

and p and q are as above, verifies the 2-pointed Brill-Noether Theorem. In particular, for

every linear series ℓ ∈ Gr
d(C) the inequality ρ(ℓ, p, q) ≥ 0 holds.

A Brill-Noether general 2-pointed curve supports a Brill-Noether general 1-pointed
curve obtained by dropping either marked point. In particular, both 1-pointed curves
[C, p] and [C, q] in the statement of Theorem 2 verify the 1-pointed Brill-Noether Theo-
rem as well. For details, we refer to Section 2. The proofs of both Theorems 1 and 2 are
intimately related, and rely on a canonical degeneration within the corresponding linear
system on the surface to a singular curve with an elliptic tail. This leads to an inductive
argument in the genus, which ultimately proves the desired Brill-Noether type theorems.

Arguably, for many applications, the curves constructed in Theorem 2 are the simplest
known examples of Brill-Noether general smooth curves of arbitrary genus. They combine
two desirable features: (i) The canonical elliptic tail degeneration in |gJ0 + f | provides
a system of Brill-Noether general curves of any genus on the surface Y , which invites
inductive proofs and reduction to genus 1 curves and Schubert calculus problems in the
spirit of limit linear series, and (ii) The general curve in |gJ0 + f | being smooth, one need
not build-up the degeneration set-up typical for limit linear series applications. A vivid
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instance of their use is the recent proof in [FK1] of the Prym-Green Conjecture concerning
the naturality of the resolution of a paracanonical curve ϕKC⊗η : C →֒ Pg−2, where C is
a general curve of odd genus and η is an ℓ-torsion line bundles on C. The conjecture is
proven for odd g and arbitrary ℓ using precisely the curves constructed in Theorem 2. For
a proof of the Prym-Green Conjecture using special K3 surfaces instead — but only in

the range ℓ ≥
√

g+2
2 — see [FK2].

Both classes of curves constructed in Theorems 1 and 2 lie in the closure of the locus
in Mg of curves contained in a K3 surface, see [ABS]. Theorem 4, which is a variation of
the construction in Theorem 2 in the sense that Y is replaced by an indecomposable ruled
surface over an elliptic curve, provides examples of Brill-Noether general pointed curves
which are not limits of K3 section. We refer to the end of Section 2 for details.

Acknowledgments: Section 1 of this paper uses in an essential way the methods devel-
oped in [ABFS]. The first author is grateful to Enrico Arbarello for interesting discussions
related to this circle of ideas. The presentation of the paper clearly benefitted from the
insightful remarks of two referees, whom we thank.

1. Pointed Du Val curves and Weierstrass points

We assume familiarity with the theory of limit linear series in the sense of [EH1]. We
need a few facts concerning divisor classes on the universal curve Cg := Mg,1. The rational

Picard group Pic(Cg) is generated by the Hodge class λ, the relative cotangent class ψ,
the boundary divisor class δirr := [∆irr] of irreducible pointed stable curves of genus g and
by the classes δi := [∆i], where for each i = 1, . . . , g − 1, the boundary divisor ∆i ⊂ Cg

corresponds to a transverse union of two smooth curves of genus i and g − i respectively,
meeting in one point, the marked points lying on the genus i component. If π : Cg → Mg

is the morphism forgetting the marked point, the boundary divisors on Mg and those on

Cg are related by the following formulas:

π∗(δirr) = δirr, π
∗(δi) = δi + δg−i, for 1 ≤ i <

g

2
, and π∗(δ g

2
) = δ g

2
, for g even.

If α : 0 ≤ α0 ≤ . . . ≤ αr ≤ d − r is a Schubert index of type (r, d), we introduce
the complementary Schubert index αc : 0 ≤ d − r − αr ≤ . . . ≤ d − r − α0 ≤ d − r.
When αi = 0 for i = 0, . . . , r, we say that α is the trivial Schubert index. We recall the
definition of pointed Brill-Noether divisors on Cg. Fix integers r, d ≥ 1 and a Schubert
index α : 0 ≤ α0 ≤ . . . ≤ αr ≤ d − r such that the expected dimension of the locus of
linear series of type g

r
d on a curve of genus g with prescribed ramification α at a given

point equals −1. In other words,

ρ(g, r, d, α) := g − (r + 1)(g − d+ r)− w(α) = −1.

Let Cr
g,d(α) :=

{
[C, p] ∈ Cg : Gr

d(C, p, α) 6= ∅
}
be the corresponding pointed Brill-Noether

locus. For instance,

Wg := Cg−1
g,2g−2(0, . . . , 0, 1) =

{
[C, p] ∈ Cg : H

0(C,ωC(−gp)) 6= 0
}

is the divisor of Weierstrass points. Since Wg can be parametrized by the Hurwitz space of

g-fold covers of P1 having a point of total ramification, it follows from [Arb] Theorem 2.5
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that Wg is an irreducible divisor. If ρ(g, r, d) = −1, then Cr
g,d(0, . . . , 0) is the pull-back to

Cg of the Brill-Noether divisor Mr
g,d consisting of curves carrying a g

r
d.

Cukierman [Cuk] computed the class of the closure Wg of the Weierstrass divisor in Cg:

(2) [Wg] = −λ+

(
g + 1

2

)
ψ −

g−1∑

i=1

(
g − i+ 1

2

)
δi ∈ Pic(Cg).

We also recall [EH2] that the class of the pull-back to Cg of the Brill-Noether divisors

M
r
g,d is given by the formula

(3) [C
r
g,d(0, . . . , 0)] = cg,d,r · BN g,

where cg,d,r ∈ Q>0 and

BN g := (g + 3)λ−
g + 1

6
δirr −

g−1∑

i=1

i(g − i)δi ∈ Pic(Cg).

Remarkably, the pointed Brill-Noether divisors only span a 2-dimensional cone in Pic(Cg).

It is shown in [EH3] Theorem 1.2 that C
r
g,d(α) is a proper subvariety of Cg, having a

unique divisorial component. The class of this component, which we shall denote by
[C

r
g,d(α)] ∈ CH1(Cg), can be written as a linear combination

[C
r
g,d(α)] = µ · [Wg] + ν · BN g,

for non-negative rational constants µ and ν, which are determined in [FT].

Definition 1. We say that a pointed curve [C, p] ∈ Cg is Brill-Noether general, if for every
choice of integers r, d and a corresponding Schubert index α of type (r, d), we have

dimGr
d(C, p, α) = ρ(g, r, d, α) or Gr

d(C, p, α) = ∅.

In particular, for every linear series ℓ ∈ Gr
d(C), the inequality ρ(ℓ, p) ≥ 0 holds.

If [C, p] is a Brill-Noether general pointed curve, by letting α be the trivial Schubert
index, we obtain that C is a Brill-Noether general (unpointed) curve.

Lemma 1. A pointed curve [C, p] ∈ Cg carries no linear series ℓ with ρ(ℓ, p) < 0 if and

only if it does not belong to any locus Cr
g,d(α), where ρ(g, r, d, α) = −1.

Proof. One implication being obvious, assume first there exists a linear series ℓ ∈ Gr
d(C)

with w
(
αℓ(p)

)
> ρ(g, r, d) ≥ 0. Then we can find a Schubert index

α′ : 0 ≤ α′
0 ≤ . . . ≤ α′

r ≤ d− r

with w(α′) = ρ(g, r, d) + 1 ≤ w
(
αℓ(p)

)
, such that α′ ≤ αℓ(p) (lexicographically). Hence

ρ(g, r, d, α′) = −1 and [C, p] ∈ Cr
g,d(α

′). Finally, assume we are in the case when there

exists a linear series ℓ ∈ Gr
d(C) with ρ(g, r, d) < −1. Then we can find d′ > d and a

Schubert index α′ : 0 ≤ α′
0 ≤ . . . ≤ α′

r ≤ d′− r with α′
i ≤ d′− d and w(α′) = ρ(g, r, d′)+1.

Hence [C, p] ∈ Cr
g,d′(α

′), which finishes the proof. �
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We now turn to Du Val surfaces. In what follows, we denote by ≡ linear equivalence of
divisors on varieties. Following [ABFS] Proposition 2.3, we recall that a set of nine distinct
points p1, . . . , p9 in P2 is said to be general if on the blown-up plane S′ := Bl{p1,...,p9}(P

2),
every effective divisor

D′ ≡ dℓ− ν1E1 − · · · − ν9E9

with νi ≥ 0 and satisfying D · J ′ = 0 is necessarily a multiple of J ′. In particular, if
p1, . . . , p9 are general points, then the sum p1 + · · ·+ p9 ∈ J ′ is not torsion.

Remark 1. Examples of sets of nine general points in P2(Q) are easy to produce, if one
starts with a concrete elliptic curve defined over Q. For instance, it is shown in [ABFS] that
the following points lying on the elliptic curve E : y2 = x3 + 17 are general: p1 = (−2, 3),
p2 = (−1,−4), p3 = (2, 5), p4 = (4, 9), p5 = (52, 375), p6 = (5234, 37866), p7 = (8,−23),

p8 = (43, 282), and p9 =
(
1
4 ,−

33
8

)
.

Recall the definition (1) of the points p
(g)
10 ∈ J ′, where g ≥ 1.

Proposition 1. Assume that the points p1, . . . , p9 are general. Then for k = 2, . . . , g, the

difference p
(k)
10 − p

(k−1)
10 ∈ Pic0(J ′) is not torsion.

Proof. Using (1), we obtain that p
(k−1)
10 − p

(k)
10 = p1 + · · · + p9 (with respect to the group

law of J ′), for each k ≥ 2. As pointed out, this is not a torsion point on J ′. �

We now introduce the pointed Du Val pencil in Cg, which is a lift under the forgetful

map π : Cg → Mg of the pencil of unpointed curves introduced in Section 4 of [ABFS].
Recall that S := Bl

p
(g)
10

(S′) and we denote by Lg the proper transform of the linear system

on S′ denoted by the same symbol in the Introduction. The linear system of Du Val curves
of genus g − 1 on S, that is,

Λg−1 :=
∣∣3(g − 1)ℓ− (g − 1)E1 − · · · − (g − 1)E8 − (g − 2)E9

∣∣

appears as a hyperplane in the g-dimensional linear system Lg. It consists precisely of
the curves of the form D + J ∈ Lg, where J ⊂ S denotes the proper transform of J ′ and
D ∈ Λg−1. Since J ≡ 3ℓ− E1 − · · · − E10, note that D · J = 1.

We now choose a Lefschetz pencil in Lg, which has 2g − 2 = C2 base points. Let
X := Bl2g−2(S) be the blow-up of S at those points. Since C · E10 = 1 for C ∈ Lg, the

corresponding fibration f : X → P1 has a section induced by the proper transform of E10

on X. This induces a pencil in the universal curve

j : P1 → Cg.

In what follows it will be convenient to use the notation C1 ∪p C2, for a stable curve
consisting of two irreducible components C1 and C2 respectively, meeting transversally at
a point p.

Proposition 2. The intersection numbers of the pointed Du Val pencil with the generators

of Pic(Cg) are as follows:

j∗(λ) = g, j∗(ψ) = 1, j∗(δirr) = 6(g + 1), j∗(δ1) = 1, j∗(δi) = 0 for i = 2, . . . , g − 1.
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Proof. One has j∗(ψ) = −E2
10 = 1. The restrictions of the classes λ, δirr, δ2, . . . , δg−2

follow from [ABFS] Theorem 4.1 and are copied here for the sake of completeness. There
exists precisely one element of the pencil f of the type D + J , for some D ∈ Λg−1. Since
E10 · J = 1 while E10 · D = 0, the marked point lies on the elliptic component of this

singular element. The corresponding pointed stable curve is
[
D ∪

p
(g−1)
10

J ′, p
(g)
10

]
∈ Cg.

Hence j∗(δ1) = 1, and since π∗(δ1) = δ1 + δg−1, it follows that j
∗(δg−1) = 0. �

By direct computation, using (2) and (3), it follows that the pencil j(P1) ⊂ Cg has
intersection number zero with the Brill-Noether class BN g as well as with the Weierstrass

divisor Wg, that is,

j∗(BN g) = (g + 3)g −
g + 1

6
(6g + 6)− (g − 1) = 0, and

j∗([Wg]) = −g +

(
g + 1

2

)
−

(
g

2

)
= 0.

Since the class of any pointed Brill-Noether divisor lies in the cone spanned by these classes
[EH3] Theorem 1.2, it follows that the intersection number of j(P1) with the closure of
any pointed Brill-Noether divisor is zero as well.

We are now in a position to complete the proof of our main result.

Proof of Theorem 1. We shall establish by induction on g that the general member of
the Du Val pencil satisfies the pointed Brill-Noether Theorem. For g = 1, we have that
[C, p] ∈ C1 and it is well-known that each smooth pointed elliptic curve is Brill-Noether
general, see e.g. [EH2] Theorem 1.1. Assuming the statement for Du Val curves of genus
g− 1, suppose by contradiction that there exist r, d ≥ 1 and a Schubert index α such that
dimGr

d(C, p, α) > ρ(g, r, d, α), for each C ∈ Lg, where {p} = C ∩E10.

Let j : P1 → Cg be a Lefschetz pencil of Du Val curves on S. As explained in Proposition

2, the pencil contains a unique elliptic tail degeneration
[
D ∪

p
(g−1)
10

J ′, p
(g)
10

]
, where D is an

element of Λg−1. Then the variety

G
r
d

(
D ∪ J ′, p

(g)
10 , α

)

of limit linear series ℓ = (ℓD, ℓJ ′) ∈ Gr
d(D)×Gr

d(J
′) on D∪

p
(g−1)
10

J ′ satisfying the ramifica-

tion condition αℓ
(
p
(g)
10

)
≥ α is of dimension at least ρ(g, r, d, α) + 1. Note that [D, p

(g−1)
10 ]

can be assumed to be a general Du Val curve of genus g − 1, for every curve from Λg−1

appears as an elliptic tail degeneration in a genus g Du Val pencil.

Let ℓ be a general point of an irreducible component Z of G
r
d

(
D∪J ′, p

(g)
10 , α

)
of maximal

dimension, and set β := αℓD(p
(g−1)
10 ). By the additivity of the Brill-Noether number with

respect to marked points, we write

ρ(g, r, d, α) = ρ
(
ℓ, p

(g)
10

)
≥ ρ

(
ℓD, p

(g−1)
10

)
+ ρ

(
ℓJ ′ , p

(g)
10 , p

(g−1)
10

)
.
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p
(g)
10 p

(g−1)
10 p

(g−k)
10

kJ ′

D = Dg−k

Figure 1. The k-th step of the elliptic tail specialization in a Du Val pencil.

By the construction in [EH1] Theorem 3.3 of the variety of limit linear series, Z is birational
to an irreducible component of the product

Gr
d

(
D, p

(g−1)
10 , β

)
×Gr

d

(
J ′, (p

(g−1)
10 , βc), (p

(g)
10 , α)

)
.

By assumption, each component of Gr
d

(
D, p

(g−1)
10 , β

)
has dimension ρ(g − 1, r, d, β).

Moving to J ′, first observe that ρ
(
ℓJ ′ , p

(g)
10 , p

(g−1)
10

)
≥ 0. Indeed, assuming otherwise, we

denote by (a0, . . . , ar) and (b0, . . . , br) the vanishing sequences of ℓJ ′ at the points p
(g−1)
10

and p
(g)
10 respectively, and obtain that there exist indices 0 ≤ i < j ≤ r such that

ai + br−i = aj + br−j = d.

In particular, the underlying line bundle of the linear series ℓJ ′ corresponds to the divisors

ai · p
(g−1)
10 + br−i · p

(g)
10 ≡ aj · p

(g−1)
10 + br−j · p

(g)
10 , from which it follows that p

(g−1)
10 − p

(g)
10 is a

torsion class in Pic0(J ′), which contradicts Proposition 1.

Furthermore, it implicitly follows from [EH1], and it is spelled-out explicitly in [Oss]
Lemma 2.1, that every 2-pointed elliptic curve [E, x, y] ∈ M1,2, where the difference
OE(x−y) is not a torsion class, is Brill-Noether general. This follows from the observation
that for a line bundle L ∈ Picd(E) which is not given by a divisor on E supported only
at x and y, the flags in H0(E,L) ∼= Cd given by the vanishing of sections at x and y

respectively, are transversal. In particular, Schubert cycles in G
(
r + 1,H0(E,L)

)
defined

in terms of these flags intersect in the expected dimension. Applying this fact to the case
at hand, we find

dimGr
d

(
J ′, (p

(g−1)
10 , βc), (p

(g)
10 , α)

)
= ρ(1, r, d, βc, α) := ρ(1, r, d) − w(βc)− w(α).

Putting all together, we obtain that

ρ(g, r, d, α) < dimZ = dimGr
d

(
D, p

(g−1)
10 , β

)
+ dimGr

d

(
J ′, (p

(g−1)
10 , βc), (p

(g)
10 , α)

)

= ρ(g − 1, r, d, β) + ρ(1, r, d, βc, α) ≤ ρ(g, r, d, α),

which is a contradiction. Therefore, the singular pointed curve
(
D ∪ J ′, p

(g)
10

)
is Brill-

Noether general. �
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Corollary 1. The image of a Du Val pencil j : P1 → Cg is disjoint from all pointed

Brill-Noether divisors C
r
g,d(α).

Proof. As noted in Proposition 2, we have j(P1) · C
r
g,d(α) = 0. Either j(P1)∩C

r
g,d(α) = ∅,

or else, j(P1) ⊂ C
r
g,d(α). The proof of Theorem 1 rules out the second possibility. �

In general it is not known whether Cr
g,d(α) is pure of codimension 1. However, when

this happens, for instance in the case of the Weierstrass divisor Wg, Corollary 1 shows
that every pointed Du Val curve is Brill-Noether general with respect to linear series of
that type.

1.1. Towards the effective cone of Cg. The Slope Conjecture [HM] on effective divisors

on Mg used to predict that the Brill-Noether divisors M
r
g,d of curves with a linear series grd

where ρ(g, r, d) = −1 are extremal. Via Lazarsfeld’s result [Laz], an equivalent formulation
of the Slope Conjecture is that the rational curve R ⊂ Mg induced by a Lefschetz pencil
of genus g curves on a general polarized K3 surface (X,H), with H2 = 2g− 2 is nef, that
is, it intersects every effective divisor on Mg non-negatively. Note that the intersection

numbers of R with the generators of Pic(Mg) are given as follows, see for instance [FP]:

R · λ = g + 1, R · δirr = 6g + 18 and R · δi = 0, for i = 1, . . . ,
⌊g
2

⌋
.

Although the Slope Conjecture is false for high g, see [FP] and [Far], it is known to hold for
g ≤ 9 and g = 11. The statement played an important role in Mukai’s work on alternative
birational models of Mg for g = 7, 8, 9 and has guided the search for geometric divisors

D on Mg having small slope, that is, satisfying R ·D < 0, which necessarily contain the

locus in Mg of curves that lie on K3 surfaces.

It is an interesting question to find an adequate definition of the notion of slope for
effective divisors on the universal curve and an analogue of the Slope Conjecture on Cg.

Problem 1. For what values of g is the Du Val pencil j : P1 → Cg nef, that is, j∗(D) ≥ 0,

for every effective divisor D on Cg? For which g does this inequality hold for all effective

divisors D on Cg such that π(D) = Mg?

In light of Corollary 1, a closely related question is whether the Weierstrass divisor Wg

is extremal in the effective cone Eff(Cg). The hypothesis that Wg is extremal has recently

received further credence due to [Pol]. Note that for the pull-backs to Cg of the effective

divisors on M6i+10 constructed in [Far], Problem 1 has a negative answer. For instance,
when g = 10, the divisor in question is

Z10 :=
{
[C, p] ∈ C10 : C lies on a K3 surface

}
,

and [Z10] = 7λ− 5δirr − δ1 − δ9 − 12δ2 − 12δ8 − · · · ∈ Pic(C10), see [FP] Theorem 1.6. By
applying Proposition 2, we compute j∗([Z10]) = −1 < 0. We are unaware of any example
of an effective divisor D on Cg that is not a pull-back of an effective divisor from Mg and
which satisfies j∗(D) < 0.
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2. Brill-Noether general two-pointed curves via elliptic surfaces

In this section we construct explicit smooth 2-pointed curves of arbitrary genus verifying
the Brill-Noether Theorem. Given a smooth curve C, distinct points p, q ∈ C and two
Schubert indices

α : 0 ≤ α0 ≤ . . . ≤ αr ≤ d− r and β : 0 ≤ β0 ≤ . . . ≤ βr ≤ d− r,

we consider the variety Gr
d

(
C, (p, α), (q, β)

)
of linear series ℓ ∈ Gr

d(C) verifying ramifica-

tion conditions at two points:

αℓ(p) ≥ α and αℓ(q) ≥ β.

We say that [C, p, q] satisfies the 2-pointed Brill-Noether Theorem if for any α and β,

dimGr
d

(
C, (p, α), (q, β)

)
= ρ(g, r, d, α, β) := ρ(g, r, d) − w(α) − w(β),

unless Gr
d

(
C, (p, α), (q, β)

)
= ∅. Eisenbud and Harris [EH2] Theorem 1.1 established the

2-pointed Brill-Noether Theorem for general 2-pointed curves by use of degeneration. As
in the case of 1-pointed curves, up to now no explicit example of a smooth Brill-Noether
general 2-pointed curve has been known. We construct such curves using decomposable
elliptic ruled surfaces.

We start with an elliptic curve J and consider a non-torsion line bundle η ∈ Pic0(J).
Let

φ : Y := P(OJ ⊕ η) → J

be the ruled surface corresponding to a decomposable rank 2 vector bundle. We denote by
J0 and J1 the disjoint sections of Y such that

NJ0/Y = η and NJ1/Y = η∨.

In particular, J2
0 = J2

1 = 0. Observe that J1 ≡ J0 − φ∗(η). We fix a point r ∈ J and let

f = fr := φ−1(r) be the corresponding ruling. For each g ≥ 1, we denote by s = s(g) the
point on the base elliptic curve J determined by

OJ(s
(g) − r) = η⊗g.

Since η is not a torsion class, we have s(g) 6= r, for all g ≥ 1. Furthermore, the difference
s(g) − s(g−1) ∈ Pic0(J) is not a torsion class. As explained in the Introduction, we set

{p} = J1 · fr and {q(g)} := J0 · fs(g) .

Lemma 2. We have that h0(Y,OY (gJ0 + fr)) = g + 1. The general point of the linear

system |gJ0 + fr| is a smooth curve of genus g passing through the points p and q(g).

Proof. By direct calculation, using Riemann-Roch, we find that

h0(Y,OY (gJ0+fr)) = h0
(
OJ (r)⊗Symg(OJ ⊕η)

)
= deg

(
OJ(r)⊗Symg(OJ ⊕η)

)
= g+1.

Furthermore, since KY ≡ −2J0 +φ
∗(η) ≡ −2J1+φ

∗(η∨), from the adjunction formula we
obtain that a smooth curve C ∈ |gJ0 + fr| has genus g.

From [FGP] Proposition 11, since η is non-torsion, the base points of |gJ0 + fr| lie on
J0 + J1 = |−KY |. Since OJ1(gJ0 + fr) = OJ1(p), the point p must lie in the base locus of
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|gJ0 + fr|. Finally, since OJ0(gJ0 + fr) = η⊗g ⊗ OJ0(fr) = OJ0(q
(g)), it follows that q(g)

belongs to each curve C ∈ |gJ0 + fr|. Hence, the base locus of |gJ0 + fr| consists of the

points p and q(g). �

Therefore, on each curve from the linear system |gJ0+fr| we can single out two marked

points, p and q = q(g). These are precisely the points for which the Brill-Noether Theorem
will be proved.

Theorem 3. The 2-pointed curve [C, p, q] ∈ Mg,2, where C ∈ |gJ0 + fr| is general and p

and q := q(g) are as above, verifies the 2-pointed Brill-Noether Theorem, that is,

dimGr
d

(
C, (p, α), (q, β)

)
= ρ(g, r, d, α, β) or Gr

d

(
C, (p, α), (q, β)

)
= ∅,

for all Schubert indices α and β.

Proof. Assume by contradiction that for a 2-pointed curve [C, p, q(g)], where C ∈ |gJ0+ f |
is a general element, the Brill-Noether Theorem fails for certain Schubert indices α and

β, that is, there exists a component of Gr
d

(
C, (p, α), (q, β)

)
whose dimension exceeds

ρ(g, r, d, α, β). Then, similarly to the proof of Theorem 1, we consider a specialization of
C to the sublinear system {J0}+ |(g − 1)J0 + fr| ∼= Pg−1, which appears as a hyperplane
in |gJ0 + fr| ∼= Pg. The 2-pointed curve corresponding to the general element of this
subsystem is a curve of the form

[D ∪ J0, p ∈ D, q(g) ∈ J0] ∈ Mg,2,

where D ∈ |(g − 1)J0 + fr| is a smooth curve of genus g − 1 passing through p and the

point q(g−1) ∈ J0 · fs(g−1) . Note that D ∩ J0 = {q(g−1)}. Observe moreover that under the

isomorphism φ = φ|J0 : J0
∼=
→ J , we have

q(g) − q(g−1) = φ∗(s(g))− φ∗(s(g−1)) = φ∗(η) ∈ Pic0(J0),

that is, the difference q(g) − q(g−1) is not torsion on J0.

The proof now follows by induction. By semicontinuity, the variety of limit linear series
ℓ of type g

r
d on D ∪ J0 verifying the ramification conditions αℓ(p) ≥ α and αℓ(q(g)) ≥ β

must have a component Z of dimension strictly greater than ρ(g, r, d, α, β). Denote by
ℓ = (ℓD, ℓJ0) a general point of Z. We may assume that ℓ is a refined limit linear series.

Set γ := αℓD(q(g−1)). Then Z is birationally isomorphic to the product

Gr
d

(
D, (p, α), (q(g−1), γ)

)
×Gr

d

(
J0, (q

(g−1), γc), (q(g), β)
)
.

By induction on the genus, we may assume that [D, p, q(g−1)] ∈ Mg−1,2 satisfies the
2-pointed Brill-Noether Theorem, in particular

dimGr
d

(
D, (p, α), (q(g−1), γ)

)
= ρ(g − 1, r, d, α, γ).

Since q(g) − q(g−1) ∈ Pic0(J0) is not torsion, as we have observed [J0, q
(g−1), q(g)] ∈ M1,2

is a Brill-Noether general 2-pointed curve, hence

dimGr
d

(
J0, (q

(g−1), γc), (q(g), β)
)
= ρ(1, r, d, γc, β).



12 G. FARKAS AND N. TARASCA

Using the additivity of the Brill-Noether number, we have

dimZ = ρ(g − 1, r, d, α, γ) + ρ(1, r, d, γc, β) = ρ(g, r, d, α, β),

a contradiction. �

Remark 2. Since a Brill-Noether general n-pointed curve supports a Brill-Noether general
m-pointed curve for all m < n obtained by dropping n−m of the marked points, it follows
that the curve C ∈ |gJ0 + fr| satisfies the (unpointed) Brill-Noether Theorem as well.

2.1. Brill-Noether general pointed curves which are not limits of K3 sections.

The Du Val curves considered in [ABFS] and in Section 1 of this paper are known to lie
in the closure in Mg of the locus of curves of genus g lying on a K3 surface. Algebraic

surfaces S ⊂ Pg having canonical hyperplane sections have been classified by Epema
[Epe]. All such surfaces are potentially limits in Pg of smooth polarized K3 surfaces
of degree 2g − 2. A criterion for when such surfaces smooth to K3 surfaces is given in
[ABS] Corollary 26. Du Val surfaces, as well as the decomposable elliptic ruled surfaces
considered in Theorem 2, are minimal models of corresponding instances of such objects,
see [Epe], as well as [ABS] Proposition 29.

It is natural to ask whether there are explicit examples of Brill-Noether general pointed
curves, other than those which are limits of curves on K3 surfaces. The affirmative answer
to this question, provided in Theorem 4 below, uses indecomposable elliptic ruled surfaces
and is inspired by [Tre].

We fix again an elliptic curve J and denote by E the unique indecomposable vector
bundle on J defined by the exact sequence

0 −→ OJ → E −→ OJ −→ 0.

Let ϕ : X ′ := P(E) → J be the induced ruled surface. We fix a point r ∈ J and
set f := ϕ−1(r), therefore f2 = 0. Let J0 ⊂ X ′ be the unique section of ϕ having
NJ0/Y ′ = OJ0 and set {q} := J0 · fr. In a way similar to the proof of Lemma 2, one can
show that the general element of the linear system |gJ0 + f | is a curve of genus g passing
through the point q.

Each curve C ∈ |gJ0 + f | has a distinguished marked point, namely q ∈ C ·J0. In [Tre],
Treibich considers curves in the linear system |gJ0 + f | and sketches an argument using
Fay’s trisecant formula for showing that a general curve C ∈ |gJ0 + f | is Brill-Noether
general. Reasoning in a way very similar to the proof of Theorem 3, we prove the stronger
fact that the general curve [C, q] satisfies the pointed Brill-Noether Theorem.

Since the linear system |gJ0 + f | has a base point, we denote by ǫ : X := Blq(X
′) → X ′

the blow-up of X at q and by E the exceptional divisor. We keep denoting by J0 and
f , the strict transforms of the curves denoted by the same symbols on X ′. Finally, let
C ⊂ X be the strict transform of a curve in the linear system |gJ0 + f |. Then C · E = 1
and C2 = 2g − 1. Since |C| is base point free, a Lefschetz pencil in this linear system
induces a family of pointed curves

ι : P1 → Cg.
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Proposition 3. The numerical features of the pencil ι : P1 → Cg are as follows:

ι∗(λ) = g − 1, ι∗(ψ) = 1, ι∗(δirr) = 6(g − 1), ι∗(δ1) = 1, ι∗(δg−1) = 1,

and ι∗(δi) = 0 for i = 2, . . . , g − 2.

Proof. We blow-up X at the 2g− 1 base points of a Lefschetz pencil in |C| and denote by

h : X̃ → P1 the induced fibration. Clearly h2(X̃,OX̃) = 0 and H1(X̃,OX̃) ∼= H1(J,OJ )

is 1-dimensional, therefore χ(X̃,O
X̃
) = 0. Accordingly,

ι∗(λ) = χ(X̃,OX̃) + g − 1 = g − 1.

By the Noether formula, the total number of singular fibres in the pencil ι is given by

ι∗(δ) = c2(X̃) + 4g − 4 = 12χ(X̃,OX̃)−K2
X̃
+ 4g − 4 = 6g − 4.

In the pencil ι there exists a unique curve from the linear system |(g − 1)J0 + f | + J0,
which is viewed as a hyperplane inside |gJ0 + f |. This singular curve is of the type

(4) t =
[
D ∪ E ∪ J0, q̃ := f · E ∈ E

]
∈ Cg,

where D ∈ |(g − 1)J0 + f | is a smooth curve of genus g − 1 with D ∩ J0 = ∅ (on X).
Note that the rational curve E intersects both D and J0 at one point. Forgetting the
marked point q̃, the stable model of this curve is [D ∪q J0] ∈ Mg. The point t lies on
both boundary divisors ∆1 and ∆g−1, which implies ι∗(δ1) = ι∗(δg−1) = 1, therefore
ι∗(δirr) = 6(g − 1). �

Corollary 2. The numerical features of the pencil ῑ := π ◦ ι : P1 → Mg obtained by

forgetting the marked point, are given by:

ῑ∗(λ) = g − 1, ῑ∗(δirr) = 6(g − 1), ῑ∗(δ1) = 2, ῑ∗(δi) = 0, for i = 2, . . . ,
⌊g
2

⌋
.

Proof. The only thing which has to be observed is that ῑ∗(δ1) = ι∗(δ1) + ι∗(δg−1) = 2. �

Using Proposition 3 it is now immediate to check that the pencil ι, just like the Du Val
pencil, satisfies the relations

ι∗(BN g) = 0 and ι∗([Wg]) = 0.

Theorem 4. The general pointed curve [C, q], where C ∈ |gJ0 + f | and {q} = J0 · f ,
verifies the pointed Brill-Noether Theorem.

Proof. The proof proceeds by induction on g in a way mirroring the proofs of Theorems
1 and 3. Assume by contradiction that the pointed Brill-Noether Theorem fails for every
smooth curve [C, q], where C ∈ |gJ0 + f |. By choosing a Lefschetz pencil ι in |gJ0 + f |
as above, the same conclusion holds for the degenerate pointed curve t = [D ∪ E ∪ J0, q̃].
That is, the variety of limit linear series ℓ of type g

r
d on D ∪ E ∪ J0 such that aℓ(q̃) ≥ α

has a component Z of dimension strictly greater than ρ(g, r, d, α), for some r, d, and α.
For ℓ = (ℓD, ℓE , ℓJ0) a general point of Z, let γD := αℓD(D · E) and γJ0 := αℓJ0 (J0 · E).
Then Z is birationally isomorphic to

Gr
d

(
D, (D · E, γD)

)
×Gr

d

(
E, (E ·D, γcD), (E · J0, γ

c
J0), (q̃, α)

)
×Gr

d

(
J0, (J0 · E, γJ0)

)
.
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Both the 3-pointed rational curve [E,E · D,E · J0, q̃] ∈ M0,3, as well as the 1-pointed
elliptic curve [J0, J0 · E] ∈ M1,1 verify the pointed Brill-Noether Theorem. By induction
the same can be assumed for [D,D ·E] ∈ Cg−1. It follows that

dimZ = ρ(g − 1, r, d, γD) + ρ(0, r, d, γcD , γ
c
J0 , α) + ρ(1, r, d, γJ0) = ρ(g, r, d, α),

a contradiction. �

Remark 3. Using [Epe] page 34, we observe that the indecomposable elliptic surface P(E)
is not the desingularization of a surface in Pg with canonical curve sections. This can
also be seen from the self-intersection formula C2 = 2g − 1 (rather than 2g − 2) on the
blown-up surface X = Blq(X

′).
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