# The Fermat cubic and special Hurwitz loci in $\overline{\mathcal{M}}_{g}$ 

Gavril Farkas*


#### Abstract

We compute the class of the compactified Hurwitz divisor $\overline{\mathfrak{T}}_{d}$ in $\overline{\mathcal{M}}_{2 d-3}$ consisting of curves of genus $g=2 d-3$ having a pencil $\mathfrak{g}_{d}^{1}$ with two unspecified triple ramification points. This is the first explicit example of a geometric divisor on $\overline{\mathcal{M}}_{g}$ which is not pulled-back form the moduli space of pseudo-stable curves. We show that the intersection of $\overline{\mathfrak{T M}}_{d}$ with the boundary divisor $\Delta_{1}$ in $\overline{\mathcal{M}}_{g}$ picks-up the locus of Fermat cubic tails.


## 1 Introduction

Hurwitz loci have played a basic role in the study of the moduli space of curves at least since 1872 when Clebsch, and later Hurwitz, proved that $\mathcal{M}_{g}$ is irreducible by showing that a certain Hurwitz space parameterizing coverings of $\mathbf{P}^{1}$ is connected (see [Hu], or [Fu2] for a modern proof). Hurwitz cycles on $\overline{\mathcal{M}}_{g}$ are essential in the work of Harris and Mumford [HM] on the Kodaira dimension of $\overline{\mathcal{M}}_{g}$ and are expected to govern the length of minimal affine stratifications of $\mathcal{M}_{g}$. Faber and Pandharipande have proved that the class of any Hurwitz cycle on $\overline{\mathcal{M}}_{g, n}$ is tautological (cf. [FP]). Very few explicit formulas for the classes of such cycles are known.

We define a Hurwitz divisor in $\overline{\mathcal{M}}_{g}$ with $n$ degrees of freedom as follows: We fix integers $k_{1}, \ldots, k_{n} \geq 3$ and positive integers $d, g$ such that

$$
k_{1}+k_{2}+\cdots+k_{n}=2 d-g+n-1
$$

[^0]Then $\mathcal{H}_{g: k_{1}, \ldots, k_{n}}$ is the locus of curves $[C] \in \mathcal{M}_{g}$ having a degree $d$ morphism $f: C \rightarrow \mathbf{P}^{1}$ together with $n$ distinct points $p_{1}, \ldots, p_{n} \in C$ such that mult $p_{p_{i}}(f) \geq k_{i}$ for $i=1, \ldots, n$. When $n=0$ and $g=2 d-1$, we recover the Brill-Noether divisor of $d$-gonal curves studied extensively in [HM]. For $n=1$ we obtain Harris' divisor $\mathcal{H}_{g:}$ 的 curves having a linear series $C \xrightarrow{d: 1} \mathbf{P}^{1}$ with a $k=(2 d-g+1)$ fold point, cf. [H]. If $n=1$ and $d=g-1$ then $\mathcal{H}_{g: g-1}$ specializes to S . Diaz's divisor of curves $[C] \in \mathcal{M}_{g}$ having an exceptional Weierstrass point $p \in C$ with $h^{0}\left(C, \mathcal{O}_{C}((g-1) p)\right) \geq 1$ (cf. [Di]).

Since $\mathcal{H}_{g: k_{1}, \ldots, k_{n}}$ is the push-forward of a cycle of codimension $n+1$ in $\mathcal{M}_{g, n}$, as $n$ increases the problem of calculating the class of $\overline{\mathcal{H}}_{g: k_{1}, \ldots, k_{n}}$ becomes more and more difficult. In this paper we carry out the first study of a Hurwitz locus having at least 2 degrees of freedom, and we treat the simplest non-trivial case, when $n=2, k_{1}=k_{2}=3$ and $g=2 d-3$. Our main result is the calculation of the class of $\overline{\mathfrak{T}}_{d}:=\overline{\mathcal{H}}_{2 d-3: 3,3}$. As usual we denote by $\lambda \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$ the Hodge class and by $\delta_{0}, \ldots, \delta_{[g / 2]} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$ the codimension 1 classes on the moduli stack corresponding to the boundary divisors of $\overline{\mathcal{M}}_{g}$ :

Theorem 1.1. We fix $d \geq 3$ and denote by $\mathfrak{T}_{d}$ the locus of curves $[C] \in \mathcal{M}_{2 d-3}$ having a covering $C \xrightarrow{\text { d:1 }} \boldsymbol{P}^{1}$ with two unspecified triple ramification points. Then $\mathfrak{T}_{d}$ is an effective divisor on $\mathcal{M}_{2 d-3}$ and the class of its compactification $\overline{\mathfrak{T M}}_{d}$ inside $\overline{\mathcal{M}}_{2 d-3}$ is given by the formula:

$$
\overline{\mathfrak{T}}_{d} \equiv 2 \frac{(2 d-6)!}{d!(d-3)!}\left(a \lambda-b_{0} \delta_{0}-b_{1} \delta_{1}-\cdots-b_{d-2} \delta_{d-2}\right) \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{2 d-3}\right)
$$

where

$$
\begin{aligned}
& a=24\left(36 d^{4}-36 d^{3}-640 d^{2}+1885-1475\right) \\
& b_{0}=144 d^{4}-528 d^{3}-298 d^{2}+3049 d-2940 \\
& \text { and } b_{i}=12 i(2 d-3-i)\left(36 d^{3}-156 d^{2}+180 d-5\right), \text { for } 1 \leq i \leq d-2
\end{aligned}
$$

The divisor $\overline{\mathfrak{T}}_{d}$ is also the first example of a geometric divisor in $\overline{\mathcal{M}}_{g}$ which is not a pull-back of an effective divisor from the space $\overline{\mathcal{M}}_{g}^{\mathrm{ps}}$ of pseudo-stable curves. Precisely, if we denote by $R \subset \overline{\mathcal{M}}_{g}$ the extremal ray obtained by attaching to a fixed pointed curve $[C, q]$ of genus $g-1$ a pencil of plane cubics, then $R \cdot \lambda=$ $1, R \cdot \delta_{0}=12, R \cdot \delta_{1}=-1$ and $R \cdot \delta_{\alpha}=0$ for $\alpha \geq 2$. If $\delta:=\delta_{0}+\cdots+\delta_{[g / 2]} \in$ $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$ is the total boundary, there exists a divisorial contraction of the extremal ray $R \subset \Delta_{1} \subset \overline{\mathcal{M}}_{g}$ induced by the base point free linear system $|11 \lambda-\delta|$ on $\overline{\mathcal{M}}_{g}$,

$$
f: \overline{\mathcal{M}}_{g} \rightarrow \overline{\mathcal{M}}_{g}^{\mathrm{ps}}
$$

The image is isomorphic to the moduli space of pseudo-stable curves as defined by D. Schubert in [S]. A curve is pseudo-stable if it has only nodes and cusps as singularities, and each component of genus 1 (resp. 0) intersects the curve in at least 2 (resp. 3 points). The contraction $f$ is the first step in carrying out the minimal model program for $\overline{\mathcal{M}}_{g}$, see $[H H]$. One has an inclusion
$f^{*}\left(\operatorname{Eff}\left(\overline{\mathcal{M}}_{g}^{\mathrm{ps}}\right)\right) \subset \operatorname{Eff}\left(\overline{\mathcal{M}}_{g}\right)$. All the geometric divisors on $\overline{\mathcal{M}}_{g}$ whose class has been computed (e.g. Brill-Noether or Gieseker-Petri divisors [EH], Koszul divisors [Fa1], [Fa2], or loci of curves with an abnormal Weierstrass point [Di]), lie in the subcone $f^{*}\left(\operatorname{Eff}\left(\overline{\mathcal{M}}_{g}^{\mathrm{ps}}\right)\right)$. The divisor $\overline{\mathfrak{T}}_{d}$ behaves quite differently: If $i: \Delta_{1}=\overline{\mathcal{M}}_{1,1} \times \overline{\mathcal{M}}_{g-1,1} \hookrightarrow \overline{\mathcal{M}}_{g}$ denotes the inclusion, then we have the relation

$$
\begin{aligned}
i^{*}\left(\overline{\mathfrak{T}}_{d}\right)=\alpha \cdot\{j=0\} \times \overline{\mathcal{M}}_{g-1,1}+ & \overline{\mathcal{M}}_{1,1} \times D= \\
& \alpha \cdot\{\text { Fermat cubic }\} \times \overline{\mathcal{M}}_{g-1,1}+\overline{\mathcal{M}}_{1,1} \times D
\end{aligned}
$$

where $\alpha:=\frac{3(2 d-4)!}{d!(d-3)!}$ and $D \subset \overline{\mathcal{M}}_{g-1,1}$ is an explicitly described effective divisor. Hence when restricted to the boundary divisor $\Delta_{1} \subset \overline{\mathcal{M}}_{g}$ of elliptic tails, $\overline{T N}_{d}$ picks-up the locus of Fermat cubic tails!

The rich geometry of $\overline{\mathfrak{T M}}_{d}$ can also be seen at the level of genus 2 curves. We denote by $\chi: \overline{\mathcal{M}}_{2,1} \rightarrow \overline{\mathcal{M}}_{2 d-3}$ be the map obtained by attaching a fixed tail $[B, q]$ of genus $2 d-5$ at the marked point of every curve of genus 2 . Then the pull-back under $\chi$ of every known geometric divisor on $\overline{\mathcal{M}}_{2,1}$ is a multiple of the Weierstrass divisor $\overline{\mathcal{W}}$ of $\overline{\mathcal{M}}_{2,1}$ (cf. [HM], [EH], [Fa1]). In contrast, for $\overline{\mathfrak{T M}}_{d}$ we have the following picture:
Theorem 1.2. If $\chi: \overline{\mathcal{M}}_{2,1} \rightarrow \overline{\mathcal{M}}_{g}$ is as above, we have the following relation in $\operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)$ :

$$
\begin{aligned}
& \chi^{*}\left(\overline{\mathfrak{T}}_{d}\right)= N_{1}(d) \cdot \overline{\mathcal{W}}+e(d, 2 d-5) \cdot \overline{\mathcal{D}}_{1}+a(d-1,2 d-5) \cdot \overline{\mathcal{D}}_{2}+a(d, 2 d-5) \cdot \overline{\mathcal{D}}_{3}, \\
& \text { where } \mathcal{W}:=\left\{[C, p] \in \mathcal{M}_{2,1}: p \in C \text { is a Weierstrass point }\right\}, \\
& \mathcal{D}_{1}:=\left\{[C, p] \in \mathcal{M}_{2,1}: \exists x \in C-\{p\} \text { such that } 3 x \equiv 3 p\right\}, \\
& \mathcal{D}_{2}:=\left\{[C, p] \in \mathcal{M}_{2,1}: \exists l \in G_{3}^{1}(C), x \neq y \in C-\{p\}\right. \\
&\text { with } \left.a_{1}^{l}(x) \geq 3, a_{1}^{l}(y) \geq 3, a_{1}^{l}(p) \geq 2\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{D}_{3}:=\left\{[C, p] \in \mathcal{M}_{2,1}: \exists l \in G_{4}^{1}(C), x \neq y\right. & \in C-\{p\} \\
& \text { with } \left.a_{1}^{l}(p) \geq 4, a_{1}^{l}(x) \geq 3, a_{1}^{l}(y) \geq 3\right\}
\end{aligned}
$$

The constants $N_{1}(d), e(d, 2 d-5), a(d, 2 d-5), a(d-1,2 d-5)$ appearing in the statement are explicitly known and defined in Proposition 2.1. We used the notation $a_{1}^{l}(p):=\operatorname{mult}_{p}(l)$, for the multiplicity of a pencil $l \in G_{d}^{1}(C)$ at a point $p \in C$. The classes of the divisors $\overline{\mathcal{D}}_{1}, \overline{\mathcal{D}}_{2}, \overline{\mathcal{D}}_{3}$ on $\overline{\mathcal{M}}_{2,1}$ are determined as well (The class of $\overline{\mathcal{W}}$ is of course well-known, see [EH]):
Theorem 1.3. One has the following formulas expressed in the basis $\left\{\psi, \lambda, \delta_{0}\right\}$ of $\operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)$ :

$$
\begin{gathered}
\overline{\mathcal{D}}_{1} \equiv 80 \psi+10 \delta_{0}-120 \lambda, \quad \overline{\mathcal{D}}_{2} \equiv 160 \psi+17 \delta_{0}-200 \lambda \\
\text { and } \overline{\mathcal{D}}_{3} \equiv 640 \psi+72 \delta_{0}-860 \lambda
\end{gathered}
$$

Acknowledgment: I have benefitted from discussions with R. Pandharipande (5 years ago!) on counting admissible coverings.

## 2 Admissible coverings with two triple points

We begin by recalling a few facts about admissible coverings in the context of points of triple ramification. Let $\mathcal{H}_{d}^{\text {tr }}$ be the Hurwitz space parameterizing degree $d$ maps $\left[f: C \rightarrow \mathbf{P}^{1}, q_{1}, q_{2} ; p_{1}, \ldots, p_{6 d-12}\right]$, where $[C] \in \mathcal{M}_{2 d-3}, q_{1}, q_{2}, p_{1}, \ldots, p_{6 d-12}$ are distinct points on $\mathbf{P}^{1}$ and $f$ has one point of triple ramification over each of $q_{1}$ and $q_{2}$ and one point of simple ramification over $p_{i}$ for $1 \leq i \leq 6 d-12$. We denote by $\overline{\mathcal{H}}_{d}^{\text {tr }}$ the compactification of the Hurwitz space by means of Harris-Mumford admissible coverings (cf. [HM], [ACV] and [Di] Section 5; see also [BR] for a survey on Hurwitz schemes and their compactifications). Thus $\overline{\mathcal{H}}_{d}^{\mathrm{tr}}$ is the parameter space of degree $d$ maps

$$
\left[f: X \xrightarrow{d: 1} R, q_{1}, q_{2} ; p_{1}, \ldots, p_{6 d-12}\right]
$$

where $\left[R, q_{1}, q_{2} ; p_{1}, \ldots, p_{6 d-12}\right]$ is a nodal rational curve, $X$ is a nodal curve of genus $2 d-3$ and $f$ is a finite map which satisfies the following conditions:

- $f^{-1}\left(R_{\text {reg }}\right)=X_{\text {reg }}$ and $f^{-1}\left(R_{\text {sing }}\right)=X_{\text {sing }}$.
- $f$ has a point of triple ramification over each of $q_{1}$ and $q_{2}$ and simple ramification over $p_{1}, \ldots, p_{6 d-12}$. Moreover $f$ is étale over each point in $R_{\text {reg }}-\left\{q_{1}, q_{2}, p_{1}, \ldots\right.$, $\left.p_{6 d-12}\right\}$.
- If $x \in X_{\text {sing }}$ and $x \in X_{1} \cap X_{2}$ where $X_{1}$ and $X_{2}$ are irreducible components of $X$, then $f\left(X_{1}\right)$ and $f\left(X_{2}\right)$ are distinct components of $R$ and

$$
\operatorname{mult}_{x}\left\{f_{\mid X_{1}}: X_{1} \rightarrow f\left(X_{1}\right)\right\}=\operatorname{mult}_{x}\left\{f_{\mid X_{2}}: X_{2} \rightarrow f\left(X_{2}\right)\right\} .
$$

The group $\mathfrak{S}_{2} \times \mathfrak{S}_{6 d-12}$ acts on $\overline{\mathcal{H}}_{d}^{\mathrm{tr}}$ by permuting the triple and the ordinary ramification points of $f$ respectively and we denote by $\mathfrak{H}_{d}:=\overline{\mathcal{H}}_{d}^{\text {tr }} / \mathfrak{S}_{2} \times \mathfrak{S}_{6 d-12}$ for the quotient. There exists a stabilization morphism $\sigma: \mathfrak{H}_{d} \rightarrow \overline{\mathcal{M}}_{g}$ as well as a finite map $\beta: \mathfrak{H}_{d} \rightarrow \overline{\mathcal{M}}_{0,6 d-10}$. The description of the local rings of $\overline{\mathcal{H}}_{d}^{\mathrm{tr}}$ can be found in [HM] pg. 61-62 or [BR] and will be used in the paper. In particular, the scheme $\overline{\mathcal{H}}_{d}^{\mathrm{tr}}$ is smooth at points $\left[f: X \rightarrow R, q_{1}, q_{2} ; p_{1}, \ldots, p_{6 d-12}\right]$ with the property that there are no automorphisms $\phi: X \rightarrow X$ with $f \circ \phi=f$.

### 2.1 The enumerative geometry of pencils on the general curve

We shall determine the intersection multiplicities of $\overline{\mathfrak{T}}_{d}$ with standard test curves in $\overline{\mathcal{M}}_{g}$. For this we need a variety of enumerative results concerning pencils on pointed curves which will be used throughout the paper. For a point $p \in C$ and a linear series $l \in G_{d}^{r}(C)$, we denote by

$$
a^{l}(p):\left(0<a_{0}^{l}(p)<a_{1}^{l}(p)<\ldots<a_{r}^{l}(p) \leq d\right)
$$

the vanishing sequence of $l$ at $p$. If $l \in G_{d}^{1}(C)$, we say that $p \in C$ is an $n$-fold point if $l(-n p) \neq \varnothing$. We first recall the results from [HM] Theorem A and [H] Theorem 2.1.

Proposition 2.1. Let us fix a general curve $[C, p] \in \mathcal{M}_{g, 1}$ and an integer $d \geq 2 d-g-$ $1 \geq 0$.

- The number of pencils $L \in W_{d}^{1}(C)$ satisfying $h^{0}\left(L \otimes \mathcal{O}_{C}(-(2 d-g-1) p)\right) \geq 1$ equals

$$
a(d, g):=(2 d-g-1) \frac{g!}{d!(g-d+1)!}
$$

- The number of pairs $(L, x) \in W_{d}^{1}(C) \times C$ satisfying $h^{0}\left(L \otimes \mathcal{O}_{C}(-(2 d-g) x)\right) \geq 2$ equals

$$
b(d, g):=(2 d-g-1)(2 d-g)(2 d-g+1) \frac{g!}{d!(g-d)!}
$$

- Fix integers $\alpha, \beta \geq 1$ such that $\alpha+\beta=2 d-g$. The number of pairs $(L, x) \in$ $W_{d}^{1}(C) \times C$ satisfying $h^{0}\left(L \otimes \mathcal{O}_{C}(-\beta p-\gamma x)\right) \geq 1$ equals

$$
c(d, g, \gamma):=\left(\gamma^{2}(2 d-g)-\gamma\right)\binom{g}{d}
$$

- The number of pairs $(L, x) \in W_{d}^{1}(C) \times C$ satisfying the conditions

$$
\begin{gathered}
h^{0}\left(L \otimes \mathcal{O}_{C}(-(2 d-g-2) p)\right) \geq 1 \text { and } h^{0}\left(L \otimes \mathcal{O}_{C}(-3 x)\right) \geq 1 \text { equals } \\
e(d, g):=8 \frac{g!}{(d-3)!(g-d+2)!}-8 \frac{g!}{d!(g-d-1)!}
\end{gathered}
$$

We now prove more specialized results, adapted to our situation of counting pencils with two triple points:
Proposition 2.2. (1) We fix $d \geq 3$ and a general 2-pointed curve $[C, p, q] \in \mathcal{M}_{2 d-6}$. The number of pencils $l \in G_{d}^{1}(C)$ having triple points at both $p$ and $q$ equals

$$
F(d):=(2 d-6)!\left(\frac{1}{(d-3)!^{2}}-\frac{1}{d!(d-6)!}\right)
$$

(2) For a general curve $[C] \in \mathcal{M}_{2 d-4}$, the number of pencils $l \in G_{d}^{1}(C)$ having triple ramification at unspecified distinct points $x, y \in C$, equals

$$
N(d):=\frac{48\left(6 d^{2}-28 d+35\right)(2 d-4)!}{d!(d-3)!}
$$

(3) We fix a general pointed curve $[C, p] \in \mathcal{M}_{2 d-5,1}$. The number of pencils $L \in W_{d}^{1}(C)$ satisfying the conditions

$$
h^{0}\left(L \otimes \mathcal{O}_{C}(-2 p)\right) \geq 1, h^{0}\left(L \otimes \mathcal{O}_{C}(-3 x)\right) \geq 1, h^{0}\left(L \otimes \mathcal{O}_{C}(-3 y)\right) \geq 1
$$

for unspecified distinct points $x, y \in C$, is equal to

$$
N_{1}(d):=24\left(12 d^{3}-92 d^{2}+240 d-215\right) \frac{(2 d-4)!}{d!(d-2)!}
$$

Remark 2.3. In the formulas for $e(d, g)$ and $F(d)$ we set $1 / n!:=0$ for $n<0$.
Remark 2.4. As a check, for $d=3$ Proposition 2.2 (2) reads $N(3)=80$. Thus for a general curve $[C] \in \mathcal{M}_{2}$ there are $160=2 \cdot 80$ pairs of points $(x, y) \in C \times C$, $x \neq y$, such that $3 x \equiv 3 y$. This can be seen directly by considering the map $\psi: C \times C \longrightarrow \operatorname{Pic}^{( }(C)$ given by $\psi(x, y):=\mathcal{O}_{C}(3 x-3 y)$. Then $\psi^{*}(0)=\frac{1}{2} \int_{C \times C} \psi^{*}(\omega \wedge \omega)=2 \cdot 3^{2} \cdot 3^{2}=162$, where $\omega$ is a differential form representing $\theta$. To get the answer to our question we subtract from 162 the contribution of the diagonal $\Delta \subseteq C \times C$. This excess intersection contribution is equal to 2 (cf. [Di]), so in the end we get $160=162-2$ pairs of distinct points $(x, y) \in C \times C$ with $3 x \equiv 3 y$.

Proof. (1) This is a standard exercise in limit linear series and Schubert calculus in the spirit of $[E H]$. We let $[C, p, q] \in \mathcal{M}_{2 d-6,2}$ degenerate to the stable 2-pointed curve $\left[C_{0}:=\mathbf{P}^{1} \cup E_{1} \cup \ldots \cup E_{2 d-6}, p_{0}, q_{0}\right]$, consisting of elliptic tails $\left\{E_{i}\right\}_{i=1}^{2 d-6}$ and a rational spine, such that $\left\{p_{i}\right\}=E_{i} \cap \mathbf{P}^{1}$, and the marked points $p_{0}, q_{0}$ lie on the spine. We also assume that $p_{1}, \ldots, p_{2 d-6}, p_{0}, q_{0} \in \mathbb{P}^{1}$ are general points, in particular $p_{0}, q_{0} \in \mathbf{P}^{1}-\left\{p_{1}, \ldots, p_{2 d-6}\right\}$. Then $F(d)$ is the number of limit $\mathfrak{g}_{d}^{1 \prime}$ s on $C_{0}$ having triple ramification at both $p_{0}$ and $q_{0}$ and this is the same as the number of $\mathfrak{g}_{d}^{1 \prime}$ s on $\mathbf{P}^{1}$ having cusps at $p_{1}, \ldots, p_{2 d-6}$ and triple ramification at $p_{0}$ and $q_{0}$. This equals the intersection number of Schubert cycles $\sigma_{(0,2)}^{2} \sigma_{(0,1)}^{2 d-6}$ (computed in $\left.H^{\text {top }}(\mathbb{G}(1, d), \mathbb{Z})\right)$. The product can be computed using formula (v) on page 273 in [Fu1] and one finds that

$$
\sigma_{(0,2)}^{2} \sigma_{(0,1)}^{2 d-6}=(2 d-6)!\left(\frac{1}{(d-3)!^{2}}-\frac{1}{d!(d-6)!}\right)
$$

(2) This is more involved. We specialize $[C] \in \mathcal{M}_{2 d-4}$ to $\left[C_{0}:=\mathbf{P}^{1} \cup E_{1} \cup \ldots \cup\right.$ $\left.E_{2 d-4}\right]$, where $E_{i}$ are general elliptic curves, $\left\{p_{i}\right\}=\mathbf{P}^{1} \cap E_{i}$ and $p_{1}, \ldots, p_{2 d-4} \in \mathbf{P}^{1}$ are general points. Then $N(d)$ is equal to the number of limit $\mathfrak{g}_{d}$ 's on $C_{0}$ with triple ramification at two distinct points $x, y \in C_{0}$. Let $l$ be such a limit $\mathfrak{g}_{d}^{1}$. We can assume that both $x$ and $y$ are smooth points of $C_{0}$ and by the additivity of the Brill-Noether number (see e.g. [EH] pg. 365), we find that $x, y$ must lie on the tails $E_{i}$. Since $\left[E_{i}, p_{i}\right] \in \mathcal{M}_{1,1}$ is general, we assume that $j\left(E_{i}\right) \neq 0$ (that is, none of the $E_{i}{ }^{\prime}$ s is the Fermat cubic). Then there can be no $l_{i} \in G_{3}^{1}\left(E_{i}\right)$ carrying 3 triple ramification points. There are two cases we consider:
a) There are indices $1 \leq i<j \leq 2 d-4$ such that $x \in E_{i}$ and $y \in E_{j}$. Then $a^{l_{E_{i}}}\left(p_{i}\right)=a^{l_{E_{j}}}\left(p_{j}\right)=(d-3, d)$, hence $3 x \equiv 3 p_{i}$ on $E_{i}$ and $3 y \equiv 3 p_{j}$ on $E_{j}$. There are 8 choices for $x \in E_{i}, 8$ choices for $y \in E_{j}$ and $\binom{2 d-4}{2}$ choices for the tails $E_{i}$ and $E_{j}$ containing the triple points. On $\mathbf{P}^{1}$ we count $\mathfrak{g}_{d}^{1}$ s with cusps at $\left\{p_{1}, \ldots, p_{2 d-4}\right\}-$ $\left\{p_{i}, p_{j}\right\}$ and triple points at $p_{i}$ and $p_{j}$. This number is again equal to $\sigma_{(0,2)}^{2} \sigma_{(0,1)}^{2 d-6} \in$ $H^{\text {top }}(\mathbb{G}(1, d), \mathbb{Z})$ and we get a contribution of

$$
\begin{equation*}
64\binom{2 d-4}{2} \sigma_{(0,2)}^{2} \sigma_{(0,1)}^{2 d-6}=32(2 d-4)!\left(\frac{1}{(d-3)!^{2}}-\frac{1}{d!(d-6)!}\right) \tag{1}
\end{equation*}
$$

b) There is $1 \leq i \leq 2 d-4$ such that $x, y \in E_{i}$. We distinguish between two subcases:
$\left.b_{1}\right) a^{l_{E_{i}}}\left(p_{i}\right)=(d-3, d-1)$. On $\mathbb{P}^{1}$ we count $\mathfrak{g}_{d-1}^{1}$ 's with cusps at $p_{1}, \ldots, p_{2 d-4}$ and this number is $\sigma_{(0,1)}^{2 d-4}$ (in $H^{\text {top }}(\mathbb{G}(1, d-1), \mathbb{Z})$ ). On $E_{i}$ we compute the number of $\mathfrak{g}_{3}^{1 \prime}$ s having triple ramification at unspecified points $x, y \in E_{i}-\left\{p_{i}\right\}$ and ordinary ramification at $p_{i}$. For simplicity we set $\left[E_{i}, p_{i}\right]:=[E, p]$. If we regard $p \in E$ as the origin of $E$, then the translation $\operatorname{map}(x, y) \mapsto(y-x,-x)$ establishes a bijection between the set of pairs $(x, y) \in E \times E-\Delta, x \neq p \neq y \neq x$, such that there is a $\mathfrak{g}_{3}^{1}$ in which $x, y, p$ appear with multiplicities 3,3 and 2 respectively, and the set of pairs $(u, v) \in E \times E-\Delta$, with $u \neq p \neq v \neq u$ such that there is a $\mathfrak{g}_{3}^{1}$ in which $u, v, p$ appear with multiplicities 3,2 and 3 respectively. The latter set has cardinality 16 , hence the number of pencils $\mathfrak{g}_{3}^{1}$ we are counting is $8=16 / 2$. All in all, we find a contribution of

$$
\begin{equation*}
8(2 d-4) \sigma_{(0,1)}^{2 d-4}=16\binom{2 d-4}{d-1} \tag{2}
\end{equation*}
$$

$\left.b_{2}\right) a^{l_{E_{i}}}\left(p_{i}\right)=(d-4, d)$. This time, on $\mathbf{P}^{1}$ we look at $\mathfrak{g}_{d}^{1 \prime}$ s with cusps at $\left\{p_{1}, \ldots\right.$, $\left.p_{2 d-4}\right\}-\left\{p_{i}\right\}$ and a 4 -fold point at $p_{1}$. Their number is $\sigma_{(0,3)} \sigma_{(0,1)}^{2 d-5} \in H^{\text {top }}(\mathbb{G}(1, d)$, $\mathbb{Z})$ ). On $E_{i}$ we compute the number of $\mathfrak{g}_{4}^{1 \prime}$ s for which there are distinct points $x, y \in E_{i}-\left\{p_{i}\right\}$ such that $p_{i}, x, y$ appear with multiplicities 4,3 and 3 respectively. Again we set $\left[E_{i}, p_{i}\right]:=[E, p]$ and denote by $\Sigma$ the closure in $E \times E$ of the locus

$$
\left\{(u, v) \in E \times E-\Delta: \exists l \in G_{4}^{1}(E) \text { such that } a_{1}^{l}(p)=4, a_{1}^{l}(u) \geq 3, a_{1}^{l}(v) \geq 2\right\}
$$

The class of the curve $\Sigma$ can be computed easily. If $F_{i}$ denotes the numerical equivalence class of a fibre of the projection $\pi_{i}: E \times E \rightarrow E$ for $i=1$,2, then

$$
\begin{equation*}
\Sigma \equiv 10 F_{1}+5 F_{2}-2 \Delta \tag{3}
\end{equation*}
$$

The coefficients in this expression are determined by intersecting $\Sigma$ with $\Delta$ and the fibres of $\pi_{i}$. First, one has that $\Sigma \cap \Delta=\{(x, x) \in E \times E: x \neq p, 4 p \equiv 4 x\}$ and then $\Sigma \cap \pi_{2}^{-1}(p)=\{(y, p) \in E \times E: y \neq p, 3 p \equiv 3 y\}$. These intersections are all transversal, hence $\Sigma \cdot \Delta=15, \Sigma \cdot F_{2}=8$, whereas obviously $\Sigma \cdot F_{1}=3$. This proves (3).

The number of pencils $l \subseteq\left|\mathcal{O}_{E}(4 p)\right|$ having two extra triple points will then be equal to $1 / 2 \#\left(\right.$ ramification points of $\left.\pi_{2}: \Sigma \rightarrow E\right)=\Sigma^{2} / 2=20$. We have obtained in this case a contribution of

$$
\begin{equation*}
20(2 d-4) \sigma_{(0,3)} \sigma_{(0,1)}^{2 d-5}=80\binom{2 d-4}{d} \tag{4}
\end{equation*}
$$

Adding together (1),(2) and (4), we obtain the stated formula for $N(d)$.
(3) We relate $N_{1}(d)$ to $N(d)$ by specializing the general curve from $\mathcal{M}_{2 d-4}$ to $\left[C \cup_{p} E\right] \in \Delta_{1} \subset \overline{\mathcal{M}}_{2 d-4}$, where $[C, p] \in \mathcal{M}_{2 d-5,1}$ and $[E, p] \in \overline{\mathcal{M}}_{1,1}$. Under this degeneration $N(d)$ becomes the number of admissible coverings $f: X \xrightarrow{d: 1} R$ having as source a nodal curve $X$ stably equivalent to $C \cup_{p} E$ and as target a genus 0 nodal curve $R$. Moreover, $f$ possesses distinct unspecified triple ramification points $x, y \in X_{\text {reg }}$. There are a number of cases depending on the position of $x$ and $y$.
$\left(3_{a}\right) \quad x, y \in C-\{p\}$. In this case $\operatorname{deg}\left(f_{C}\right)=d$ and because of the generality of $[C, p], f_{C}$ has to be one of the finitely many $\mathfrak{g}_{d}^{1 \prime}$ s having two distinct triple points and a simple ramification point at $p \in C$. The number of such coverings is precisely $N_{1}(d)$. By the compatibility condition on ramification indices at $p$, we find that $\operatorname{deg}\left(f_{E}\right)=2$ and the $E$-aspect of $f$ is induced by $\left|\mathcal{O}_{E}(2 p)\right|$. The curve $X$ is obtained from $C \cup_{p} E$ by inserting $d-2$ copies of $\mathbf{P}^{1}$ at the points in $f_{C}^{-1}(f(p))-\{p\}$. We then map these rational curves isomorphically to $f(E)$. This admissible cover has no automorphisms and it should be counted with multiplicity 1.
(3 $\left.3_{b}\right) x, y \in E-\{p\}$. The curve $[C] \in \mathcal{M}_{2 d-5}$ being Brill-Noether general, it carries no linear series $\mathfrak{g}_{d-2}^{1}$, hence $\operatorname{deg}\left(f_{\mathrm{C}}\right) \geq d-1$. We distinguish two subcases:

If $\operatorname{deg}\left(f_{C}\right)=d-1$, then $f_{C}$ is one of the $a(d-1,2 d-5)$ linear series $\mathfrak{g}_{d-1}^{1}$ on $C$ having $p$ as an ordinary ramification point. Since $C$ and $E$ meet only at $p$, we have that $\operatorname{deg}\left(f_{E}\right)=3$, and $f_{E}$ corresponds to a $\mathfrak{g}_{3}^{1}$ on $E$ having two unspecified triple points and a simple ramification point at $p$. There are 8 such $\mathfrak{g}_{3}^{1 \prime}$ s on $E$ (see the proof of Proposition 2.2). To obtain a degree $d$ admissible covering, we first attach a copy $\left(\mathbf{P}^{1}\right)_{1}$ of $\mathbf{P}^{1}$ to $E$ at the point $q \in f_{E}^{-1}(f(p))-\{p\}$, then map $\left(\mathbf{P}^{1}\right)_{1}$ and $C$ map to the same component of $R$. Then we insert $d-2$ copies of $\mathbf{P}^{1}$ at the points lying in the same fibre of $f_{C}$ as $p$. All these rational curves map to the same copy of $R$ as $E$. Each of these $8 a(d-1,2 d-5)$ admissible coverings is counted with multiplicity 1.

If $\operatorname{deg}\left(f_{C}\right)=d$, then $f_{C}$ corresponds to one of the $a(d, 2 d-5)$ linear series $\mathfrak{g}_{d}^{1}$ with a 4 -fold point at $p$. By compatibility, $f_{E}$ corresponds to a $\mathfrak{g}_{4}^{1}$ in which $p$ and two unspecified points $x, y \in E$ appear with multiplicities 4,3 and 3 respectively. There are 20 such $\mathfrak{g}_{4}^{1 \prime}$ s on $E$, hence $20 a(d, 2 d-5)$ admissible coverings.
(3 $\left.3_{c}\right) x \in E-\{p\}, y \in C-\{p\}$. In this situation $\operatorname{deg}\left(f_{C}\right)=d$ and $f_{C}$ corresponds to one of the $e(d, 2 d-5)$ coverings $\mathfrak{g}_{d}^{1}$ on $C$ having a triple point at $p$ and another unspecified triple point at $y \in C$. Then $\operatorname{deg}\left(f_{E}\right)=3$ and $3 x \equiv 3 p$, that is, there are 8 choices of the $E$-aspect of $f$. We obtain $X$ by attaching to $C$ copies of $\mathbf{P}^{1}$ at the $d-3$ points in $f_{C}^{-1}(f(p))-\{p\}$, and mapping these curves isomorphically onto $f(C)$.

By degeneration to $\left[C \cup_{p} E\right]$, we have found the relation for $[C, p] \in \mathcal{M}_{2 d-5,1}$ :

$$
N(d)=N_{1}(d)+20 a(d, 2 d-5)+8 a(d-1,2 d-5)+8 e(d, 2 d-5)
$$

This immediately leads to the claimed expression for $N_{1}(d)$.

## 3 The class of the divisor $\overline{\mathfrak{T M}}_{d}$

The strategy to compute the class $\left[\overline{\mathfrak{T}}_{d}\right]$ is similar to the one employed by Eisenbud and Harris in [EH] to determine the class of the Brill-Noether divisors $\left[\overline{\mathcal{M}}_{g, d}^{r}\right]$ of curves with a $\mathfrak{g}_{d}^{r}$ in the case $\rho(g, r, d)=-1$ : We determine the restrictions of $\overline{\mathfrak{T}}_{d}$ to $\overline{\mathcal{M}}_{0, g}$ and $\overline{\mathcal{M}}_{2,1}$ via obvious flag maps. However, because in the definition of $\overline{\mathfrak{T}}_{d}$ we allow 2 degrees of freedom for the triple ramification points, the calculations are much more intricate (and interesting) than in the case of Brill-Noether divisors.

Proposition 3.1. Consider the flag map $j: \overline{\mathcal{M}}_{0, g} \rightarrow \overline{\mathcal{M}}_{g}$ obtained by attaching $g$ general elliptic tails at the $g$ marked points. Then $j^{*}\left(\overline{\mathfrak{T M}}_{d}\right)=0$. If we have a linear relation

$$
\overline{\mathfrak{T}}_{d} \equiv a \lambda-\sum_{i=0}^{d-2} b_{i} \delta_{i} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right), \text { then } b_{i}=\frac{i(g-i)}{g-1} b_{1}, \text { for } 1 \leq i \leq d-2
$$

Proof. The second part of the statement is a consequence of the first: For an effective divisor $D \equiv a \lambda-\sum_{i=0}^{d-2} b_{i} \delta_{i} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$ satisfying the condition $j^{*}(D)=\varnothing$, we have the relations among its coefficients: $b_{i}=\frac{i(g-i)}{g-1} b_{1}$ for $i \geq 1$ (cf. [EH] Theorem 3.1).

Suppose that $\left[X:=R \cup_{x_{1}} E_{1} \cup \ldots \cup_{x_{g}} E_{g}\right] \in j\left(\overline{\mathcal{M}}_{0, g}\right)$ is a flag curve corresponding to a $g$-stable rational curve $\left[R, x_{1}, \ldots, x_{g}\right]$. The elliptic tails $\left\{E_{i}\right\}_{i=1}^{g}$ are general and we may assume that all the $j$-invariants are different from 0 . In particular, none of the $\left[E_{i}, x_{i}\right]^{\prime}$ s carries a $\mathfrak{g}_{3}^{1}$ with triple ramification points at $x_{i}$ and at two unspecified points $x, y \in E_{i}-\left\{x_{i}\right\}$. Assuming that $[X] \in \overline{T N}_{d}$, there exists $l \in \bar{G}_{d}^{1}(X)$ a limit $\mathfrak{g}_{d}^{1}$, together with distinct ramification points $x \neq y \in X$, such that $a_{1}^{l}(x) \geq 3$ and $a_{1}^{l}(y) \geq 3$. By blowing-up if necessary the nodes $x_{i}$ (that is, by inserting chains of $\mathbf{P}^{1}$ s at the points $x_{i}$ ), we may assume that both $x, y$ are smooth points of $X$.

We make use of the following facts: On $R$ we have that the inequality

$$
\rho\left(l_{R}, x_{1}, \ldots, x_{g}, z_{1}, \ldots, z_{t}\right) \geq 0
$$

for any choice of distinct points $z_{1}, \ldots, z_{t} \in R-\left\{x_{1}, \ldots, x_{g}\right\}$. On the elliptic tails, we have that $\rho\left(l_{E_{i}}, x_{i}, z\right) \geq-1$, for any point $z \in E_{i}-\left\{x_{i}\right\}$, with equality only if $z-x_{i} \in \operatorname{Pic}^{0}\left(E_{i}\right)$ is a torsion class. Using these remarks as well as and the additivity of the Brill-Noether number of $l$, since $\rho(l, x, y)=-3$ it follows that there must exist an index $1 \leq i \leq g$ such that $x, y \in E_{i}-\left\{x_{i}\right\}$, and $\rho\left(l_{E_{i}}, x_{i}, x, y\right)=$ -3. This implies that $a^{l_{E_{i}}}\left(x_{i}\right)=(d-3, d)$ and that $l_{E_{i}}\left(-(d-3) x_{i}\right) \in G_{3}^{1}\left(E_{i}\right)$ has triple ramification points at distinct points $x_{i}, x$ and $y$. This can happen only if $E_{i}$ is isomorphic to the Fermat cubic, a contradiction.

The next result highlights the difference between $\overline{\mathfrak{T M}}$ and all the other geometric divisors in the literature, cf. $[\mathrm{HM}],[\mathrm{EH}],[\mathrm{H}],[\mathrm{Fa} 1],[\mathrm{Fa} 2]: \overline{\mathfrak{T R}}$ is the first example of a geometric divisor on $\overline{\mathcal{M}}_{g}$ not pulled-back from the space $\overline{\mathcal{M}}_{g}^{\mathrm{ps}}$ of pseudo-stable curves.

Proposition 3.2. If $\overline{\mathfrak{T R}}_{d} \equiv a \lambda-\sum_{i=0}^{d-2} b_{i} \delta_{i} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$, then $a-12 b_{0}+b_{1}=$ $4 a(d, 2 d-4)$.

Proof. We use a standard test curve in $\overline{\mathcal{M}}_{g}$ obtained by attaching to the marked point of a general pointed curve $[C, q] \in \mathcal{M}_{2 d-4,1}$ a pencil of plane cubics. If $R \subset \overline{\mathcal{M}}_{g}$ is the family induced by this pencils, then clearly $R \cdot \lambda=1, R \cdot \delta_{0}=$ $12, R \cdot \delta_{1}=-1$ and $R \cdot \delta_{j}=0$ for $j \geq 2$.

Set-theoretically, $R \cap \overline{\mathfrak{T}}_{d}$ consists of the points corresponding to the elliptic curves $[E, q]$ in the pencil, for which there exists $l \in G_{3}^{1}(E)$ as well as two distinct
points $x, y \in E-\{q\}$ with $a_{1}^{l}(q)=a_{1}^{l}(x)=a_{1}^{l}(y)=3$ (It is a standard limit linear series argument to show that the triple points of the limit $\mathfrak{g}_{d}^{1}$ must specialize to the elliptic tail). Then $E$ must be isomorphic to the Fermat cubic, (thus $j(E)=0$, and this curve appears 12 times in the pencil. The pencil $l \in G_{3}^{1}(E)$ is of course uniquely determined. Since $\operatorname{Aut}(E, q)=\mathbb{Z} / 6 \mathbb{Z}$ while a generic element from $\overline{\mathcal{M}}_{1,1}$ has automorphism group $\mathbb{Z} / 2 \mathbb{Z}$, each point of intersection will contribute $4=24 / 6$ times in the intersection $R \cap \overline{\mathfrak{T M}}_{d}$. On the side of the genus $2 d-4$ component, we count pencils $L \in W_{d}^{1}(C)$ with $a_{1}^{L}(q) \geq 3$. Using Proposition 2.1 their number is finite and equal to $a(d, 2 d-4)$, hence $R \cdot \overline{\mathfrak{T}}_{d}=4 a(d, 2 d-4)$.

Next we describe the restriction of $\overline{\mathfrak{T}}_{d}$ under the map $\chi: \overline{\mathcal{M}}_{2,1} \rightarrow \overline{\mathcal{M}}_{2 d-3}$ obtained by attaching a fixed tail $B$ of genus $2 d-5$ to each pointed curve $[C, p] \in$ $\mathcal{M}_{2,1}$. It is revealing to compare Theorem 1.2 to Propositions 4.1 and 5.5 in [EH]: When $\rho(g, r, d)=-1$, the pull-back of the Brill-Noether divisor $\chi^{*}\left(\overline{\mathcal{M}}_{g, d}^{r}\right)$ is irreducible and supported on $\overline{\mathcal{W}}$. By contrast, $\overline{\mathfrak{T}}_{d}$ displays a much richer geometry.

Proof of Theorem 1.2. We fix a general pointed curve $[B, p] \in \mathcal{M}_{2 d-5,1}$. For each $[C, p] \in \mathcal{M}_{2,1}$, we study degree $d$ admissible coverings $\left[f: X \rightarrow R, q_{1}, q_{2} ; p_{1}, \ldots\right.$, $\left.p_{6 d-12}\right] \in \overline{\mathcal{H}}_{d}^{\mathrm{tr}}$ with source curve $X$ stably equivalent to $C \cup_{p} B$, and target $R$ a nodal curve of genus 0 . Moreover, $f$ is assumed to have distinct points of triple ramification $x, y \in X_{\text {reg, }}$, where $f(x)=q_{1}$ and $f(y)=q_{2}$. It is easy to check that both $x$ and $y$ must lie either on $C$ or on $B$ (and not on rational components of $X$ we may insert). Depending on their position we distinguish four cases:
(i) $x, y \in B$. A parameter count shows that $\operatorname{deg}\left(f_{B}\right)=d$ and $p \in B$ must be a simple ramification point for $f_{B}$. By compatibility of ramification sequences at $p$, then $f_{C}$ must also be simply ramified at $p$, that is, $p \in C$ is a Weierstrass point and $f_{C}$ is induced by $\left|\mathcal{O}_{C}(2 p)\right|$. There is a canonical way of completing $\left\{f_{C}, f_{B}\right\}$ to an element in $\mathfrak{H}_{d}$, by attaching rational curves to $B$ at the points in $f_{B}^{-1}(f(p))-\{p\}$. For a fixed $[C, p] \in \overline{\mathcal{W}}$, the Hurwitz scheme is smooth at each of the points $t \in \overline{\mathcal{H}}_{d}^{\text {tr }}$ corresponding to an admissible coverings $\left\{f_{C}, f_{B}\right\}$ of the type described above. Since $t$ has no automorphisms permuting some of the branch points, it follows that $\mathfrak{H}_{d}=\overline{\mathcal{H}}_{d}^{\text {tr }} / \mathfrak{S}_{2} \times \mathfrak{S}_{6 d-12}$ is also smooth at each of the $N_{1}(d)$ points in the fibre $\sigma^{-1}\left(\left[C \cup_{p} B\right]\right)$. This implies that $N_{1}(d) \cdot \overline{\mathcal{W}}$ appears as an irreducible component in the pull-back divisor $\chi^{*}\left(\overline{\mathfrak{T}}_{d}\right)$.
(ii) $x, y \in C$, $\operatorname{deg}\left(f_{B}\right)=d$. Clearly $\operatorname{deg}\left(f_{C}\right) \geq 4$ and the $B$-aspect of the covering must have a 4 -fold point at $p$. There are $a(d, 2 d-5)$ choices for $f_{B}$, whereas $f_{C}$ corresponds to a linear series $l_{C} \in G_{4}^{1}(C)$ with $a_{1}^{l_{C}}(p)=4$ and which has two other points of triple ramification. To obtain the domain of an admissible covering, we attach to $B$ rational curves at the $(d-4)$ points in $f_{B}^{-1}(f(p))-\{p\}$. We map these curves isomorphically onto $f_{C}(C)$. The divisor $a(d, 2 d-5) \cdot \overline{\mathcal{D}}_{3}$ is an irreducible component of $\chi^{*}\left(\overline{\mathfrak{T R}}_{d}\right)$.
(iii) $x, y \in C, \operatorname{deg}\left(f_{B}\right)=d-1$. In this case the $B$-aspect corresponds to one of the $a(d-1,2 d-5)$ linear series $l_{B} \in G_{d-1}^{1}(B)$ with simple ramification at $p$, while $f_{C}$ is a degree 3 covering having two unspecified points of triple ramification and simple ramification at $p \in C$. To obtain a point in $\mathfrak{H}_{d}$, we attach a rational curve $T^{\prime}$ to $C$ at the remaining point in $f_{C}^{-1}(f(p)-\{p\}$. We then map
$T^{\prime}$ isomorphically onto $f_{B}(B)$. Next, we attach $d-3$ rational curves to $B$ at the points $f_{B}^{-1}(f(p))-\{p\}$, which we map isomorphically onto $f_{C}(C)$. Each resulting admissible covering has no automorphisms and is a smooth point of $\mathfrak{H}_{d}$. Thus $a(d-1,2 d-5) \cdot \overline{\mathcal{D}}_{2}$ is a component of $\chi^{*}\left(\overline{\mathfrak{T M}}_{d}\right)$.
(iv) $x \in C, y \in B$. After a moment of reflection we conclude that $\operatorname{deg}\left(f_{B}\right)=d$, that is, $f_{B}$ corresponds to one of the $e(d, 2 d-5)$ coverings $l_{B} \in G_{d}^{1}(B)$ with $a_{1}^{l_{B}}(p)=3$ and $a_{1}^{l_{B}}(y)=3$ at some unspecified point $y \in B-\{p\}$. The $C$-aspect of $f$ is determined by the choice of a point $x \in C-\{p\}$ such that $3 x \equiv 3 p$. Hence $e(d, 2 d-5) \cdot \overline{\mathcal{D}}_{1}$ is the final irreducible component of $\chi^{*}\left(\overline{\mathfrak{T M}}_{d}\right)$.

As a consequence of Proposition 3.1 and Theorem 1.2 we are in a position to determine all the $\delta_{i}$-coefficients $(i \geq 1)$ in the expansion of $\widetilde{\mathfrak{T}}_{d}$ in the basis of $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$ :

Theorem 3.3. If $\overline{\mathfrak{T}}_{d} \equiv a \lambda-\sum_{i=0}^{d-2} b_{i} \delta_{i} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$, then we have that

$$
b_{i}=\frac{(2 d-6)!}{2 d!(d-3)!} i(2 d-3-i)\left(36 d^{3}-156 d^{2}+180 d-5\right), \text { for all } 1 \leq i \leq d-2
$$

Proof. We use the obvious relations $\chi^{*}\left(\delta_{2}\right)=-\psi, \chi^{*}(\lambda)=\lambda, \chi^{*}\left(\delta_{0}\right)=\delta_{0}$, $\chi^{*}\left(\delta_{1}\right)=\delta_{1}$. If for a class $E \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)$ we denote by $(E)_{\psi}$ the coefficient of $\psi$ in its expansion in the basis $\left\{\psi, \lambda, \delta_{0}\right\}$ of $\operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)$ (see also the next section for details on the divisor theory of $\overline{\mathcal{M}}_{2,1}$ ), then, using Proposition 3.2, we can write the following relation:

$$
\begin{aligned}
& b_{2}=\frac{2(g-2)}{g-1} b_{1}=N_{1}(d)(\overline{\mathcal{W}})_{\psi}+e(d, 2 d-5)\left(\overline{\mathcal{D}}_{1}\right)_{\psi}+ \\
& a(d-1,2 d-5)\left(\overline{\mathcal{D}}_{2}\right)_{\psi}+a(d, 2 d-5)\left(\overline{\mathcal{D}}_{3}\right)_{\psi} .
\end{aligned}
$$

We determine the coefficients $\left(\overline{\mathcal{D}}_{i}\right)_{\psi}$ for $1 \leq i \leq 3$ by intersecting each of these divisors with a general fibral curve $F:=\{[C, p]\}_{p \in C} \subset \overline{\mathcal{M}}_{2,1}$ of the projection $\pi: \overline{\mathcal{M}}_{2,1} \rightarrow \overline{\mathcal{M}}_{2}$. (Note that $(\overline{\mathcal{W}})_{\psi}=3$ ).

It is useful to recall that if $[C, q] \in \mathcal{M}_{2,1}$ is a fixed general pointed curve and $a \geq b \geq 0$ are integers, then the number of pairs $(p, x) \in C \times C, p \neq x$ satisfying a linear equivalence relation $a \cdot x \equiv b \cdot p+(a-b) \cdot q$ in $\operatorname{Pic}^{a}(C)$, equals

$$
\begin{equation*}
r(a, b):=2\left(a^{2} b^{2}-1\right) \tag{5}
\end{equation*}
$$

We start with $\overline{\mathcal{D}}_{1}$ and note that $F \cdot \overline{\mathcal{D}}_{1}$ is the number of pairs $(x, p) \in C \times C$ with $x \neq p$, such that $3 x \equiv 3 p$, which is equal to $r(3,3)=160$ and then $\left(\overline{\mathcal{D}}_{1}\right)_{\psi}=$ $r(3,3) /(2 g-2)=80$. To compute $F \cdot \overline{\mathcal{D}}_{2}$ we note that there are $80=r(3,3) / 2$ pencils $L \in W_{3}^{1}(C)$ with two distinct triple ramification points. From the HurwitzZeuthen formula, each such pencil has 4 more simple ramification points, thus $\left(\overline{\mathcal{D}}_{2}\right)_{\psi}=4 \times 80 /(2 g-2)=160$. Finally, $F \cdot \overline{\mathcal{D}}_{3}=n_{0} / 2$, where by $n_{0}$ we denote the number of pencils $l \in W_{4}^{1}(C)$ having one unspecified point of total ramification and two further points of triple ramification, that is there exist mutually distinct points $x, y, p \in \mathbb{C}$ with $a_{1}^{l}(p)=4$ and $a_{1}^{l}(x)=a_{1}^{l}(y)=3$.

We compute $n_{0}$ by letting $C$ specialize to a curve of compact type $\left[C_{0}:=C_{1} \cup_{q}\right.$ $\left.C_{2}\right]$, where $\left[C_{1}, q\right],\left[C_{2}, q\right] \in \mathcal{M}_{1,1}$. Then $n_{0}$ is the number of admissible coverings $f: X \xrightarrow{4: 1} R$, where $R$ is of genus 0 and $X$ is stably equivalent to $C_{0}$ and has a 4 -fold ramification point $p \in X_{\text {reg }}$ and triple ramification points $x, y \in X_{\text {reg }}$. We distinguish three cases:
(i) $x, y \in C_{2}$ and $p \in C_{1}\left(\operatorname{Or} x, y \in C_{1}\right.$ and $\left.p \in C_{2}\right)$. In this case $\operatorname{deg}\left(f_{C_{1}}\right)=$ $\operatorname{deg}\left(f_{C_{2}}\right)=4$ and we have the linear equivalence $4 p \equiv 4 q$ on $C_{1}$. This yields 15 choices for $p \neq q$. On $C_{2}$ we count $\mathfrak{g}_{4}^{1 \prime}$ s with total ramification at $q$, and two unspecified triple points. This number is equal to 20 (see the proof of Proposition 2.2). Reversing the role of $C_{1}$ and $C_{2}$ we double the number of coverings and we find $600=2 \cdot 15 \cdot 20$ admissible $\mathfrak{g}_{4}^{1 \prime}$ s.
(ii) $x, p \in C_{2}$ and $y \in C_{1}$ (Or $x, p \in C_{1}$ and $y \in C_{2}$ ). In this situation $\operatorname{deg}\left(f_{C_{1}}\right)=3$ and $\operatorname{deg}\left(f_{C_{2}}\right)=4$ and on $C_{1}$ we have the linear equivalence $3 y \equiv 3 q$, which gives 8 choices for $y$. On $C_{2}$ we count $l_{C_{2}} \in G_{4}^{1}\left(C_{2}\right)$ in which two unspecified points $p, x \in C_{2}$ appear with multiplicities 4 and 3 respectively, while $a_{1}^{l_{C_{2}}}(q)=3$. By translation, this is the same as the number of pairs of distinct points $(u, v) \in$ $C_{2}-\{q\} \times C_{2}-\{q\}$ such that there exists $l_{2} \in G_{4}^{1}\left(C_{2}\right)$ with $a_{1}^{l_{2}}(q)=4, a_{1}^{l_{2}}(x)=$ $a_{1}^{l_{2}}(y)=3$. This number equals 40 (again, see the proof of Proposition 2.2). By reversing the role of $C_{1}$ and $C_{2}$ the total number of coverings in case (ii) is $640=$ $2 \cdot 8 \cdot 40$.
(iii) $x, y, p \in C_{1}$ (or $x, y, p \in C_{2}$ ). A quick parameter count shows that $\operatorname{deg}\left(f_{C_{2}}\right)=$ 2 and $\operatorname{mult}_{q}\left(f_{C_{2}}\right)=\operatorname{mult}_{q}\left(f_{C_{1}}\right)=2$. Hence $f_{C_{2}}$ is induced by $\left|\mathcal{O}_{C_{2}}(2 q)\right|$. On $C_{1}$ we count $\mathfrak{g}_{4}^{1 \prime}$ s in which the points $p, x, y, q$ appear with multiplicities $4,3,3$ and 2 respectively. The translation on $C_{2}$ from $p$ to $q$ shows that we are yet again in the situation of Proposition 2.2 and this last number is 20 . We interchange $C_{1}$ and $C_{2}$ and we find 40 admissible $\mathfrak{g}_{4}^{1 \prime}$ s on $C_{1} \cup C_{2}$ with all the non-ordinary ramification concentrated on a single component.

By adding (i), (ii) and (iii) together, we obtain $n_{0}=600+640+40=1280$. This determines $\left(\overline{\mathcal{D}}_{3}\right)_{\psi}=n_{0} /(2 g-2)=640$ and completes the proof.

## 4 The divisor theory of $\overline{\mathcal{M}}_{2,1}$

The remaining part of the calculation of $\left[\overline{\mathfrak{T M}}_{d}\right]$ has been reduced to the problem of determining the divisor classes $\left[\overline{\mathcal{D}}_{i}\right](i=1,2,3)$ on $\overline{\mathcal{M}}_{2,1}$. We recall some things about divisor theory on this space (see also [EH]). There are two boundary divisor classes:

- $\delta_{0}$, whose generic point is an irreducible 1-pointed nodal curve of genus 2.
- $\delta_{1}$, with generic point being a transversal union of two elliptic curves with the marked point lying on one of the components.

If $\pi: \overline{\mathcal{M}}_{2,1} \rightarrow \overline{\mathcal{M}}_{2}$ is the universal curve then $\psi:=c_{1}\left(\omega_{\pi}\right) \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)$ denotes the tautological class and $\lambda=\pi^{*}(\lambda) \in \underline{\operatorname{Pic}}\left(\overline{\mathcal{M}}_{2,1}\right)$ is the Hodge class. Unlike the case $g \geq 3, \lambda$ is a boundary class on $\overline{\mathcal{M}}_{2}$, and we have Mumford's genus 2 relation:

$$
\lambda=\frac{1}{10} \delta_{0}+\frac{1}{5} \delta_{1} .
$$

The classes $\psi, \lambda$ and $\delta_{1}$ form a basis of $\operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right) \otimes \mathbb{Q}$. The class of the Weierstrass divisor has been computed in [EH] Theorem 2:

$$
\begin{equation*}
\overline{\mathcal{W}} \equiv 3 \psi-\lambda-\delta_{1} . \tag{6}
\end{equation*}
$$

We start by determining the class of $\overline{\mathcal{D}}_{1}$ of 3-torsion points:
Proposition 4.1. The class of the closure in $\overline{\mathcal{M}}_{2,1}$ of the effective divisor

$$
\mathcal{D}_{1}=\left\{[C, p] \in \mathcal{M}_{2,1}: \exists x \in C-\{p\} \text { such that } 3 x \equiv 3 p\right\}
$$

is given by $\left[\overline{\mathcal{D}}_{1}\right]=80 \psi+10 \delta_{0}-120 \lambda \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)$.
Proof. We introduce the map $\chi: \overline{\mathcal{M}}_{2,1} \rightarrow \overline{\mathcal{M}}_{4}$ given by $\chi([C, p]):=\left[B \cup_{p} C\right]$, where $[B, p]$ is a general 1-pointed curve of genus 2 . On $\overline{\mathcal{M}}_{4}$ we have the divisor of curves with an exceptional Weierstrass point $\mathfrak{D i}:=\left\{[C] \in \mathcal{M}_{4}: \exists x \in\right.$ $C$ such that $\left.h^{0}(C, 3 x) \geq 2\right\}$. Its class has been computed by Diaz [Di]: $\overline{\mathfrak{D i}} \equiv$ $264 \lambda-30 \delta_{0}-96 \delta_{1}-128 \delta_{2} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{4}\right)$.

We claim that $\chi^{*}(\overline{\mathfrak{D i}})=\overline{\mathcal{D}}_{1}+16 \cdot \overline{\mathcal{W}}$. Indeed, let $[C, p] \in \mathcal{M}_{2,1}$ be such that $\chi([C, p]) \in \overline{\mathfrak{D i}}$. Then there is a limit $\mathfrak{g}_{3}^{1}$ on $X:=B \cup_{p} C$, say $l=\left\{l_{B}, l_{C}\right\}$, which has a point of total ramification at some $x \in X_{\text {reg }}$. There are two possibilities:
(i) If $x \in C$, then $a^{l_{B}}(p)=(0,3)$, hence $l_{B}=\left|\mathcal{O}_{B}(3 p)\right|$, while on $C$ we have the linear equivalence $3 p \equiv 3 x$, that is, $[C, p] \in \overline{\mathcal{D}}_{1}$.
(ii) If $x \in B$, then $a^{l} c(p)=(1,3)$, that is, $p \in B$ is a Weierstrass point and moreover $l_{C}=p+\left|\mathcal{O}_{C}(2 p)\right|$. On $B$ we have that $a^{l_{B}}(p)=(0,2)$ and $a^{l_{B}}(x)=(0,3)$, that is, $3 x \equiv 2 p+y$ for some $y \in B-\{p, y\}$. There are $r(3,1)=16$ such pairs $(x, y)$.

Thus we have proved that $\chi^{*}(\overline{\mathfrak{D i}})=\overline{\mathcal{D}}_{1}+16 \cdot \overline{\mathcal{W}}$ (We would have obtained the same conclusion using admissible coverings instead of limit $\left.\mathfrak{g}_{3}^{1} \mathfrak{s}\right)$. We find the formula for $\left[\overline{\mathcal{D}}_{1}\right]$ if we remember that $\chi^{*}\left(\delta_{0}\right)=\delta_{0}, \chi^{*}\left(\delta_{1}\right)=\delta_{1}, \chi^{*}\left(\delta_{2}\right)=-\psi$ and $\chi^{*}(\lambda)=\lambda$.

### 4.1 The divisor $\overline{T N}_{3}$ and the class of $\overline{\mathcal{D}}_{2}$

We compute the class of the divisor $\overline{\mathcal{D}}_{2}$ on $\overline{\mathcal{M}}_{2,1}$ by determining directly the class of $\overline{\mathfrak{T}}_{3}$ in genus 3 (In this case $\overline{\mathcal{D}}_{3}=\varnothing$ ). Much of the set-up we develop here is valid for arbitrary $d \geq 3$ and will be used in the next section when we compute the class $\left[\overline{\mathfrak{T}}_{4}\right]$ on $\overline{\mathcal{M}}_{5}$. We fix a general $[C, p] \in \mathcal{M}_{2 d-4,1}$ and introduce the following enumerative invariant:

$$
\begin{aligned}
& N_{2}(d):=\#\left\{l \in G_{d}^{1}(C): \exists x \neq y \in C-\{p\} \text { such that } l(-3 x) \neq \varnothing\right. \\
&\text { and } l(-p-2 y) \neq \varnothing\} .
\end{aligned}
$$

For instance, $N_{2}(3)$ is the number of pairs $(x, y) \in C \times C, x \neq p \neq y$ such that $3 x \equiv p+2 y$, hence $N_{2}(3)=r(3,2)=70$ (cf. formula (5)).
For each $d \geq 4$ we fix a general pointed curve $[B, q] \in \mathcal{M}_{2 d-5,1}$ and define the invariant:

$$
\begin{aligned}
& N_{3}(d):=\#\left\{l \in G_{d}^{1}(B): \exists x \neq y \in B-\{q\} \text { such that } l(-3 x) \neq \varnothing\right. \\
&\text { and } l(-2 q-2 y) \neq \varnothing\} .
\end{aligned}
$$

Theorem 4.2. The closure of the divisor $\mathfrak{T}_{3}:=\left\{[C] \in \mathcal{M}_{3}: \exists x \neq p \in C\right.$ with $3 x \equiv 3 x\}$ is linearly equivalent to the class

$$
\overline{\mathfrak{T M}}_{3} \equiv 2912 \lambda-311 \delta_{0}-824 \delta_{1} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{3}\right) .
$$

It follows that $\overline{\mathcal{D}}_{2} \equiv-200 \lambda+160 \psi+17 \delta_{0} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)$.
Proof. For most of this proof we assume $d \geq 3$ and we specialize to the case of $\overline{\mathcal{M}}_{3}$ only at the very end. We write $\overline{\mathfrak{T}}_{d} \equiv a \bar{\lambda}-b_{0} \delta_{0}-\cdots-b_{d-2} \delta_{d-2} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$ and we have already determined $b_{1}, \ldots, b_{d-2}$ (cf. Theorem 3.3) while we know that $a-12 b_{0}+b_{1}=4 a(d, 2 d-4)$ (cf. Proposition 3.2). We need one more relation involving $a, b_{0}$ and $b_{1}$, which we obtain by intersecting $\overline{\mathfrak{T}}_{d}$ with the test curve

$$
C^{0}:=\left\{\frac{C}{q \sim p}\right\}_{p \in C} \subset \Delta_{0} \subset \overline{\mathcal{M}}_{g}
$$

obtained from a general curve $[C, q] \in \mathcal{M}_{2 d-4,1}$. The number $C^{0} \cdot \overline{\mathfrak{T M}}_{d}$ counts (with appropriate multiplicities) admissible coverings

$$
t:=\left[f: X \xrightarrow{d: 1} R, q_{1}, q_{2}: p_{1}, \ldots, p_{6 d-12}\right] \bmod \mathfrak{S}_{2} \times \mathfrak{S}_{6 d-12} \in \mathfrak{H}_{d}
$$

where the source $X$ is stably equivalent to the curve $C \cup_{\{p, q\}} T(q \in C)$ obtained by "blowing-up" $\frac{C}{q \sim p}$ at the node and inserting a rational curve $T$. These covers should possess two points of triple ramification $x, y \in X_{\text {reg }}$ such that $f(x)=q_{1}, f(y)=q_{2}$. Suppose $t \in C^{0} \cdot \overline{\mathfrak{T} \mathfrak{R}}$ and again we distinguish a number of possibilities:
(i) $x, y \in C$. Then $\operatorname{deg}\left(f_{C}\right)=d$ and $f_{C}$ corresponds to one of the $N(d)$ linear series $l \in G_{d}^{1}(C)$ with two points of triple ramification. The point $q \in C$ is such that $l(-p-q) \neq \varnothing$, which, after having fixed $l$, gives $d-1$ choices. Clearly $\operatorname{mult}_{q}\left(f_{C}\right)=\operatorname{mult}_{q}\left(f_{T}\right)=1$. This implies that $\operatorname{deg}\left(f_{T}\right)=2$ and $f_{T}$ is given by $\left|\mathcal{O}_{T}(p+q)\right|$. To obtain out of $\left\{f_{C}, f_{B}\right\}$ a point $t \in \overline{\mathcal{H}}_{d}^{\text {tr }}$, we attach rational curves to $C$ at the points in $f_{C}^{-1}(f(p))-\{p, q\}$ and map these isomorphically onto the component $f_{T}(T)$ of $R$. Each such cover has an automorphism $\phi: X \rightarrow X$ of order 2 such that $\phi_{C}=\operatorname{id}_{C}, \phi_{T^{\prime}}=\mathrm{id}_{T^{\prime}}$, for every rational component $T^{\prime} \neq T$ of $X$, but $\phi_{T}$ interchanges the 2 branch points of $T$. Even though $t \in \overline{\mathcal{H}}_{d}^{\text {tr }}$ is a smooth point (because there is no automorphism of $X$ preserving all the ramification points of f), if $\tau \in \mathfrak{S}_{6 d-12}$ is the involution exchanging the marked points lying on $f_{T}(T)$, then $\tau \cdot t=t$. Therefore $\overline{\mathcal{H}}_{d}^{\mathrm{tr}} / \mathfrak{S}_{2} \rightarrow \overline{\mathcal{M}}_{g}$ is simply ramified at $t$. In a general deformation $[\mathcal{X} \rightarrow \mathcal{R}]$ of $[f: X \rightarrow R]$ in $\overline{\mathcal{H}}_{d}^{\text {tr }}$ we blow-down $T$ and obtain a rational double point, hence the image of $\mathcal{R}$ in $\overline{\mathcal{M}}_{g}$ meets $\Delta_{0}$ with multiplicity 2. Since $\overline{\mathcal{H}}_{d}^{\mathrm{tr}} / \mathfrak{S}_{2} \rightarrow \overline{\mathcal{M}}_{g}$ is ramified anyway, it follows that each of the $(d-1) N(d)$ admissible coverings found at this step is to be counted with multiplicity 1.
(ii) $x \in C, y \in T$. Since $C$ has only finitely many $\mathfrak{g}_{d-1}^{1}$ 's, all simply ramified and having no ramification in the fibre over $q$, we must have that $\operatorname{deg}\left(f_{C}\right)=d$ and $\operatorname{deg}\left(f_{T}\right)=3$. Moreover, $C$ and $T$ map via $f$ onto the two components of the target $R$ in such a way that $f_{C}(p)=f_{C}(q)=f_{T}(p)=f_{C}(q)$. In particular, both $f_{C}$ and $f_{T}$ are simply ramified at either $p$ or $q$. If $f_{C}$ is ramified at $q \in C$, then $f_{C}$ is induced
by one of the $e(d, 2 d-4)$ linear series $l \in G_{d}^{1}(C)$ with one unassigned point of triple ramification and one assigned point of simple ramification. Having fixed $l$, there are $d-2$ choices for $p \in C$ such that $l(-2 q-p) \neq \varnothing$. On $T$ there is a unique $\mathfrak{g}_{3}^{1}$ corresponding to a map $f_{T}: T \rightarrow \mathbf{P}^{1}$ such that $f_{T}^{*}(0)=2 q+p$ and $f_{T}^{*}(\infty)=3 y$, for some $y \in T-\{q, p\}$. Finally, we attach $d-3$ rational curves to $C$ at the points in $f_{C}^{-1}(f(q))-\{p, q\}$ and we map these components isomorphically onto $f_{T}(T)$.

The other possibility is that $f_{C}$ is unramified at $q$ and ramified at $p$. The number of such $\mathfrak{g}_{d}^{1 \prime}$ s is $N_{2}(d)$. On the side of $T$, there is a unique way of choosing $f_{T}: T \xrightarrow{3: 1} \mathbf{P}^{1}$ such that $f_{T}^{*}(0)=q+2 p$ and $f_{T}^{*}(\infty)=3 y$. Because the map $\sigma: \mathfrak{H}_{d} \rightarrow \overline{\mathcal{M}}_{g}$ blows-down the component $T$, if $[\mathcal{X} \rightarrow \mathcal{R}]$ is a general deformation of $[f: X \rightarrow R]$ then $\sigma(\mathcal{R})$ meets $\Delta_{0}$ with multiplicity 3 (see also [Di], pg. 47-52). Thus $\overline{\mathfrak{T}}_{d} \cdot \Delta_{0}$ has multiplicity 3 at the point $[C / p \sim q]$. The admissible coverings constructed at this step have no automorphisms, hence they each must be counted with multiplicity 3 . This yields a total contribution of $3(d-2) e(d, 2 d-4)+3 N_{2}(d)$.
(iii) $x, y \in T-\{p, q\}$. Here there are two subcases. First, we assume that $\operatorname{deg}\left(f_{C}\right)=d-1$, that is, $f_{C}$ is induced by one of the $\frac{(2 d-4)!}{(d-1)!(d-2)!}$ linear series $l \in G_{d-1}^{1}(C)$. For each such $l$, there are $d-2$ possibilities for $p$ such that $l(-q-p) \neq \varnothing$. Clearly $\operatorname{deg}\left(f_{T}\right)=3$ and the admissible covering $f$ is constructed as follows: Choose $f_{T}: T \rightarrow \mathbf{P}^{1}$ such that $f_{T}^{*}(0)=3 x, f_{T}^{*}(\infty)=3 y$ and $f_{T}^{*}(1)=p+q+q^{\prime}$. We map $C$ to the component of $R$ other than $f_{T}(T)$ by using $l \in G_{d-1}^{1}(C)$ and $f_{C}(p)=f_{T}(p)$ and $f_{C}(q)=f_{T}(q)$. We attach to $T$ a rational curve $T^{\prime}$ at the point $q^{\prime}$ and map $T^{\prime}$ isomorphically onto $f(C)$. Finally we attach $d-3$ rational curves to $C$ at the points in $f_{C}^{-1}(f(q))-\{q, p\}$. Each of these $\binom{2 d-4}{d-1}$ elements of $\mathfrak{h}_{d}$ is counted with multiplicity 2 .

We finally deal with the case $\operatorname{deg}\left(f_{C}\right)=d$. Since a $\mathfrak{g}_{3}^{1}$ on $\mathbf{P}^{1}$ with two points of total ramification must be unramified everywhere else, it follows that $\operatorname{deg}\left(f_{T}\right) \geq$ 4. The generality assumption on $[C, q]$ implies that $\operatorname{deg}\left(f_{T}\right)=4$. The $C$-aspect of $f$ is induced by $l \in G_{d}^{1}(C)$ for which there are integers $\beta, \gamma \geq 1$ with $\beta+\gamma=4$ and a point $p \in C$ such that $l(-\beta p-\gamma q) \neq \varnothing$. Proposition 2.1 gives the number $c(d, 2 d-4, \gamma)$ of such $l \in G_{d}^{1}(C)$. On the side of $T$, we choose $f_{T}: T \xrightarrow{4: 1} \mathbf{P}^{1}$ such that $f_{T}^{*}(0)=3 x, f_{T}^{*}(\infty)=3 y$ and $f_{T}^{*}(1)=\beta p+\gamma q$. When $\gamma \in\{1,3\}$, up to isomorphism there is a unique such $f_{T}$ having 3 triple ramification points. By direct computation we have the formula:

$$
f_{T}: T \rightarrow \mathbf{P}^{1}, f_{T}(t):=\frac{2 t^{3}(t-2)}{2 t-1}
$$

which has the properties that $f_{T}^{(i)}(0)=f_{T}^{(i)}(\infty)=f_{T}^{(i)}(1)=0$, for $i=1,2$. When $\gamma=2$, there are two $\mathfrak{g}_{4}^{1 \prime}$ s with 2 points of triple ramification and 2 points of simple ramification lying in the same fibre. It is important to point out that $f_{T}$ (and hence the admissible covering $f$ as well), has an automorphism of order 2 which preserves the points of attachment $p, q \in T$ but interchanges $x$ and $y$ (In coordinates, if $x=0, y=\infty \in T$, check that $f_{T}(1 / t)=1 / f_{T}(t)$ ). This implies that $\overline{\mathcal{H}}_{d}^{\mathrm{tr}} \rightarrow \overline{\mathcal{M}}_{d}$ is (simply) ramified at $[X \rightarrow R]$. Furthermore, a calculation similar to [Di] pg. 47-50, shows that the image in $\overline{\mathcal{M}}_{g}$ of a generic deformation
in $\overline{\mathcal{H}}_{d}^{\text {tr }}$ of $[X \rightarrow T]$ meets the divisor $\Delta_{0}$ with multiplicity $4=\beta+\gamma$. It follows that $\widetilde{T \Re}_{d} \cdot \Delta_{0}$ has multiplicity $4 / 2=2$ in a neighbourhood of $[C / p \sim q]$, that is, each covering found at this step gets counted with multiplicity 2 in the product $C^{0} \cdot \overline{\mathfrak{T M}}$. Coverings of this type give a contribution of

$$
2 c(d, 2 d-4,1)+2 c(d, 2 d-4,3)+4 c(d, 2 d-4,2)=128\binom{2 d-4}{d}
$$

Thus we can write the following equation:

$$
\begin{gather*}
(2 g-2) b_{0}-b_{1}=C^{0} \cdot \overline{\mathfrak{T M}}_{d}=  \tag{7}\\
=(d-1) N(d)+3 N_{2}(d)+3(d-2) e(d, 2 d-4)+128\binom{2 d-4}{d}+2\binom{2 d-4}{d-1} .
\end{gather*}
$$

For $d=3$, when $N_{2}(d)=70$, all terms in (7) are known and this finishes the proof.

## 5 The divisor $\overline{\mathfrak{T}}_{5}$ and the class of $\overline{\mathcal{D}}_{3}$

In this section we finish the computation of $\left[\overline{\mathfrak{T M}}_{d}\right]$ (and implicitly compute $\left[\overline{\mathcal{D}}_{3}\right] \in$ $\operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)$ and determine $N_{2}(d)$ for all $d \geq 3$ as well). According to (7) it suffices to compute $N_{2}(4)$ to determine $\left[\overline{\mathfrak{T}}_{4}\right] \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{5}\right)$. Then applying Theorem 1.2 we obtain $\left[\overline{\mathcal{D}}_{3}\right]$ which will finish the calculation of $\left[\overline{\mathfrak{T}}_{d}\right]$ for $g=2 d-3$. We summarize some of the enumerative results needed in this section:

Proposition 5.1. We fix a general 2-pointed elliptic curve $[E, p, q] \in \mathcal{M}_{1,2}$.
(a) There are 11 pencils $l \in G_{3}^{1}(E)$ such that there exist distinct points $x, y \in E-\{p, q\}$ with $a_{1}^{l}(x)=3, a_{1}^{l}(q)=2$ and $l(-p-2 y) \neq \varnothing$.
(b) There are 38 pencils $l \in G_{4}^{1}(E)$ such that there exist distinct points $x, y \in E-\{p, q\}$ with $a_{1}^{l}(p)=4, a_{1}^{l}(x)=3$ and $l(-q-2 y) \neq \varnothing$.

Proof. (a) We denote by $\mathcal{U}$ the closure in $E \times E$ of the locus

$$
\left\{(u, v) \in E \times E-\Delta: \exists l \in G_{3}^{1}(E) \text { such that } a_{1}^{l}(q)=3, a_{1}^{l}(u) \geq 2, a_{1}^{l}(v) \geq 2\right\}
$$

and denote by $F_{i}$ the (numerical class of the) fibre of the projection $\pi_{i}: E \times E \rightarrow E$ for $i=1,2$. Using that $\mathcal{U} \cap \Delta=\{(u, u): u \neq q, 3 u \equiv 3 q\}$ (this intersection is transversal!), it follows that $\mathcal{U} \equiv 4\left(F_{1}+F_{2}\right)-\Delta$. If $q \in E$ is viewed as the origin of $E$, then the isomorphism $E \times E \ni(x, y) \mapsto(-x, y-x) \in E \times E$ shows that the number of $l \in G_{3}^{1}(E)$ we are computing, equals the intersection number $\mathcal{U} \cdot \mathcal{V}$ on $E \times E$, where

$$
\mathcal{V}:=\{(u, v) \in E \times E: 2 v+u \equiv 4 q-p\} .
$$

Since $\mathcal{V} \equiv 3 F_{1}+6 F_{2}-2 \Delta$, we reach the stated answer by direct calculation. (b) We specialize $[E, p, q] \in \mathcal{M}_{1,2}$ to the stable curve $\left[E \cup_{r} T, p, q\right] \in \overline{\mathcal{M}}_{1,2}$, where $[T, r, p, q] \in \overline{\mathcal{M}}_{0,3}$. We count admissible coverings $[f: X \xrightarrow{4: 1} R, \tilde{p}, \tilde{q}]$, where $\tilde{p}, \tilde{q} \in X_{\text {reg }}, R$ is a nodal curve of genus 0 and there exist points $x, y \in X_{\text {reg }}$ with the property that the divisors $4 \tilde{p}, 3 x, \tilde{q}+2 y$ on $X$ all appear in distinct fibres of $f$.

Moreover $[X, \tilde{p}, \tilde{q}]$ is a pointed curve stably equivalent to $\left[E \cup_{r} T, p, q\right]$. There are three possibilities:
(1) $x, y \in E$. Then $f_{T}: T \xrightarrow{4: 1}\left(\mathbf{P}^{1}\right)_{1}$ is uniquely determined by the properties $f_{T}^{*}(0)=4 p$ and $f_{T}^{*}(\infty)=3 r+q$, while $f_{E}: E \xrightarrow{3: 1}\left(\mathbf{P}^{1}\right)_{2}$ is such that $r$ and some point $x \in E-\{r\}$ appear as points of total ramification. In particular, $3 x \equiv 3 r$ on $E$, which gives 8 choices for $x$. Each such $f_{E}$ has 2 remaining points of simple ramification, say $y_{1}, y_{2} \in E$ and we take a rational curve $T^{\prime}$ which we attach to $T$ at $q$ and map isomorphically onto $\left(\mathbf{P}^{1}\right)_{2}$. Choose $\tilde{q} \in T^{\prime}$ with the property that $f(\tilde{q})=f_{E}\left(y_{i}\right)$ for $i \in\{1,2\}$ and obviously $\tilde{p}=p \in T$. This procedure produces $16=8 \cdot 2$ admissible $\mathfrak{g}_{4}^{1 \prime}$.
(2) $x \in T, y \in E$. Now $f_{T}: T \xrightarrow{4: 1}\left(\mathbf{P}^{1}\right)_{1}$ has the properties $f_{T}^{*}(0)=4 p, f_{T}^{*}(1) \geq$ $2 r+q$ and $f_{T}^{*}(\infty) \geq 3 x$ for some $x \in T$ (Up to isomorphism, there are 2 choices for $f_{T}$ ). Then $f_{E}: E \xrightarrow{2: 1}\left(\mathbf{P}^{1}\right)_{2}$ is ramified at $r$ and at some point $y \in E-\{r\}$ such that $2 y \equiv 2 r$. This gives 3 choices for $f_{E}$. We attach two rational curve $T^{\prime}$ and $T^{\prime \prime}$ to $T$ at the points $q$ and $q^{\prime} \in f_{T}^{-1}(f(q))-\{r, q\}$ respectively. We then map $T^{\prime}$ and $T^{\prime \prime}$ isomorphically onto $\left(\mathbf{P}^{1}\right)_{2}$. Finally we choose $\tilde{p}=p \in T$ and $\tilde{q} \in T^{\prime}$ uniquely determined by the condition $f_{T^{\prime}}(\tilde{q})=f_{E}(y)$. We have produced $6=2 \cdot 3$ coverings.
(3) $x \in E, y \in T$. Counting ramification points on $T$ we quickly see that $\operatorname{deg}\left(f_{E}\right)=$ 3 and $f_{E}: E \rightarrow\left(\mathbf{P}^{1}\right)_{2}$ is such that $f_{E}^{*}(0)=3 x$ and $f_{E}^{*}(\infty)=3 r$, which gives 8 choices for $f_{E}$. Moreover $f_{T}: T \xrightarrow{\text { 4:1 }}\left(\mathbf{P}^{1}\right)_{1}$ must satisfy the properties $f_{T}^{*}(0)=$ $4 p, f_{T}^{*}(1) \geq q+2 y$ and $f_{T}^{*}(\infty)=3 r+r^{\prime}$ for some $r^{\prime} \in T$. If $[T, p, q, r]=$ $\left[\mathbf{P}^{1}, 0,1, \infty\right] \in \overline{\mathcal{M}}_{0,3}$, then

$$
f_{T}(t)=\frac{t^{4}}{t-r^{\prime}}, \text { where } r^{\prime} \in\left\{\frac{1+\sqrt{-2}}{4}, \frac{1-\sqrt{-2}}{4}\right\}
$$

Thus we obtain another $16=8 \cdot 2$ admissible $\mathfrak{g}_{4}^{1 \prime}$ s in this case. Adding (1), (2) and (3), we found $38=16+6+16$ admissible coverings $\mathfrak{g}_{4}^{1}$ on $E \cup_{r} T$ and this finishes the proof.

Proposition 5.2. We fix a general pointed curve $[C, p] \in \mathcal{M}_{3,1}$. Then there are 210 pencils $l=\mathcal{O}_{C}(2 p+2 x) \in G_{4}^{1}(C), x \in C$, having an unspecified triple point.

Proof. We define the map $\phi: C \times C \rightarrow \operatorname{Pic}^{1}(C)$ given by

$$
\phi(x, y):=\mathcal{O}_{C}(2 p+2 x-3 y)
$$

A standard calculation shows that $\phi^{*}\left(W_{1}(C)\right)=g(g-1) \cdot 2^{2} \cdot 3^{2}=216$ (Use Poincaré's formula $\left[W_{1}(C)\right]=\theta^{2} / 2$ ). Set-theoretically it is clear that $\phi^{*}\left(W_{1}(C)\right) \cap \Delta=\{(p, p)\}$. A local calculation similar to [Di] pg. 34-36, shows that the intersection multiplicity at the point $(p, p)$ is equal to $6=g(g-1)$, hence the answer to our question.

### 5.1 The invariant $N_{2}(d)$

We have reached the final step of our calculation and we now compute $N_{2}(d)$. We denote by $\overline{\mathcal{A}}_{d}$ the Hurwitz stack parameterizing admissible coverings of degree $d$

$$
t:=\left[f:(X, p) \xrightarrow{d: 1} R, q_{0} ; p_{0} ; p_{1}, \ldots, p_{6 d-13}\right],
$$

where $[X, p]$ is a pointed nodal curve of genus $2 d-4,\left[R, q_{0} ; p_{0}: p_{1}, \ldots, p_{6 d-13}\right]$ is a pointed nodal curve of genus 0 , and $f$ is an admissible covering in the sense of [HM] having a point of triple ramification $x \in f^{-1}\left(q_{0}\right)$, a point of simple ramification $y \in X-\{p\}$ such that $f(y)=f(p)=p_{0}$ and points of simple ramification in the fibres over $p_{1}, \ldots, p_{6 d-13}$. The symmetric group $\mathfrak{S}_{6 d-13}$ acts on $\overline{\mathcal{A}}_{d}$ by permuting the branch points $p_{1}, \ldots, p_{6 d-13}$ and the stabilization map

$$
\phi: \overline{\mathcal{A}}_{d} / \mathfrak{S}_{6 d-13} \rightarrow \overline{\mathcal{M}}_{2 d-4,1}, \phi(t):=[X, p]
$$

is generically finite of degree $N_{2}(d)$.
We completely describe the fibre $\phi^{-1}\left(\left[C \cup_{q} E, p\right]\right)$, where $[C, q] \in \mathcal{M}_{2 d-5,1}$ and $[E, q, p] \in \mathcal{M}_{1,2}$ are general pointed curves. We count admissible covers $f:(X, \tilde{p}) \rightarrow R$ as above, where $[X, \tilde{p}]$ is stably equivalent to $\left[C \cup_{q} E, p\right]$. Depending on the position of the ramification points $x, y \in X$ we distinguish between the following cases:
(i) $x \in C, y \in E$. From Brill-Noether theory, we know that $\operatorname{deg}\left(f_{C}\right) \in\{d-1, d\}$. If $\operatorname{deg}\left(f_{C}\right)=d$, then one possibility is that both $f_{C}$ and $f_{E}$ are triply ramified at $q$. In this case $f_{C}$ is induced by one of the $e(d, 2 d-5)$ linear series $l \in G_{d}^{1}(C)$ with $l(-3 q) \neq \varnothing$ and $l(-3 x) \neq \varnothing$, for some $x \in C-\{q\}$. The covering $f_{E}$ is of degree 3 and it induces a linear equivalence $3 q \equiv 2 y+p$ on $E$ which has 4 solutions $y \in E$. To obtain $X$ we attach to $C$ rational curves at the $d-3$ points in $f_{C}^{-1}(f(q))-$ $\{q\}$. We have exhibited in this way $4 e(d, 2 d-5)$ automorphism-free points in $\phi^{-1}\left(\left[C \cup_{q} E, p\right]\right)$ which are counted with multiplicity 1. Another possibility is that both $f_{C}$ and $f_{E}$ are simply ramified at $q$ and the fibre $f_{C}^{-1}(f(q))$ contains a second point $z \neq q$ of simple ramification. The number of such $l \in G_{d}^{1}(C)$ has been denoted by $N_{3}(d)$. Having chosen $f_{C}$, then $f_{E}: E \xrightarrow{2: 1}\left(\mathbf{P}^{1}\right)_{2}$ is induced by $\left|\mathcal{O}_{E}(2 q)\right|$. Then we attach a rational curve $T$ to $C$ at $z$, and we map $T \xrightarrow{2: 1}\left(\mathbf{P}^{1}\right)_{2}$ using the linear system $\left|\mathcal{O}_{T}(2 q)\right|$ in such a way that the remaining ramification point of $f_{T}$ maps to $f_{E}(p)$. We produce $N_{3}(d)$ smooth points of $\overline{\mathcal{A}}_{d} / \mathfrak{S}_{6 d-13}$ via this construction. In both these cases $\tilde{p}=p \in C \cup E$.
(ii) $x, y \in C$. Now $\operatorname{deg}\left(f_{C}\right)=d-1$ and $f_{C}$ is induced by one of the $b(d-1,2 d-$ 5) $=e(d-1,2 d-5)$ linear series $l \in G_{d-1}^{1}(C)$ with $l(-3 x) \neq \varnothing$ for some $x \in C-$ $\{p\}$. Moreover, $f_{C}(q)$ is not a branch point of $f_{C}$ which implies that $\operatorname{deg}\left(f_{E}\right)=2$ and that $f_{E}$ is induced by $\left|\mathcal{O}_{E}(p+q)\right|$. Obviously, $f_{C}$ and $f_{E}$ map to different components of $R$. To obtain the source ( $X, \tilde{p}$ ) of our covering, we first attach $d-2$ rational curves to $C$ at all the points in $f_{C}^{-1}(f(q))-\{q\}$ and map these curves $1: 1$ onto $f_{E}(E)$. Then we attach a curve $T^{\prime} \cong \mathbf{P}^{1}$, this time to $E$ at the point $q$ and map $T^{\prime}$ isomorphically onto $f_{C}(C)$. The point $\tilde{q} \in X$ lies on the tail $T^{\prime}$ and is characterized by the property $f_{T^{\prime}}(\tilde{p})=f_{C}(y)$, where $y \in C$ is one of the $6 d-16$
simple ramification points of $l$. This procedure produces $(6 d-16) b(d-1,2 d-5)$ admissible coverings in $\phi^{-1}\left(\left[C \cup_{q} E, p\right]\right)$.
(iii) $x \in E, y \in E$. If $\operatorname{deg}\left(f_{C}\right)=d$, then $\operatorname{deg}\left(f_{E}\right) \geq 4$ and $f_{C}$ is given by one of the $a(d, 2 d-5)$ linear series $l \in G_{d}^{1}(C)$ such that $l(-4 q) \neq \varnothing$. Then $f_{E}: E \xrightarrow{4: 1} \mathbf{P}^{1}$ has the properties that (up to an automorphism of the base) $f_{E}^{*}(0)=4 q, f_{E}^{*}(1) \geq$ $p+2 y$ and $f^{*}(\infty) \geq 3 x$, for some points $x, y \in E-\{p, q\}$. The number of such $\mathfrak{g}_{4}^{1 \prime}$ s has been computed in Proposition 5.1 (b) and it is equal to 38 . Therefore this case produces $38 a(d, 2 d-5)$ coverings. If on the contrary, $\operatorname{deg}\left(f_{C}\right)=d-1$, then $f_{C}$ is induced by one of the $a(d-1,2 d-5)$ linear series $l \in G_{d-1}^{1}(C)$ such that $l(-2 q) \neq$ $\varnothing$, while $f_{E}: E \xrightarrow{\text { 3:1 }} \mathbf{P}^{1}$ is such that (up to an automorphism of the base) $f_{E}^{*}(0) \geq$ $2 q, f_{E}^{*}(1)=p+2 y, f_{E}^{*}(\infty)=3 x$ for some $x, y \in E-\{p, q\}$. After making these choices, we attach $d-3$ rational curves to $C$ at the point $\left\{q^{\prime}\right\}=f_{C}^{-1}(f(q))-\{q\}$ and we map these isomorphically onto $f_{E}(E)$. Furthermore, we attach a rational curve $T^{\prime}$ to $E$ at the point $\left\{q^{\prime}\right\}=f_{E}^{-1}(f(q))-\{q\}$ and map $T^{\prime}$ isomorphically onto $f_{C}(C)$. Using Proposition 5.1 (a), we obtain $11 a(d-1,2 d-5)$ admissible coverings. Altogether part (iii) provides $38 a(d-1,2 d-5)+11 a(d-1,2 d-5)$ points in $\overline{\mathcal{A}}_{d} / \mathfrak{S}_{6 d-13}$.
(iv) $x \in E, y \in C$. In this case, since $p$ and $y$ lie in different components, we know that we have to "blow-up" the point $p$ and insert a rational curve which is mapped to the component $f_{C}(C)$ of $R$. Thus $\operatorname{deg}\left(f_{C}\right) \leq d-1$, and by BrillNoether theory it follows that $\operatorname{deg}\left(f_{C}\right)=d-1$. Precisely, $f_{C}$ is induced by one of the $a(d-1,2 d-5)$ linear series $l \in G_{d-1}^{1}(C)$ such that $l(-2 q) \neq \varnothing$. Furthermore, $f_{E}: E \xrightarrow{3: 1} \mathbf{P}^{1}$ can be chosen such that $f_{E}^{*}(0)=p+2 q$ and $f_{E}^{*}(\infty)=3 x$ for some $x \in E$. This gives the linear equivalence $3 x \equiv p+2 q$ on $E$ which has 9 solutions. We attach $d-3$ rational curves at the points in $f_{C}^{-1}(f(q))-\{q\}$ and map these $1: 1$ onto $f_{E}(E)$. Finally, we attach a rational curve $T^{\prime}$ to $E$ at the point $p$ and map $T^{\prime}$ such that $f\left(T^{\prime}\right)=f(C)$. We pick $\tilde{p} \in T^{\prime}$ with the property that $f_{T^{\prime}}(\tilde{p})=f_{C}(y)$, where $y \in C$ is one of the $6 d-15$ ramification points of $f_{C}$. We have obtained $9(6 d-15) a(d-1,2 d-5)$ admissible coverings in this way.

We have completely described $\phi^{-1}\left(\left[C \cup_{q} E, p\right]\right)$ and it is easy to check that all $\underline{\text { these coverings have no automorphisms, hence they give rise to smooth points in }}$ $\overline{\mathcal{A}}_{d}$ and that the map $\phi$ is unramified at each of these points. Thus

$$
\begin{aligned}
N_{2}(d)= & \operatorname{deg}(\phi)=4 e(d, 2 d-5)+(6 d-16) b(d-1,2 d-5)+38 a(d, 2 d-5)+ \\
& +11 a(d-1,2 d-5)+9(6 d-15) a(d-1,2 d-5)+N_{3}(d) .
\end{aligned}
$$

For $d=4$, we know that $N_{3}(4)=210$ (cf. Proposition 5.2), which determines $N_{2}(4)$ and the class $\left[\overline{\mathcal{D}}_{3}\right]$. We record these results:

Theorem 5.3. The locus $\mathcal{D}_{3}$ of pointed curves $[C, p] \in \mathcal{M}_{2,1}$ with a pencil $l \in G_{4}^{1}(C)$ totally ramified at $p$ and having two points of triple ramification, is a divisor on $\mathcal{M}_{2,1}$. The class of its compactification in $\overline{\mathcal{M}}_{2,1}$ is given by the formula:

$$
\overline{\mathcal{D}}_{3} \equiv 640 \psi-860 \lambda+72 \delta_{0} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)
$$

Theorem 5.4. For a general pointed curve $[C, p] \in \mathcal{M}_{2 d-4,1}$ the number of pencils $L \in W_{d}^{1}(C)$ satisfying the conditions

$$
h^{0}\left(L \otimes \mathcal{O}_{C}(-3 x)\right) \geq 1 \text { and } h^{0}\left(L \otimes \mathcal{O}_{C}(-p-2 y)\right) \geq 1
$$

for some points $x, y \in C-\{p\}$, is equal to

$$
N_{2}(d)=\frac{6\left(40 d^{2}-179 d+212\right)(2 d-4)!}{d!(d-3)!} .
$$

Remark 5.5. As a check, for $d=3$, the number $N_{2}(3)$ computes the number of pairs $(x, y) \in C \times C$ such that $p \neq x \neq y \neq p$ and $3 x \equiv p+2 y$. This number is equal to $r(3,2)=70$ which matches Theorem 5.4.

Theorem 5.6. We fix an integer $d \geq 4$. For a general pointed curve $[C, p] \in \mathcal{M}_{2 d-5,1}$, the number of pencils $L \in W_{d}^{1}(C)$ satisfying the conditions

$$
h^{0}\left(L \otimes \mathcal{O}_{C}(-3 x)\right) \geq 1 \text { and } h^{0}\left(L \otimes \mathcal{O}_{C}(-2 p-2 y)\right) \geq 1
$$

for some points $x, y \in C-\{p\}$, is equal to

$$
N_{3}(d)=\frac{84(d-3)\left(2 d^{2}-10 d+13\right)(2 d-4)!}{d!(d-2)!}
$$

Remark 5.7. For $d=4$, Theorem 5.6 specializes to Proposition 5.2 and we find again that $N_{3}(4)=210$.

## References

[ACV] D. Abramovich, A. Corti and A. Vistoli, Twisted bundles and admissible coverings, Communications in Algebra 8 (2003), 3547-3618.
[BR] J. Bertin and M. Romagny, Champs de Hurwitz, math.AG/0701680.
[Di] S. Diaz, Exceptional Weierstrass points and the divisor on moduli space that they define, Memoirs of the American Mathematical Society 327 (1985).
[Fa1] G. Farkas, Koszul divisors on moduli spaces of curves, American Journal of Mathematics 131 (2009), 819-867.
[Fa2] G. Farkas, Syzygies of curves and the effective cone of $\overline{\mathcal{M}}_{g}$, Duke Mathematical Journal 135 (2006), 53-98.
[Fu1] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, second edition 1997.
[Fu2] W. Fulton, Hurwitz schemes and the irreducibility of the moduli of algebraic curves, Annals of Mathematics 90 (1969), 542575.
[FP] C. Faber and R. Pandharipande, Relative maps and tautological classes, Journal of the European Mathematical Society 7 (2005), 13-49.
[H] J. Harris, The Kodaira dimension of the moduli space of curves, II: The even genus case, Inventiones Mathematicae 75 (1984), 437-466.
[Hu] A. Hurwitz, A, Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Mathematische Annalen 39 (1891), 1- 61.
[EH] D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus $\geq 23$, Inventiones Mathematicae 90 (1987), 359-387.
[HM] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Inventiones Mathematicae 67 (1982), 23-86.
[HH] B. Hassett and D. Hyeon, Log canonical models for the moduli space of curves: First divisorial contraction, math.AG/0607477.
[S] D. Schubert, A new compactification of the moduli space of curves, Compositio Math. 78 (1991), 297-313.

Humboldt Universität zu Berlin, Institut für Mathematik, 10099 Berlin email:farkas@math.hu-berlin.de


[^0]:    ${ }^{*}$ Research partially supported by an Alfred P. Sloan Fellowship and the NSF Grant DMS0500747

    2000 Mathematics Subject Classification : 14H10.
    Key words and phrases : moduli space of curves, admissible covering.

