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1. Introduction

For an irreducible smooth projective complex curve C of genus g, the gonality
de®ned as gon�C� � minfd A Zf1: there exists a g1

d on Cg is perhaps the second most nat-
ural invariant: it gives an indication of how far C is from being rational, in a way di¨erent
from what the genus does. For gf 3 we consider the strati®cation of the moduli space Mg

of smooth curves of genus g given by gonality:

M1
g;2 LM1

g;3 L � � � LM1
g;k L � � � LMg;

where M1
g;k :� f�C � A Mg: C has a g1

kg. It is well-known that the k-gonal locus M1
g;k is an

irreducible variety of dimension 2g� 2k ÿ 5 when k e �g� 2�=2; when k f ��g� 3�=2� one
has that M1

g;k �Mg (see for instance [AC]). The number ��g� 3�=2� is thus the generic
gonality for curves of genus g.

For positive integers g; r and d, we introduce the Brill-Noether locus

Mr
g;d � f�C � A Mg: C carries a gr

dg:

The Brill-Noether Theorem (cf. [ACGH]) asserts that when the Brill-Noether number

r�g; r; d� � gÿ �r� 1��gÿ d � r� is negative, the general curve of genus g has no gr
d 's,

hence in this case the locus Mr
g;d is a proper subvariety of Mg. We study the relative posi-

tion of the loci Mr
g;d when rf 3 and r�g; r; d� < 0 with respect to the gonality strati®cation

of Mg. Typically, we would like to know the gonality of a `general' point �C � A Mr
g;d , or

equivalently the gonality of a `general' smooth curve C LPr of genus g and degree d. Since
the geometry of the loci Mr

g;d is very messy (existence of many components, some non-
reduced and/or not of expected dimension), we will content ourselves with computing
gon�C� when �C � is a general point of a `nice' component of Mr

g;d (i.e. a component which
is generically smooth, of the expected dimension and with general point corresponding to a
curve with a very ample gr

d ).

Our main result is the following:
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Theorem 1. Let gf 15 and d f 14 be integers with g odd and d even, such that

d 2 > 8g, 4d < 3g� 12, d 2 ÿ 8g� 8 is not a square and either d e 18 or g < 4d ÿ 31. If

�d 0; g 0� A f�d; g�; �d � 1; g� 1�; �d � 1; g� 2�; �d � 2; g� 3�g;

then there exists a regular component of the Hilbert scheme Hilbd 0;g 0;3 whose general point
�C 0� is a smooth curve such that gon�C 0� � min

ÿ
d 0 ÿ 4; ��g 0 � 3�=2��.

Here by Hilbd;g; r we denote the Hilbert scheme of curves C LPr with pa�C� � g and
deg�C� � d. A component of Hilbd;g; r is said to be regular if its general point corresponds
to a smooth irreducible curve C LPr such that the normal bundle NC=P r satis®es
H 1�C;NC=P r� � 0. By standard deformation theory (cf. [Mod] or [Se]), a regular compo-
nent of Hilbd;g; r is generically smooth of the expected dimension

w�C;NC=P r� � �r� 1�d ÿ �rÿ 3��gÿ 1�:

Note that for r � 3 the expected dimension of the Hilbert scheme is just 4d. We refer to
Section 4 for a natural extension of Theorem 1 for curves in higher dimensional projective
spaces.

As for the numerical conditions entering Theorem 1, we note that the inequality
d 2 > 8g ensures the existence of smooth curves C LP3 with g�C� � g and deg�C� � d (see
Section 2), 4d < 3g� 12, r�g; 3; d� < 0 is just the condition that M3

g;d is a proper sub-
variety of Mg, while the remaining requirements are mild technical conditions.

A remarkable application of Theorem 1 is a new proof of our result (cf. [Fa]):

Theorem 2. The Kodaira dimension of the moduli space of curves of genus 23 is f2.

We recall that for gf 24 Harris, Mumford and Eisenbud proved (cf. [HM], [EH])
that Mg is of general type whereas for ge 16, g3 14 we have that k�Mg� � ÿy. The
famous Slope Conjecture of Harris and Morrison predicts that Mg is uniruled for all ge 22
(see [Mod]). Therefore the moduli space M23 appears as an intriguing transition case
between two extremes: uniruledness and being of general type.

To put our Theorem 1 into perspective, let us note that for r � 2 we have the fol-
lowing result of M. Coppens (cf. [Co]): let n: C ! G be the normalization of a general,

irreducible plane curve of degree d with d � gÿ d ÿ 1

2

� �
nodes. Assume that

0 < d < �d 2 ÿ 7d � 18�=2:

Then gon�C� � d ÿ 2.

This theorem says that there are no g1
dÿ3's on C. On the other hand a g1

dÿ2 is given by
the lines through a node of G. The condition d < �d 2 ÿ 7d � 18�=2 from the statement is
equivalent with r�g; 1; d ÿ 3� < 0. This is the range in which the problem is non-trivial: if
r�g; 1; d ÿ 3�f 0, the Brill-Noether Theorem provides g1

dÿ3's on C.
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For rf 3 we might hope for a similar result. Let C LPr be a suitably general
smooth curve of genus g and degree d, with r�g; r; d� < 0. We can always assume that
d e gÿ 1 (by duality gr

d 7! jKC ÿ gr
d j we can always land in this range). One can expect

that a g1
k computing gon�C� is of the form gr

d�ÿD� � fE ÿD: E A gr
d ;E fDg for some

e¨ective divisor D on C. Since the expected dimension of the variety of e-secant �rÿ 2�-
plane divisors

V rÿ1
e �gr

d� :� fD A Ce: dim gr
d�ÿD�f 1g

is 2rÿ 2ÿ e (cf. [ACGH]), we may ask whether C has ®nitely many �2rÿ 2�-secant �rÿ 2�-
planes (and no �2rÿ 1�-secant �rÿ 2�-planes at all). This is known to be true for curves
with general moduli, that is, when r�g; r; d�f 0 (cf. [Hir]): for instance a smooth curve
C LP3 with general moduli has only ®nitely many 4-secant lines and no 5-secant lines. No
such principle appears to be known for curves with special moduli.

De®nition. We call the number min
ÿ
d ÿ 2r� 2; ��g� 3�=2�� the expected gonality of

a smooth nondegenerate curve C LPr of degree d and genus g.

One can approach such problems from a di¨erent angle: ®nd recipes to compute the
gonality of various classes of curves C LPr. Our knowledge in this respect is very scant:
we know how to compute the gonality of extremal curves C LPr (that is, curves attaining
the Castelnuovo bound, see [ACGH]) and the gonality of complete intersections in P3 (cf.
[Ba]): If C LP3 is a smooth complete intersection of type �a; b� then gon�C� � abÿ l,
where l is the degree of a maximal linear divisor on C. Hence an e¨ective divisor DLC
computing gon�C� is residual to a linear divisor of degree l in a plane section of C.

Acknowledgments. This paper is part of my thesis written at the Universiteit van
Amsterdam. The help of my advisor Gerard van der Geer, and of Joe Harris, is gratefully
acknowledged.

2. Linear systems on K3 surfaces in Pr

We will construct smooth curves C LPr having the expected gonality starting with
sections of smooth K3 surfaces. We recall a few basic facts about linear systems on K3
surfaces (cf. [SD]).

Let S be a smooth K3 surface. For an e¨ective divisor DLS, we have

h1�S;D� � h0�D;OD� ÿ 1:

If C LS is an irreducible curve then H 1�S;C� � 0, and by Riemann-Roch we have that
dimjCj � 1� C2=2 � pa�C�. In particular C2 fÿ2 for every irreducible curve C. More-
over we have equivalences

C2 � ÿ2, dimjCj � 0, C is a smooth rational curve

and

C2 � 0, dimjCj � 1, pa�C� � 1:

For a K3 surface one also has a `strong Bertini' Theorem (cf. [SD]):
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Proposition 2.1. Let L be a line bundle on a K3 surface S such that jLj3j. Then

jLj has no base points outside its ®xed components. Moreover, if bsjLj � j then either

. L2 > 0, h1�S;L� � 0 and the general member of jLj is a smooth, irreducible curve

of genus L2=2� 1, or

. L2 � 0 and L � OS�kE�, where k A Zf1, E LS is an irreducible curve with

pa�E� � 1. We have that h0�S;L� � k � 1, h1�S;L� � k ÿ 1 and all divisors in jLj are of
the form E1 � � � � � Ek with Ei @E.

We are interested in space curves sitting on K3 surfaces and the starting point is
Mori's Theorem (cf. [Mo]): if d > 0, gf 0, there is a smooth curve C LP3 of degree d and
genus g, lying on a smooth quartic surface S, if and only if (1) g � d 2=8� 1, or (2)
g < d 2=8 and �d; g�3 �5; 3�. Moreover, we can choose S such that

Pic�S� � ZH � Z�4=d�C

in case (1) and such that Pic�S� � ZH lZC, with H 2 � 4;C2 � 2gÿ 2 and H � C � d, in
case (2). In each case H denotes a plane section of S. Note that from the Hodge Index
Theorem one has the necessary condition �C �H�2 ÿH 2C2 � d 2 ÿ 8�gÿ 1�f 0.

Mori's result has been extended by Rathmann to curves in higher dimensional pro-
jective spaces (cf. [Ra], see also [Kn]): For integers d > 0, g > 0 and rf 3 such that
d 2 f 4g�rÿ 1� � �rÿ 1�2, there exists a smooth K3 surface S LPr of degree 2rÿ 2 and
a smooth curve C LS of genus g and degree d such that Pic�S� � ZH lZC, where H is a
hyperplane section of S.

We will repeatedly use the following simple observation:

Proposition 2.2. Let S LPr be a smooth K3 surface of degree 2rÿ 2 with a smooth

curve C LS such that Pic�S� � ZH lZC and assume that S has no �ÿ2� curves. A divisor

class D on S is e¨ective if and only if D2 f 0 and D �H > 2.

Remark. If S LPr is a smooth K3 surface of degree 2rÿ 2 with Picard number 2 as
above, S has no �ÿ2� curves when the equation

�rÿ 1�m2 �mnd � �gÿ 1�n2 � ÿ1�1�

has no solutions m; n A Z. This is the case for instance when d is even and g and r are odd.
Furthermore, a necessary condition for S to have genus 1 curves is that d 2 ÿ 4�gÿ 1��rÿ 1�
is a square.

3. Brill-Noether special linear series on curves on K3 surfaces

The ®rst important result in the study of special linear series on curves lying on K3
surfaces was Lazarsfeld's proof of the Brill-Noether-Petri Theorem (cf. [Laz]). He noticed
that there is no Brill-Noether type obstruction to embed a curve in a K3 surface: if C0 LS
is a smooth curve of genus gf 2 on a K3 surface such that Pic�S� � ZC0, then the general
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curve C A jC0j satis®es the Brill-Noether-Petri Theorem, that is, for any line bundle A on
C, the Petri map m0�C;A�: H 0�C;A�nH 0�C;KC nA4� ! H 0�C;KC� is injective. We
mention that Petri's Theorem implies (trivially) the Brill-Noether Theorem.

The general philosophy when studying linear series on a K3-section C LS of genus
gf 2, is that the type of a Brill-Noether special gr

d often does not depend on C but only on
its linear equivalence class in S, i.e. a gr

d on C with r�g; r; d� < 0 is expected to propagate to
all smooth curves C 0 A jCj. This expectation, in such generality, is perhaps a bit too opti-
mistic, but it was proved to be true for the Cli¨ord index of a curve (see [GL]): for C LS

a smooth K3-section of genus gf 2, one has that Cli¨�C 0� � Cli¨�C� for every smooth
curve C 0 A jCj. Furthermore, if Cli¨�C� < ��gÿ 1�=2� (the generic value of the Cli¨ord in-
dex), then there exists a line bundle L on S such that for all smooth C 0 A jCj the restriction
LjC 0 computes Cli¨�C 0�. Recall that the Cli¨ord index of a curve C of genus g is de®ned as

Cli¨�C� :� minfCli¨�D�: D A Div�C�; h0�D�f 2; h1�D�f 2g;

where for an e¨ective divisor D on C, we have Cli¨�D� � deg�D� ÿ 2
ÿ
h0�D� ÿ 1

�
. Note

that in the de®nition of Cli¨�C� the condition h1�D�f 2 can be replaced with

deg�D�e gÿ 1:

Another invariant of a curve is the Cli¨ord dimension of C de®ned as

Cli¨-dim�C� :� minfrf 1: bgr
d on C with d e gÿ 1; such that d ÿ 2r � Cli¨�C�g:

Curves with Cli¨ord dimensionf 2 are rare: smooth plane curves are precisely the curves
of Cli¨ord dimension 2, while curves of Cli¨ord dimension 3 occur only in genus 10 as
complete intersections of two cubic surfaces in P3.

Harris and Mumford during their work in [HM] conjectured that the gonality of a
K3-section should stay constant in a linear system: if C LS carries an exceptional g1

d then
every smooth C 0 A jCj carries an equally exceptional g1

d . This conjecture was later dis-
proved by Donagi and Morrison (cf. [DMo]). They came up with the following counter-
example: let p: S ! P2 be a K3 surface, double cover of P2 branched along a smooth
sextic and let L � p�OP2�3�. The genus of a smooth C A jLj is 10. The general C A jLj
carries a very ample g2

6 , hence gon�C� � 5. On the other hand, any curve in the codi-
mension 1 linear system jp�H 0

ÿ
P2;OP2�3��j is bielliptic, therefore has gonality 4. Under

reasonable assumptions this turns out to be the only counterexample to the Harris-Mumford
conjecture. Ciliberto and Pareschi proved that if C LS is such that jCj is base-point-free
and ample, then either gon�C 0� � gon�C� for all smooth C 0 A jCj, or �S;C� are as in the
previous counterexample (cf. [CilP]).

Although gon�C� can drop as C varies in a linear system, base-point-free g1
d 's on K3-

sections do propagate:

Proposition 3.1 (Donagi-Morrison). Let S be a K3 surface, C LS a smooth, non-

hyperelliptic curve and jZj a complete, base-point-free g1
d on C such that r�g; 1; d� < 0. Then

there is an e¨ective divisor DLS such that:

Farkas, Brill-Noether loci 189

Brought to you by | Humboldt-Universität zu Berlin
Authenticated

Download Date | 8/23/17 4:55 PM



. h0�S;D�f 2, h0�S;C ÿD�f 2, degC�DjC�e gÿ 1.

. Cli¨�C 0;DjC 0 �eCli¨�C;Z�, for any smooth C 0 A jCj.

. There is Z0 A jZj, consisting of distinct points such that Z0 LDXC.

Throughout this paper, for a smooth curve C we denote, as usual, by W r
d �C� the

scheme whose points are line bundles A A Picd�C� with h0�C;A�f r� 1, and by Gr
d�C�

the scheme parametrizing gr
d 's on C.

4. The gonality of curves in Pr

For a wide range of d; g and r we construct curves C LPr of degree d and genus
g having the expected gonality. We start with a case when we can realize our curves as
sections of K3 surfaces.

Theorem 3. Let rf 3, d f r2 � r and gf 0 be integers such that r�g; r; d� < 0 and

with d 2 > 4�rÿ 1��g� rÿ 2� when rf 4 while d 2 > 8g when r � 3. Let us assume moreover

that 0 and ÿ1 are not represented by the quadratic form

Q�m; n� � �rÿ 1�m2 �mnd � �gÿ 1�n2; m; n A Z:

Then there exists a smooth curve C LPr of degree d and genus g such that

gon�C� � min
ÿ
d ÿ 2r� 2; ��g� 3�=2��:

If gon�C� � d ÿ 2r� 2 < ��g� 3�=2� then dim W 1
dÿ2r�2�C� � 0 and every g1

dÿ2r�2 is given

by the hyperplanes through a �2rÿ 2�-secant �rÿ 2�-plane.

Proof. By Rathmann's Theorem there exists a smooth K3 surface S LPr with
deg�S� � 2rÿ 2 and C LS a smooth curve of degree d and genus g such that

Pic�S� � ZH lZC;

where H is a hyperplane section. The conditions d; g and r are subject to, ensure that S

does not contain �ÿ2� curves or genus 1 curves.

We prove ®rst that Cliff-dim�C� � 1. It su½ces to show that C LS is an ample
divisor, because then by using Proposition 3.3 from [CilP] we obtain that either

Cli¨-dim�C� � 1

or C is a smooth plane sextic, g � 10 and �S;C� are as in Donagi-Morrison's example
(then Cli¨-dim�C� � 2). The latter case obviously does not happen.

We prove that C �D > 0 for any e¨ective divisor DLS. Let D@mH � nC, with
m; n A Z, such a divisor. Then D2 � �2rÿ 2�m2 � 2mnd � n2�2gÿ 2�f 0 and

D �H � �2rÿ 2�m� dn > 2:
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The case me 0; ne 0 is impossible, while the case mf 0; nf 0 is trivial. Let us assume
m > 0; n < 0. Then D � C � md � n�2gÿ 2� > ÿn

ÿ
d 2=�2rÿ 2� ÿ 2g� 2

�� d=�rÿ 1� > 0,
because d 2=�2rÿ 2� > 2g. In the remaining case m < 0; n > 0 we have that

nD � C fÿmD �H > 0;

so C is ample by Nakai-Moishezon.

Our assumptions imply that d e gÿ 1, so OC�1� is among the line bundles from
which Cliff�C� is computed. We get thus the following estimate on the gonality of C:

gon�C� � Cli¨�C� � 2eCli¨�C;HjC� � 2 � d ÿ 2r� 2;

which yields gon�C�emin
ÿ
d ÿ 2r� 2; ��g� 3�=2��.

For the rest of the proof let us assume that gon�C� < ��g� 3�=2�. We will then show
that gon�C� � d ÿ 2r� 2. Let jZj be a complete, base point free pencil computing gon�C�.
By applying Proposition 3.1, there exists an e¨ective divisor DLS satisfying

h0�S;D�f 2; h0�S;C ÿD�f 2; deg�DjC�e gÿ 1;

gon�C� � Cli¨�DjC� � 2 and Z LDXC:

We consider the exact cohomology sequence:

0! H 0�S;Dÿ C� ! H 0�S;D� ! H 0�C;DjC� ! H 1�S;Dÿ C�:

Since C ÿD is e¨ective and D0, one sees that Dÿ C cannot be e¨ective, so

H 0�S;Dÿ C� � 0:

The surface S does not contain �ÿ2� curves, so jC ÿDj has no ®xed components; the
equation �C ÿD�2 � 0 has no solutions, therefore �C ÿD�2 > 0 and the general element
of jC ÿDj is smooth and irreducible. Then it follows that

H 1�S;Dÿ C� � H 1�S;C ÿD�4 � 0:

Thus H 0�S;D� � H 0�C;DjC� and

gon�C� � 2� Cli¨�DjC� � 2�D � C ÿ 2 dimjDj � D � C ÿD2:

We consider the following family of e¨ective divisors:

A :� fD A Div�S�: h0�S;D�f 2; h0�S;C ÿD�f 2;C �De gÿ 1g:

Since we already know that d ÿ 2r� 2f gon�C�f a, where

a � minfD � C ÿD2: D A Ag;
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we are done if we prove that af d ÿ 2r� 2. Take D A A such that D@mH � nC,
m; n A Z. The conditions D2 > 0;D � C e gÿ 1 and 2 < D �H < d ÿ 2 (use Proposition 2.2
for the last inequality) can be rewritten as

(i) �rÿ 1�m2 �mnd � n2�gÿ 1� > 0,

(ii) 2 < �2rÿ 2�m� nd < d ÿ 2,

(iii) md � �2nÿ 1��gÿ 1�e 0.

We have to prove that for any D A A the following inequality holds:

f �m; n� � D � C ÿD2 � ÿ�2rÿ 2�m2 �m�d ÿ 2nd� � �nÿ n2��2gÿ 2�f f �1; 0�
� d ÿ 2r� 2:

We solve this standard calculus problem. Denote by

a :� d � ������������������������������������������
d 2 ÿ 4�rÿ 1��gÿ 1�p

2rÿ 2
and b :� d ÿ ������������������������������������������

d 2 ÿ 4�rÿ 1��gÿ 1�p
2rÿ 2

:

We dispose ®rst of the case n < 0. Assuming n < 0, from (i) we have that either m < ÿbn or
m > ÿan. If m < ÿbn from (ii) we obtain that 2 < n

ÿ
d ÿ �2rÿ 2�b� < 0, because n < 0 and

d ÿ �2rÿ 2�b � ������������������������������������������
d 2 ÿ 4�rÿ 1��gÿ 1�p

> 0, so we have reached a contradiction.

We assume now that n < 0 and m > ÿan. From (iii) we get that

me �gÿ 1��1ÿ 2n�=d:

If ÿan > �gÿ 1��1ÿ 2n�=d we are done because there are no m; n A Z satisfying (i), (ii) and
(iii), while in the other case for any D A A with D@mH � nC, one has the inequality

f �m; n� > f �ÿan; n� �
ÿ
d 2 ÿ 4�rÿ 1��gÿ 1��� d

������������������������������������������
d 2 ÿ 4�rÿ 1��gÿ 1�p

2rÿ 2
�ÿn�:

When rf 4 since we assume that
������������������������������������������
d 2 ÿ 4�rÿ 1��gÿ 1�p

f 2rÿ 2, it immediately
follows that f �m; n�f d > d ÿ 2r� 2. In the case r � 3 when we only have the weaker
assumption d 2 > 8g, we still get that f �ÿan; n� > d ÿ 4 unless n � ÿ1 and d 2 ÿ 8g < 8. In
this last situation we obtain mf �d � 4�=4 so f �m;ÿ1�f f

ÿ�d � 4�=4;ÿ1
�
> d ÿ 4.

The case n > 0 can be treated rather similarly. From (i) we get that either m < ÿan or
m > ÿbn. The ®rst case can be dismissed immediately. When m > ÿbn we use that for any
D A A with D@mH � nC,

f �m; n�fmin
�

f
ÿÿ�gÿ 1��2nÿ 1�=d; n

�
;max

�
f �ÿbn; n�; f

ÿ�2ÿ nd�=�2rÿ 2�; n�		:
Elementary manipulations give that

f
ÿÿ�gÿ 1��2nÿ 1�=d; n

� � �gÿ 1�=2 ��2nÿ 1�2ÿd 2 ÿ 4�rÿ 1��gÿ 1��=d 2 � 1�
f d ÿ 2r� 2
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(use only that d e gÿ 1 and d 2 > 4�rÿ 1�g, so we cover both cases r � 3 and rf 4 at
once). Note that in the case n > 0 we have equality if and only if n � 1;m � ÿ1 and
d � gÿ 1.

Moreover f �ÿbn; n� � n�2gÿ 2ÿ bd�f 2gÿ 2ÿ bd and

2gÿ 2ÿ bd > d ÿ 2r� 2, 2rÿ 2 <
������������������������������������������
d 2 ÿ 4�rÿ 1��gÿ 1�p

< d ÿ 2r� 2:

When this does not happen we proceed as follows: if
������������������������������������������
d 2 ÿ 4�rÿ 1��gÿ 1�p

f d ÿ 2r� 2
then if n � 1 we have that m > ÿbfÿ1, that is mf 0, but this contradicts (ii). When
nf 2, we have

f
ÿ�2ÿ nd�=�2rÿ 2�; n� � �ÿd 2 ÿ 4�rÿ 1��gÿ 1���n2 ÿ n� � �2d ÿ 4��=�2rÿ 2�

> d ÿ 2r� 2:

Finally, the remaining possibility 2rÿ 2f
������������������������������������������
d 2 ÿ 4�rÿ 1��gÿ 1�p

does not occur when
rf 4 while in the case r � 3 we either have f �ÿbn; n� > d ÿ 4 or else n � 1 and then
m > �ÿd � 4�=4 hence f �m; 1� > f

ÿ�ÿd � 4�=4; 1
� � d ÿ 4.

All this leaves us with the case n � 0, when f �m; 0� � ÿ�2rÿ 2�m2 �md. Clearly
f �m; 0�f f �1; 0� for all m complying with (i), (ii) and (iii).

Thus we proved that gon�C� � d ÿ 2r� 2. We have equality

D � C ÿD2 � d ÿ 2r� 2

where D A A, if and only if D � H or in the case d � gÿ 1 also when D � C ÿH. The
latter possibility can be ruled out since d � gÿ 1 is not compatible with the assumptions
d f r2 � r and d ÿ 2r� 2 < ��g� 3�=2�. Therefore we can always assume that the divisor
on S cutting a g1

dÿ2r�2 on C is the hyperplane section of S. Since Z LH XC, if we denote
by D the residual divisor of Z in H XC, we have that h0�C;HjC ÿ D� � 2, so D spans a
Prÿ2 hence jZj is given by the hyperplanes through the �2rÿ 2�-secant �rÿ 2�-plane hDi.
This shows that every pencil computing gon�C� is given by the hyperplanes through a
�2rÿ 2�-secant �rÿ 2�-plane.

There are a few ways to see that C has only ®nitely many �2rÿ 2�-secant �rÿ 2�-
planes. The shortest is to invoke Theorem 3.1 from [CilP]: since gon�C 0� � d ÿ 2r� 2
is constant as C 0 varies in jCj, for the general smooth curve C 0 A jCj one has
dim W 1

dÿ2r�2�C 0� � 0. r

Remarks. 1. Keeping the assumptions and the notations of Theorem 3 we note that
when d ÿ 2r� 2 < ��g� 3�=2� the linear system jCj is �d ÿ 2rÿ 1�-very ample, i.e. for any
0-dimensional subscheme Z LS of lengthe d ÿ 2r the map H 0�S;C� ! H 0�S;C nOZ�
is surjective. Indeed, by applying Theorem 2.1 from [BS] if jCj is not �d ÿ 2rÿ 1�-very
ample, there exists an e¨ective divisor D on S, DD 0, such that C ÿ 2D is Q-e¨ective and

C �Dÿ �d ÿ 2r�eD2 eC �D=2 < d ÿ 2r;
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hence C �DÿD2 e d ÿ 2r. On the other hand clearly D A A, thus

C �DÿD2 f d ÿ 2r� 2;

a contradiction.

2. One can ®nd quartic surfaces S LP3 containing a smooth curve C of degree d and
genus g in the case g � d 2=8� 1 (which is outside the range Theorem 3 deals with). Then
d � 4m; g � 2m2 � 1 with mf 1 and C is a complete intersection of type �4;m�. For such a
curve, gon�C� � d ÿ l, where l is the degree of a maximal linear divisor on C (cf. [Ba]). If S

is su½ciently general so that it contains no lines, by Bezout, C cannot have 5-secant lines so
gon�C� � d ÿ 4 in this case too.

When r � 3 we want to ®nd out when the curves constructed in Theorem 3 corre-
spond to smooth points of Hilbd;g;3. We have the following:

Proposition 4.1. Let C LS LP3 be a smooth curve sitting on a quartic surface such

that Pic�S� � ZH lZC with H being a plane section and assume furthermore that S con-
tains no �ÿ2� curves. Then H 1�C;NC=P3� � 0 if and only if d e 18 or g < 4d ÿ 31.

Proof. We use the exact sequence

0! NC=S ! NC=P3 ! NS=P3 nOC ! 0;�2�

where NS=P3 nOC � OC�4� and NC=S � KC . We claim that there is an isomorphism
H 1�C;NC=P3� � H 1

ÿ
C;OC�4�

�
. Suppose this is not the case. Then the injective map

H 1�C;KC� ! H 1�C;NC=P3� provides a section s A H 0�N4
C=P3 nKC� which yields a split-

ting of the dual of the exact sequence (2), hence (2) is split as well. Using a result from
[GH], p. 252 we obtain that C is a complete intersection with S. This is clearly a contra-
diction. Therefore one has H 1�C;NC=P3� � H 1

ÿ
C;OC�4�

�
.

We have isomorphisms H 1�C; 4HjC� � H 2�S; 4H ÿ C� � H 0�S;C ÿ 4H�4. Accord-
ing to Proposition 2.2 the divisor C ÿ 4H is e¨ective if and only if �C ÿ 4H�2 f 0 and
�C ÿ 4H� �H > 2, from which the conclusion follows. r

We need to determine the gonality of nodal curves not of compact type and which
consist of two components meeting at a number of points. We have the following result:

Proposition 4.2. Let C � C1 WD C2 be a quasi-transversal union of two smooth curves
C1 and C2 meeting at a ®nite set D. Denote by g1 � g�C1�; g2 � g�C2�; d � card�D�. Let

us assume that C1 has only ®nitely many pencils g1
d , where de d and that the points of D

do not occur in the same ®bre of one of these pencils. Then gon�C�f d � 1. Moreover if
gon�C� � d � 1 then either (1) C2 is rational and there is a degree d map f1: C1 ! P1 and a

degree 1 map f2: C2 ! P1 such that f1jD � f2jD, or (2) there is a g1
d�1 on C1 containing D in

a ®bre.

Proof. Let us assume that C is k-gonal, that is, a limit of smooth k-gonal curves. If
g � g1 � g2 � dÿ 1, we consider the space Hg;k of Harris-Mumford admissible coverings
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of degree k and we denote by p: Hg;k !Mg the proper map sending a covering to the
stable model of its domain (see [HM]). Since �C� A M

1

g;k � Im�p�, it follows that there exists
a semistable curve C 0 whose stable model is C and a degree k admissible covering
f : C 0 ! Y , where Y is a semistable curve of arithmetic genus 0. We thus have that
f ÿ1�Ysing� � C 0sing and if p A C 01 XC 02 with C 01 and C 02 components of C 0, then f �C 01� and
f �C 02� are distinct components of Y and the rami®cation indices at the point p of the
restrictions fjC 0

1
and fjC 0

2
are the same.

We have that C 0 � C1 WC2 WR1 W � � � WRd, where for 1e ie d the curve Ri is a
(possibly empty) destabilizing chain of P1's inserted at the nodes of C. Let us denote
fpig � C1 XRi and fqig � C2 XRi; if Ri � j then we take pi � qi A DLC.

We ®rst show that k f d � 1. Suppose k e d. Since C1 has no g1
dÿ1's it follows that

k � d and that f ÿ1 f �C1� � C1. If there were distinct points pi and pj such that
f �pi�3 f �pj�, then f �Ri�3 f �R j� and the image curve Y would no longer have genus 0.
Therefore f �pi� � f �pj� for all i; j A f1; . . . ; dg, that is D appears in the ®bre of a g1

d on C1,
a contradiction.

Assume now that k � d � 1. Then either deg� fjC1
� � d or deg� fjC1

� � d � 1. If
deg� fjC1

� � d � 1, then again f ÿ1 f �C1� � C1 and by the same reasoning f maps all the
pi's to the same point and this yields case (2) from the statement of the proposition. If
deg� fjC1

� � d then f ÿ1 f �C1� � C1 WD, where D is a smooth rational curve mapped iso-

morphically to its image via f . If D � C2 then the condition that the dual graph of Y is a
tree implies that f �pi� � f �qi� for all i and this yields case (1) from the statement. Finally,
if D3C2 then f �C1�3 f �C2�. We know that there are 1e i < j e d such that

f �pi�3 f �pj�:

The image f �C2� belongs to a chain R of P1's such that either RX f �C1� � f f �pi�g or
RX f �C1� � f f �pj�g. In the former case f �p� � f �pi� for all p A Dÿ fpjg while in the
latter case f �p� � f �pj� for all p A Dÿ fpig. In each case by adding a base point we obtain
a g1

d�1 on C1 containing D in a ®bre. r

Theorem 3 provides curves C LP3 of expected gonality when d is even and g is odd
(equation (1) has no solutions in this case). Naturally, we would like to have such curves
when d and g have other parities as well. We will achieve this by attaching to a `good' curve
of expected gonality either a 2 or 3-secant line or a 4-secant conic.

Theorem 1. Let gf 15 and d f 14 be integers with g odd and d even, such that

d 2 > 8g; 4d < 3g� 12, d 2 ÿ 8g� 8 is not a square and either d e 18 or g < 4d ÿ 31. If

�d 0; g 0� A f�d; g�; �d � 1; g� 1�; �d � 1; g� 2�; �d � 2; g� 3�g;

then there exists a regular component of Hilbd 0;g 0;3 with general point �C 0� a smooth curve
such that gon�C 0� � min

ÿ
d 0 ÿ 4; ��g 0 � 3�=2��.

Proof. For d and g as in the statement we know by Theorem 3 and by Proposition
4.1 that there exists a smooth nondegenerate curve C LP3 of degree d and genus g,
with gon�C� � min

ÿ
d ÿ 4; ��g� 3�=2�� and H 1�C;NC=P3� � 0. We can also assume that
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C sits on a smooth quartic surface S and Pic�S� � ZH lZC. Moreover, in the case
d ÿ 4 < ��g� 3�=2� the curve C has only ®nitely many g1

dÿ4's, all given by planes through a
4-secant line.

i) Let us settle ®rst the case �d 0; g 0� � �d � 1; g� 1�. Take p; q A C general points,
L � pqLP3 and X :� C WL. By applying Lemma 1.2 from [BE], we know that
H 1�X ;NX � � 0 and the curve X is smoothable in P3, that is, there exists a ¯at family of
curves fXtg in P3 over a smooth and irreducible base, with the general ®bre Xt smooth
while the special ®bre X0 is X . If d ÿ 4 < ��g� 3�=2�, then since C has only ®nitely many
g1

dÿ4's, by applying Proposition 4.2 we get that gon�X� � d ÿ 3. In the case

d ÿ 4f ��g� 3�=2�

we just notice that gon�X�f gon�C� � ��g 0 � 3�=2�.

ii) Next we tackle the case �d 0; g 0� � �d � 1; g� 2�. Assume ®rst that

d ÿ 4 < ��g� 3�=2� , d 0 ÿ 4 < ��g 0 � 3�=2�:

We apply Lemma 1.2 from [BE] to a curve X :� C WL, where L is a suitable trisecant line
to C. In order to conclude that X is smoothable in P3 and that H 1�X ;NX � � 0, we have to
make sure that the trisecant line L � pqq 0 with p; q; q 0 A C can be chosen in such a way that

L;Tp�C�;Tq�C� and Tq 0 �C� do not all lie in the same plane:�3�

We claim that when C A jCj is general in its linear system, at least one of its trisecants sat-
is®es (3). Suppose not. Then for every smooth curve C A jCj and for every trisecant line L to
C condition (3) fails.

We consider a 0-dimensional subscheme Z LS where Z � p� q� q 0 � u� u 0, with
p; q; q 0 A S being collinear points while u and u 0 are general in®nitely near points to q and
q 0 respectively. The linear system jCj is at least 5-very ample (cf. Remark 1), hence a
general curve C A jC ÿ Zj is smooth and possesses a trisecant line for which (3) holds, a
contradiction.

Since the scheme of trisecants to a space curve is of pure dimension 1, it follows that
for a general curve C A jCj, through a general point p A C there passes a trisecant line L for
which (3) holds. We have that X :� C WL is smoothable in P3 and H 1�X ;NX � � 0. We
conclude that gon�X� � d ÿ 3 by proving that there is no g1

dÿ4 on C containing LXC in a
®bre.

If C A jCj is general, any line in P3 (hence also a 4-secant line to C) can meet only
®nitely many trisecants. Indeed, assuming that mLP3 is a line meeting in®nitely many
trisecants, we consider the correspondence

T � f�p; t� A C �m: pt is a trisecant to Cg

and the projections p1: T ! C and p2: T ! m. If p2 is surjective, then Nmp1
�p2� yields a g1

3

on C, a contradiction. If p2 is not surjective then there exists a point t A P3 such that pt is a
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trisecant to C for each p A C. This possibility cannot occur for a general C A jCj: Otherwise
we take general points t A P3 and p; p 0 A S and if we denote

B :� fC A jCj: p; p 0 A C and tx is a trisecant to C for each x A Cg;

we have that dimBf gÿ 5. On the other hand since tp and tp 0 are trisecants for all curves
C A B, there must be a 0-dimensional subscheme Z L �tpW tp 0�XS of length 6 such that
BL jC ÿ Zj, hence dimBe dimjC ÿ Zj � gÿ 6 (use again that jCj is 5-very ample), a
contradiction. In this way the case d ÿ 4 < ��g� 3�=2� is settled.

When d ÿ 4f ��g� 3�=2� we apply Theorem 3 to obtain a smooth curve C1 LP3 of
degree d and genus g� 2 such that gon�C1� � �g� 5�=2 and H 1�C1;NC1

� � 0. We take
X1 :� C1 WL1 with L1 being a general 1-secant line to C1. Then X1 is smoothable and
gon�X1� � gon�C1� � �g� 5�=2.

iii) Finally, we turn to the case �d 0; g 0� � �d � 2; g� 3�. Take H LP3 a general
plane meeting C in d distinct points in general linear position and pick 4 of them:
p1; p2; p3; p4 A C XH. Choose QLH a general conic such that QXC � fp1; p2; p3; p4g.
Theorem 5.2 from [Se] ensures that X :� C WQ is smoothable in P3 and H 1�X ;NX � � 0.

Assume ®rst that d 0 ÿ 4e ��g 0 � 3�=2�. We claim that gon�X�f gon�C� � 2. Ac-
cording to Proposition 4.2 the opposite could happen only in 2 cases: a) There exists a g1

dÿ3

on C, say jZj, such that jZj�ÿp1 ÿ p2 ÿ p3 ÿ p4�3j. b) There exists a degree d ÿ 4 map
f : C ! P1 and a degree 1 map f 0: Q! P1 such that f �pi� � f 0�pi�, for i � 1; . . . ; 4.

Assume that a) does happen. We denote by U � fD A C4: jOC�1�j�ÿD�3jg the irre-
ducible 3-fold of divisors of degree 4 spanning a plane and also consider the correspondence

S � f�L;D� A W 1
dÿ3�C� �U : jLj�ÿD�3jg;

with the projections p1: S!W 1
dÿ3�C� and p2: S! U . We know that p2 is dominant, hence

dim Sf 3 and therefore dim W 1
dÿ3�C�f 2.

If r�g; 1; d ÿ 3� < 0 by Proposition 3.1 we get that every base-point-free g1
dÿ3 on C is

cut out by a divisor D on S such that D A A (see the proof of Theorem 3 for this notation)
and C �DÿD2 � Cliff�C;DjC� � 2e d ÿ 3, hence C �DÿD2 e d ÿ 4 for parity reasons.
As pointed out at the end of the proof of Theorem 3 this forces D@H, that is, all base-
point-free g1

dÿ3's on C are given by planes through a trisecant line. Thus C has y2 tri-
secants, a contradiction.

If r�g; 1; d ÿ 3�f 0, then g � 2d ÿ 9 and we can assume that there is L A p1�S� such
that jOC�1� ÿ Lj � j. The map p1 is either generically ®nite hence

dim W 1
dÿ4�C�f dim W 1

dÿ3�C� ÿ 2f 1

(cf. [FHL]), a contradiction, or otherwise p1 has ®bre dimension 1. This is possible only
when there is a component A of W 1

dÿ3�C� with dim�A�f 2 and such that the general L A A
satis®es jOC�1� ÿ Lj � j and every L A A has non-ordinary rami®cation so that the mono-
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dromy of each g1
dÿ3 is not the full symmetric group. Applying again [FHL] there is

L A W 1
dÿ4�C� such that fLg �W 0

1 �C�LA, in particular L has non-ordinary rami®cation
too. It is easy to see that this contradicts the �d ÿ 7�-very ampleness of jCj asserted by
Remark 1.

We now rule out case b). Suppose that b) does happen and denote by LLP3 the 4-
secant line corresponding to f . Let fpg � LXH, and pick l LH a general line. As Q was
a general conic through p1; . . . ; p4 we may assume that p B Q. The map f 0: Q! l is (up to
a projective isomorphism of l) the projection from a point q A Q, while f �pi� � pi pX l, for
i � 1; . . . ; 4. By Steiner's Theorem from classical projective geometry, the conditionÿ

f �p1� f �p2� f �p3� f �p4�
� � ÿ f 0�p1� f 0�p2� f 0�p3� f 0�p4�

�
is equivalent with p1; p2; p3; p4; p

and q being on a conic, a contradiction since p B Q.

Finally, when d 0 ÿ 4 > ��g 0 � 3�=2�, we have to show that gon�X�f gon�C� � 1. We
note that dim G1

�g�3�=2�C� � 1 (for any curve one has the inequality dim G1
gon e 1). By tak-

ing H A �P3�4 general enough, we obtain that p1; . . . ; p4 do not occur in the same ®bre of a
g1
�g�3�=2. r

Remark. Theorem 1 can be viewed as a non-containment relation M3
g 0;d 0 Lj M1

g 0;d 0ÿ5

between di¨erent Brill-Noether loci when d 0 and g 0 are as in Theorem 1 and moreover
d 0 ÿ 4e ��g 0 � 3�=2�. We can turn this problem on its head and ask the following question:
given g and k such that k < �g� 2�=2, when is it true that the general k-gonal curve of
genus g has no other linear series gr

d with r�g; r; d� < 0, that is, the pencil computing the
gonality is the only Brill-Noether exceptional linear series?

In [Fa2] we prove using limit linear series the following result: ®x g and k positive
integers such that ÿ3e r�g; 1; k� < 0. If r�g; 1; k� � ÿ3 assume furthermore that k f 6.
Then the general k-gonal curve C of genus g has no gr

d 's with r�g; r; d� < 0 except g1
k and

jKC ÿ g1
k j. In other words the k-gonal locus M1

g;k is not contained in any other proper Brill-
Noether locus Mr

g;d with rf 2; d e gÿ 1 and r�g; r; d� < 0.

In seems that other methods are needed to extend this result for more negative values
of r�g; 1; k�.

5. The Kodaira dimension of M 23

In this section we explain how Theorem 1 gives a new proof of our result k�M23�f 2
(cf. [Fa]). We refer to [Fa] for a detailed analysis of the geometry of M23; in that paper we
also conjecture that k�M23� � 2 and we present evidence for such a possibility.

Let us denote by Mg the moduli space of Deligne-Mumford stable curves of genus g.
We study the multicanonical linear systems on M23 by exhibiting three explicit multi-
canonical divisors on M23 which are (modulo a positive combination of boundary classes
coming from M23 ÿM23) of Brill-Noether type, that is, loci of curves having a gr

d when
r�23; r; d� � ÿ1.

On M23 there are three Brill-Noether divisors corresponding to the solutions of the
equation r�23; r; d� � ÿ1: the 12-gonal divisor M1

23;12, the divisor M2
23;17 of curves having
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a g2
17 and ®nally the divisor M3

23;20 of curves possessing a g3
20. If we denote by M

r

g;d the

closure of Mr
g;d inside Mg, the classes �Mr

g;d � A PicQ�Mg� when r�g; r; d� � ÿ1 have been
computed (see [EH], [Fa]). It is quite remarkable that for ®xed g all classes �Mr

g;d � are pro-
portional. One also knows the canonical divisor class (cf. [HM]):

KMg
� 13lÿ 2d0 ÿ 3d1 ÿ 2d2 ÿ � � � ÿ 2d�g=2�;

and by comparing for g � 23 this formula with the expression of the classes �Mr

23;d �, we
®nd that there are constants m;m1;m2;m3 A Z>0 such that

mKM23
� m1�M1

23;12� � E � m2�M2

23;17� � E � m3�M3

23;20� � E;

where E is the same positive combination of the boundary classes d1; . . . ; d11.

As explained in [Fa], since M
1

23;12, M
2

23;17 and M
3

23;20 are mutually distinct irreducible
divisors, we can show that the multicanonical image of M23 cannot be a curve once we
construct a smooth curve of genus 23 lying in the support of exactly two of the divisors
M1

23;12, M2
23;17 and M3

23;20. In this way we rule out the possibility of all three intersections
of two Brill-Noether divisors being equal to base-locus�jmKM23

j�XM23.

In [Fa] we found such genus 23 curves using an intricate construction involving limit
linear series (cf. Proposition 5.4 in [Fa]). Here we can construct such curves in a much
simpler way by applying Theorem 1 when �d; g� � �18; 23�: there exists a smooth curve
C LP3 of genus 23 and degree 18 such that gon�C� � 13; moreover C sits on a smooth
quartic surface S LP3 such that Pic�S� � ZC lZH.

Since C has a very ample g3
18, by adding 2 base points it will also have plenty of g3

20's

and also g2
17's of the form g3

18�ÿp� � fD A g3
18: Df pg, for any p A C. Therefore

�C� A �M3
23;20 XM2

23;17� ÿM1
23;12;

and Theorem 2 now follows.
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