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Abstract

We determine the Kodaira dimension of the moduli space Sg of even spin curves for all g. Precisely, we
show that Sg is of general type for g > 8 and has negative Kodaira dimension for g < 8.
© 2009 Elsevier Inc. All rights reserved.
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The moduli space Sg of smooth spin curves parameterizes pairs [C,η], where [C] ∈ Mg

is a curve of genus g and η ∈ Picg−1(C) is a theta-characteristic. The finite forgetful map
π : Sg → Mg has degree 22g and Sg is a disjoint union of two connected components S +

g

and S −
g of relative degrees 2g−1(2g + 1) and 2g−1(2g − 1) corresponding to even and odd theta-

characteristics respectively. A compactification S g of Sg over Mg is obtained by considering
the coarse moduli space of the stack of stable spin curves of genus g (cf. [4,3,1]). The projection
Sg → Mg extends to a finite branched covering π : S g → Mg . In this paper we determine the
Kodaira dimension of S +

g :

Theorem 0.1. The moduli space S +
g of even spin curves is a variety of general type for g > 8

and it is uniruled for g < 8. The Kodaira dimension of S +
8 is non-negative.1

✩ Research partially supported by an Alfred P. Sloan Fellowship.
E-mail address: farkas@math.hu-berlin.de.

1 Building on the results of this paper, we have proved quite recently in joint work with A. Verra, that κ(S +
8 ) = 0.
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0001-8708/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2009.08.011



434 G. Farkas / Advances in Mathematics 223 (2010) 433–443
It was classically known that S +
2 is rational. The Scorza map establishes a birational isomor-

phism between S +
3 and M3, cf. [5], hence S +

3 is rational. Very recently, Takagi and Zucconi [17]
showed that S +

4 is rational as well. Theorem 0.1 can be compared to [11, Theorem 0.3]: The mod-
uli space Rg of Prym varieties of dimension g − 1 (that is, non-trivial square roots of OC for
each [C] ∈ Mg) is of general type when g > 13 and g �= 15. On the other hand Rg is unirational
for g < 8. Surprisingly, the problem of determining the Kodaira dimension has a much shorter
solution for S +

g than for Rg and our results are complete.

We describe the strategy to prove that S +
g is of general type for a given g. We denote by λ =

π∗(λ) ∈ Pic(S +
g ) the pull-back of the Hodge class and by α0, β0 ∈ Pic(S +

g ) and αi,βi ∈ Pic(S +
g )

for 1 � i � [g/2] boundary divisor classes such that

π∗(δ0) = α0 + 2β0 and π∗(δi) = αi + βi for 1 � i � [g/2]

(see Section 2 for precise definitions). Using the Riemann–Hurwitz formula [14] we find that

KS +
g

≡ π∗(KMg
) + β0 ≡ 13λ − 2α0 − 3β0 − 2

[g/2]∑
i=1

(αi + βi) − (α1 + β1).

We prove that KS +
g

is a big Q-divisor class by comparing it against the class of the closure in S +
g

of the divisor Θnull on S +
g of non-vanishing even theta-characteristics:

Theorem 0.2. The closure in S +
g of the divisor Θnull := {[C,η] ∈ S +

g : H 0(C,η) �= 0} of non-
vanishing even theta-characteristics has class equal to

Θnull ≡ 1

4
λ − 1

16
α0 − 1

2

[g/2]∑
i=1

βi ∈ Pic
(

S +
g

)
.

Note that the coefficients of β0 and αi for 1 � i � [g/2] in the expansion of [Θnull] are equal
to 0. To prove Theorem 0.2, one can use test curves on S +

g or alternatively, realize Θnull as
the push-forward of the degeneracy locus of a map of vector bundles of the same rank defined
over a certain Hurwitz scheme covering S +

g and use [9,10] to compute the class of this locus.
Then we use [12, Theorem 1.1], to construct for each genus 3 � g � 22 an effective divisor class
D ≡ aλ − ∑[g/2]

i=0 biδi ∈ Eff(Mg) with coefficients satisfying the inequalities

a

b0
�

⎧⎪⎨⎪⎩
6 + 12

g+1 , if g + 1 is composite,

7, if g = 10,

6k2+k−6
k(k−1)

, if g = 2k − 2 � 4

and bi/b0 � 4/3 for 1 � i � [g/2]. When g + 1 is composite we choose for D the closure of
the Brill–Noether divisor of curves with a gr

d , that is, Mr
g,d := {[C] ∈ Mg: Gr

d(C) �= ∅} in case
when the Brill–Noether number ρ(g, r, d) = −1, and then cf. [7]
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Mr
g,d ≡ cg,d,r

(
(g + 3)λ − g + 1

6
δ0 −

[g/2]∑
i=1

i(g − i)δi

)
∈ Pic(Mg).

For g = 10 we take the closure of the divisor K10 := {[C] ∈ M10: C lies on a K3 surface} (cf.
[12, Theorem 1.6]). In the remaining cases, when necessarily g = 2k − 2, we choose for D the
Gieseker–Petri divisor G P 1

g,k consisting of those curves [C] ∈ Mg such that there exists a pencil

A ∈ W 1
k (C) such that the multiplication map

μ0(A) : H 0(C,A) ⊗ H 0(C,KC ⊗ A∨) → H 0(C,KC)

is not an isomorphism, see [7,10]. Having chosen D, we form the Q-linear combination of divisor
classes

8 · Θnull + 3

2b0
· π∗(D) =

(
2 + 3a

2b0

)
λ − 2α0 − 3β0

−
[g/2]∑
i=1

3bi

2b0
αi −

[g/2]∑
i=1

(
4 + 3bi

2

)
βi ∈ Pic

(
S +

g

)
,

from which we can write

KS +
g

= νg · λ + 8Θnull + 3

2b0
π∗(D) +

[g/2]∑
i=1

(
ci · αi + c′

i · βi

)
,

where ci, c
′
i � 0. Moreover νg > 0 precisely when g � 9, while ν8 = 0. Since the class λ ∈

Pic(S +
g ) is big and nef, we obtain that KS +

g
is a big Q-divisor class on the normal variety S +

g as

soon as g > 8. It is proved in [15] that for g � 4 pluricanonical forms defined on S +
g,reg extend

to any resolution of singularities Ŝ +
g → S +

g , which shows that S +
g is of general type whenever

νg > 0 and completes the proof of Theorem 0.1 for g � 8. When g � 7 we show that KS +
g

/∈
Eff(S +

g ) by constructing a covering curve R ⊂ S +
g such that R · KS +

g
< 0, cf. Theorem 1.2. We

then use [2] to conclude that S +
g is uniruled.

1. The stack of spin curves

We review a few facts about Cornalba’s compactification π : S g → Mg , see [4]. If X is a
nodal curve, a smooth rational component E ⊂ X is said to be exceptional if #(E ∩ X − E) = 2.
The curve X is said to be quasi-stable if #(E ∩ X − E) � 2 for any smooth rational component
E ⊂ X, and moreover any two exceptional components of X are disjoint. A quasi-stable curve is
obtained from a stable curve by blowing-up each node at most once. We denote by [st(X)] ∈ Mg

the stable model of X.

Definition 1.1. A spin curve of genus g consists of a triple (X,η,β), where X is a genus g

quasi-stable curve, η ∈ Picg−1(X) is a line bundle of degree g − 1 such that ηE = OE(1) for
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every exceptional component E ⊂ X, and β : η⊗2 → ωX is a sheaf homomorphism which is
generically non-zero along each non-exceptional component of X.

A family of spin curves over a base scheme S consists of a triple (X f→S,η,β), where
f : X → S is a flat family of quasi-stable curves, η ∈ Pic(X ) is a line bundle and β : η⊗2 → ωX
is a sheaf homomorphism, such that for every point s ∈ S the restriction (Xs, ηXs , βXs : η⊗2

Xs
→

ωXs ) is a spin curve.

To describe locally the map π : S g → Mg we follow [4, Section 5]. We fix [X,η,β] ∈
S g and set C := st(X). We denote by E1, . . . ,Er the exceptional components of X and by
p1, . . . , pr ∈ Csing the nodes which are images of exceptional components. The automorphism
group of (X,η,β) fits in the exact sequence of groups

1 −→ Aut0(X,η,β) −→ Aut(X,η,β)
resC−→ Aut(C).

We denote by C
3g−3
τ the versal deformation space of (X,η,β) where for 1 � i � r the locus

(τi = 0) ⊂ C
3g−3
τ corresponds to spin curves in which the component Ei ⊂ X persists. Simi-

larly, we denote by C
3g−3
t = Ext1(ΩC, OC) the versal deformation space of C and denote by

(ti = 0) ⊂ C
3g−3
t the locus where the node pi ∈ C is not smoothed. Then around the point

[X,η,β], the morphism π : S g → Mg is locally given by the map

C
3g−3
τ

Aut(X,η,β)
→ C

3g−3
t

Aut(C)
, ti = τ 2

i (1 � i � r) and ti = τi (r + 1 � i � 3g − 3). (1)

From now on we specialize to the case of even spin curves and describe the boundary of S +
g . In

the process we determine the ramification of the finite covering π : S +
g → Mg .

1.1. The boundary divisors of S +
g

If [X,η,β] ∈ π−1([C ∪y D]) where [C,y] ∈ Mi,1 and [D,y] ∈ Mg−i,1, then necessarily
X := C ∪y1 E ∪y2 D, where E is an exceptional component such that C ∩E = {y1} and D ∩E =
{y2}. Moreover

η = (
ηC,ηD,ηE = OE(1)

) ∈ Picg−1(X),

where η⊗2
C = KC , η⊗2

D = KD . The condition h0(X,η) ≡ 0 mod 2, implies that the theta-
characteristics ηC and ηD have the same parity. We denote by Ai ⊂ S +

g the closure of the locus

corresponding to pairs ([C,y,ηC], [D,y,ηD]) ∈ S +
i,1 × S +

g−i,1 and by Bi ⊂ S +
g the closure of

the locus corresponding to pairs ([C,y,ηC], [D,y,ηD]) ∈ S −
i,1 × S −

g−i,1.
For a general point [X,η,β] ∈ Ai ∪ Bi we have that Aut0(X,η,β) = Aut(X,η,β) = Z2.

Using (1), the map C
3g−3
τ → C

3g−3
t is given by t1 = τ 2

1 and ti = τi for i � 2. Furthermore,

Aut0(X,η,β) acts on C
3g−3
τ via (τ1, τ2, . . . , τ3g−3) �→ (−τ1, τ2, . . . , τ3g−3). It follows that Δi ⊂

Mg is not a branch divisor for π : S +
g → Mg and if αi = [Ai] ∈ Pic(S +

g ) and βi = [Bi] ∈
Pic(S +), then for 1 � i � [g/2] we have the relation
g
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π∗(δi) = αi + βi. (2)

Moreover, π∗(αi) = 2g−2(2i + 1)(2g−i + 1)δi and π∗(βi) = 2g−2(2i − 1)(2g−i − 1)δi .
For a point [X,η,β] such that st(X) = Cyq := C/y ∼ q , with [C,y, q] ∈ Mg−1,2, there are

two possibilities depending on whether X possesses an exceptional component or not. If X = Cyq

and ηC := ν∗(η) where ν : C → X denotes the normalization map, then η⊗2
C = KC(y + q). For

each choice of ηC ∈ Picg−1(C) as above, there is precisely one choice of gluing the fibers ηC(y)

and ηC(q) such that h0(X,η) ≡ 0 mod 2. We denote by A0 the closure in S +
g of the locus of

points [Cyq, ηC ∈ √
KC(y + q)] as above and clearly deg(A0/Δ0) = 22g−2.

If X = C ∪{y,q} E where E is an exceptional component, then ηC := η ⊗ OC is a
theta-characteristic on C. Since H 0(X,ω) ∼= H 0(C,ωC), it follows that [C,ηC] ∈ S +

g−1. For
[C,y, q] ∈ Mg−1,2 sufficiently generic we have that Aut(X,η,β) = Aut(C) = {IdC}, and then
from (1) it follows that π is simply branched over such points. We denote by B0 ⊂ S +

g the clo-

sure of the locus of points [C ∪{y,q} E, ηC ∈ √
KC, ηE = OE(1)]. If α0 = [A0] ∈ Pic(S +

g ) and

β0 = [B0] ∈ Pic(S +
g ), we then have the relation

π∗(δ0) = α0 + 2β0. (3)

Note that π∗(α0) = 22g−2δ0 and π∗(β0) = 2g−2(2g−1 + 1)δ0.

1.2. The uniruledness of S +
g for small g

We employ a simple negativity argument to determine κ(S +
g ) for small genus. Using an

analogous idea we showed that similarly, for the moduli space of Prym curves, one has that
κ(Rg) = −∞ for g < 8, cf. [11, Theorem 0.7].

Theorem 1.2. For g < 8, the space S +
g is uniruled.

Proof. We start with a fixed K3 surface S carrying a Lefschetz pencil of curves of genus g.
This induces a fibration f : Blg2(S) → P1 and then we set B := (mf )∗(P1) ⊂ Mg , where

mf : P1 → Mg is the moduli map mf (t) := [f −1(t)]. We have the following well-known for-
mulas on Mg (cf. [12, Lemma 2.4]):

B · λ = g + 1, B · δ0 = 6g + 18, and B · δi = 0 for i � 1.

We lift B to a pencil R ⊂ S +
g of spin curves by taking

R := B ×Mg
S +

g = {[Ct , ηCt ] ∈ S +
g : [Ct ] ∈ B, ηCt ∈ Picg−1(Ct ), t ∈ P1} ⊂ S +

g .

Using (3) one computes the intersection numbers with the generators of Pic(S +
g ):

R · λ = (g + 1)2g−1(2g + 1
)
, R · α0 = (6g + 18)22g−2 and

R · β0 = (6g + 18)2g−2(2g−1 + 1
)
.
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Furthermore, R is disjoint from all the remaining boundary classes of S +
g , that is, R · αi =

R · βi = 0 for 1 � i � [g/2]. One verifies that R · KS +
g

< 0 precisely when g � 7. Since R

is a covering curve for S +
g in the range g � 7, we find that KS +

g
is not pseudo-effective, that

is, KS +
g

∈ Eff(S +
g )c . Pseudo-effectiveness of the canonical bundle is a birational property for

normal varieties, therefore the canonical bundle of any smooth model of S +
g lies outside the

pseudo-effective cone as well. One can apply [2, Corollary 0.3], to conclude that S +
g is uniruled

for g � 7. �
2. The geometry of the divisor Θnull

We compute the class of the divisor Θnull using test curves. The same calculation can be car-
ried out using techniques developed in [9,10] to calculate push-forwards of tautological classes
from stacks of limit linear series gr

d (see also Remark 2.1).
For g � 9, Harer [13] has showed that H 2(S +

g ,Q) ∼= Q. The range for which this result holds

has been recently improved to g � 5 in [16]. In particular, it follows that Pic(S +
g )Q is generated

by the classes λ, αi,βi for i = 0, . . . , [g/2]. Thus we can expand the divisor class Θnull in terms
of the generators of the Picard group

Θnull ≡ λ̄ · λ − ᾱ0 · α0 − β̄0 · β0 −
[g/2]∑
i=1

(ᾱi · αi + β̄i · βi) ∈ Pic
(

S +
g

)
Q
, (4)

and determine the coefficients λ̄, ᾱ0, β̄0, ᾱi and β̄i ∈ Q for 1 � i � [g/2].

Remark 2.1. To show that the class [Θnull] ∈ Pic(S +
g )Q is a multiple of λ and thus, the expan-

sion (4) makes sense for all g � 3, one does not need to know that Pic(S +
g )Q is infinite cyclic. For

instance, for even g = 2k −2 � 4, we note that, via the base point free pencil trick, [C,η] ∈ Θnull
if and only if the multiplication map

μC(A,η) : H 0(C,A) ⊗ H 0(C,A ⊗ η) → H 0(C,A⊗2 ⊗ η
)

is not an isomorphism for a base point free pencil A ∈ W 1
k (C). We set M̃g to be the open

subvariety consisting of curves [C] ∈ Mg such that W 1
k−1(C) = ∅ and denote by σ : G1

k → M̃g

the Hurwitz scheme of pencils g1
k and by

τ : G1
k ×M̃g

S +
g → S +

g , u : G1
k ×M̃g

S +
g → G1

k

the (generically finite) projections. Then Θnull = τ∗(Z), where

Z = {[A,C,η] ∈ G1
k ×M̃g

S +
g : μC(A,η) is not injective

}
.

Via this determinantal presentation, the class of the divisor Z is expressible as a combination
of τ ∗(λ), u∗(a), u∗(b), where a,b ∈ Pic(G1

k)Q are the tautological classes defined in e.g. [11,
p. 15]. Since τ∗(u∗(a)) = π∗(σ∗(a)) (and similarly for the class b), the conclusion follows. For
odd genus g = 2k − 1, one uses a similar argument replacing G1 with any generically finite
k
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covering of Mg given by a Hurwitz scheme (for instance, we take the space of pencils g1
k+1 with

a triple ramification point).

We start the proof of Theorem 0.2 by determining the coefficients of αi and βi (i � 1) in the
expansion of [Θnull].

Theorem 2.2. We fix integers g � 3 and 1 � i � [g/2]. The coefficient of αi in the expansion of
[Θnull] equals 0, while the coefficient of βi equals −1/2. That is, ᾱi = 0 and β̄i = 1/2.

Proof. For each integer 2 � i � g − 1, we fix general curves [C] ∈ Mi and [D,q] ∈ Mg−i,1

and consider the test curve Ci := {C ∪y∼q D}y∈C ⊂ Δi ⊂ Mg . We lift Ci to test curves Fi ⊂ Ai

and Gi ⊂ Bi inside S +
g constructed as follows. We fix even (resp. odd) theta-characteristics

η+
C ∈ Pici−1(C) and η+

D ∈ Picg−i−1(D) (resp. η−
C ∈ Pici−1(C) and η−

D ∈ Picg−i−1(D)).
If E ∼= P1 is an exceptional component, we define the family Fi (resp. Gi ) as consisting of

spin curves

Fi := {
t := [

C ∪y E ∪q D, ηC = η+
C , ηE = OE(1), ηD = η+

D

] ∈ S +
g : y ∈ C

}
and

Gi := {
t := [

C ∪y E ∪q D, ηC = η−
C , ηE = OE(1), ηD = η−

D

] ∈ S +
g : y ∈ C

}
.

Since π∗(Fi) = π∗(Gi) = Ci , clearly Fi ·αi = Ci ·δi = 2−2i, Fi ·βi = 0 and Fi has intersection
number 0 with all other generators of Pic(S +

g ). Similarly

Gi · βi = 2 − 2i, Gi · αi = 0, Gi · λ = 0,

and Gi does not intersect the remaining boundary classes in S +
g .

Next we determine Fi ∩ Θnull. Assume that a point t ∈ Fi lies in Θnull. Then there exists
a family of even spin curves (f : X → S,η,β), where S = Spec(R), with R being a discrete
valuation ring and X is a smooth surface, such that, if 0, ξ ∈ S denote the special and the generic
point of S respectively and Xξ is the generic fiber of f , then

h0(Xξ , ηξ ) � 2, h0(Xξ , ηξ ) ≡ 0 mod 2, η⊗2
ξ

∼= ωXξ and(
f −1(0), ηf −1(0)

) = t ∈ S +
g .

Following the procedure described in [6, pp. 347–351], this data produces a limit linear series
g1
g−1 on C ∪ D, say

l := (
lC = (LC,VC), lD = (LD,VD)

) ∈ G1
g−1(C) × G1

g−1(D),

such that the underlying line bundles LC and LD respectively, are obtained from the line bun-
dle (η+

C ,ηE,η+
D) by dropping the E-aspect and then tensoring the line bundles η+

C and η+
D by

line bundles supported at the points y ∈ C and q ∈ D respectively. For degree reasons, it fol-
lows that LC = η+ ⊗ OC((g − i)y) and LD = η+ ⊗ OD(iq). Since both C and D are general
C D
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in their respective moduli spaces, we have that H 0(C,η+
C ) = 0 and H 0(D,η+

D) = 0. In partic-

ular a
lC
1 (y) � g − i − 1 and a

lD
0 (q) < a

lD
1 (q) � i − 1, hence a

lC
1 (y) + a

lD
0 (q) � g − 2, which

contradicts the definition of a limit g1
g−1. Thus Fi ∩ Θnull = ∅. This implies that ᾱi = 0, for all

1 � i � [g/2] (for i = 1, one uses instead the curve Fg−1 ⊂ A1 to reach the same conclusion).
Assume that t ∈ Gi ∩Θnull. By the same argument as above, retaining also the notation, there

is an induced limit linear series on C ∪ D,

(lC, lD) ∈ G1
g−1(C) × G1

g−1(D),

where LC = η−
C ⊗ OC((g − i)y) and LD = η−

D ⊗ OD(iq). Since [C] ∈ Mi and [D,q] ∈ Mg−i,1

are both general, we may assume that h0(D,η−
D) = h0(C,η−

C ) = 1, q /∈ supp(η−
D) and that

supp(η−
C ) consists of i − 1 distinct points. In particular a

lD
1 (q) � i, hence a

lC
0 (y) � g − 1 −

a
lD
1 (q) � g − i − 1. Since h0(C,η−

C ) = 1, it follows that one has in fact equality, that is,

a
lC
0 (y) = g − i − 1 and then necessarily a

lD
1 (q) = i.

Similarly, a
lC
1 (y) � g − i + 1 (otherwise div(η−

C ) � 2y, that is, supp(η−
C ) would be non-

reduced, a contradiction), thus a
lD
0 (q) � i − 2, and the last two inequalities must be equalities as

well (one uses that h0(D,LD ⊗ OD(−(i − 1)q)) = h0(D,η−
D ⊗ OD(q)) = 1, that is, a

lD
0 (q) <

i − 1). Since a
lC
1 (y) = g − i + 1, we find that y ∈ supp(η−

C ).
To sum up, we have showed that (lC, lD) is a refined limit g1

g−1 and in fact

lD = ∣∣η−
D ⊗ OD(2q)

∣∣ + (i − 2) · q ∈ G1
g−1(D),

lC = ∣∣η−
C ⊗ OC(y)

∣∣ + (g − i − 1) · y ∈ G1
g−1(C), (5)

hence alD (q) = (i − 2, i) and alC (y) = (g − i − 1, g − i + 1).
To prove that the intersection between Gi and Θnull is transversal, we follow closely [8,

Lemma 3.4] (see especially the Remark on p. 45): The restriction Θnull |Gi
is isomorphic, as a

scheme, to the variety τ : T1
g−1(Gi) → Gi of limit linear series g1

g−1 on the curves of compact
type {C ∪y∼q D: y ∈ C}, whose C- and D-aspects are obtained by twisting suitably at y ∈ C and
q ∈ D the fixed theta-characteristics η−

C and η−
D respectively. Following the description of the

scheme structure of this moduli space given in [6, Theorem 3.3] over an arbitrary base, we find
that because Gi consists entirely of singular spin curves of compact type, the scheme T1

g−1(Gi)

splits as a product of the corresponding moduli spaces of C- and D-aspects respectively of the
limits g1

g−1. By direct calculation we have showed that T1
g−1(Gi) ∼= supp(η−

C ) × {lD}. Since

supp(η−
C ) is a reduced 0-dimensional scheme, we obtain that Θnull |Gi

is everywhere reduced. It
follows that Gi · Θnull = # supp(η−

C ) = i − 1 and then β̄i = (Gi · Θnull)/(2i − 2). This argument
does not work for i = 1, when one uses instead the intersection of Θnull with Gg−1, and this
finishes the proof. �

Next we construct two pencils in S +
g which are lifts of the standard degree 12 pencil of elliptic

tails in Mg . We fix a general pointed curve [C,q] ∈ Mg−1,1 and a pencil f : Bl9(P2) → P1 of
plane cubics together with a section σ : P1 → Bl9(P2) induced by one of the base points. We
then consider the pencil R := {[C ∪q∼σ(λ) f −1(λ)]}λ∈P1 ⊂ Mg .
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We fix an odd theta-characteristic η−
C ∈ Picg−2(C) such that q /∈ supp(η−

C ) and E ∼= P1 will
again denote an exceptional component. We define the family

F0 := {[
C ∪q E ∪σ(λ) f −1(λ), ηC = η−

C , ηE = OE(1), ηf −1(λ) = Of −1(λ)

]
: λ ∈ P1} ⊂ S +

g .

Since F0 ∩ A1 = ∅, we find that F0 · β1 = π∗(F0) · δ1 = −1. Similarly, F0 · λ = π∗(F0) · λ = 1
and obviously F0 · αi = F0 · βi = 0 for 2 � i � [g/2]. For each of the 12 points λ∞ ∈ P1 cor-
responding to singular fibers of R, the associated ηλ∞ ∈ Picg−1(C ∪ E ∪ f −1(λ∞)) are actual
line bundles on C ∪ E ∪ f −1(λ∞) (that is, we do not have to blow-up the extra node). Thus we
obtain that F0 · β0 = 0, therefore F0 · α0 = π∗(F0) · δ0 = 12.

We also fix an even theta-characteristic η+
C ∈ Picg−2(C) and consider the degree 3 branched

covering γ : S +
1,1 → M1,1 forgetting the spin structure. We define the pencil

G0 : = {[
C ∪q E ∪σ(λ) f −1(λ), ηC = η+

C , ηE = OE(1), ηf −1(λ) ∈ γ −1[f −1(λ)
]]

: λ ∈ P1}
⊂ S +

g .

Since π∗(G0) = 3R, we have that G0 · λ = 3. Obviously G0 · β0 = G0 · β1 = 0, hence G0 · α1 =
π∗(G0) · δ1 = −3. The map γ : S +

1,1 → M1,1 is simply ramified over the point corresponding to
j -invariant ∞. Hence, G0 · α0 = 12 and G0 · β0 = 12, which is consistent with formula (3).

The last pencil we construct lies in the boundary divisor B0 ⊂ S +
g . Setting E ∼= P1 for an

exceptional component, we define

H0 := {[
C ∪{y,q} E, ηC = η+

C , ηE = OE(1)
]
: y ∈ C

} ⊂ S +
g .

The fiber of H0 over the point y = q ∈ C is the even spin curve[
C ∪q E′ ∪q ′ E′′ ∪{q ′′,y′′} E, ηC = η+

C , ηE′ = OE′(1), ηE = OE(1), ηE′′ = OE′′(−1)
]
,

having as stable model [C ∪q E∞], where E∞ := E′′/y′′ ∼ q ′′ is the rational nodal curve corre-
sponding to j = ∞. Here E′,E′′ are rational curves, E′ ∩ E′′ = {q ′}, E ∩ E′′ = {q ′′, y′′} and the
stabilization map for C ∪ E ∪ E′ ∪ E′′ contracts the components E′ and E, while identifying q ′′
and y′′.

We find that H0 · λ = 0,H0 · αi = H0 · βi = 0 for 2 � i � [g/2]. Moreover H0 · α0 = 0, hence
H0 · β0 = 1

2π∗(H0) · δ0 = 1 − g. Finally, H0 · α1 = 1 and H0 · β1 = 0.

Theorem 2.3. If F0,G0,H0 ⊂ S +
g are the families of spin curves defined above, then

F0 · Θnull = G0 · Θnull = H0 · Θnull = 0.

Proof. From the limit linear series argument in the proof of Theorem 2.2 we get that the as-
sumption F0 ∩ Θnull �= ∅ implies that q ∈ supp(η−

C ), a contradiction. Similarly, we have that
G0 ∩ Θnull = ∅ because [C] ∈ Mg−1 can be assumed to have no even theta-characteristics
η+

C ∈ Picg−2(C) with h0(C,η+
C ) � 2, that is [C,η+

C ] /∈ Θnull ⊂ S +
g−1. Finally, we assume that

there exists a point [X := C ∪{y,q} E, ηC = η+
C , ηE = OE(1)] ∈ H0 ∩ Θnull. Then certainly

h0(X,ηX) � 2 and from the Mayer–Vietoris sequence on X we find that
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H 0(X,ηX) = Ker
{
H 0(C,ηC) ⊕ H 0(E, OE(1)

) → C2
y,q

}
,

hence h0(C,ηC) = h0(X,ηX) � 2. This contradicts the assumption that [C] ∈ Mg−1 is general.
A similar argument works for the special point in H0 ∩ π−1(Δ1), hence H0 · Θnull = 0. �
Proof of Theorem 0.2. Looking at the expansion of [Θnull], Theorem 2.3 gives the relations

F0 · Θnull = λ̄ − 12ᾱ0 + β̄1 = 0, G0 · Θnull = 3λ̄ − 12ᾱ0 − 12β̄0 + 3ᾱ1 = 0, and

H0 · Θnull = (g − 1)β̄0 − ᾱ1 = 0.

Since we have already computed ᾱi = 0 and β̄i = 1/2 for 1 � i � [g/2] (cf. Theorem 2.2), we
obtain that λ̄ = 1/4, ᾱ0 = 1/16 and β̄0 = 0. This completes the proof. �

A consequence of Theorem 0.2 is a new proof of the main result from [18]:

Theorem 2.4. If M1
g is the locus of curves [C] ∈ Mg with a vanishing theta-null then its closure

has class equal to

M1
g ≡ 2g−3

((
2g + 1

)
λ − 2g−3δ0 −

[g/2]∑
i=1

(
2g−i − 1

)(
2i − 1

)
δi

)
∈ Pic(Mg).

Proof. We use the scheme-theoretic equality π∗(Θnull) = M1
g as well as the formulas π∗(λ) =

2g−1(2g + 1)λ, π∗(α0) = 22g−2δ0, π∗(β0) = 2g−2(2g−1 + 1)δ0, π∗(αi) = 2g−2(2i + 1)(2g−i +
1)δi and π∗(βi) = 2g−2(2i − 1)(2g−i − 1)δi valid for 1 � i � [g/2]. �
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