The birational type of the moduli space of even spin curves ${ }^{\text {T }}$

Gavril Farkas
Humboldt-Universität zu Berlin, Institut Für Mathematik, Unter den Linden 6, 10099 Berlin, Germany
Received 24 November 2008; accepted 18 August 2009
Available online 27 August 2009
Communicated by Ravi Vakil

Abstract

We determine the Kodaira dimension of the moduli space S_{g} of even spin curves for all g. Precisely, we show that S_{g} is of general type for $g>8$ and has negative Kodaira dimension for $g<8$. © 2009 Elsevier Inc. All rights reserved.

Keywords: Moduli space of curves; Spin structure

The moduli space \mathcal{S}_{g} of smooth spin curves parameterizes pairs [C, η], where $[C] \in \mathcal{M}_{g}$ is a curve of genus g and $\eta \in \operatorname{Pic}^{g-1}(C)$ is a theta-characteristic. The finite forgetful map $\pi: \mathcal{S}_{g} \rightarrow \mathcal{M}_{g}$ has degree $2^{2 g}$ and \mathcal{S}_{g} is a disjoint union of two connected components \mathcal{S}_{g}^{+} and \mathcal{S}_{g}^{-}of relative degrees $2^{g-1}\left(2^{g}+1\right)$ and $2^{g-1}\left(2^{g}-1\right)$ corresponding to even and odd thetacharacteristics respectively. A compactification $\overline{\mathcal{S}}_{g}$ of \mathcal{S}_{g} over $\overline{\mathcal{M}}_{g}$ is obtained by considering the coarse moduli space of the stack of stable spin curves of genus g (cf. [4,3,1]). The projection $\mathcal{S}_{g} \rightarrow \mathcal{M}_{g}$ extends to a finite branched covering $\pi: \overline{\mathcal{S}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$. In this paper we determine the Kodaira dimension of $\overline{\mathcal{S}}_{g}^{+}$:

Theorem 0.1. The moduli space $\overline{\mathcal{S}}_{g}^{+}$of even spin curves is a variety of general type for $g>8$ and it is uniruled for $g<8$. The Kodaira dimension of $\overline{\mathcal{S}}_{8}^{+}$is non-negative. ${ }^{1}$

[^0]It was classically known that $\overline{\mathcal{S}}_{2}^{+}$is rational. The Scorza map establishes a birational isomorphism between $\overline{\mathcal{S}}_{3}^{+}$and $\overline{\mathcal{M}}_{3}$, cf. [5], hence $\overline{\mathcal{S}}_{3}^{+}$is rational. Very recently, Takagi and Zucconi [17] showed that $\overline{\mathcal{S}}_{4}^{+}$is rational as well. Theorem 0.1 can be compared to [11, Theorem 0.3]: The moduli space $\overline{\mathcal{R}}_{g}$ of Prym varieties of dimension $g-1$ (that is, non-trivial square roots of \mathcal{O}_{C} for each $[C] \in \mathcal{M}_{g}$) is of general type when $g>13$ and $g \neq 15$. On the other hand $\overline{\mathcal{R}}_{g}$ is unirational for $g<8$. Surprisingly, the problem of determining the Kodaira dimension has a much shorter solution for $\overline{\mathcal{S}}_{g}^{+}$than for $\overline{\mathcal{R}}_{g}$ and our results are complete.

We describe the strategy to prove that $\overline{\mathcal{S}}_{g}^{+}$is of general type for a given g. We denote by $\lambda=$ $\pi^{*}(\lambda) \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$the pull-back of the Hodge class and by $\alpha_{0}, \beta_{0} \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$and $\alpha_{i}, \beta_{i} \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$ for $1 \leqslant i \leqslant[g / 2]$ boundary divisor classes such that

$$
\pi^{*}\left(\delta_{0}\right)=\alpha_{0}+2 \beta_{0} \quad \text { and } \quad \pi^{*}\left(\delta_{i}\right)=\alpha_{i}+\beta_{i} \quad \text { for } 1 \leqslant i \leqslant[g / 2]
$$

(see Section 2 for precise definitions). Using the Riemann-Hurwitz formula [14] we find that

$$
K_{\overline{\mathcal{S}}_{g}^{+}} \equiv \pi^{*}\left(K_{\overline{\mathcal{M}}_{g}}\right)+\beta_{0} \equiv 13 \lambda-2 \alpha_{0}-3 \beta_{0}-2 \sum_{i=1}^{[g / 2]}\left(\alpha_{i}+\beta_{i}\right)-\left(\alpha_{1}+\beta_{1}\right) .
$$

We prove that $K_{\overline{\mathcal{S}}_{g}^{+}}$is a big \mathbb{Q}-divisor class by comparing it against the class of the closure in $\overline{\mathcal{S}}_{g}^{+}$ of the divisor $\Theta_{\text {null }}$ on \mathcal{S}_{g}^{+}of non-vanishing even theta-characteristics:

Theorem 0.2. The closure in $\overline{\mathcal{S}}_{g}^{+}$of the divisor $\Theta_{\text {null }}:=\left\{[C, \eta] \in \mathcal{S}_{g}^{+}: H^{0}(C, \eta) \neq 0\right\}$ of nonvanishing even theta-characteristics has class equal to

$$
\bar{\Theta}_{\text {null }} \equiv \frac{1}{4} \lambda-\frac{1}{16} \alpha_{0}-\frac{1}{2} \sum_{i=1}^{[g / 2]} \beta_{i} \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)
$$

Note that the coefficients of β_{0} and α_{i} for $1 \leqslant i \leqslant[g / 2]$ in the expansion of [$\left.\bar{\Theta}_{\text {null }}\right]$ are equal to 0 . To prove Theorem 0.2 , one can use test curves on $\overline{\mathcal{S}}_{g}^{+}$or alternatively, realize $\bar{\Theta}_{\text {null }}$ as the push-forward of the degeneracy locus of a map of vector bundles of the same rank defined over a certain Hurwitz scheme covering $\overline{\mathcal{S}}_{g}^{+}$and use $[9,10]$ to compute the class of this locus. Then we use [12, Theorem 1.1], to construct for each genus $3 \leqslant g \leqslant 22$ an effective divisor class $D \equiv a \lambda-\sum_{i=0}^{[g / 2]} b_{i} \delta_{i} \in \operatorname{Eff}\left(\overline{\mathcal{M}}_{g}\right)$ with coefficients satisfying the inequalities

$$
\frac{a}{b_{0}} \leqslant \begin{cases}6+\frac{12}{g+1}, & \text { if } g+1 \text { is composite } \\ 7, & \text { if } g=10 \\ \frac{6 k^{2}+k-6}{k(k-1)}, & \text { if } g=2 k-2 \geqslant 4\end{cases}
$$

and $b_{i} / b_{0} \geqslant 4 / 3$ for $1 \leqslant i \leqslant[g / 2]$. When $g+1$ is composite we choose for D the closure of the Brill-Noether divisor of curves with a \mathfrak{g}_{d}^{r}, that is, $\mathcal{M}_{g, d}^{r}:=\left\{[C] \in \mathcal{M}_{g}: G_{d}^{r}(C) \neq \emptyset\right\}$ in case when the Brill-Noether number $\rho(g, r, d)=-1$, and then cf. [7]

$$
\overline{\mathcal{M}}_{g, d}^{r} \equiv c_{g, d, r}\left((g+3) \lambda-\frac{g+1}{6} \delta_{0}-\sum_{i=1}^{[g / 2]} i(g-i) \delta_{i}\right) \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)
$$

For $g=10$ we take the closure of the divisor $\mathcal{K}_{10}:=\left\{[C] \in \mathcal{M}_{10}: C\right.$ lies on a $K 3$ surface $\}$ (cf. [12, Theorem 1.6]). In the remaining cases, when necessarily $g=2 k-2$, we choose for D the Gieseker-Petri divisor $\overline{\mathcal{G P}}_{g, k}^{1}$ consisting of those curves $[C] \in \mathcal{M}_{g}$ such that there exists a pencil $A \in W_{k}^{1}(C)$ such that the multiplication map

$$
\mu_{0}(A): H^{0}(C, A) \otimes H^{0}\left(C, K_{C} \otimes A^{\vee}\right) \rightarrow H^{0}\left(C, K_{C}\right)
$$

is not an isomorphism, see $[7,10]$. Having chosen D, we form the \mathbb{Q}-linear combination of divisor classes

$$
\begin{aligned}
8 \cdot \bar{\Theta}_{\text {null }}+\frac{3}{2 b_{0}} \cdot \pi^{*}(D)= & \left(2+\frac{3 a}{2 b_{0}}\right) \lambda-2 \alpha_{0}-3 \beta_{0} \\
& -\sum_{i=1}^{[g / 2]} \frac{3 b_{i}}{2 b_{0}} \alpha_{i}-\sum_{i=1}^{[g / 2]}\left(4+\frac{3 b_{i}}{2}\right) \beta_{i} \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)
\end{aligned}
$$

from which we can write

$$
K_{\overline{\mathcal{S}}_{g}^{+}}=v_{g} \cdot \lambda+8 \bar{\Theta}_{\mathrm{null}}+\frac{3}{2 b_{0}} \pi^{*}(D)+\sum_{i=1}^{[g / 2]}\left(c_{i} \cdot \alpha_{i}+c_{i}^{\prime} \cdot \beta_{i}\right),
$$

where $c_{i}, c_{i}^{\prime} \geqslant 0$. Moreover $\nu_{g}>0$ precisely when $g \geqslant 9$, while $\nu_{8}=0$. Since the class $\lambda \in$ $\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$is big and nef, we obtain that $K_{\overline{\mathcal{S}}_{g}^{+}}$is a big \mathbb{Q}-divisor class on the normal variety $\overline{\mathcal{S}}_{g}^{+}$as soon as $g>8$. It is proved in [15] that for $g \geqslant 4$ pluricanonical forms defined on $\overline{\mathcal{S}}_{g, \text { reg }}^{+}$extend to any resolution of singularities $\widehat{\mathcal{S}}_{g}^{+} \rightarrow \overline{\mathcal{S}}_{g}^{+}$, which shows that $\overline{\mathcal{S}}_{g}^{+}$is of general type whenever $\nu_{g}>0$ and completes the proof of Theorem 0.1 for $g \geqslant 8$. When $g \leqslant 7$ we show that $K_{\overline{\mathcal{S}}_{g}^{+}} \notin$ $\overline{\operatorname{Eff}}\left(\overline{\mathcal{S}}_{g}^{+}\right)$by constructing a covering curve $R \subset \overline{\mathcal{S}}_{g}^{+}$such that $R \cdot K_{\overline{\mathcal{S}}_{g}^{+}}<0$, cf. Theorem 1.2. We then use [2] to conclude that $\overline{\mathcal{S}}_{g}^{+}$is uniruled.

1. The stack of spin curves

We review a few facts about Cornalba's compactification $\pi: \overline{\mathcal{S}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$, see [4]. If X is a nodal curve, a smooth rational component $E \subset X$ is said to be exceptional if $\#(E \cap \overline{X-E})=2$. The curve X is said to be quasi-stable if $\#(E \cap \overline{X-E}) \geqslant 2$ for any smooth rational component $E \subset X$, and moreover any two exceptional components of X are disjoint. A quasi-stable curve is obtained from a stable curve by blowing-up each node at most once. We denote by $[s t(X)] \in \overline{\mathcal{M}}_{g}$ the stable model of X.

Definition 1.1. A spin curve of genus g consists of a triple (X, η, β), where X is a genus g quasi-stable curve, $\eta \in \operatorname{Pic}^{g-1}(X)$ is a line bundle of degree $g-1$ such that $\eta_{E}=\mathcal{O}_{E}(1)$ for
every exceptional component $E \subset X$, and $\beta: \eta^{\otimes 2} \rightarrow \omega_{X}$ is a sheaf homomorphism which is generically non-zero along each non-exceptional component of X.

A family of spin curves over a base scheme S consists of a triple $(\mathcal{X} \xrightarrow{f} S, \eta, \beta)$, where $f: \mathcal{X} \rightarrow S$ is a flat family of quasi-stable curves, $\eta \in \operatorname{Pic}(\mathcal{X})$ is a line bundle and $\beta: \eta^{\otimes 2} \rightarrow \omega_{\mathcal{X}}$ is a sheaf homomorphism, such that for every point $s \in S$ the restriction $\left(X_{s}, \eta_{X_{s}}, \beta_{X_{s}}: \eta_{X_{s}}^{\otimes 2} \rightarrow\right.$ $\omega_{X_{s}}$) is a spin curve.

To describe locally the map $\pi: \overline{\mathcal{S}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$ we follow [4, Section 5]. We fix $[X, \eta, \beta] \in$ $\overline{\mathcal{S}}_{g}$ and set $C:=\operatorname{st}(X)$. We denote by E_{1}, \ldots, E_{r} the exceptional components of X and by $p_{1}, \ldots, p_{r} \in C_{\text {sing }}$ the nodes which are images of exceptional components. The automorphism group of (X, η, β) fits in the exact sequence of groups

$$
1 \longrightarrow \operatorname{Aut}_{0}(X, \eta, \beta) \longrightarrow \operatorname{Aut}(X, \eta, \beta) \xrightarrow{\operatorname{res}_{C}} \operatorname{Aut}(C)
$$

We denote by $\mathbb{C}_{\tau}^{3 g-3}$ the versal deformation space of (X, η, β) where for $1 \leqslant i \leqslant r$ the locus $\left(\tau_{i}=0\right) \subset \mathbb{C}_{\tau}^{3 g-3}$ corresponds to spin curves in which the component $E_{i} \subset X$ persists. Similarly, we denote by $\mathbb{C}_{t}^{3 g-3}=\operatorname{Ext}^{1}\left(\Omega_{C}, \mathcal{O}_{C}\right)$ the versal deformation space of C and denote by $\left(t_{i}=0\right) \subset \mathbb{C}_{t}^{3 g-3}$ the locus where the node $p_{i} \in C$ is not smoothed. Then around the point $[X, \eta, \beta]$, the morphism $\pi: \overline{\mathcal{S}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$ is locally given by the map

$$
\begin{equation*}
\frac{\mathbb{C}_{\tau}^{3 g-3}}{\operatorname{Aut}(X, \eta, \beta)} \rightarrow \frac{\mathbb{C}_{t}^{3 g-3}}{\operatorname{Aut}(C)}, \quad t_{i}=\tau_{i}^{2}(1 \leqslant i \leqslant r) \text { and } t_{i}=\tau_{i}(r+1 \leqslant i \leqslant 3 g-3) \tag{1}
\end{equation*}
$$

From now on we specialize to the case of even spin curves and describe the boundary of $\overline{\mathcal{S}}_{g}^{+}$. In the process we determine the ramification of the finite covering $\pi: \overline{\mathcal{S}}_{g}^{+} \rightarrow \overline{\mathcal{M}}_{g}$.

1.1. The boundary divisors of $\overline{\mathcal{S}}_{g}^{+}$

If $[X, \eta, \beta] \in \pi^{-1}\left(\left[C \cup_{y} D\right]\right)$ where $[C, y] \in \mathcal{M}_{i, 1}$ and $[D, y] \in \mathcal{M}_{g-i, 1}$, then necessarily $X:=C \cup \cup_{y_{1}} E \cup_{y_{2}} D$, where E is an exceptional component such that $C \cap E=\left\{y_{1}\right\}$ and $D \cap E=$ $\left\{y_{2}\right\}$. Moreover

$$
\eta=\left(\eta_{C}, \eta_{D}, \eta_{E}=\mathcal{O}_{E}(1)\right) \in \operatorname{Pic}^{g-1}(X)
$$

where $\eta_{C}^{\otimes 2}=K_{C}, \eta_{D}^{\otimes 2}=K_{D}$. The condition $h^{0}(X, \eta) \equiv 0 \bmod 2$, implies that the thetacharacteristics η_{C} and η_{D} have the same parity. We denote by $A_{i} \subset \overline{\mathcal{S}}_{g}^{+}$the closure of the locus corresponding to pairs $\left(\left[C, y, \eta_{C}\right],\left[D, y, \eta_{D}\right]\right) \in \mathcal{S}_{i, 1}^{+} \times \mathcal{S}_{g-i, 1}^{+}$and by $B_{i} \subset \overline{\mathcal{S}}_{g}^{+}$the closure of the locus corresponding to pairs $\left(\left[C, y, \eta_{C}\right],\left[D, y, \eta_{D}\right]\right) \in \mathcal{S}_{i, 1}^{-} \times \mathcal{S}_{g-i, 1}^{-}$.

For a general point $[X, \eta, \beta] \in A_{i} \cup B_{i}$ we have that $\operatorname{Aut}_{0}(X, \eta, \beta)=\operatorname{Aut}(X, \eta, \beta)=\mathbb{Z}_{2}$. Using (1), the map $\mathbb{C}_{\tau}^{3 g-3} \rightarrow \mathbb{C}_{t}^{3 g-3}$ is given by $t_{1}=\tau_{1}^{2}$ and $t_{i}=\tau_{i}$ for $i \geqslant 2$. Furthermore, $\operatorname{Aut}_{0}(X, \eta, \beta)$ acts on $\mathbb{C}_{\tau}^{3 g-3}$ via $\left(\tau_{1}, \tau_{2}, \ldots, \tau_{3 g-3}\right) \mapsto\left(-\tau_{1}, \tau_{2}, \ldots, \tau_{3 g-3}\right)$. It follows that $\Delta_{i} \subset$ $\overline{\mathcal{M}}_{g}$ is not a branch divisor for $\pi: \overline{\mathcal{S}}_{g}^{+} \rightarrow \overline{\mathcal{M}}_{g}$ and if $\alpha_{i}=\left[A_{i}\right] \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$and $\beta_{i}=\left[B_{i}\right] \in$ $\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$, then for $1 \leqslant i \leqslant[g / 2]$ we have the relation

$$
\begin{equation*}
\pi^{*}\left(\delta_{i}\right)=\alpha_{i}+\beta_{i} \tag{2}
\end{equation*}
$$

Moreover, $\pi_{*}\left(\alpha_{i}\right)=2^{g-2}\left(2^{i}+1\right)\left(2^{g-i}+1\right) \delta_{i}$ and $\pi_{*}\left(\beta_{i}\right)=2^{g-2}\left(2^{i}-1\right)\left(2^{g-i}-1\right) \delta_{i}$.
For a point $[X, \eta, \beta]$ such that $\operatorname{st}(X)=C_{y q}:=C / y \sim q$, with $[C, y, q] \in \mathcal{M}_{g-1,2}$, there are two possibilities depending on whether X possesses an exceptional component or not. If $X=C_{y q}$ and $\eta_{C}:=v^{*}(\eta)$ where $v: C \rightarrow X$ denotes the normalization map, then $\eta_{C}^{\otimes 2}=K_{C}(y+q)$. For each choice of $\eta_{C} \in \operatorname{Pic}^{g-1}(C)$ as above, there is precisely one choice of gluing the fibers $\eta_{C}(y)$ and $\eta_{C}(q)$ such that $h^{0}(X, \eta) \equiv 0 \bmod 2$. We denote by A_{0} the closure in $\overline{\mathcal{S}}_{g}^{+}$of the locus of points $\left[C_{y q}, \eta_{C} \in \sqrt{K_{C}(y+q)}\right]$ as above and clearly $\operatorname{deg}\left(A_{0} / \Delta_{0}\right)=2^{2 g-2}$.

If $X=C \cup_{\{y, q\}} E$ where E is an exceptional component, then $\eta_{C}:=\eta \otimes \mathcal{O}_{C}$ is a theta-characteristic on C. Since $H^{0}(X, \omega) \cong H^{0}\left(C, \omega_{C}\right)$, it follows that $\left[C, \eta_{C}\right] \in \mathcal{S}_{g-1}^{+}$. For $[C, y, q] \in \mathcal{M}_{g-1,2}$ sufficiently generic we have that $\operatorname{Aut}(X, \eta, \beta)=\operatorname{Aut}(C)=\left\{\operatorname{Id}_{C}\right\}$, and then from (1) it follows that π is simply branched over such points. We denote by $B_{0} \subset \overline{\mathcal{S}}_{g}^{+}$the closure of the locus of points $\left[C \cup_{\{y, q\}} E, \eta_{C} \in \sqrt{K_{C}}, \eta_{E}=\mathcal{O}_{E}(1)\right]$. If $\alpha_{0}=\left[A_{0}\right] \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$and $\beta_{0}=\left[B_{0}\right] \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$, we then have the relation

$$
\begin{equation*}
\pi^{*}\left(\delta_{0}\right)=\alpha_{0}+2 \beta_{0} \tag{3}
\end{equation*}
$$

Note that $\pi_{*}\left(\alpha_{0}\right)=2^{2 g-2} \delta_{0}$ and $\pi_{*}\left(\beta_{0}\right)=2^{g-2}\left(2^{g-1}+1\right) \delta_{0}$.

1.2. The uniruledness of $\overline{\mathcal{S}}_{g}^{+}$for small g

We employ a simple negativity argument to determine $\kappa\left(\overline{\mathcal{S}}_{g}^{+}\right)$for small genus. Using an analogous idea we showed that similarly, for the moduli space of Prym curves, one has that $\kappa\left(\overline{\mathcal{R}}_{g}\right)=-\infty$ for $g<8$, cf. [11, Theorem 0.7].

Theorem 1.2. For $g<8$, the space $\overline{\mathcal{S}}_{g}^{+}$is uniruled.
Proof. We start with a fixed $K 3$ surface S carrying a Lefschetz pencil of curves of genus g. This induces a fibration $f: \mathrm{Bl}_{g^{2}}(S) \rightarrow \mathbf{P}^{1}$ and then we set $B:=\left(m_{f}\right)_{*}\left(\mathbf{P}^{1}\right) \subset \overline{\mathcal{M}}_{g}$, where $m_{f}: \mathbf{P}^{1} \rightarrow \overline{\mathcal{M}}_{g}$ is the moduli map $m_{f}(t):=\left[f^{-1}(t)\right]$. We have the following well-known formulas on $\overline{\mathcal{M}}_{g}$ (cf. [12, Lemma 2.4]):

$$
B \cdot \lambda=g+1, \quad B \cdot \delta_{0}=6 g+18, \quad \text { and } \quad B \cdot \delta_{i}=0 \quad \text { for } i \geqslant 1 .
$$

We lift B to a pencil $R \subset \overline{\mathcal{S}}_{g}^{+}$of spin curves by taking

$$
R:=B \times \overline{\mathcal{M}}_{g} \overline{\mathcal{S}}_{g}^{+}=\left\{\left[C_{t}, \eta_{C_{t}}\right] \in \overline{\mathcal{S}}_{g}^{+}:\left[C_{t}\right] \in B, \eta_{C_{t}} \in \overline{\operatorname{Pic}}^{g-1}\left(C_{t}\right), t \in \mathbf{P}^{1}\right\} \subset \overline{\mathcal{S}}_{g}^{+}
$$

Using (3) one computes the intersection numbers with the generators of $\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$:

$$
\begin{gathered}
R \cdot \lambda=(g+1) 2^{g-1}\left(2^{g}+1\right), \quad R \cdot \alpha_{0}=(6 g+18) 2^{2 g-2} \quad \text { and } \\
R \cdot \beta_{0}=(6 g+18) 2^{g-2}\left(2^{g-1}+1\right) .
\end{gathered}
$$

Furthermore, R is disjoint from all the remaining boundary classes of $\overline{\mathcal{S}}_{g}^{+}$, that is, $R \cdot \alpha_{i}=$ $R \cdot \beta_{i}=0$ for $1 \leqslant i \leqslant[g / 2]$. One verifies that $R \cdot K_{\overline{\mathcal{S}}_{g}^{+}}<0$ precisely when $g \leqslant 7$. Since R is a covering curve for $\overline{\mathcal{S}}_{g}^{+}$in the range $g \leqslant 7$, we find that $K_{\overline{\mathcal{S}}_{g}^{+}}$is not pseudo-effective, that is, $K_{\overline{\mathcal{S}}_{g}^{+}} \in \overline{\operatorname{Eff}}\left(\overline{\mathcal{S}}_{g}^{+}\right)^{c}$. Pseudo-effectiveness of the canonical bundle is a birational property for normal varieties, therefore the canonical bundle of any smooth model of $\overline{\mathcal{S}}_{g}^{+}$lies outside the pseudo-effective cone as well. One can apply [2, Corollary 0.3], to conclude that $\overline{\mathcal{S}}_{g}^{+}$is uniruled for $g \leqslant 7$.

2. The geometry of the divisor $\overline{\boldsymbol{\Theta}}_{\text {null }}$

We compute the class of the divisor $\bar{\Theta}_{\text {null }}$ using test curves. The same calculation can be carried out using techniques developed in [9,10] to calculate push-forwards of tautological classes from stacks of limit linear series \mathfrak{g}_{d}^{r} (see also Remark 2.1).

For $g \geqslant 9$, Harer [13] has showed that $H^{2}\left(\mathcal{S}_{g}^{+}, \mathbb{Q}\right) \cong \mathbb{Q}$. The range for which this result holds has been recently improved to $g \geqslant 5$ in [16]. In particular, it follows that $\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)_{\mathbb{Q}}$ is generated by the classes $\lambda, \alpha_{i}, \beta_{i}$ for $i=0, \ldots,[g / 2]$. Thus we can expand the divisor class $\bar{\Theta}_{\text {null }}$ in terms of the generators of the Picard group

$$
\begin{equation*}
\bar{\Theta}_{\mathrm{null}} \equiv \bar{\lambda} \cdot \lambda-\bar{\alpha}_{0} \cdot \alpha_{0}-\bar{\beta}_{0} \cdot \beta_{0}-\sum_{i=1}^{[g / 2]}\left(\bar{\alpha}_{i} \cdot \alpha_{i}+\bar{\beta}_{i} \cdot \beta_{i}\right) \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)_{\mathbb{Q}}, \tag{4}
\end{equation*}
$$

and determine the coefficients $\bar{\lambda}, \bar{\alpha}_{0}, \bar{\beta}_{0}, \bar{\alpha}_{i}$ and $\bar{\beta}_{i} \in \mathbb{Q}$ for $1 \leqslant i \leqslant[g / 2]$.
Remark 2.1. To show that the class $\left[\Theta_{\text {null }}\right] \in \operatorname{Pic}\left(\mathcal{S}_{g}^{+}\right)_{\mathbb{Q}}$ is a multiple of λ and thus, the expansion (4) makes sense for all $g \geqslant 3$, one does not need to know that $\operatorname{Pic}\left(\mathcal{S}_{g}^{+}\right)_{\mathbb{Q}}$ is infinite cyclic. For instance, for even $g=2 k-2 \geqslant 4$, we note that, via the base point free pencil trick, $[C, \eta] \in \Theta_{\text {null }}$ if and only if the multiplication map

$$
\mu_{C}(A, \eta): H^{0}(C, A) \otimes H^{0}(C, A \otimes \eta) \rightarrow H^{0}\left(C, A^{\otimes 2} \otimes \eta\right)
$$

is not an isomorphism for a base point free pencil $A \in W_{k}^{1}(C)$. We set $\widetilde{\mathcal{M}}_{g}$ to be the open subvariety consisting of curves $[C] \in \mathcal{M}_{g}$ such that $W_{k-1}^{1}(C)=\emptyset$ and denote by $\sigma: \mathfrak{G}_{k}^{1} \rightarrow \widetilde{\mathcal{M}}_{g}$ the Hurwitz scheme of pencils \mathfrak{g}_{k}^{1} and by

$$
\tau: \mathfrak{G}_{k}^{1} \times \widetilde{\mathcal{M}}_{g} \mathcal{S}_{g}^{+} \rightarrow \mathcal{S}_{g}^{+}, \quad u: \mathfrak{G}_{k}^{1} \times \widetilde{\mathcal{M}}_{g} \mathcal{S}_{g}^{+} \rightarrow \mathfrak{G}_{k}^{1}
$$

the (generically finite) projections. Then $\Theta_{\text {null }}=\tau_{*}(\mathcal{Z})$, where

$$
\mathcal{Z}=\left\{[A, C, \eta] \in \mathfrak{G}_{k}^{1} \times \widetilde{\mathcal{M}}_{g} \mathcal{S}_{g}^{+}: \mu_{C}(A, \eta) \text { is not injective }\right\} .
$$

Via this determinantal presentation, the class of the divisor \mathcal{Z} is expressible as a combination of $\tau^{*}(\lambda), u^{*}(\mathfrak{a}), u^{*}(\mathfrak{b})$, where $\mathfrak{a}, \mathfrak{b} \in \operatorname{Pic}\left(\mathfrak{G}_{k}^{1}\right)_{\mathbb{Q}}$ are the tautological classes defined in e.g. [11, p. 15]. Since $\tau_{*}\left(u^{*}(\mathfrak{a})\right)=\pi^{*}\left(\sigma_{*}(\mathfrak{a})\right)$ (and similarly for the class \mathfrak{b}), the conclusion follows. For odd genus $g=2 k-1$, one uses a similar argument replacing \mathfrak{G}_{k}^{1} with any generically finite
covering of \mathcal{M}_{g} given by a Hurwitz scheme (for instance, we take the space of pencils \mathfrak{g}_{k+1}^{1} with a triple ramification point).

We start the proof of Theorem 0.2 by determining the coefficients of α_{i} and $\beta_{i}(i \geqslant 1)$ in the expansion of $\left[\overline{\bar{\Theta}}_{\text {null }}\right]$.

Theorem 2.2. We fix integers $g \geqslant 3$ and $1 \leqslant i \leqslant[g / 2]$. The coefficient of α_{i} in the expansion of $\left[\bar{\Theta}_{\text {null }}\right]$ equals 0 , while the coefficient of β_{i} equals $-1 / 2$. That is, $\bar{\alpha}_{i}=0$ and $\bar{\beta}_{i}=1 / 2$.

Proof. For each integer $2 \leqslant i \leqslant g-1$, we fix general curves $[C] \in \mathcal{M}_{i}$ and $[D, q] \in \mathcal{M}_{g-i, 1}$ and consider the test curve $C^{i}:=\left\{C \cup_{y \sim q} D\right\}_{y \in C} \subset \Delta_{i} \subset \overline{\mathcal{M}}_{g}$. We lift C^{i} to test curves $F_{i} \subset A_{i}$ and $G_{i} \subset B_{i}$ inside $\overline{\mathcal{S}}_{g}^{+}$constructed as follows. We fix even (resp. odd) theta-characteristics $\eta_{C}^{+} \in \operatorname{Pic}^{i-1}(C)$ and $\eta_{D}^{+} \in \operatorname{Pic}^{g-i-1}(D)$ (resp. $\eta_{C}^{-} \in \operatorname{Pic}^{i-1}(C)$ and $\eta_{D}^{-} \in \operatorname{Pic}^{g-i-1}(D)$).

If $E \cong \mathbf{P}^{1}$ is an exceptional component, we define the family F_{i} (resp. G_{i}) as consisting of spin curves

$$
F_{i}:=\left\{t:=\left[C \cup_{y} E \cup_{q} D, \eta_{C}=\eta_{C}^{+}, \eta_{E}=\mathcal{O}_{E}(1), \eta_{D}=\eta_{D}^{+}\right] \in \overline{\mathcal{S}}_{g}^{+}: y \in C\right\}
$$

and

$$
G_{i}:=\left\{t:=\left[C \cup_{y} E \cup_{q} D, \eta_{C}=\eta_{C}^{-}, \eta_{E}=\mathcal{O}_{E}(1), \eta_{D}=\eta_{D}^{-}\right] \in \overline{\mathcal{S}}_{g}^{+}: y \in C\right\} .
$$

Since $\pi_{*}\left(F_{i}\right)=\pi_{*}\left(G_{i}\right)=C^{i}$, clearly $F_{i} \cdot \alpha_{i}=C^{i} \cdot \delta_{i}=2-2 i, F_{i} \cdot \beta_{i}=0$ and F_{i} has intersection number 0 with all other generators of $\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$. Similarly

$$
G_{i} \cdot \beta_{i}=2-2 i, \quad G_{i} \cdot \alpha_{i}=0, \quad G_{i} \cdot \lambda=0
$$

and G_{i} does not intersect the remaining boundary classes in $\overline{\mathcal{S}}_{g}^{+}$.
Next we determine $F_{i} \cap \bar{\Theta}_{\text {null }}$. Assume that a point $t \in F_{i}$ lies in $\bar{\Theta}_{\text {null. }}$. Then there exists a family of even spin curves $(f: \mathcal{X} \rightarrow S, \eta, \beta)$, where $S=\operatorname{Spec}(R)$, with R being a discrete valuation ring and \mathcal{X} is a smooth surface, such that, if $0, \xi \in S$ denote the special and the generic point of S respectively and X_{ξ} is the generic fiber of f, then

$$
\begin{gathered}
h^{0}\left(X_{\xi}, \eta_{\xi}\right) \geqslant 2, \quad h^{0}\left(X_{\xi}, \eta_{\xi}\right) \equiv 0 \bmod 2, \quad \eta_{\xi}^{\otimes 2} \cong \omega_{X_{\xi}} \quad \text { and } \\
\left(f^{-1}(0), \eta_{f^{-1}(0)}\right)=t \in \overline{\mathcal{S}}_{g}^{+} .
\end{gathered}
$$

Following the procedure described in [6, pp. 347-351], this data produces a limit linear series \mathfrak{g}_{g-1}^{1} on $C \cup D$, say

$$
l:=\left(l_{C}=\left(L_{C}, V_{C}\right), l_{D}=\left(L_{D}, V_{D}\right)\right) \in G_{g-1}^{1}(C) \times G_{g-1}^{1}(D),
$$

such that the underlying line bundles L_{C} and L_{D} respectively, are obtained from the line bundle $\left(\eta_{C}^{+}, \eta_{E}, \eta_{D}^{+}\right)$by dropping the E-aspect and then tensoring the line bundles η_{C}^{+}and η_{D}^{+}by line bundles supported at the points $y \in C$ and $q \in D$ respectively. For degree reasons, it follows that $L_{C}=\eta_{C}^{+} \otimes \mathcal{O}_{C}((g-i) y)$ and $L_{D}=\eta_{D}^{+} \otimes \mathcal{O}_{D}(i q)$. Since both C and D are general
in their respective moduli spaces, we have that $H^{0}\left(C, \eta_{C}^{+}\right)=0$ and $H^{0}\left(D, \eta_{D}^{+}\right)=0$. In particular $a_{1}^{l_{C}}(y) \leqslant g-i-1$ and $a_{0}^{l_{D}}(q)<a_{1}^{l_{D}}(q) \leqslant i-1$, hence $a_{1}^{l_{C}}(y)+a_{0}^{l_{D}}(q) \leqslant g-2$, which contradicts the definition of a limit \mathfrak{g}_{g-1}^{1}. Thus $F_{i} \cap \bar{\Theta}_{\text {null }}=\emptyset$. This implies that $\bar{\alpha}_{i}=0$, for all $1 \leqslant i \leqslant[g / 2]$ (for $i=1$, one uses instead the curve $F_{g-1} \subset A_{1}$ to reach the same conclusion).

Assume that $t \in G_{i} \cap \bar{\Theta}_{\text {null }}$. By the same argument as above, retaining also the notation, there is an induced limit linear series on $C \cup D$,

$$
\left(l_{C}, l_{D}\right) \in G_{g-1}^{1}(C) \times G_{g-1}^{1}(D),
$$

where $L_{C}=\eta_{C}^{-} \otimes \mathcal{O}_{C}((g-i) y)$ and $L_{D}=\eta_{D}^{-} \otimes \mathcal{O}_{D}(i q)$. Since $[C] \in \mathcal{M}_{i}$ and $[D, q] \in \mathcal{M}_{g-i, 1}$ are both general, we may assume that $h^{0}\left(D, \eta_{D}^{-}\right)=h^{0}\left(C, \eta_{C}^{-}\right)=1, q \notin \operatorname{supp}\left(\eta_{D}^{-}\right)$and that $\operatorname{supp}\left(\eta_{C}^{-}\right)$consists of $i-1$ distinct points. In particular $a_{1}^{l_{D}}(q) \leqslant i$, hence $a_{0}^{l_{C}}(y) \geqslant g-1-$ $a_{1}^{l_{D}}(q) \geqslant g-i-1$. Since $h^{0}\left(C, \eta_{C}^{-}\right)=1$, it follows that one has in fact equality, that is, $a_{0}^{l_{C}}(y)=g-i-1$ and then necessarily $a_{1}^{l_{D}}(q)=i$.

Similarly, $a_{1}^{l_{C}}(y) \leqslant g-i+1$ (otherwise $\operatorname{div}\left(\eta_{C}^{-}\right) \geqslant 2 y$, that is, $\operatorname{supp}\left(\eta_{C}^{-}\right)$would be nonreduced, a contradiction), thus $a_{0}^{l_{D}}(q) \geqslant i-2$, and the last two inequalities must be equalities as well (one uses that $h^{0}\left(D, L_{D} \otimes \mathcal{O}_{D}(-(i-1) q)\right)=h^{0}\left(D, \eta_{D}^{-} \otimes \mathcal{O}_{D}(q)\right)=1$, that is, $a_{0}^{l_{D}}(q)<$ $i-1)$. Since $a_{1}^{l_{C}}(y)=g-i+1$, we find that $y \in \operatorname{supp}\left(\eta_{C}^{-}\right)$.

To sum up, we have showed that $\left(l_{C}, l_{D}\right)$ is a refined limit \mathfrak{g}_{g-1}^{1} and in fact

$$
\begin{gather*}
l_{D}=\left|\eta_{D}^{-} \otimes \mathcal{O}_{D}(2 q)\right|+(i-2) \cdot q \in G_{g-1}^{1}(D) \\
l_{C}=\left|\eta_{C}^{-} \otimes \mathcal{O}_{C}(y)\right|+(g-i-1) \cdot y \in G_{g-1}^{1}(C) \tag{5}
\end{gather*}
$$

hence $a^{l_{D}}(q)=(i-2, i)$ and $a^{l_{C}}(y)=(g-i-1, g-i+1)$.
To prove that the intersection between G_{i} and $\bar{\Theta}_{\text {null }}$ is transversal, we follow closely [8, Lemma 3.4] (see especially the Remark on p. 45): The restriction $\bar{\Theta}_{\text {null } \mid G_{i}}$ is isomorphic, as a scheme, to the variety $\tau: \mathfrak{T}_{g-1}^{1}\left(G_{i}\right) \rightarrow G_{i}$ of limit linear series \mathfrak{g}_{g-1}^{1} on the curves of compact type $\left\{C \cup_{y \sim q} D: y \in C\right\}$, whose C - and D-aspects are obtained by twisting suitably at $y \in C$ and $q \in D$ the fixed theta-characteristics η_{C}^{-}and η_{D}^{-}respectively. Following the description of the scheme structure of this moduli space given in [6, Theorem 3.3] over an arbitrary base, we find that because G_{i} consists entirely of singular spin curves of compact type, the scheme $\mathfrak{T}_{g-1}^{1}\left(G_{i}\right)$ splits as a product of the corresponding moduli spaces of C - and D-aspects respectively of the limits \mathfrak{g}_{g-1}^{1}. By direct calculation we have showed that $\mathfrak{T}_{g-1}^{1}\left(G_{i}\right) \cong \operatorname{supp}\left(\eta_{C}^{-}\right) \times\left\{l_{D}\right\}$. Since $\operatorname{supp}\left(\eta_{C}^{-}\right)$is a reduced 0 -dimensional scheme, we obtain that $\bar{\Theta}_{\text {null } \mid G_{i}}$ is everywhere reduced. It follows that $G_{i} \cdot \bar{\Theta}_{\text {null }}=\# \operatorname{supp}\left(\eta_{C}^{-}\right)=i-1$ and then $\bar{\beta}_{i}=\left(G_{i} \cdot \bar{\Theta}_{\text {null }}\right) /(2 i-2)$. This argument does not work for $i=1$, when one uses instead the intersection of $\bar{\Theta}_{\text {null }}$ with G_{g-1}, and this finishes the proof.

Next we construct two pencils in $\overline{\mathcal{S}}_{g}^{+}$which are lifts of the standard degree 12 pencil of elliptic tails in $\overline{\mathcal{M}}_{g}$. We fix a general pointed curve $[C, q] \in \mathcal{M}_{g-1,1}$ and a pencil $f: \mathrm{Bl}_{9}\left(\mathbf{P}^{2}\right) \rightarrow \mathbf{P}^{1}$ of plane cubics together with a section $\sigma: \mathbf{P}^{1} \rightarrow \mathrm{Bl}_{9}\left(\mathbf{P}^{2}\right)$ induced by one of the base points. We then consider the pencil $R:=\left\{\left[C \cup_{q \sim \sigma(\lambda)} f^{-1}(\lambda)\right]\right\}_{\lambda \in \mathbf{P}^{1}} \subset \overline{\mathcal{M}}_{g}$.

We fix an odd theta-characteristic $\eta_{C}^{-} \in \operatorname{Pic}^{g-2}(C)$ such that $q \notin \operatorname{supp}\left(\eta_{C}^{-}\right)$and $E \cong \mathbf{P}^{1}$ will again denote an exceptional component. We define the family

$$
F_{0}:=\left\{\left[C \cup_{q} E \cup_{\sigma(\lambda)} f^{-1}(\lambda), \eta_{C}=\eta_{C}^{-}, \eta_{E}=\mathcal{O}_{E}(1), \eta_{f^{-1}(\lambda)}=\mathcal{O}_{f^{-1}(\lambda)}\right]: \lambda \in \mathbf{P}^{1}\right\} \subset \overline{\mathcal{S}}_{g}^{+}
$$

Since $F_{0} \cap A_{1}=\emptyset$, we find that $F_{0} \cdot \beta_{1}=\pi_{*}\left(F_{0}\right) \cdot \delta_{1}=-1$. Similarly, $F_{0} \cdot \lambda=\pi_{*}\left(F_{0}\right) \cdot \lambda=1$ and obviously $F_{0} \cdot \alpha_{i}=F_{0} \cdot \beta_{i}=0$ for $2 \leqslant i \leqslant[g / 2]$. For each of the 12 points $\lambda_{\infty} \in \mathbf{P}^{1}$ corresponding to singular fibers of R, the associated $\eta_{\lambda_{\infty}} \in \overline{\mathrm{Pic}}^{g-1}\left(C \cup E \cup f^{-1}\left(\lambda_{\infty}\right)\right)$ are actual line bundles on $C \cup E \cup f^{-1}\left(\lambda_{\infty}\right)$ (that is, we do not have to blow-up the extra node). Thus we obtain that $F_{0} \cdot \beta_{0}=0$, therefore $F_{0} \cdot \alpha_{0}=\pi_{*}\left(F_{0}\right) \cdot \delta_{0}=12$.

We also fix an even theta-characteristic $\eta_{C}^{+} \in \operatorname{Pic}^{g-2}(C)$ and consider the degree 3 branched covering $\gamma: \overline{\mathcal{S}}_{1,1}^{+} \rightarrow \overline{\mathcal{M}}_{1,1}$ forgetting the spin structure. We define the pencil

$$
\begin{aligned}
G_{0}: & =\left\{\left[C \cup_{q} E \cup_{\sigma(\lambda)} f^{-1}(\lambda), \eta_{C}=\eta_{C}^{+}, \eta_{E}=\mathcal{O}_{E}(1), \eta_{f^{-} 1(\lambda)} \in \gamma^{-1}\left[f^{-1}(\lambda)\right]\right]: \lambda \in \mathbf{P}^{1}\right\} \\
& \subset \overline{\mathcal{S}}_{g}^{+}
\end{aligned}
$$

Since $\pi_{*}\left(G_{0}\right)=3 R$, we have that $G_{0} \cdot \lambda=3$. Obviously $G_{0} \cdot \beta_{0}=G_{0} \cdot \beta_{1}=0$, hence $G_{0} \cdot \alpha_{1}=$ $\pi_{*}\left(G_{0}\right) \cdot \delta_{1}=-3$. The map $\gamma: \overline{\mathcal{S}}_{1,1}^{+} \rightarrow \overline{\mathcal{M}}_{1,1}$ is simply ramified over the point corresponding to j-invariant ∞. Hence, $G_{0} \cdot \alpha_{0}=12$ and $G_{0} \cdot \beta_{0}=12$, which is consistent with formula (3).

The last pencil we construct lies in the boundary divisor $B_{0} \subset \overline{\mathcal{S}}_{g}^{+}$. Setting $E \cong \mathbf{P}^{1}$ for an exceptional component, we define

$$
H_{0}:=\left\{\left[C \cup_{\{y, q\}} E, \eta_{C}=\eta_{C}^{+}, \eta_{E}=\mathcal{O}_{E}(1)\right]: y \in C\right\} \subset \overline{\mathcal{S}}_{g}^{+} .
$$

The fiber of H_{0} over the point $y=q \in C$ is the even spin curve

$$
\left[C \cup_{q} E^{\prime} \cup_{q^{\prime}} E^{\prime \prime} \cup_{\left\{q^{\prime \prime}, y^{\prime \prime}\right\}} E, \eta_{C}=\eta_{C}^{+}, \eta_{E^{\prime}}=\mathcal{O}_{E^{\prime}}(1), \eta_{E}=\mathcal{O}_{E}(1), \eta_{E^{\prime \prime}}=\mathcal{O}_{E^{\prime \prime}}(-1)\right]
$$

having as stable model $\left[C \cup_{q} E_{\infty}\right]$, where $E_{\infty}:=E^{\prime \prime} / y^{\prime \prime} \sim q^{\prime \prime}$ is the rational nodal curve corresponding to $j=\infty$. Here $E^{\prime}, E^{\prime \prime}$ are rational curves, $E^{\prime} \cap E^{\prime \prime}=\left\{q^{\prime}\right\}, E \cap E^{\prime \prime}=\left\{q^{\prime \prime}, y^{\prime \prime}\right\}$ and the stabilization map for $C \cup E \cup E^{\prime} \cup E^{\prime \prime}$ contracts the components E^{\prime} and E, while identifying $q^{\prime \prime}$ and $y^{\prime \prime}$.

We find that $H_{0} \cdot \lambda=0, H_{0} \cdot \alpha_{i}=H_{0} \cdot \beta_{i}=0$ for $2 \leqslant i \leqslant[g / 2]$. Moreover $H_{0} \cdot \alpha_{0}=0$, hence $H_{0} \cdot \beta_{0}=\frac{1}{2} \pi_{*}\left(H_{0}\right) \cdot \delta_{0}=1-g$. Finally, $H_{0} \cdot \alpha_{1}=1$ and $H_{0} \cdot \beta_{1}=0$.

Theorem 2.3. If $F_{0}, G_{0}, H_{0} \subset \overline{\mathcal{S}}_{g}^{+}$are the families of spin curves defined above, then

$$
F_{0} \cdot \bar{\Theta}_{\mathrm{null}}=G_{0} \cdot \bar{\Theta}_{\mathrm{null}}=H_{0} \cdot \bar{\Theta}_{\mathrm{null}}=0
$$

Proof. From the limit linear series argument in the proof of Theorem 2.2 we get that the assumption $F_{0} \cap \bar{\Theta}_{\text {null }} \neq \emptyset$ implies that $q \in \operatorname{supp}\left(\eta_{C}^{-}\right)$, a contradiction. Similarly, we have that $G_{0} \cap \bar{\Theta}_{\text {null }}=\emptyset$ because $[C] \in \mathcal{M}_{g-1}$ can be assumed to have no even theta-characteristics $\eta_{C}^{+} \in \operatorname{Pic}^{g-2}(C)$ with $h^{0}\left(C, \eta_{C}^{+}\right) \geqslant 2$, that is $\left[C, \eta_{C}^{+}\right] \notin \bar{\Theta}_{\text {null }} \subset \overline{\mathcal{S}}_{g-1}^{+}$. Finally, we assume that there exists a point $\left[X:=C \cup_{\{y, q\}} E, \eta_{C}=\eta_{C}^{+}, \eta_{E}=\mathcal{O}_{E}(1)\right] \in H_{0} \cap \bar{\Theta}_{\text {null }}$. Then certainly $h^{0}\left(X, \eta_{X}\right) \geqslant 2$ and from the Mayer-Vietoris sequence on X we find that

$$
H^{0}\left(X, \eta_{X}\right)=\operatorname{Ker}\left\{H^{0}\left(C, \eta_{C}\right) \oplus H^{0}\left(E, \mathcal{O}_{E}(1)\right) \rightarrow \mathbb{C}_{y, q}^{2}\right\}
$$

hence $h^{0}\left(C, \eta_{C}\right)=h^{0}\left(X, \eta_{X}\right) \geqslant 2$. This contradicts the assumption that $[C] \in \mathcal{M}_{g-1}$ is general. A similar argument works for the special point in $H_{0} \cap \pi^{-1}\left(\Delta_{1}\right)$, hence $H_{0} \cdot \bar{\Theta}_{\text {null }}=0$.

Proof of Theorem 0.2. Looking at the expansion of $\left[\bar{\Theta}_{\text {null }}\right]$, Theorem 2.3 gives the relations

$$
F_{0} \cdot \bar{\Theta}_{\text {null }}=\bar{\lambda}-12 \bar{\alpha}_{0}+\bar{\beta}_{1}=0, \quad G_{0} \cdot \bar{\Theta}_{\text {null }}=3 \bar{\lambda}-12 \bar{\alpha}_{0}-12 \bar{\beta}_{0}+3 \bar{\alpha}_{1}=0, \quad \text { and }
$$

$$
H_{0} \cdot \bar{\Theta}_{\text {null }}=(g-1) \bar{\beta}_{0}-\bar{\alpha}_{1}=0
$$

Since we have already computed $\bar{\alpha}_{i}=0$ and $\bar{\beta}_{i}=1 / 2$ for $1 \leqslant i \leqslant[g / 2]$ (cf. Theorem 2.2), we obtain that $\bar{\lambda}=1 / 4, \bar{\alpha}_{0}=1 / 16$ and $\bar{\beta}_{0}=0$. This completes the proof.

A consequence of Theorem 0.2 is a new proof of the main result from [18]:
Theorem 2.4. If \mathcal{M}_{g}^{1} is the locus of curves $[C] \in \mathcal{M}_{g}$ with a vanishing theta-null then its closure has class equal to

$$
\overline{\mathcal{M}}_{g}^{1} \equiv 2^{g-3}\left(\left(2^{g}+1\right) \lambda-2^{g-3} \delta_{0}-\sum_{i=1}^{[g / 2]}\left(2^{g-i}-1\right)\left(2^{i}-1\right) \delta_{i}\right) \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)
$$

Proof. We use the scheme-theoretic equality $\pi_{*}\left(\bar{\Theta}_{\text {null }}\right)=\overline{\mathcal{M}}_{g}^{1}$ as well as the formulas $\pi_{*}(\lambda)=$ $2^{g-1}\left(2^{g}+1\right) \lambda, \pi_{*}\left(\alpha_{0}\right)=2^{2 g-2} \delta_{0}, \pi_{*}\left(\beta_{0}\right)=2^{g-2}\left(2^{g-1}+1\right) \delta_{0}, \pi_{*}\left(\alpha_{i}\right)=2^{g-2}\left(2^{i}+1\right)\left(2^{g-i}+\right.$ 1) δ_{i} and $\pi_{*}\left(\beta_{i}\right)=2^{g-2}\left(2^{i}-1\right)\left(2^{g-i}-1\right) \delta_{i}$ valid for $1 \leqslant i \leqslant[g / 2]$.

Acknowledgment

I would like to thank the referee for pertinent comments which led to a clearly improved version of this paper.

References

[1] D. Abramovich, T. Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003) 685-699.
[2] S. Boucksom, J.P. Demailly, M. Paun, T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, arXiv:math/0405285.
[3] L. Caporaso, C. Casagrande, M. Cornalba, Moduli of roots of line bundles on curves, Trans. Amer. Math. Soc. 359 (2007) 3733-3768.
[4] M. Cornalba, Moduli of curves and theta-characteristics, in: Lectures on Riemann Surfaces, Trieste, 1987, pp. 560589.
[5] I. Dolgachev, V. Kanev, Polar covariants of plane cubics and quartics, Adv. Math. 98 (1993) 216-301.
[6] D. Eisenbud, J. Harris, Limit linear series: Basic theory, Invent. Math. 85 (1986) 337-371.
[7] D. Eisenbud, J. Harris, The Kodaira dimension of the moduli space of curves of genus 23, Invent. Math. 90 (1987) 359-387.
[8] D. Eisenbud, J. Harris, Irreducibility of some families of linear series with Brill-Noether number - 1, Ann. Sci. École Norm. Sup. 22 (1989) 33-53.
[9] G. Farkas, Syzygies of curves and the effective cone of $\overline{\mathcal{M}}_{g}$, Duke Math. J. 135 (2006) 53-98.
[10] G. Farkas, Koszul divisors on moduli spaces of curves, Amer. J. Math. 131 (2009) 819-869, math.AG/0607475.
[11] G. Farkas, K. Ludwig, The Kodaira dimension of the moduli space of Prym varieties, J. European Math. Soc. (2009), in press, arXiv:0804.4616.
[12] G. Farkas, M. Popa, Effective divisors on $\overline{\mathcal{M}}_{g}$, curves on $K 3$ surfaces and the Slope Conjecture, J. Algebraic Geom. 14 (2005) 151-174.
[13] J. Harer, The rational Picard group of the moduli space of Riemann surfaces with spin structure, in: Mapping Class Groups and Moduli Spaces of Riemann Surfaces, Göttingen/Seattle, 1991, in: Contemp. Math., vol. 150, 1993, pp. 107-136.
[14] J. Harris, D. Mumford, On the Kodaira dimension of $\overline{\mathcal{M}}_{g}$, Invent. Math. 67 (1982) 23-88.
[15] K. Ludwig, On the geometry of the moduli space of spin curves, J. Algebraic Geom. (2009), in press, arXiv:0707.1831.
[16] A. Putman, The Picard group of moduli spaces of curves with level structures, preprint, 2009.
[17] H. Takagi, F. Zucconi, The moduli space of genus 4 even spin curves is rational, arXiv:0904.3591.
[18] M. Teixidor i Bigas, The divisor of curves with a vanishing theta-null, Compos. Math. 66 (1988) 15-22.

[^0]: *) Research partially supported by an Alfred P. Sloan Fellowship.
 E-mail address: farkas@math.hu-berlin.de.
 ${ }^{1}$ Building on the results of this paper, we have proved quite recently in joint work with A. Verra, that $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=0$. Details will appear later.

