Brill-Noether Loci and the Gonality Stratification of \mathcal{M}_{g}

GAVRIL FARKAS

1 Introduction

For an irreducible smooth projective complex curve C of genus g, the gonality defined as $\operatorname{gon}(C)=\min \left\{d \in \mathbb{Z}_{\geq 1}\right.$: there exists a \mathfrak{g}_{d}^{1} on $\left.C\right\}$ is perhaps the second most natural invariant: it gives an indication of how far C is from being rational, in a way different from what the genus does. For $g \geq 3$ we consider the stratification of the moduli space \mathcal{M}_{g} of smooth curves of genus g given by gonality:

$$
\mathcal{M}_{g, 2}^{1} \subseteq \mathcal{M}_{g, 3}^{1} \subseteq \ldots \subseteq \mathcal{M}_{g, k}^{1} \subseteq \ldots \subseteq \mathcal{M}_{g}
$$

where $\mathcal{M}_{g, k}^{1}:=\left\{[C] \in \mathcal{M}_{g}: C\right.$ has a $\left.\mathfrak{g}_{k}^{1}\right\}$. It is well-known that the k-gonal locus $\mathcal{M}_{g, k}^{1}$ is an irreducible variety of dimension $2 g+2 k-5$ when $k \leq(g+2) / 2$; when $k \geq[(g+3) / 2]$ one has that $\mathcal{M}_{g, k}^{1}=\mathcal{M}_{g}$ (see for instance $[\mathrm{AC}]$). The number $[(g+3) / 2]$ is thus the generic gonality for curves of genus g.

For positive integers g, r and d, we introduce the Brill-Noether locus

$$
\mathcal{M}_{g, d}^{r}=\left\{[C] \in \mathcal{M}_{g}: C \text { carries a } \mathfrak{g}_{d}^{r}\right\} .
$$

The Brill-Noether Theorem (cf. [ACGH]) asserts that when the Brill-Noether number $\rho(g, r, d)=g-(r+1)(g-d+r)$ is negative, the general curve of genus g has no \mathfrak{g}_{d}^{r} 's, hence in this case the locus $\mathcal{M}_{g, d}^{r}$ is a proper subvariety of \mathcal{M}_{g}. We study the relative position of the loci $\mathcal{M}_{g, d}^{r}$ when $r \geq 3$ and $\rho(g, r, d)<0$ with respect to the gonality stratification of \mathcal{M}_{g}. Typically, we would like to know the gonality of a 'general' point $[C] \in \mathcal{M}_{g, d}^{r}$, or equivalently the gonality of a 'general' smooth curve $C \subseteq \mathbb{P}^{r}$ of genus g and degree d. Since the geometry of the loci $\mathcal{M}_{g, d}^{r}$ is very messy (existence of many components, some nonreduced and/or not of expected dimension), we will content ourselves with computing gon (C) when $[C]$ is a general point of a 'nice' component of $\mathcal{M}_{g, d}^{r}$ (i.e. a component which is generically smooth, of the expected dimension and with general point corresponding to a curve with a very ample \mathfrak{g}_{d}^{r}).

Our main result is the following:
Theorem 1 Let $g \geq 15$ and $d \geq 14$ be integers with g odd and d even, such that $d^{2}>8 g$, $4 d<3 g+12, d^{2}-8 g+8$ is not a square and either $d \leq 18$ or $g<4 d-31$. If

$$
\left(d^{\prime}, g^{\prime}\right) \in\{(d, g),(d+1, g+1),(d+1, g+2),(d+2, g+3)\}
$$

then there exists a regular component of the Hilbert scheme $\operatorname{Hilb}_{d^{\prime}, g^{\prime}, 3}$ whose general point $\left[C^{\prime}\right]$ is a smooth curve such that $\operatorname{gon}\left(C^{\prime}\right)=\min \left(d^{\prime}-4,\left[\left(g^{\prime}+3\right) / 2\right]\right)$.

Here by $\operatorname{Hilb}_{d, g, r}$ we denote the Hilbert scheme of curves $C \subseteq \mathbb{P}^{r}$ with $p_{a}(C)=g$ and $\operatorname{deg}(C)=d$. A component of $\mathrm{Hilb}_{d, g, r}$ is said to be regular if its general point corresponds to a smooth irreducible curve $C \subseteq \mathbb{P}^{r}$ such that the normal bundle $N_{C / \mathbb{P}^{r}}$ satisfies $H^{1}\left(C, N_{C / \mathbb{P}^{r}}\right)=0$. By standard deformation theory (cf. [Mod] or [Se]), a regular component of $\mathrm{Hilb}_{d, g, r}$ is generically smooth of the expected dimension $\chi\left(C, N_{C / \mathbb{P}^{r}}\right)=$ $(r+1) d-(r-3)(g-1)$. Note that for $r=3$ the expected dimension of the Hilbert scheme is just $4 d$. We refer to Section 4 for a natural extension of Theorem 1 for curves in higher dimensional projective spaces.

As for the numerical conditions entering Theorem 1, we note that the inequality $d^{2}>8 g$ ensures the existence of smooth curves $C \subseteq \mathbb{P}^{3}$ with $g(C)=g$ and $\operatorname{deg}(C)=d$ (see Section 2), $4 d<3 g+12 \Leftrightarrow \rho(g, 3, d)<0$ is just the condition that $\mathcal{M}_{g, d}^{3}$ is a proper subvariety of \mathcal{M}_{g}, while the remaining requirements are mild technical conditions.

A remarkable application of Theorem 1 is a new proof of our result (cf. [Fa]):
Theorem 2 The Kodaira dimension of the moduli space of curves of genus 23 is ≥ 2.
We recall that for $g \geq 24$ Harris, Mumford and Eisenbud proved (cf. [HM],[EH]) that \mathcal{M}_{g} is of general type whereas for $g \leq 16, g \neq 14$ we have that $\kappa\left(\mathcal{M}_{g}\right)=-\infty$. The famous Slope Conjecture of Harris and Morrison predicts that \mathcal{M}_{g} is uniruled for all $g \leq 22$ (see [Mod]). Therefore the moduli space \mathcal{M}_{23} appears as an intriguing transition case between two extremes: uniruledness and being of general type.

To put our Theorem 1 into perspective, let us note that for $r=2$ we have the following result of M. Coppens (cf. [Co]): let $\nu: C \rightarrow \Gamma$ be the normalization of a general, irreducible plane curve of degree d with $\delta=g-\binom{d-1}{2}$ nodes. Assume that $0<\delta<\left(d^{2}-7 d+18\right) / 2$. Then gon $(C)=d-2$.

This theorem says that there are no \mathfrak{g}_{d-3}^{1} 's on C. On the other hand a \mathfrak{g}_{d-2}^{1} is given by the lines through a node of Γ. The condition $\delta<\left(d^{2}-7 d+18\right) / 2$ from the statement is equivalent with $\rho(g, 1, d-3)<0$. This is the range in which the problem is non-trivial: if $\rho(g, 1, d-3) \geq 0$, the Brill-Noether Theorem provides \mathfrak{g}_{d-3}^{1} 's on C.

For $r \geq 3$ we might hope for a similar result. Let $C \subseteq \mathbb{P}^{r}$ be a suitably general smooth curve of genus g and degree d, with $\rho(g, r, d)<0$. We can always assume that $d \leq g-1$ (by duality $\mathfrak{g}_{d}^{r} \mapsto\left|K_{C}-\mathfrak{g}_{d}^{r}\right|$ we can always land in this range). One can expect that a \mathfrak{g}_{k}^{1} computing gon (C) is of the form $\mathfrak{g}_{d}^{r}(-D)=\left\{E-D: E \in \mathfrak{g}_{d}^{r}, E \geq D\right\}$ for some effective divisor D on C. Since the expected dimension of the variety of e-secant $(r-2)$-plane divisors

$$
V_{e}^{r-1}\left(\mathfrak{g}_{d}^{r}\right):=\left\{D \in C_{e}: \operatorname{dim} \mathfrak{g}_{d}^{r}(-D) \geq 1\right\}
$$

is $2 r-2-e(c f .[A C G H])$, we may ask whether C has finitely many $(2 r-2)$-secant $(r-2)$-planes (and no $(2 r-1)$-secant $(r-2)$-planes at all). This is known to be true for curves with general moduli, that is, when $\rho(g, r, d) \geq 0$ (cf. [Hir]): for instance a smooth curve $C \subseteq \mathbb{P}^{3}$ with general moduli has only finitely many 4 -secant lines and no 5 -secant lines. No such principle appears to be known for curves with special moduli.
Definition: We call the number $\min (d-2 r+2,[(g+3) / 2])$ the expected gonality of a smooth nondegenerate curve $C \subseteq \mathbb{P}^{r}$ of degree d and genus g.

One can approach such problems from a different angle: find recipes to compute the
gonality of various classes of curves $C \subseteq \mathbb{P}^{r}$. Our knowledge in this respect is very scant: we know how to compute the gonality of extremal curves $C \subseteq \mathbb{P}^{r}$ (that is, curves attaining the Castelnuovo bound, see $[\mathrm{ACGH}]$) and the gonality of complete intersections in \mathbb{P}^{3} (cf. [Ba]): If $C \subseteq \mathbb{P}^{3}$ is a smooth complete intersection of type (a, b) then $\operatorname{gon}(C)=a b-l$, where l is the degree of a maximal linear divisor on C. Hence an effective divisor $D \subseteq C$ computing gon (C) is residual to a linear divisor of degree l in a plane section of C.
Acknowledgments: This paper is part of my thesis written at the Universiteit van Amsterdam. The help of my advisor Gerard van der Geer, and of Joe Harris, is gratefully acknowledged.

2 Linear systems on $K 3$ surfaces in \mathbb{P}^{r}

We will construct smooth curves $C \subseteq \mathbb{P}^{r}$ having the expected gonality starting with sections of smooth $K 3$ surfaces. We recall a few basic facts about linear systems on $K 3$ surfaces (cf. [SD]).

Let S be a smooth $K 3$ surface. For an effective divisor $D \subseteq S$, we have $h^{1}(S, D)=$ $h^{0}\left(D, \mathcal{O}_{D}\right)-1$. If $C \subseteq S$ is an irreducible curve then $H^{1}(S, C)=0$, and by Riemann-Roch we have that $\operatorname{dim}|C|=1+C^{2} / 2=p_{a}(C)$. In particular $C^{2} \geq-2$ for every irreducible curve C. Moreover we have equivalences
$C^{2}=-2 \Longleftrightarrow \operatorname{dim}|C|=0 \Longleftrightarrow C$ is a smooth rational curve and
$C^{2}=0 \Longleftrightarrow \operatorname{dim}|C|=1 \Longleftrightarrow p_{a}(C)=1$.
For a $K 3$ surface one also has a 'strong Bertini' Theorem (cf. [SD]):
Proposition 2.1 Let \mathcal{L} be a line bundle on a K3 surface S such that $|\mathcal{L}| \neq \emptyset$. Then $|\mathcal{L}|$ has no base points outside its fixed components. Moreover, if $\mathrm{bs}|\mathcal{L}|=\emptyset$ then either

- $\mathcal{L}^{2}>0, h^{1}(S, \mathcal{L})=0$ and the general member of $|\mathcal{L}|$ is a smooth, irreducible curve of genus $\mathcal{L}^{2} / 2+1$, or
- $\mathcal{L}^{2}=0$ and $\mathcal{L}=\mathcal{O}_{S}(k E)$, where $k \in \mathbb{Z}_{\geq 1}, E \subseteq S$ is an irreducible curve with $p_{a}(E)=1$. We have that $h^{0}(S, \mathcal{L})=k+1, h^{1}(S, \mathcal{L})=k-1$ and all divisors in $|\mathcal{L}|$ are of the form $E_{1}+\cdots+E_{k}$ with $E_{i} \sim E$.

We are interested in space curves sitting on $K 3$ surfaces and the starting point is Mori's Theorem (cf. [Mo]): if $d>0, g \geq 0$, there is a smooth curve $C \subseteq \mathbb{P}^{3}$ of degree d and genus g, lying on a smooth quartic surface S, if and only if (1) $g=d^{2} / 8+1$, or (2) $g<d^{2} / 8$ and $(d, g) \neq(5,3)$. Moreover, we can choose S such that $\operatorname{Pic}(S)=\mathbb{Z} H=\mathbb{Z}(4 / d) C$ in case (1) and such that $\operatorname{Pic}(S)=\mathbb{Z} H \oplus \mathbb{Z} C$, with $H^{2}=4, C^{2}=2 g-2$ and $H \cdot C=d$, in case (2). In each case H denotes a plane section of S. Note that from the Hodge Index Theorem one has the necessary condition $(C \cdot H)^{2}-H^{2} C^{2}=d^{2}-8(g-1) \geq 0$.

Mori's result has been extended by Rathmann to curves in higher dimensional projective spaces (cf. [Ra], see also [Kn]): For integers $d>0, g>0$ and $r \geq 3$ such that $d^{2} \geq 4 g(r-1)+(r-1)^{2}$, there exists a smooth $K 3$ surface $S \subseteq \mathbb{P}^{r}$ of degree $2 r-2$ and a smooth curve $C \subseteq S$ of genus g and degree d such that $\operatorname{Pic}(S)=\mathbb{Z} H \oplus \mathbb{Z} C$, where H is a hyperplane section of S.

We will repeatedly use the following simple observation:

Proposition 2.2 Let $S \subseteq \mathbb{P}^{r}$ be a smooth $K 3$ surface of degree $2 r-2$ with a smooth curve $C \subseteq S$ such that $\operatorname{Pic}(S)=\mathbb{Z} H \oplus \mathbb{Z C}$ and assume that S has no (-2) curves. A divisor class D on S is effective if and only if $D^{2} \geq 0$ and $D \cdot H>2$.

Remark: If $S \subseteq \mathbb{P}^{r}$ is a smooth $K 3$ surface of degree $2 r-2$ with Picard number 2 as above, S has no (-2) curves when the equation

$$
\begin{equation*}
(r-1) m^{2}+m n d+(g-1) n^{2}=-1 \tag{1}
\end{equation*}
$$

has no solutions $m, n \in \mathbb{Z}$. This is the case for instance when d is even and g and r are odd. Furthermore, a necessary condition for S to have genus 1 curves is that $d^{2}-4(g-1)(r-1)$ is a square.

3 Brill-Noether special linear series on curves on $K 3$ surfaces

The first important result in the study of special linear series on curves lying on $K 3$ surfaces was Lazarsfeld's proof of the Brill-Noether-Petri Theorem (cf. [Laz]). He noticed that there is no Brill-Noether type obstruction to embed a curve in a $K 3$ surface: if $C_{0} \subseteq S$ is a smooth curve of genus $g \geq 2$ on a $K 3$ surface such that $\operatorname{Pic}(S)=\mathbb{Z} C_{0}$, then the general curve $C \in\left|C_{0}\right|$ satisfies the Brill-Noether-Petri Theorem, that is, for any line bundle A on C, the Petri map $\mu_{0}(C, A): H^{0}(C, A) \otimes H^{0}\left(C, K_{C} \otimes A^{\vee}\right) \rightarrow H^{0}\left(C, K_{C}\right)$ is injective. We mention that Petri's Theorem implies (trivially) the Brill-Noether Theorem.

The general philosophy when studying linear series on a $K 3$-section $C \subseteq S$ of genus $g \geq 2$, is that the type of a Brill-Noether special \mathfrak{g}_{d}^{r} often does not depend on C but only on its linear equivalence class in S, i.e. a \mathfrak{g}_{d}^{r} on C with $\rho(g, r, d)<0$ is expected to propagate to all smooth curves $C^{\prime} \in|C|$. This expectation, in such generality, is perhaps a bit too optimistic, but it was proved to be true for the Clifford index of a curve (see [GL]): for $C \subseteq S$ a smooth $K 3$-section of genus $g \geq 2$, one has that $\operatorname{Cliff}\left(C^{\prime}\right)=\operatorname{Cliff}(C)$ for every smooth curve $C^{\prime} \in|C|$. Furthermore, if $\operatorname{Cliff}(C)<[(g-1) / 2]$ (the generic value of the Clifford index), then there exists a line bundle \mathcal{L} on S such that for all smooth $C^{\prime} \in|C|$ the restriction $\mathcal{L}_{\mid C^{\prime}}$ computes Cliff $\left(C^{\prime}\right)$. Recall that the Clifford index of a curve C of genus g is defined as

$$
\operatorname{Cliff}(C):=\min \left\{\operatorname{Cliff}(D): D \in \operatorname{Div}(C), h^{0}(D) \geq 2, h^{1}(D) \geq 2\right\}
$$

where for an effective divisor D on C, we have $\operatorname{Cliff}(D)=\operatorname{deg}(D)-2\left(h^{0}(D)-1\right)$. Note that in the definition of $\operatorname{Cliff}(C)$ the condition $h^{1}(D) \geq 2$ can be replaced with $\operatorname{deg}(D) \leq g-1$. Another invariant of a curve is the Clifford dimension of C defined as

$$
\operatorname{Cliff}-\operatorname{dim}(C):=\min \left\{r \geq 1: \exists \mathfrak{g}_{d}^{r} \text { on } C \text { with } d \leq g-1, \text { such that } d-2 r=\operatorname{Cliff}(C)\right\}
$$

Curves with Clifford dimension ≥ 2 are rare: smooth plane curves are precisely the curves of Clifford dimension 2, while curves of Clifford dimension 3 occur only in genus 10 as complete intersections of two cubic surfaces in \mathbb{P}^{3}.

Harris and Mumford during their work in [HM] conjectured that the gonality of a $K 3$-section should stay constant in a linear system: if $C \subseteq S$ carries an exceptional \mathfrak{g}_{d}^{1} then every smooth $C^{\prime} \in|C|$ carries an equally exceptional \mathfrak{g}_{d}^{1}. This conjecture was later disproved by Donagi and Morrison (cf. [DMo]). They came up with the following counterexample: let $\pi: S \rightarrow \mathbb{P}^{2}$ be a $K 3$ surface, double cover of \mathbb{P}^{2} branched along a smooth sextic and let $\mathcal{L}=\pi^{*} \mathcal{O}_{\mathbb{P}^{2}}(3)$. The genus of a smooth $C \in|\mathcal{L}|$ is 10 . The general $C \in|\mathcal{L}|$ carries a very ample \mathfrak{g}_{6}^{2}, hence gon $(C)=5$. On the other hand, any curve in the codimension 1 linear system $\left|\pi^{*} H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(3)\right)\right|$ is bielliptic, therefore has gonality 4. Under reasonable assumptions this turns out to be the only counterexample to the Harris-Mumford conjecture. Ciliberto and Pareschi proved that if $C \subseteq S$ is such that $|C|$ is base-point-free and ample, then either $\operatorname{gon}\left(C^{\prime}\right)=\operatorname{gon}(C)$ for all smooth $C^{\prime} \in|C|$, or (S, C) are as in the previous counterexample (cf. [CilP]).

Although gon (C) can drop as C varies in a linear system, base-point-free \mathfrak{g}_{d}^{1} 's on $K 3$-sections do propagate:

Proposition 3.1 (Donagi-Morrison) Let S be a $K 3$ surface, $C \subseteq S$ a smooth, nonhyperelliptic curve and $|Z|$ a complete, base-point-free \mathfrak{g}_{d}^{1} on C such that $\rho(g, 1, d)<0$. Then there is an effective divisor $D \subseteq S$ such that:

- $h^{0}(S, D) \geq 2, h^{0}(S, C-D) \geq 2, \operatorname{deg}_{\mathrm{C}}\left(\mathrm{D}_{\mid \mathrm{C}}\right) \leq \mathrm{g}-1$.
- $\operatorname{Cliff}\left(C^{\prime}, D_{\mid C^{\prime}}\right) \leq \operatorname{Cliff}(C, Z)$, for any smooth $C^{\prime} \in|C|$.
- There is $Z_{0} \in|Z|$, consisting of distinct points such that $Z_{0} \subseteq D \cap C$.

Throughout this paper, for a smooth curve C we denote, as usual, by $W_{d}^{r}(C)$ the scheme whose points are line bundles $A \in \operatorname{Pic}^{d}(C)$ with $h^{0}(C, A) \geq r+1$, and by $G_{d}^{r}(C)$ the scheme parametrizing \mathfrak{g}_{d}^{r} 's on C.

4 The gonality of curves in \mathbb{P}^{r}

For a wide range of d, g and r we construct curves $C \subseteq \mathbb{P}^{r}$ of degree d and genus g having the expected gonality. We start with a case when we can realize our curves as sections of $K 3$ surfaces.

Theorem 3 Let $r \geq 3, d \geq r^{2}+r$ and $g \geq 0$ be integers such that $\rho(g, r, d)<0$ and with $d^{2}>4(r-1)(g+r-2)$ when $r \geq 4$ while $d^{2}>8 g$ when $r=3$. Let us assume moreover that 0 and -1 are not represented by the quadratic form

$$
Q(m, n)=(r-1) m^{2}+m n d+(g-1) n^{2}, \quad m, n \in \mathbb{Z} .
$$

Then there exists a smooth curve $C \subseteq \mathbb{P}^{r}$ of degree d and genus g such that $\operatorname{gon}(C)=$ $\min (d-2 r+2,[(g+3) / 2])$. If $\operatorname{gon}(C)=d-2 r+2<[(g+3) / 2]$ then $\operatorname{dim} W_{d-2 r+2}^{1}(C)=0$ and every $\mathfrak{g}_{d-2 r+2}^{1}$ is given by the hyperplanes through a $(2 r-2)$-secant $(r-2)$-plane.

Proof: By Rathmann's Theorem there exists a smooth $K 3$ surface $S \subseteq \mathbb{P}^{r}$ with $\operatorname{deg}(S)=$ $2 r-2$ and $C \subseteq S$ a smooth curve of degree d and genus g such that $\operatorname{Pic}(S)=\mathbb{Z} H \oplus \mathbb{Z} C$,
where H is a hyperplane section. The conditions d, g and r are subject to, ensure that S does not contain (-2) curves or genus 1 curves.

We prove first that Cliff-dim $(C)=1$. It suffices to show that $C \subseteq S$ is an ample divisor, because then by using Prop. 3.3 from [CilP] we obtain that either $\operatorname{Cliff}-\operatorname{dim}(C)=1$ or C is a smooth plane sextic, $g=10$ and (S, C) are as in Donagi-Morrison's example (then $\operatorname{Cliff}-\operatorname{dim}(C)=2$). The latter case obviously does not happen.

We prove that $C \cdot D>0$ for any effective divisor $D \subseteq S$. Let $D \sim m H+n C$, with $m, n \in \mathbb{Z}$, such a divisor. Then $D^{2}=(2 r-2) m^{2}+2 m n d+n^{2}(2 g-2) \geq 0$ and $D \cdot H=(2 r-2) m+d n>2$. The case $m \leq 0, n \leq 0$ is impossible, while the case $m \geq 0, n \geq 0$ is trivial. Let us assume $m>0, n<0$. Then $D \cdot C=m d+n(2 g-2)>$ $-n\left(d^{2} /(2 r-2)-2 g+2\right)+d /(r-1)>0$, because $d^{2} /(2 r-2)>2 g$. In the remaining case $m<0, n>0$ we have that $n D \cdot C \geq-m D \cdot H>0$, so C is ample by Nakai-Moishezon.

Our assumptions imply that $d \leq g-1$, so $\mathcal{O}_{C}(1)$ is among the line bundles from which $\operatorname{Cliff}(C)$ is computed. We get thus the following estimate on the gonality of C :

$$
\operatorname{gon}(C)=\operatorname{Cliff}(C)+2 \leq \operatorname{Cliff}\left(C, H_{\mid C}\right)+2=d-2 r+2,
$$

which yields $\operatorname{gon}(C) \leq \min (d-2 r+2,[(g+3) / 2])$.
For the rest of the proof let us assume that gon $(C)<[(g+3) / 2]$. We will then show that $\operatorname{gon}(C)=d-2 r+2$. Let $|Z|$ be a complete, base point free pencil computing gon (C). By applying Prop.3.1, there exists an effective divisor $D \subseteq S$ satisfying
$h^{0}(S, D) \geq 2, h^{0}(S, C-D) \geq 2, \operatorname{deg}\left(D_{\mid C}\right) \leq g-1, \operatorname{gon}(C)=\operatorname{Cliff}\left(D_{\mid C}\right)+2$ and $Z \subseteq D \cap C$.
We consider the exact cohomology sequence:

$$
0 \rightarrow H^{0}(S, D-C) \rightarrow H^{0}(S, D) \rightarrow H^{0}\left(C, D_{\mid C}\right) \rightarrow H^{1}(S, D-C)
$$

Since $C-D$ is effective and $\nsim 0$, one sees that $D-C$ cannot be effective, so $H^{0}(S, D-C)=$ 0 . The surface S does not contain (-2) curves, so $|C-D|$ has no fixed components; the equation $(C-D)^{2}=0$ has no solutions, therefore $(C-D)^{2}>0$ and the general element of $|C-D|$ is smooth and irreducible. Then it follows that $H^{1}(S, D-C)=H^{1}(S, C-D)^{\vee}=0$. Thus $H^{0}(S, D)=H^{0}\left(C, D_{\mid C}\right)$ and

$$
\operatorname{gon}(C)=2+\operatorname{Cliff}\left(D_{\mid C}\right)=2+D \cdot C-2 \operatorname{dim}|D|=D \cdot C-D^{2}
$$

We consider the following family of effective divisors

$$
\mathcal{A}:=\left\{D \in \operatorname{Div}(S): h^{0}(S, D) \geq 2, h^{0}(S, C-D) \geq 2, C \cdot D \leq g-1\right\}
$$

Since we already know that $d-2 r+2 \geq \operatorname{gon}(C) \geq \alpha$, where $\alpha=\min \left\{D \cdot C-D^{2}: D \in \mathcal{A}\right\}$, we are done if we prove that $\alpha \geq d-2 r+2$. Take $D \in \mathcal{A}$ such that $D \sim m H+n C$, $m, n \in \mathbb{Z}$. The conditions $D^{2}>0, D \cdot C \leq g-1$ and $2<D \cdot H<d-2$ (use Prop.2.2 for the last inequality) can be rewritten as
$(r-1) m^{2}+m n d+n^{2}(g-1)>0$ (i), $2<(2 r-2) m+n d<d-2$ (ii), $m d+(2 n-1)(g-1) \leq 0$ (iii).
We have to prove that for any $D \in \mathcal{A}$ the following inequality holds
$f(m, n)=D \cdot C-D^{2}=-(2 r-2) m^{2}+m(d-2 n d)+\left(n-n^{2}\right)(2 g-2) \geq f(1,0)=d-2 r+2$.

We solve this standard calculus problem. Denote by

$$
a:=\frac{d+\sqrt{d^{2}-4(r-1)(g-1)}}{2 r-2} \text { and } b:=\frac{d-\sqrt{d^{2}-4(r-1)(g-1)}}{2 r-2} .
$$

We dispose first of the case $n<0$. Assuming $n<0$, from (i) we have that either $m<-b n$ or $m>-a n$. If $m<-b n$ from (ii) we obtain that $2<n(d-(2 r-2) b)<0$, because $n<0$ and $d-(2 r-2) b=\sqrt{d^{2}-4(r-1)(g-1)}>0$, so we have reached a contradiction.

We assume now that $n<0$ and $m>-a n$. From (iii) we get that $m \leq(g-1)(1-2 n) / d$. If $-a n>(g-1)(1-2 n) / d$ we are done because there are no $m, n \in \mathbb{Z}$ satisfying (i), (ii) and (iii), while in the other case for any $D \in \mathcal{A}$ with $D \sim m H+n C$, one has the inequality

$$
f(m, n)>f(-a n, n)=\frac{\left(d^{2}-4(r-1)(g-1)\right)+d \sqrt{d^{2}-4(r-1)(g-1)}}{2 r-2}(-n)
$$

When $r \geq 4$ since we assume that $\sqrt{d^{2}-4(r-1)(g-1)} \geq 2 r-2$, it immediately follows that $f(m, n) \geq d>d-2 r+2$. In the case $r=3$ when we only have the weaker assumption $d^{2}>8 g$, we still get that $f(-a n, n)>d-4$ unless $n=-1$ and $d^{2}-8 g<8$. In this last situation we obtain $m \geq(d+4) / 4$ so $f(m,-1) \geq f((d+4) / 4,-1)>d-4$.

The case $n>0$ can be treated rather similarly. From (i) we get that either $m<-a n$ or $m>-b n$. The first case can be dismissed immediately. When $m>-b n$ we use that for any $D \in \mathcal{A}$ with $D \sim m H+n C$,

$$
f(m, n) \geq \min \{f(-(g-1)(2 n-1) / d, n), \max \{f(-b n, n), f((2-n d) /(2 r-2), n)\}\}
$$

Elementary manipulations give that
$f(-(g-1)(2 n-1) / d, n)=(g-1) / 2\left[(2 n-1)^{2}\left(d^{2}-4(r-1)(g-1)\right) / d^{2}+1\right] \geq d-2 r+2$
(use only that $d \leq g-1$ and $d^{2}>4(r-1) g$, so we cover both cases $r=3$ and $r \geq 4$ at once). Note that in the case $n>0$ we have equality if and only if $n=1, m=-1$ and $d=g-1$.

Moreover $f(-b n, n)=n(2 g-2-b d) \geq 2 g-2-b d$ and $2 g-2-b d>d-2 r+2 \Leftrightarrow$ $2 r-2<\sqrt{d^{2}-4(r-1)(g-1)}<d-2 r+2$. When this does not happen we proceed as follows: if $\sqrt{d^{2}-4(r-1)(g-1)} \geq d-2 r+2$ then if $n=1$ we have that $m>-b \geq-1$, that is $m \geq 0$, but this contradicts (ii). When $n \geq 2$, we have $f((2-n d) /(2 r-2), n)=$ $\left[\left(d^{2}-4(r-1)(g-1)\right)\left(n^{2}-n\right)+(2 d-4)\right] /(2 r-2)>d-2 r+2$. Finally, the remaining possibility $2 r-2 \geq \sqrt{d^{2}-4(r-1)(g-1)}$ does not occur when $r \geq 4$ while in the case $r=3$ we either have $f(-b n, n)>d-4$ or else $n=1$ and then $m>(-d+4) / 4$ hence $f(m, 1)>f((-d+4) / 4,1)=d-4$.

All this leaves us with the case $n=0$, when $f(m, 0)=-(2 r-2) m^{2}+m d$. Clearly $f(m, 0) \geq f(1,0)$ for all m complying with (i),(ii) and (iii).

Thus we proved that gon $(C)=d-2 r+2$. We have equality $D \cdot C-D^{2}=d-2 r+2$ where $D \in \mathcal{A}$, if and only if $D=H$ or in the case $d=g-1$ also when $D=C-H$. The latter possibility can be ruled out since $d=g-1$ is not compatible with the assumptions $d \geq r^{2}+r$ and $d-2 r+2<[(g+3) / 2]$. Therefore we can always assume that the divisor
on S cutting a $\mathfrak{g}_{d-2 r+2}^{1}$ on C is the hyperplane section of S. Since $Z \subseteq H \cap C$, if we denote by Δ the residual divisor of Z in $H \cap C$, we have that $h^{0}\left(C, H_{\mid C}-\Delta\right)=2$, so Δ spans a \mathbb{P}^{r-2} hence $|Z|$ is given by the hyperplanes through the $(2 r-2)$-secant $(r-2)$-plane $\langle\Delta\rangle$. This shows that every pencil computing gon (C) is given by the hyperplanes through a $(2 r-2)$-secant $(r-2)$-plane.

There are a few ways to see that C has only finitely many $(2 r-2)$-secant $(r-2)$-planes. The shortest is to invoke Theorem 3.1 from [CilP]: since gon $\left(C^{\prime}\right)=d-2 r+2$ is constant as C^{\prime} varies in $|C|$, for the general smooth curve $C^{\prime} \in|C|$ one has $\operatorname{dim} W_{d-2 r+2}^{1}\left(C^{\prime}\right)=0$.

Remarks: 1. Keeping the assumptions and the notations of Theorem 3 we note that when $d-2 r+2<[(g+3) / 2]$ the linear system $|C|$ is $(d-2 r-1)$-very ample, i.e. for any 0-dimensional subscheme $Z \subseteq S$ of length $\leq d-2 r$ the map $H^{0}(S, C) \rightarrow H^{0}\left(S, C \otimes \mathcal{O}_{Z}\right)$ is surjective. Indeed, by applying Theorem 2.1 from [BS] if $|C|$ is not $(d-2 r-1)$-very ample, there exists an effective divisor D on S such that $C-2 D$ is \mathbb{Q}-effective and

$$
C \cdot D-(d-2 r) \leq D^{2} \leq C \cdot D / 2<d-2 r
$$

hence $C \cdot D-D^{2} \leq d-2 r$. On the other hand clearly $D \in \mathcal{A}$, thus $C \cdot D-D^{2} \geq d-2 r+2$, a contradiction.
2. One can find quartic surfaces $S \subseteq \mathbb{P}^{3}$ containing a smooth curve C of degree d and genus g in the case $g=d^{2} / 8+1$ (which is outside the range Theorem 3 deals with). Then $d=4 m, g=2 m^{2}+1$ with $m \geq 1$ and C is a complete intersection of type $(4, m)$. For such a curve, gon $(C)=d-l$, where l is the degree of a maximal linear divisor on C (cf. [Ba]). If S is sufficiently general so that it contains no lines, by Bezout, C cannot have 5 -secant lines so gon $(C)=d-4$ in this case too.

When $r=3$ we want to find out when the curves constructed in Theorem 3 correspond to smooth points of $\operatorname{Hilb}_{d, g, 3}$. We have the following:

Proposition 4.1 Let $C \subseteq S \subseteq \mathbb{P}^{3}$ be a smooth curve sitting on a quartic surface such that $\operatorname{Pic}(S)=\mathbb{Z} H \oplus \mathbb{Z} C$ with H being a plane section and assume furthermore that S contains no (-2) curves. Then $H^{1}\left(C, N_{C / \mathbb{P}^{3}}\right)=0$ if and only if $d \leq 18$ or $g<4 d-31$.

Proof: We use the exact sequence

$$
\begin{equation*}
0 \longrightarrow N_{C / S} \longrightarrow N_{C / \mathbb{P}^{3}} \longrightarrow N_{S / \mathbb{P}^{3}} \otimes \mathcal{O}_{C} \longrightarrow 0 \tag{2}
\end{equation*}
$$

where $N_{S / \mathbb{P}^{3}} \otimes \mathcal{O}_{C}=\mathcal{O}_{C}(4)$ and $N_{C / S}=K_{C}$. We claim that there is an isomorphism $H^{1}\left(C, N_{C / \mathbb{P}^{3}}\right)=H^{1}\left(C, \mathcal{O}_{C}(4)\right)$. Suppose this is not the case. Then the injective map $H^{1}\left(C, K_{C}\right) \rightarrow H^{1}\left(C, N_{C / \mathbb{P}^{3}}\right)$ provides a section $\sigma \in H^{0}\left(N_{C / \mathbb{P}^{3}}^{\vee} \otimes K_{C}\right)$ which yields a splitting of the dual of the exact sequence (2), hence (2) is split as well. Using a result from [GH, p.252] we obtain that C is a complete intersection with S. This is clearly a contradiction. Therefore one has $H^{1}\left(C, N_{C / \mathbb{P}^{3}}\right)=H^{1}\left(C, \mathcal{O}_{C}(4)\right)$.

We have isomorphisms $H^{1}\left(C, 4 H_{\mid C}\right)=H^{2}(S, 4 H-C)=H^{0}(S, C-4 H)^{\vee}$. According to Prop.2.2 the divisor $C-4 H$ is effective if and only if $(C-4 H)^{2} \geq 0$ and $(C-4 H) \cdot H>2$, from which the conclusion follows.

We need to determine the gonality of nodal curves not of compact type and which consist of two components meeting at a number of points. We have the following result:

Proposition 4.2 Let $C=C_{1} \cup_{\Delta} C_{2}$ be a quasi-transversal union of two smooth curves C_{1} and C_{2} meeting at a finite set Δ. Denote by $g_{1}=g\left(C_{1}\right), g_{2}=g\left(C_{2}\right), \delta=\operatorname{card}(\Delta)$. Let us assume that C_{1} has only finitely many pencils \mathfrak{g}_{d}^{1}, where $\delta \leq d$ and that the points of Δ do not occur in the same fibre of one of these pencils. Then $\operatorname{gon}(C) \geq d+1$. Moreover if $\operatorname{gon}(C)=d+1$ then either (1) C_{2} is rational and there is a degree d map $f_{1}: C_{1} \rightarrow \mathbb{P}^{1}$ and a degree 1 map $f_{2}: C_{2} \rightarrow \mathbb{P}^{1}$ such that $f_{1 \mid \Delta}=f_{2 \mid \Delta}$, or (2) there is a \mathfrak{g}_{d+1}^{1} on C_{1} containing Δ in a fibre.

Proof: Let us assume that C is k-gonal, that is, a limit of smooth k-gonal curves. If $g=g_{1}+g_{2}+\delta-1$, we consider the space $\overline{\mathcal{H}}_{g, k}$ of Harris-Mumford admissible coverings of degree k and we denote by $\pi: \overline{\mathcal{H}}_{g, k} \rightarrow \overline{\mathcal{M}}_{g}$ the proper map sending a covering to the stable model of its domain (see $[\mathrm{HM}]$). Since $[C] \in \overline{\mathcal{M}}_{g, k}^{1}=\operatorname{Im}(\pi)$, it follows that there exists a semistable curve C^{\prime} whose stable model is C and a degree k admissible covering $f: C^{\prime} \rightarrow Y$, where Y is a semistable curve of arithmetic genus 0 . We thus have that $f^{-1}\left(Y_{\text {sing }}\right)=C_{\text {sing }}^{\prime}$ and if $p \in C_{1}^{\prime} \cap C_{2}^{\prime}$ with C_{1}^{\prime} and C_{2}^{\prime} components of C^{\prime}, then $f\left(C_{1}^{\prime}\right)$ and $f\left(C_{2}^{\prime}\right)$ are distinct components of Y and the ramification indices at the point p of the restrictions $f_{\mid C_{1}^{\prime}}$ and $f_{\mid C_{2}^{\prime}}$ are the same.

We have that $C^{\prime}=C_{1} \cup C_{2} \cup R_{1} \cup \ldots \cup R_{\delta}$, where for $1 \leq i \leq \delta$ the curve R_{i} is a (possibly empty) destabilizing chain of \mathbb{P}^{1} 's inserted at the nodes of C. Let us denote $\left\{p_{i}\right\}=C_{1} \cap R_{i}$ and $\left\{q_{i}\right\}=C_{2} \cap R_{i}$; if $R_{i}=\emptyset$ then we take $p_{i}=q_{i} \in \Delta \subseteq C$.

We first show that $k \geq d+1$. Suppose $k \leq d$. Since C_{1} has no \mathfrak{g}_{d-1}^{1} 's it follows that $k=d$ and that $f^{-1} f\left(C_{1}\right)=C_{1}$. If there were distinct points p_{i} and p_{j} such that $f\left(p_{i}\right) \neq f\left(p_{j}\right)$, then $f\left(R_{i}\right) \neq f\left(R_{j}\right)$ and the image curve Y would no longer have genus 0 . Therefore $f\left(p_{i}\right)=f\left(p_{j}\right)$ for all $i, j \in\{1, \ldots, \delta\}$, that is Δ appears in the fibre of a \mathfrak{g}_{d}^{1} on C_{1}, a contradiction.

Assume now that $k=d+1$. Then either $\operatorname{deg}\left(f_{\mid C_{1}}\right)=d$ or $\operatorname{deg}\left(f_{\mid C_{1}}\right)=d+1$. If $\operatorname{deg}\left(f_{\mid C_{1}}\right)=d+1$, then again $f^{-1} f\left(C_{1}\right)=C_{1}$ and by the same reasoning f maps all the p_{i} 's to the same point and this yields case (2) from the statement of the Proposition. If $\operatorname{deg}\left(f_{\mid C_{1}}\right)=d$ then $f^{-1} f\left(C_{1}\right)=C_{1} \cup D$, where D is a smooth rational curve mapped isomorphically to its image via f. If $D=C_{2}$ then the condition that the dual graph of Y is a tree implies that $f\left(p_{i}\right)=f\left(q_{i}\right)$ for all i and this yields case (1) from the statement. Finally, if $D \neq C_{2}$ then $f\left(C_{1}\right) \neq f\left(C_{2}\right)$. We know that there are $1 \leq i<j \leq \delta$ such that $f\left(p_{i}\right) \neq f\left(p_{j}\right)$. The image $f\left(C_{2}\right)$ belongs to a chain R of \mathbb{P}^{1} 's such that either $R \cap f\left(C_{1}\right)=\left\{f\left(p_{i}\right)\right\}$ or $R \cap f\left(C_{1}\right)=\left\{f\left(p_{j}\right)\right\}$. In the former case $f(p)=f\left(p_{i}\right)$ for all $p \in \Delta-\left\{p_{j}\right\}$ while in the latter case $f(p)=f\left(p_{j}\right)$ for all $p \in \Delta-\left\{p_{i}\right\}$. In each case by adding a base point we obtain a \mathfrak{g}_{d+1}^{1} on C_{1} containing Δ in a fibre.

Theorem 3 provides curves $C \subseteq \mathbb{P}^{3}$ of expected gonality when d is even and g is odd (equation (1) has no solutions in this case). Naturally, we would like to have such curves when d and g have other parities as well. We will achieve this by attaching to a 'good' curve of expected gonality either a 2 or 3 -secant line or a 4 -secant conic.

Theorem 1 Let $g \geq 15$ and $d \geq 14$ be integers with g odd and d even, such that $d^{2}>8 g, 4 d<3 g+12, d^{2}-8 g+8$ is not a square and either $d \leq 18$ or $g<4 d-31$. If

$$
\left(d^{\prime}, g^{\prime}\right) \in\{(d, g),(d+1, g+1),(d+1, g+2),(d+2, g+3)\}
$$

then there exists a regular component of $\operatorname{Hilb}_{\mathrm{d}^{\prime}, \mathrm{g}^{\prime}, 3}$ with general point $\left[C^{\prime}\right]$ a smooth curve such that $\operatorname{gon}\left(C^{\prime}\right)=\min \left(\mathrm{d}^{\prime}-4,\left[\left(\mathrm{~g}^{\prime}+3\right) / 2\right]\right)$.

Proof: For d and g as in the statement we know by Theorem 3 and by Prop.4.1 that there exists a smooth nondegenerate curve $C \subseteq \mathbb{P}^{3}$ of degree d and genus g, with gon $(C)=$ $\min (d-4,[(g+3) / 2])$ and $H^{1}\left(C, N_{C / \mathbb{P}^{3}}\right)=0$. We can also assume that C sits on a smooth quartic surface S and $\operatorname{Pic}(S)=\mathbb{Z} H \oplus \mathbb{Z} C$. Moreover, in the case $d-4<[(g+3) / 2]$ the curve C has only finitely many \mathfrak{g}_{d-4}^{1} 's, all given by planes through a 4 -secant line.
i) Let us settle first the case $\left(d^{\prime}, g^{\prime}\right)=(d+1, g+1)$. Take $p, q \in C$ general points, $L=\overline{p q} \subseteq \mathbb{P}^{3}$ and $X:=C \cup L$. By applying Lemma 1.2 from [BE], we know that $H^{1}\left(X, N_{X}\right)=0$ and the curve X is smoothable in \mathbb{P}^{3}, that is, there exists a flat family of curves $\left\{X_{t}\right\}$ in \mathbb{P}^{3} over a smooth and irreducible base, with the general fibre X_{t} smooth while the special fibre X_{0} is X. If $d-4<[(g+3) / 2]$, then since C has only finitely many \mathfrak{g}_{d-4}^{1} 's, by applying Prop. 4.2 we get that $\operatorname{gon}(X)=d-3$. In the case $d-4 \geq[(g+3) / 2]$ we just notice that $\operatorname{gon}(X) \geq \operatorname{gon}(C)=\left[\left(g^{\prime}+3\right) / 2\right]$.
ii) Next we tackle the case $\left(d^{\prime}, g^{\prime}\right)=(d+1, g+2)$. Assume first that $d-4<$ $[(g+3) / 2] \Leftrightarrow d^{\prime}-4<\left[\left(g^{\prime}+3\right) / 2\right]$. We apply Lemma 1.2 from [BE] to a curve $X:=C \cup L$, where L is a suitable trisecant line to C. In order to conclude that X is smoothable in \mathbb{P}^{3} and that $H^{1}\left(X, N_{X}\right)=0$, we have to make sure that the trisecant line $L=\overline{p q q^{\prime}}$ with $p, q, q^{\prime} \in C$ can be chosen in such a way that

$$
\begin{equation*}
L, T_{p}(C), T_{q}(C) \text { and } T_{q^{\prime}}(C) \text { do not all lie in the same plane. } \tag{3}
\end{equation*}
$$

We claim that when $C \in|C|$ is general in its linear system, at least one of its trisecants satisfies (3). Suppose not. Then for every smooth curve $C \in|C|$ and for every trisecant line L to C condition (3) fails.

We consider a 0 -dimensional subscheme $Z \subseteq S$ where $Z=p+q+q^{\prime}+u+u^{\prime}$, with $p, q, q^{\prime} \in S$ being collinear points while u and u^{\prime} are general infinitely near points to q and q^{\prime} respectively. The linear system $|C|$ is at least 5 -very ample (cf. Remark 1), hence a general curve $C \in|C-Z|$ is smooth and possesses a trisecant line for which (3) holds, a contradiction.

Since the scheme of trisecants to a space curve is of pure dimension 1, it follows that for a general curve $C \in|C|$, through a general point $p \in C$ there passes a trisecant line L for which (3) holds. We have that $X:=C \cup L$ is smoothable in \mathbb{P}^{3} and $H^{1}\left(X, N_{X}\right)=0$. We conclude that $\operatorname{gon}(X)=d-3$ by proving that there is no \mathfrak{g}_{d-4}^{1} on C containing $L \cap C$ in a fibre.

If $C \in|C|$ is general, any line in \mathbb{P}^{3} (hence also a 4 -secant line to C) can meet only finitely many trisecants. Indeed, assuming that $m \subseteq \mathbb{P}^{3}$ is a line meeting infinitely many trisecants, we consider the correspondence

$$
T=\{(p, t) \in C \times m: \overline{p t} \text { is a trisecant to } C\}
$$

and the projections $\pi_{1}: T \rightarrow C$ and $\pi_{2}: T \rightarrow m$. If π_{2} is surjective, then $\operatorname{Nm}_{\pi_{1}}\left(\pi_{2}\right)$ yields a \mathfrak{g}_{3}^{1} on C, a contradiction. If π_{2} is not surjective then there exists a point $t \in \mathbb{P}^{3}$ such that $\overline{p t}$ is a trisecant to C for each $p \in C$. This possibility cannot occur for a general $C \in|C|$: Otherwise we take general points $t \in \mathbb{P}^{3}$ and $p, p^{\prime} \in S$ and if we denote

$$
\mathcal{B}:=\left\{C \in|C|: p, p^{\prime} \in C \text { and } \overline{t x} \text { is a trisecant to } C \text { for each } x \in C\right\},
$$

we have that $\operatorname{dim} \mathcal{B} \geq g-5$. On the other hand since $\overline{t p}$ and $\overline{t p^{\prime}}$ are trisecants for all curves $C \in \mathcal{B}$, there must be a 0 -dimensional subscheme $Z \subseteq\left(\overline{t p} \cup \overline{t p^{\prime}}\right) \cap S$ of length 6 such that $\mathcal{B} \subseteq|C-Z|$, hence $\operatorname{dim} \mathcal{B} \leq \operatorname{dim}|C-Z|=g-6$ (use again that $|C|$ is 5 -very ample), a contradiction. In this way the case $d-4<[(g+3) / 2]$ is settled.

When $d-4 \geq[(g+3) / 2]$ we apply Theorem 3 to obtain a smooth curve $C_{1} \subseteq \mathbb{P}^{3}$ of degree d and genus $g+2$ such that gon $\left(C_{1}\right)=(g+5) / 2$ and $H^{1}\left(C_{1}, N_{C_{1}}\right)=0$. We take $X_{1}:=C_{1} \cup L_{1}$ with L_{1} being a general 1-secant line to C_{1}. Then X_{1} is smoothable and $\operatorname{gon}\left(X_{1}\right)=\operatorname{gon}\left(C_{1}\right)=(g+5) / 2$.
iii) Finally, we turn to the case $\left(d^{\prime}, g^{\prime}\right)=(d+2, g+3)$. Take $H \subseteq \mathbb{P}^{3}$ a general plane meeting C in d distinct points in general linear position and pick 4 of them: $p_{1}, p_{2}, p_{3}, p_{4} \in C \cap H$. Choose $Q \subseteq H$ a general conic such that $Q \cap C=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. Theorem 5.2 from [Se] ensures that $X:=C \cup Q$ is smoothable in \mathbb{P}^{3} and $H^{1}\left(X, N_{X}\right)=0$.

Assume first that $d^{\prime}-4 \leq\left[\left(g^{\prime}+3\right) / 2\right]$. We claim that gon $(X) \geq \operatorname{gon}(C)+2$. According to Prop.4.2 the opposite could happen only in 2 cases: a) There exists a \mathfrak{g}_{d-3}^{1} on C, say $|Z|$, such that $|Z|\left(-p_{1}-p_{2}-p_{3}-p_{4}\right) \neq \emptyset$. b) There exists a degree $d-4$ map $f: C \rightarrow \mathbb{P}^{1}$ and a degree 1 map $f^{\prime}: Q \rightarrow \mathbb{P}^{1}$ such that $f\left(p_{i}\right)=f^{\prime}\left(p_{i}\right)$, for $i=1, \ldots, 4$.

Assume that a) does happen. We denote by $U=\left\{D \in C_{4}:\left|\mathcal{O}_{C}(1)\right|(-D) \neq \emptyset\right\}$ the irreducible 3 -fold of divisors of degree 4 spanning a plane and also consider the correspondence

$$
\Sigma=\left\{(L, D) \in W_{d-3}^{1}(C) \times U:|L|(-D) \neq \emptyset\right\}
$$

with the projections $\pi_{1}: \Sigma \rightarrow W_{d-3}^{1}(C)$ and $\pi_{2}: \Sigma \rightarrow U$. We know that π_{2} is dominant, hence $\operatorname{dim} \Sigma \geq 3$ and therefore $\operatorname{dim} W_{d-3}^{1}(C) \geq 2$.

If $\rho(g, 1, d-3)<0$ by Prop.3.1 we get that every base-point-free \mathfrak{g}_{d-3}^{1} on C is cut out by a divisor D on S such that $D \in \mathcal{A}$ (see the proof of Theorem 3 for this notation) and $C \cdot D-D^{2}=\operatorname{Cliff}\left(C, D_{\mid C}\right)+2 \leq d-3$, hence $C \cdot D-D^{2} \leq d-4$ for parity reasons. As pointed out at the end of the proof of Theorem 3 this forces $D \sim H$, that is, all base-point-free \mathfrak{g}_{d-3}^{1} 's on C are given by planes through a trisecant line. Thus C has ∞^{2} trisecants, a contradiction.

If $\rho(g, 1, d-3) \geq 0$, then $g=2 d-9$ and we can assume that there is $L \in \pi_{1}(\Sigma)$ such that $\left|\mathcal{O}_{C}(1)-L\right| \neq \emptyset$. The map π_{1} is either generically finite hence $\operatorname{dim} W_{d-4}^{1}(C) \geq$ $\operatorname{dim} W_{d-3}^{1}(C)-2 \geq 1$ (cf. [FHL]), a contradiction, or otherwise π_{1} has fibre dimension 1. This is possible only when there is a component A of $W_{d-3}^{1}(C)$ with $\operatorname{dim}(A) \geq 2$ and such that the general $L \in A$ satisfies $\left|\mathcal{O}_{C}(1)-L\right| \neq \emptyset$ and every $L \in A$ has nonordinary ramification so that the monodromy of each \mathfrak{g}_{d-3}^{1} is not the full symmetric group. Applying again [FHL] there is $L \in W_{d-4}^{1}(C)$ such that $\{L\}+W_{1}^{0}(C) \subseteq A$, in particular L has non-ordinary ramification too. It is easy to see that this contradicts the $(d-7)$-very ampleness of $|C|$ asserted by Remark 1.

We now rule out case b). Suppose that b) does happen and denote by $L \subseteq \mathbb{P}^{3}$ the 4 secant line corresponding to f. Let $\{p\}=L \cap H$, and pick $l \subseteq H$ a general line. As Q was a general conic through p_{1}, \ldots, p_{4} we may assume that $p \notin Q$. The map $f^{\prime}: Q \rightarrow l$ is (up to a projective isomorphism of l) the projection from a point $q \in Q$, while $f\left(p_{i}\right)=\overline{p_{i} p} \cap l$, for $i=1, \ldots, 4$. By Steiner's Theorem from classical projective geometry, the condition $\left(f\left(p_{1}\right) f\left(p_{2}\right) f\left(p_{3}\right) f\left(p_{4}\right)\right)=\left(f^{\prime}\left(p_{1}\right) f^{\prime}\left(p_{2}\right) f^{\prime}\left(p_{3}\right) f^{\prime}\left(p_{4}\right)\right)$ is equivalent with $p_{1}, p_{2}, p_{3}, p_{4}, p$ and q being on a conic, a contradiction since $p \notin Q$.

Finally, when $d^{\prime}-4>\left[\left(g^{\prime}+3\right) / 2\right]$, we have to show that $\operatorname{gon}(X) \geq \operatorname{gon}(C)+1$. We note that $\operatorname{dim} G_{(g+3) / 2}^{1}(C)=1$ (for any curve one has the inequality $\operatorname{dim} G_{\text {gon }}^{1} \leq 1$). By taking $H \in\left(\mathbb{P}^{3}\right)^{\vee}$ general enough, we obtain that p_{1}, \ldots, p_{4} do not occur in the same fibre of a $\mathfrak{g}_{(g+3) / 2}^{1}$.
Remark: Theorem 1 can be viewed as a non-containment relation $\mathcal{M}_{g^{\prime}, d^{\prime}}^{3} \nsubseteq \mathcal{M}_{g^{\prime}, d^{\prime}-5}^{1}$ between different Brill-Noether loci when d^{\prime} and g^{\prime} are as in Theorem 1 and moreover $d^{\prime}-4 \leq\left[\left(g^{\prime}+3\right) / 2\right]$. We can turn this problem on its head and ask the following question: given g and k such that $k<(g+2) / 2$, when is it true that the general k-gonal curve of genus g has no other linear series \mathfrak{g}_{d}^{r} with $\rho(g, r, d)<0$, that is, the pencil computing the gonality is the only Brill-Noether exceptional linear series?

In [Fa2] we prove using limit linear series the following result: fix g and k positive integers such that $-3 \leq \rho(g, 1, k)<0$. If $\rho(g, 1, k)=-3$ assume furthermore that $k \geq 6$. Then the general k-gonal curve C of genus g has no \mathfrak{g}_{d}^{r} 's with $\rho(g, r, d)<0$ except \mathfrak{g}_{k}^{1} and $\left|K_{C}-\mathfrak{g}_{k}^{1}\right|$. In other words the k-gonal locus $\mathcal{M}_{g, k}^{1}$ is not contained in any other proper Brill-Noether locus $\mathcal{M}_{g, d}^{r}$ with $r \geq 2, d \leq g-1$ and $\rho(g, r, d)<0$.

In seems that other methods are needed to extend this result for more negative values of $\rho(g, 1, k)$.

5 The Kodaira dimension of \mathcal{M}_{23}

In this section we explain how Theorem 1 gives a new proof of our result $\kappa\left(\mathcal{M}_{23}\right) \geq 2$ (cf. [Fa]). We refer to [Fa] for a detailed analysis of the geometry of \mathcal{M}_{23}; in that paper we also conjecture that $\kappa\left(\mathcal{M}_{23}\right)=2$ and we present evidence for such a possibility.

Let us denote by $\overline{\mathcal{M}}_{g}$ the moduli space of Deligne-Mumford stable curves of genus g. We study the multicanonical linear systems on $\overline{\mathcal{M}}_{23}$ by exhibiting three explicit multicanonical divisors on $\overline{\mathcal{M}}_{23}$ which are (modulo a positive combination of boundary classes coming from $\overline{\mathcal{M}}_{23}-\mathcal{M}_{23}$) of Brill-Noether type, that is, loci of curves having a \mathfrak{g}_{d}^{r} when $\rho(23, r, d)=-1$.

On \mathcal{M}_{23} there are three Brill-Noether divisors corresponding to the solutions of the equation $\rho(23, r, d)=-1$: the 12 -gonal divisor $\mathcal{M}_{23,12}^{1}$, the divisor $\mathcal{M}_{23,17}^{2}$ of curves having a \mathfrak{g}_{17}^{2} and finally the divisor $\mathcal{M}_{23,20}^{3}$ of curves possessing a \mathfrak{g}_{20}^{3}. If we denote by $\overline{\mathcal{M}}_{g, d}^{r}$ the closure of $\mathcal{M}_{g, d}^{r}$ inside $\overline{\mathcal{M}}_{g}$, the classes $\left[\overline{\mathcal{M}}_{g, d}^{r}\right] \in \operatorname{Pic}_{\mathbb{Q}}\left(\overline{\mathcal{M}}_{g}\right)$ when $\rho(g, r, d)=-1$ have been computed (see $[\mathrm{EH}],[\mathrm{Fa}]$). It is quite remarkable that for fixed g all classes $\left[\overline{\mathcal{M}}_{g, d}^{r}\right]$ are proportional. One also knows the canonical divisor class (cf. [HM]):

$$
K_{\overline{\mathcal{M}}_{g}}=13 \lambda-2 \delta_{0}-3 \delta_{1}-2 \delta_{2}-\cdots-2 \delta_{[g / 2]},
$$

and by comparing for $g=23$ this formula with the expression of the classes $\left[\overline{\mathcal{M}}_{23, d}^{r}\right]$, we find that there are constants $m, m_{1}, m_{2}, m_{3} \in \mathbb{Z}_{>0}$ such that

$$
m K_{\overline{\mathcal{M}}_{23}}=m_{1}\left[\overline{\mathcal{M}}_{23,12}^{1}\right]+E=m_{2}\left[\overline{\mathcal{M}}_{23,17}^{2}\right]+E=m_{3}\left[\overline{\mathcal{M}}_{23,20}^{3}\right]+E
$$

where E is the same positive combination of the boundary classes $\delta_{1}, \ldots, \delta_{11}$.
As explained in [Fa], since $\overline{\mathcal{M}}_{23,12}^{1}, \overline{\mathcal{M}}_{23,17}^{2}$ and $\overline{\mathcal{M}}_{23,20}^{3}$ are mutually distinct irreducible divisors, we can show that the multicanonical image of $\overline{\mathcal{M}}_{23}$ cannot be a curve once we construct a smooth curve of genus 23 lying in the support of exactly two of the divisors $\mathcal{M}_{23,12}^{1}, \mathcal{M}_{23,17}^{2}$ and $\mathcal{M}_{23,20}^{3}$. In this way we rule out the possibility of all three intersections of two Brill-Noether divisors being equal to base-locus $\left(\left|m K_{\overline{\mathcal{M}}_{23}}\right|\right) \cap \mathcal{M}_{23}$.

In [Fa] we found such genus 23 curves using an intricate construction involving limit linear series (cf. Proposition 5.4 in [Fa]). Here we can construct such curves in a much simpler way by applying Theorem 1 when $(d, g)=(18,23)$: there exists a smooth curve $C \subseteq \mathbb{P}^{3}$ of genus 23 and degree 18 such that gon $(C)=13$; moreover C sits on a smooth quartic surface $S \subseteq \mathbb{P}^{3}$ such that $\operatorname{Pic}(S)=\mathbb{Z} C \oplus \mathbb{Z} H$.

Since C has a very ample \mathfrak{g}_{18}^{3}, by adding 2 base points it will also have plenty of \mathfrak{g}_{20}^{3} 's and also \mathfrak{g}_{17}^{2} 's of the form $\mathfrak{g}_{18}^{3}(-p)=\left\{D \in \mathfrak{g}_{18}^{3}: D \geq p\right\}$, for any $p \in C$. Therefore $[C] \in\left(\mathcal{M}_{23,20}^{3} \cap \mathcal{M}_{23,17}^{2}\right)-\mathcal{M}_{23,12}^{1}$, and Theorem 2 now follows.

References

[AC] E. Arbarello, M. Cornalba, Footnotes to a paper of Beniamino Segre, Math. Ann. 256(1981), 341-362.
[ACGH] E. Arbarello, M. Cornalba, P. Griffiths, J. Harris, Geometry of algebraic curves, Grundlehren der Mathematischen Wissenschaften, 267, Springer Verlag, 1985.
[BE] E. Ballico, Ph. Ellia, On the existence of curves with maximal rank in \mathbb{P}^{n}, J. reine angew. Math. 397(1989), 1-22.
[Ba] B. Basili, Indice de Clifford des intersections completes de l'espace, Bull. Soc. Math. France 124(1996), no.1, 61-95.
[BS] M. Beltrametti, A. Sommese, Zero cycles and k-th order embeddings of smooth projective surfaces, in: Problems in the theory of surfaces and their classification (Cortona, 1988), 33-48, Academic Press, London, 1991.
[CilP] C. Ciliberto, G. Pareschi, Pencils of minimal degree on curves on a K3 surface, J. reine angew. Math., 460(1995), 15-36.
[Co] M. Coppens, The gonality of general smooth curves with a prescribed plane model, Math. Ann. 289(1991), 89-93.
[DMo] R. Donagi, D. Morrison, Linear systems on K3 sections, J. Diff. Geom. 29(1989), 49-64.
[EH] D. Eisenbud, J. Harris, The Kodaira dimension of the moduli space of curves of genus ≥ 23, Invent. Math. 90(1987), no.2, 359-387.
[Fa] G. Farkas, The geometry of the moduli space of curves of genus 23, Math. Ann. 308(2000), no.1, 43-65.
[Fa2] G. Farkas, The birational geometry of the moduli space of curves, Ph. D. Thesis, Universiteit van Amsterdam, 2000.
[FHL] W. Fulton, J. Harris, R. Lazarsfeld, Excess linear series on an algebraic curve, Proc. AMS 92(1984), 320-322.
[GH] P. Griffiths, J. Harris, Infinitesimal variations of Hodge structure: an infinitesimal invariant of Hodge classes, Compositio Math. 50(1983), 207-265.
[GL] M. Green, R. Lazarsfeld, Special divisors on curves on K3 surfaces, Invent. Math. 89(1987), 73-90.
[HM] J. Harris, D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67(1982), no.1, 23-88.
[Mod] J. Harris, I. Morrison, Moduli of curves, Graduate Texts in Mathematics, 187, Springer Verlag, 1998.
[Hir] A. Hirschowitz, Section planes et multisecantes pour les courbes gauches generiques principales, in: Space curves: Proceedings, Rocca di Pappa 1985, Lecture Notes in Math. 1226, Springer Verlag 1987, 124-155.
[Kn] A. Knutsen, On degrees and genera of smooth curves on projective $K 3$ surfaces, math.AG/98050140 preprint.
[Laz] R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. Diff. Geom. 23(1986), 299-307.
[Mo] S. Mori, On degrees and genera of curves on smooth quartic surfaces in \mathbb{P}^{3}, Nagoya Math. J. 96(1984), 127-132.
[Ra] J. Rathmann, The genus of algebraic space curves, Ph. D. Thesis, Berkeley, 1986.
[SD] B. Saint-Donat, Projective models of K3 surfaces, Amer. J. Math., 96(1974), 602-639.
[Se] E. Sernesi, On the existence of certain families of curves, Invent. Math. 75(1984), no.1, 25-57.

Department of Mathematics, University of Michigan
525 East University, Ann Arbor, MI 48109
e-mail: gfarkas@math.lsa.umich.edu

