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Higher ramification and varieties of secant divisors on the
generic curve

Gavril Farkas

Abstract

For a smooth projective curve, the cycles of e-secant k-planes are among the most studied
objects in classical enumerative geometry, and there are well-known formulas due to Castelnuovo,
Cayley and MacDonald concerning them. Despite various attempts, surprisingly little is known
about the enumerative validity of such formulas. The aim of this paper is to clarify this problem
in the case of the generic curve C of given genus. We determine precisely under which conditions
the cycle of e-secant k-planes is non-empty, and we compute its dimension. We also precisely
determine the dimension of the variety of linear series on C carrying e-secant k-planes.

Introduction

For a smooth projective curve C of genus g, we denote by Ce the eth symmetric product of C
and by Gr

d(C) the variety of linear series of type gr
d on C, that is,

Gr
d(C) := {(L, V ) : L ∈ Picd(C), V ∈ G(r + 1,H0(L))}.

The main result of the Brill–Noether theory states that if [C] ∈ Mg is a general curve then
Gr

d(C) is a smooth variety of dimension equal to ρ(g, r, d) := g − (r + 1)(g − d + r). For a
linear series l = (L, V ) ∈ Gr

d(C) and an effective divisor D ∈ Ce, using the natural inclusion
H0(L ⊗OC(−D)) ⊂ H0(L) we can define a new linear series

l(−D) :=
(
L ⊗OC(−D), V ∩ H0(L ⊗OC(−D))

)
.

We fix integers 0 � f < e and introduce the determinantal cycle

V e−f
e (l) := {D ∈ Ce : dim l(−D) � r − e + f}

of effective divisors of degree e that impose at most e − f independent conditions on l. If l is
very ample and we view C

l
↪→ Pr as an embedded curve, then V e−f

e (l) parametrizes e-secant
(e − f − 1)-planes to C. Each irreducible component of V e−f

e (l) has dimension at least
e − f(r + 1 − e + f). The cycles V e−f

e (l) have been extensively studied in classical enumer-
ative geometry. The virtual class [V e−f

e (l)]virt ∈ Af(r+1−e+f)(Ce) has been computed by
MacDonald; its expression is tremendously complicated and is thus of limited practical use
(see [1, Chapter VIII]). One case when we have a manageable formula is for e = 2r − 2 and
f = r − 1, when [V r−1

2r−2(l)]
virt computes the (virtual) number of (r − 2)-planes in Pr that are

(2r − 2)-secant to C (cf. [2]).
Surprisingly little is known about the validity of these classical enumerative formulas (see [13]

and [15] for partial results in the case of curves in P3). The aim of this paper is to clarify this
problem for a general curve [C] ∈ Mg. For every linear series l ∈ Gr

d(C) we determine precisely
under which conditions the cycle V e−f

e (l) is non-empty and has the expected dimension. Then
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having fixed [C] ∈ Mg, we determine the dimension of the family of linear series l ∈ Gr
d(C)

with an e-secant (e − f − 1)-plane. For our first result, we use degeneration techniques together
with a few facts about the ample cone of the moduli space M0,g to prove the following theorem.

Theorem 0.1. Let [C] ∈ Mg be a general curve, and fix non-negative integers 0 � f < e,
r and d, such that r − e + f � 0. Then we see that

dim{l ∈ Gr
d(C) : V e−f

e (l) �= ∅} � ρ(g, r, d) − f(r + 1 − e + f) + e.

In particular, if ρ(g, r, d) − f(r + 1 − e + f) + e < 0, then V e−f
e (l) = ∅, for every l ∈ Gr

d(C).

More precisely, in Section 2 we prove the following dimensionality estimate:

dim{(D, l) ∈ Ce × Gr
d(C) : D ∈ V e−f

e (l)} � ρ(g, r, d) − f(r + 1 − e + f) + e,

which obviously implies Theorem 0.1. This result generalizes the Brill–Noether theorem.
Indeed, when l = KC , then V e−f

e (KC) = Cf
e := {D ∈ Ce : h0(OC(D)) � f + 1}. Since the

fibres of the Abel–Jacobi map Cf
e → W f

e (C) are at least f -dimensional, clearly Gf
e (C) �= ∅

implies that dim Cf
e � f . Our result reads as Gf

e (C) = ∅ when ρ(g, f, e) < 0, which is the non-
existence part of the classical Brill–Noether theorem (cf. [8]). More generally, we have the
following result in the case ρ(g, r, d) = 0.

Corollary 0.2. Suppose that ρ(g, r, d) = 0 and that e < f(r + 1 − e + f). Then for a
general curve [C] ∈ Mg we see that V e−f

e (l) = ∅ for every l ∈ Gr
d(C); that is, no linear series

of type gr
d on C has any e-secant (e − f − 1)-planes.

An immediate consequence of Theorem 0.1 is a proof of the following conjecture of Coppens
and Martens (cf. [6, Theorem 3.3.1] for a proof in the case f = 1).

Corollary 0.3. Let [C] ∈ Mg be a general curve, and fix integers 0 � f < e, d and r
such that r − e + f � 0. Let l be a general linear series of type gr

d belonging to an irreducible
component of Gr

d(C). Assuming that V e−f
e (l) is not empty, we see that e − f(r + 1 − e + f) �

0. Moreover V e−f
e (l) is equidimensional and dim V e−f

e (l) = e − f(r + 1 − e + f).

We note that when f = 1, Theorem 0.1 concerns the higher-order very ampleness of linear
series on a general curve. We recall that a linear series l ∈ Gr

d(C) is said to be (e − 1)-very
ample if dim l(−p1 − . . . − pe) = r − e, for any choice of (not necessarily distinct) e points
p1, . . . , pe ∈ C. Thus 0-very ampleness is equivalent to generation by global sections and 1-very
ampleness reduces to the classical notion of very ampleness.

Corollary 0.4. Let [C] ∈ Mg be a general curve, and let e, r, d be non-negative integers
such that ρ(g, r, d) + 2e − 2 − r < 0. Then every linear series l ∈ Gr

d(C) is (e − 1)-very ample.

Theorem 0.1 does not address the issue of existence of linear series with e-secant (e − f − 1)-
planes. We prove the following existence result for secant planes corresponding to linear series
gr

d on an arbitrary smooth curve of genus g.
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Theorem 0.5. Let [C] ∈ Mg be an arbitrary smooth curve and fix integers 0 � f < e � g,
d and r, such that f(r + 1 − e + f) � e, d � 2e − f − 1, g − d + r � 0,

ρ(g, r, d) − f(r + 1 − e + f) + e � 0 and ρ(g, r − e + f, d − e) � 0.

Assume moreover that we are in one of the following situations:

(i) 2f � e − 1,
(ii) e = 2r − 2 and f = r − 1,
(iii) e < 2(r + 1 − e + f) or
(iv) ρ(g, r, d) � f(r + 1 − e + f) − (g − d + r).

Then there exists a linear series l ∈ Gr
d(C) such that V e−f

e (l) �= ∅. Moreover, one has the
following dimensionality statement:

dim{(D, l) ∈ Ce × Gr
d(C) : D ∈ V e−f

e (l)} = ρ(g, r, d) − f(r + 1 − e + f) + e.

The inequalities ρ(g, r − e + f, d − e) � 0 and ρ(g, r, d) + e − f(r + 1 − e + f) � 0 are obvi-
ous necessary conditions for the existence of l ∈ Gr

d(C) with V e−f
e (l) �= ∅ on a general curve

[C] ∈ Mg. To give an example, an elliptic quartic curve C ⊂ P3 has no 3-secant lines
even though ρ(g, r, d) + e − f(r + 1 − e + f) > 0 (note that e = 3 and f = 1 in this case).
Theorem 0.5 is stated in the range f(r + 1 − e + f) � e, corresponding to the case when linear
series l ∈ Gr

d(C) with V e−f
e (l) �= ∅ are expected to be special in the Brill–Noether cycle Gr

d(C).
It is clear though that the methods of this paper can be applied to the case e � f(r + 1 − e + f)
as well. In that range, however, when one expects existence of e-secant (e − f − 1)-planes for
every l ∈ Gr

d(C), there are nearly optimal existence results obtained by using positivity for
Chern classes of certain vector bundles in the style of [12]: for every curve [C] ∈ Mg and
l ∈ Gr

d(C), assuming that d � 2e − 1 and e − f(r + 1 − e + f) � r − e + f , one knows that
V e−f

e (l) �= ∅ (cf. [5, Theorem 1.2]). For l ∈ Gr
d(C) such that g − d + r � 1 (for example, when

l is non-special), if we keep the assumption that e − f(r + 1 − e + f) � 0, it is known that
V e−f

e (l) �= ∅ if and only if ρ(g, r − e + f, d − e) � 0 (cf. [1, p. 356]). This appears to be the
only case when MacDonald’s formula displays some positivity features that can be used to
derive existence results on V e−f

e (l). In the case l = KC , one recovers of course the existence
theorem from the classical Brill–Noether theory. We finally mention that Theorem 0.5 holds
independently of the assumptions (i)–(iii), whenever a certain transversality condition (18)
concerning a general curve [Y, p] ∈ Me,1 is satisfied (see Section 3 for details). Theorem 0.5 is
then proved by verifying this condition (18) in each of the cases (i)–(iii).

We now specialize to the case when e = f(r + 1 − e + f), which is covered by Theorem 0.5.
One can write r = (u − 1)(f + 1) and e = uf for some u � 1, and we obtain the following result
concerning the classical problem of existence of uf -secant secant (uf − f − 1)-planes to curves
in Pr.

Corollary 0.6. Let C be a smooth curve of genus g. We fix integers d, u, f � 2
and assume that the inequalities g � uf, d � 2uf − f − 1, ρ(g, uf + u − f − 1, d) � 0 and
ρ(g, u − 1, d − uf) � 0 hold. Then there exists an embedding C ⊂ P(u−1)(f+1) with deg(C) =
d, such that C has a uf -secant (uf − f − 1)-plane. If, moreover, [C] ∈ Mg is general in

moduli, then the embedded curve C
l

↪→ P(u−1)(f+1) corresponding to a general linear series
l ∈ G

(u−1)(f+1)
d (C) has only a finite number of uf -secant (uf − f − 1)-planes.

If [C] ∈ Mg is suitably general then we can prove that the Cayley–Castelnuovo numbers
predicting the number of (2r − 2)-secant (r − 2)-planes of a curve in C ⊂ Pr have a precise
enumerative meaning.
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Theorem 0.7. Let [C] ∈ Mg be a general curve. We fix integers d, r � 3 such that d � 3r −
2, ρ(g, r, d) � ∅ and ρ(g, 1, d − 2r + 2) � 0. Then if C

l
↪→ Pr is an embedding corresponding to

a general linear series l ∈ Gr
d(C), then C has only finitely many (2r − 2)-secant (r − 2)-planes.

Their number (counted with multiplicities) is

C(d, g, r) =
r−1∑
i=0

(−1)i

r − i

(
d − r − i + 1

r − 1 − i

)(
d − r − i

r − 1 − i

)(
g

i

)
.

A modern proof of the formula for C(d, g, r) is due to MacDonald and appears in [1, Chapter
VIII]. The original formula is due to Castelnuovo (cf. [2]). When r = 3, we recover Cayley’s
formula for the number of 4-secant lines of a smooth space curve C ⊂ P3 of degree d (cf. [3]):

C(d, g, 3) =
1
12

(d − 2)(d − 3)2(d − 4) − g

2
(d2 − 7d + 13 − g).

To make a historical remark, there have been various attempts to rigorously justify the
so-called functional method that Cayley (1863), Castelnuovo (1889) and Severi (1900) used to
derive their enumerative formulas and to determine their range of applicability (see [15, 19]).
For instance, Cayley’s formula is shown to hold for an arbitrary smooth curve in P3, provided
that C(d, g, 3) is defined as the degree of a certain 0-cycle Sec4(C) in G(1, 3) (cf. [16]). The
drawback of this approach is that it becomes very difficult to determine when this newly defined
invariant is really enumerative. For instance, Le Barz only shows that this happens for very
special curves in P3 (rational curves and generic complete intersections), and one of the aims of
this paper is to establish the validity of such formulas for curves that are general with respect
to moduli.

The second topic that we study concerns ramification points of powers of linear series on
curves. This question appeared first in a particular case in [11]. We recall that for a pointed
curve [C, p] ∈ Mg,1 and a linear series l = (L, V ) ∈ Gr

d(C), the vanishing sequence of l at p

al(p) : al
0(p) < . . . < al

r(p) � d

is obtained by ordering the set {ordp(σ)}σ∈V . The weight of p with respect to l is defined
as wl(p) :=

∑r
i=0(a

l
i(p) − i). One says that p is a ramification point of l if wl(p) � 1 and we

denote by R(l) the finite set of ramification points of l. If [C, p] ∈ Mg,1 and α : 0 � α0 � . . . �
αr � d − r is a Schubert index of type (r, d), then the cycle

Gr
d(C, p, α) := {l ∈ Gr

d(C) : al
i(p) � αi + i for i = 0 . . . r}

can be realized as a generalized determinantal variety inside Gr
d(C) having virtual dimension

ρ(g, r, d, α) := ρ(g, r, d) − ∑r
j=0 αj . For a general pointed curve [C, p] ∈ Mg,1, it is known that

the virtual dimension equals the actual dimension; that is,

dim Gr
d(C, p, α) = ρ(g, r, d, α)

(cf. [9, Theorem 1.1]).
We address the following question: suppose that l = (L, V ) ∈ Gr

d(C) is a linear series with a
prescribed ramification sequence α at a fixed point p ∈ C. Is then p a ramification point of any
of the powers L⊗n for n � 2? If so, can we describe the sequence aL⊗n

(p)? One certainly expects
that under suitable genericity assumptions on C and L, the points in

⋃
n�1 R(L⊗n) should be

uniformly distributed on C. For example, it is known that for every C and L ∈ Picd(C), the
set

⋃
n�1 R(L⊗n) is dense in C with respect to the classical topology (cf. [17]). Silverman and

Voloch showed that for any L ∈ Picd(C) there exist finitely many points p ∈ C such that the
set {n � 1 : p ∈ R(L⊗n)} is infinite (cf. [18]).
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We prove that on a generic pointed curve [C, p], a linear series (L, V ) and its multiples L⊗n

share no ramification points; that is, R(l) and R(L⊗n) are as transverse as they can be expected
to be and, moreover, the vanishing sequence aL⊗n

(p) is close to being minimal.

Theorem 0.8. We fix a general pointed curve [C, p] ∈ Mg,1, integers r, d � 1, n � 3 and
a Schubert index α : 0 � α0 � . . . � αr � d − r. We also set m := [(n + 1)/2]. Then for every
linear series l = (L, V ) ∈ Gr

d(C, p, α) and every positive integer

a < nd − ρ(g, r, d, α) − g − [ g

m

]
,

we find that h0(C,L⊗n(−ap)) = h0(C,L⊗n) − a = nd + 1 − g − a. Inother words, aL⊗n

i (p) = i
for 0 � i � a − 1.

In the case n = 2, when we compare R(l) and R(L⊗2), our results are sharper.

Theorem 0.9. We fix a general pointed curve [C, p] ∈ Mg,1, integers r, d � 1 and a
Schubert index α : α0 � . . . � αr � d − r. Then for every (L, V ) ∈ Gr

d(C, p, α) and every
positive integer

a < max
{

2d + 2 − 2g − ρ(g, r, d, α) +
[
g − 1

2

]
, 2d + 2 − 2g − 2ρ(g, r, d, α) + 2

[g

3

]}
,

we see that h0(C,L⊗2(−ap)) = h0(C,L⊗2) − a = 2d + 1 − g − a.

Comparing the bounds on a given in Theorems 0.8 and 0.9 with the obvious necessary
condition a � nd − g + 1 that comes from the Riemann–Roch theorem, we see that our
results are essentially optimal for relatively small values of ρ(g, r, d, α) when the linear series
(L, V ) ∈ Gr

d(C, p, α) have a strong geometric characterization. On the other hand if, for
instance, ρ(g, r, d, α) = g, then L ∈ Picd(C) and p ∈ C are arbitrary, and one cannot expect to
prove a uniform result about the vanishing of H1(C,L⊗n(−ap)).

Theorems 0.8 and 0.9 concern line bundles L with prescribed ramification at a given point
p ∈ C. Such bundles are, of course, very special in Picd(C). If, instead, we try to describe⋃

n�1 R(L⊗n) for a general line bundle L ∈ Picd(C), the answer turns out to be particularly
simple. We give a short proof of the following result.

Theorem 0.10. Let C be a smooth curve of genus g, and let L ∈ Picd(C) be a very general
line bundle.

(1) All the ramification points of the powers L⊗n are ordinary; that is, wL⊗n

(p) � 1 for all
p ∈ C and n � 1.

(2) R(L⊗a) ∩ R(L⊗b) = ∅ for a �= b; that is, a point p ∈ C can be a ramification point for at
most a single power of L.

1. Ramification points of multiples of linear series

In this section we use the technique of limit linear series to prove Theorems 0.8 and 0.9. We
start by fixing a Schubert index α : 0 � α0 � . . . � αr � d − r and two integers a � 0, n � 2.
We also set m := [(n + 1)/2].

We assume that for every [C, p] ∈ Mg,1 there exists a linear series l = (L, V ) ∈ Gr
d(C, p, α)

such that H0(KC ⊗ L⊗(−n) ⊗OC(ap)) �= 0. By a degeneration argument we are going to show
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that this implies the inequalities

a � nd − g − ρ(g, r, d, α) −
[ g

m

]
, when n � 3, (1)

a � 2d + 2 − 2g − ρ(g, r, d, α) +
[
g − 1

2

]
, (2)

and

a � 2d + 2 − 2g − 2ρ(g, r, d, α) + 2
[g

3

]
, when n = 2. (3)

This will prove both Theorems 0.8 and 0.9.
We degenerate [C, p] to a stable curve [X0 := E0

⋃
p1

E1

⋃
p2

. . .
⋃

pg−1
Eg−1, p0], where Ei is

a general elliptic curve, pi, pi+1 ∈ Ei are points such that pi+1 − pi ∈ Pic0(Ei) is not a torsion
class and, moreover, Ei ∩ Ei+1 = {pi+1} for 0 � i � g − 2. Thus X0 is a string of g elliptic
curves, and the marked point p0 specializes to a general point lying on the first component
E0. We also consider a 1-dimensional family π : X → B together with a section σ : B → X ,
such that B = Spec(R) with R being a discrete valuation ring having uniformizing parameter
t. We assume that X is a smooth surface and that there exists an isomorphism between X0

and π−1(0). Under this isomorphism we also assume that σ(0) = p0 ∈ X0. Here 0 ∈ B is the
point corresponding to the maximal ideal of R, and we denote by η and η the generic point
and the geometric generic point of B, respectively. By assumption, there exists a linear series
lη = (Lη, Vη) ∈ Gr

d(Xη, σ(η), α), such that H0(Xη, ωXη
⊗ L

⊗(−n)
Xη

⊗OXη
(aσ(η))) �= 0. By pos-

sibly blowing up X at the nodes of X0 and thus replacing the central fibre by a curve X
obtained from X0 by inserting chains of smooth rational curves at the points p1, . . . , pg−1, we
may assume that lη comes from a linear series lη = (Lη, Vη) ∈ Gr

d(Xη, σ(η), α) on the generic
fibre Xη.

We denote by lEi
= (LEi

, VEi
) ∈ Gr

d(Ei) the Ei-aspect of the limit linear series on X induced
by lη: precisely, if L is a line bundle on X extending Lη, then LEi

∈ Picd(Ei) is the restriction
to Ei of the unique twist LEi

of L along components of π−1(0) such that degZ(Li|Z) = 0 for
any irreducible component Z �= Ei of π−1(0) (see also [8, p. 348]). Since we gave ourselves the
freedom of blowing up X at the nodes of π−1(0), we can also assume that {lEi

}g−1
i=0 constitutes

a limit gr
d on X0 that is obtained from a refined limit gr

d on X by retaining only the aspects of
the elliptic components of X. The compatibility relations between the vanishing orders of the
aspects lEi

imply the following inequality between Brill–Noether numbers:

ρ(g, r, d, α) � ρ(lE0 , p0, p1) + ρ(lE1 , p1, p2) + . . . + ρ(lEg−2 , pg−2, pg−1) + ρ(lEg−1 , pg−1), (4)

where ρ(lEi
, pi, pi+1) := ρ(1, r, d) − wlEi (pi) − wlEi (pi+1). By assumption, there exists a non-

zero section ρη ∈ H0
(
Xη, ωXη

⊗ L⊗(−n)
η ⊗OXη

(aσ(η))
)
. This implies that if we denote by

L̃i the unique line bundle on the surface X such that: (1) L̃i|Xη
= Lη, and (2) degZ(ωX ⊗

L̃i
⊗(−n) ⊗OX(ap0)) = 0, for every component Z of X such that Z �= Ei, then H0(Ei, ωX ⊗

L̃⊗(−n)
i ⊗OX(ap0) ⊗OEi

) �= 0. We set

Mi := ωπ ⊗ L̃⊗(−n)
i ⊗OX (a σ(B)) ∈ Pic(X ).

Then Mi|Ei
= OEi

(
(a + 2i) · pi + (2g − 2 − 2i) · pi+1 ⊗ L

⊗(−n)
Ei

)
for all 0 � i � g − 1. For each

such i we denote by ni the smallest integer such that ρ̃i := tniρη ∈ π∗(Mi) and we set

ρi := ρ̃i|Ei
∈ H0(Ei,Mi|Ei

).

Thus 0 �= ρi ∈ H0(Ei,OEi
((a + 2i) · pi + (2g − 2 − 2i) · pi+1 ⊗ L

⊗(−n)
Ei

)) and in a way similar
to [8, Proposition 2.2] we can prove that

ordpi
(ρi) + ordpi

(ρi−1) � 2g − 2 − nd + a = deg(Mi|Ei
). (5)
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One also has the inequalities ordpi
(ρi) + ordpi+1(ρi) � 2g − 2 − nd + a (and similar inequalities

when passing through the rational components of X), from which it follows that one can write
down a non-decreasing sequence of vanishing orders

0 � ordp0(ρ0) � ordp1(ρ1) � . . . � ordpi
(ρi) � . . . � ordpg−1(ρg−1). (6)

Since ρg−1 is a non-zero section of a line bundle of degree 2g − 2 − nd + a on Eg−1, it is required
that ordpg−1(ρg−1) � 2g − 2 − nd + a. This inequality will eventually lead to the bound on the
constant a.

Let us suppose now that we have fixed one of the elliptic components of X, say Ei, such
that ρ(lEi

, pi, pi+1) = 0. By counting dimensions, we see that for every 0 � j � r there exists a
section uj ∈ VEi

such that div(uj) � a
lEi
j (pi) · pi + a

lEi
r−j(pi+1) · pi+1. In particular, we have

a
lEi
j (pi) + a

lEi
r−j(pi+1) � d. Since pi+1 − pi ∈ Pic0(Ei) is not a torsion class, it follows that

the equality a
lEi
j (pi) + a

lEi
r−j(pi+1) = d can hold for at most one value 0 � j � r. Because

ρ(lEi
, pi, pi+1) = 0, this implies that

a
lEi
j (pi) + a

lEi
r−j(pi+1) � d − 1 for all 0 � j � r,

and there exists precisely one such index j such that a
lEi
j (pi) + a

lEi
r−j(pi+1) = d. In this case

we get that div(uj) = a
lEi
j (pi) · pi + a

lEi
r−j(pi+1) · pi+1, and for degree reasons we must have

LEi
= OEi

(alEi
j (pi) · pi + a

lEi
r−j(pi+1) · pi+1) ∈ Picd(Ei).

To summarize, if ρ(lEi
, pi, pi+1) = 0, then the vanishing sequence alEi+1 (pi+1) of the Ei+1-

aspect of the limit gr
d on X is obtained from the vanishing sequence alEi (pi) by raising all

entries by 1, except one single entry which remains unchanged. Thus, a
lEi
j (pi) = a

lEi+1
j (pi+1)

for one index 0 � j � r and a
lEi+1
k (pi+1) = a

lEi

k (pi) + 1 for k �= j.
We now study what happens to the non-decreasing sequence (6) as we pass through

a component Ei with ρ(lEi
, pi, pi+1) = 0. Assume that ordpi

(ρi) = ordpi+1(ρi+1) := b. This
implies that ordpi+1(ρi) = 2g − 2 − nd + a − b and

L⊗n
Ei

= OEi
((a + 2i − b) · pi + (nd − a + b − 2i) · pi+1) ∈ Picnd(Ei).

Because ρ(lEi
, pi, pi+1) = 0, as we have seen, LEi

can be represented by an effective divisor
that is supported only at pi and pi+1. Precisely, we can write that LEi

= OEi

(
a

lEi
j (pi) · pi +

a
lEi
r−j(pi+1) · pi+1

)
for a unique 0 � j � r. Since LEi

cannot admit two different representations
by effective divisors supported only at pi and pi+1, we must have

LEi
= OEi

(
a + 2i − b

n
· pi +

nd − a + b − 2i

n
· pi+1

)
. (7)

In particular, we find that (a + 2i − b)/n ∈ Z and a
lEi
j (pi) = (a + 2i − b)/n.

We consider a connected subcurve Y ⊂ X containing m + 1 elliptic components Ei and we
measure the increase in (6) as we pass through the components of Y .

Lemma 1.1. We fix m := [(n + 1)/2] and integers i and b such that bm � i � g − 1. We
have R(i) := #{0 � l � i − 1 : ρ(lEl

, pl, pl+1) � 1}. Then the following inequality holds:

ordpi
(ρi) + R(i) � b(m − 1).

Proof. We proceed by induction on b. For b = 0 there is nothing to prove. We set b � 1 and
i := (b − 1)m, and we assume that ordpi

(ρi) + R(i) � (b − 1)(m − 1). We are going to prove
that the following inequality holds:

ordpi+m
(ρi+m) − ordpi

(ρi) + R(i + m) − R(i) � m − 1. (8)
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Assume that this is not the case. Then there exist integers 0 � l < j � m − 1 such that the
following relations hold:

(i) ρ(lEi+l
, pi+l, pi+l+1) = ρ(lEi+j

, pi+j , pi+j+1) = 0 and
(ii) ordpi+l

(ρi+l) = ordpi+l+1(ρi+l+1) := b, ordpi+j
(ρi+j) = ordpi+j+1(ρi+j+1) := c.

Using (7) this implies that

LEi+l
= OEi+l

(
a + 2i + 2l − b

n
· pi+l +

nd − a + b − 2i − 2l

n
· pi+l+1

)
,

and

LEi+j
= OEi+j

(
a + 2i + 2j − c

n
· pi+j +

nd − a + c − 2i − 2j

n
· pi+j+1

)
.

In particular, (2j − 2l − c + b)/n ∈ Z, and hence we can write c = b − kn + 2(j − l) for some
k ∈ Z. If k � 1, since c � b we obtain that m − 1 � j − l � n/2, which is a contradiction.
Therefore we must require that k � 0, and this holds for every pair (j, l) satisfying (i) and (ii).
We now choose the pair 0 � l < j � m − 1 satisfying (i) and (ii) and for which the difference
j − l is maximal.

For each integer 0 � e � l − 1 we see that either ρ(lEi+e
, pi+e, pi+e+1) � 1 or

ordpi+e+1(ρi+e+1) > ordpi+e
(ρi+e). This fact leads to the inequality

ordpi+l
(ρi+l) − ordpi

(ρi) + R(i + l) − R(i) � l. (9)

Similarly, by studying the subcurve of Y containing Ei+j+1, . . . , Ei+m−1, we find that

ordpi+m
(ρi+m) − ordpi+j+1(ρi+j+1) + R(i + m) − R(i + j + 1) � m − j − 1. (10)

Finally, we look at the subcurve of X containing Ei+l, . . . , Ei+j and we can write

ordpi+j
(ρi+j) − ordpi+l

(ρi+l) + R(i + j + 1) − R(i + l) � c − b � 2(j − l) � j − l + 1. (11)

By adding (9)–(11) together we obtain (8), which proves the lemma.

When n = 2 we have a slightly better estimate than in the general case.

Lemma 1.2 (n = 2). (1) Let i be an integer such that 2b � i � g − 1. Then ordpi
(ρi) +

R(i) � b.
(2) We fix 0 � i � g − 4, and let Y be a connected subcurve of X containing precisely three

elliptic curves Ei, Ei+1 and Ei+2. If R(i + 3) = R(i), that is,

ρ(lEi
, pi, pi+1) = ρ(lEi+1 , pi+1, pi+2) = ρ(lEi+2 , pi+2, pi+3) = 0,

then we have the inequality ordpi+3(ρi+3) � ordpi
(ρi) + 2.

Proof. We only prove (2), the remaining statement being analogous to Lemma 1.1. We may
assume that ordpi

(ρi) = ordpi+1(ρi+1) := b. Hence (a + 2i − b)/2 ∈ Z and there exists an index
0 � j � r such that

a
lEi
j (pi) = a

lEi+1
j (pi+1) = 1

2 (a + 2i − b), while a
lEi+1
k (pi+1) = a

lEi

k (pi) + 1 for k �= j.

If ordpi+2(ρi+2) = ordpi+1(ρi+1) = b, then (7) implies that (a + 2i + 2 − b)/2 is an entry in the
vanishing sequence alEi+1 (pi+1). However, this is impossible, because (a + 2i − b)/2 was an
entry in the sequence alEi (pi), and hence it is required that ordpi+2(ρi+2) � b + 1. Next, if
ordpi+3(ρi+3) = b + 1, then this implies that ordpi+3(ρi+3) = ordpi+2(ρi+2) = b + 1, and hence
again

(
a + 2(i + 2) − (b + 1)

)
/2 ∈ Z, which is not possible for parity reasons. Thus we must

require that ordpi+3(ρi+3) � b + 2.
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Proof of Theorem 0.8. We complete the proof of our result in the case n � 3. We write
g = bm + c with 0 � c � m − 1 and we set i := bm. From Lemma 1.1 we obtain that ordpi

(ρi) +
R(i) � b(m − 1). Using the reasoning of Lemma 1.1 for the connected subcurve of X which
contains Ei, Ei+1, . . . , Ei+c−1 = Eg−1, we get that

ordpg−1(ρg−1) − ordpi
(ρi) + R(g − 1) − R(i) � c − 2. (12)

Using (12), together with the inequality R(g − 1) � ρ(g, r, d, α), we can write that deg(KC ⊗
L⊗(−n) ⊗OC(ap)) = 2g − 2 − nd + a � ordpg−1(ρg−1) � g − [

g
m

] − ρ(g, r, d, α) − 2, which fin-
ishes the proof of Theorem 0.8.

Proof of Theorem 0.9. From Lemma 1.2(1), we obtain that

ordpg−1(ρg−1) + R(g − 1) � [(g − 1)/2].

Since R(g − 1) � ρ(g, r, d, α), this leads to the inequality a � 2d + 2 − 2g + [(g − 1)/2] −
ρ(g, r, d, α). To prove (3) we divide X into e := [g/3] + 1 connected subcurves Y1, . . . , Ye such
that Y1, . . . , Ye−1 each contain three elliptic components, #(Yi ∩ Yi+1) = 1 for all 1 � i � e − 2
and Ye := (

⋃e−1
i=1 Yi)c. The curves Yi fall into two categories: those for which there exists an

elliptic component El ⊂ Yi such that ρ(lEl
, pl, pl+1) � 1 (and there are at most ρ(g, r, d, α) such

Yi), and those for which ρ(lEl
, pl, pl+1) = 0 for each elliptic component El ⊂ Yi. Lemma 1.2

part (2) gives that ordpg−1(ρg−1) � 2([g/3] − ρ(g, r, d, α)). This proves part (2) and finishes the
proof of Theorem 0.9.

Remark 1.3. It is natural to ask how close to being optimal the bounds are that we
obtained above. For ρ(g, r, d, α) relatively small, when any L ∈ Gr

d(C, p, α) has a strong
geometric characterization, the inequalities (1)–(3) are in fact optimal. To see an example,
we set g = 3, r = 3, d = 6 and ρ(g, r, d, α) = 0. Thus we look at instances of g3

6 on a
general [C, p] ∈ M3,1 having ramification at p equal to (0 � α0 � α1 � α2 � α3 � 3), where∑3

i=0 αi = 3. Theorem 0.9 gives us that H0(KC ⊗ L⊗(−2) ⊗OC(a · p)) = 0 for every integer
a � 9. We show that this is optimal by noting that when a = 10 and α = (0, 0, 1, 2), we have

H0(KC ⊗ L⊗(−2) ⊗OC(10p)) �= 0 for every L ∈ G3
6(C, p, α).

Indeed, any such linear series is of the form L = KC ⊗ A∨ ⊗OC(5p) ∈ W 3
6 (C), where A ∈

W 1
3 (C) is such that h0(A(−2p)) � 1. A non-hyperelliptic curve of genus 3 has two such cases

of g1
3. Precisely, if z, t ∈ C are the two points that the tangent line at p to C

|KC |
↪→ P2 meets

C again, then A = OC(2p + z) or A = OC(2p + t). Say, we choose A = OC(2p + z). By direct
calculation we obtain that L⊗2 ⊗OC(−10p) = K⊗2

C ⊗ A⊗(−2) = OC(2t), and hence h0(KC ⊗
L⊗(−2) ⊗OC(10p)) = 1.

2. Varieties of secant planes to the general curve

We fix a smooth curve [C] ∈ Mg and two integers 0 � f < e. In this section we study the
varieties V e−f

e (l) of e-secant (e − f − 1)-planes corresponding to a linear series l ∈ Gr
d(C). We

first define the correspondence

ΣC := {(D, l) ∈ Ce × Gr
d(C) : dim l(−D) � r − e + f},

and denote by π1 : ΣC → Ce and π2 : ΣC → Gr
d(C) the two projections. We assume that ΣC �=

∅ for the general curve [C] ∈ Mg. Under this assumption, we show that

dim(ΣC) � ρ(g, r, d) − f(r + 1 − e + f) + e. (13)
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(We recall that the dimension of a scheme is the maximum of the dimensions of its irreducible
components.) Since ΣC is a determinantal subvariety of Ce × Gr

d(C), it follows that for a general
[C] ∈ Mg, if non-empty, the scheme ΣC is equidimensional and dim(ΣC) = ρ(g, r, d) − f(r +
1 − e + f) + e. Note that this result does not establish the non-emptiness of ΣC , which is an
issue that we will deal with in Section 3. In any event, (13) implies the dimensional estimate

dim{l ∈ Gr
d(C) : V e−f

e (l) �= ∅} � ρ(g, r, d) − f(r + 1 − e + f) + e.

This will prove Theorem 0.1 as well as Corollaries 0.3 and 0.4.
We start by setting some notation. We denote by j : M0,g → Mg the ‘flag’ map obtained by

attaching to each stable curve [R, x1, . . . , xg] ∈ M0,g fixed elliptic tails E1, . . . , Eg at the points
x1, . . . , xg, respectively. Thus j([R, x1, . . . , xg]) := [R̃] = [R

⋃
x1

E1 ∪ . . .
⋃

xg
Eg] and for such a

curve, we denote by pR : R̃ → R the projection onto R; that is, pR(Ei) = {xi} for 1 � i � g. We
denote by Cg,n = Mg,n+1 the universal curve and by π : Cg,n → Mg,n the morphism forgetting
the (n + 1)st marked point. We write πe : Ce

g,n → Mg,n for the e-fold fibre product of Cg,n over
Mg,n, and we introduce a map χ : M0,g ×Mg

Ce

g → Ce

0,g which collapses the elliptic tails. Thus
χ is defined by

χ
(
[R, x1, . . . , xg], (y1, . . . , ye)

)
:=

(
[R, x1, . . . , xg], pR(y1), . . . , pR(ye)

)
,

for points y1, . . . , ye ∈ R̃. Let W ⊂ Ce

g be the closure of the locus

{[C, y1, . . . , ye] ∈ Ce
g : ∃l ∈ Gr

d(C) with dim l(−y1 − . . . − ye) � r − e + f}.
By assumption πe(W ) = Mg, and we define the locus U := χ

(
W ∩ (M0,g ×Mg

Ce

g)
)
. Then

πe(U) = M0,g, and we denote by e − m the minimal fibre dimension of the map πe|U : U →
M0,g. Thus 0 � m � e and dim(U ∩ π−1

e [R, x1, . . . , xg]) � e − m, for every [R, x1, . . . , xg], with
equality for a general point [R, x1, . . . , xg] ∈ M0,g.

We recall that for every choice of four marked points {i, j, k, l} ⊂ {1, . . . , g}, one has a
fibration πijkl : M0,g → M0,4 obtained by forgetting the marked points with labels in the
set {i, j, k, l}c and stabilizing the resulting rational curve. If we single out the first three
marked points x1, x2, x3 as being 0, 1 and ∞, then we can obtain a birational map π123 =
(π1234, . . . , π123i, . . . , π123g) : M0,g → Mg−3

0,4 = (P1)g−3 defined by

π123([R, x1, . . . , xg]) :=
(
[R, x1, x2, x3, x4], [R, x1, x2, x3, x5], . . . , [R, x1, x2, x3, xg]

)
.

The map π123 expresses M0,g as a blow-up of (P1)g−3 such that all exceptional divisors of
π123 are boundary divisors of M0,g (cf. [14]). In a similar manner, one has a birational map
f : Ce

0,g → Mg−3+e

0,4 = (P1)g−3+e defined by

f
(
[R, x1, . . . , xg], y1, . . . , ye

)
:=

(
[R, x1, x2, x3, x4], . . . , [R, x1, x2, x3, xg], [R, x1, x2, x3, y1], . . . , [R, x1, x2, x3, ye]

)
.

For simplicity, sometimes we write f([R, x1, . . . , xg], y1, . . . , ye) = (x4, . . . , xg, y1, . . . , ye). The
maps f and π123 fit in a commutative diagram, where p1 : (P1)g−3+e → (P1)g−3 is the
projection on the first g − 3 factors.

Ce

0,g

πe

f
(P1)g−3+e = Mg−3+e

0,4

p1

M0,g
π123

(P1)g−3 = Mg−3

0,4

Finally, for 2 � k � e we define the diagonal loci Δk ⊂ (P1)g−3+e as consisting of those points
(x4, . . . , xg, y1, . . . , ye) for which at least k of the points y1, . . . , ye coincide. We need the
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following result concerning existence of sublinear limit linear series of a fixed limit gr
d, having

prescribed vanishing sequence at a given point.

Lemma 2.1. Let X be a curve of compact type and Y ⊂ X an irreducible component, and
let p ∈ Y be a smooth point of X. Assume that l is a (refined) limit gr

d on X and let (a0 < a1 <
. . . < ar) be the vanishing sequence al(p). We fix a subsequence (aj0 < aj1 < . . . < ajb

) of al(p),
where 0 � b � r. Then there exists a limit gb

d on X, say l′ ⊂ l, such that al′(p) = (aj0 , . . . , ajb
).

Proof. Let us denote by l := {lZ = (LZ , VZ)}Z⊂X the original limit gr
d on X. For each

integer 0 � k � b there exists a section σjk
∈ VY such that ordp(σjk

) = ajk
. We consider

the subspace WY := 〈σj0 , . . . , σjb
〉 ⊂ VY . Since #{ordp(σ)}σ∈WY

= b + 1, we obtain that
dim(WY ) = b + 1 and we set l′Y := (LY ,WY ) ∈ Gb

d(Y ). Suppose now that Z is a component
of X meeting Y in a point q. We denote by (cj0 < cj1 < . . . < cjb

) the vanishing sequence
al′Y (q). Let (ej0 < ej1 < . . . < ejb

) be the complementary sequence; that is, ejk
= d − cjb−k

for each 0 � k � b. Then we can choose a section τk ∈ VZ such that ordq(τk) = ejk
. We

define WZ := 〈τ0, . . . , τb〉 ⊂ VZ . Because all the entries (ejk
)b
k=0 are distinct, we get that

dim(WZ) = b + 1 and then set l′Z := (LZ ,WZ) ∈ Gb
d(Z). We continue inductively, and for each

irreducible component Z ′ ⊂ X we obtain an aspect l′Z′ = (LZ′ ,WZ′) ∈ Gb
d(Z

′). The collection
{l′Z}Z⊂X is the desired limit gb

d on X.

Next we explain how the assumption that for every [C] ∈ Mg there exists a linear series
l ∈ Gr

d(C) with V e−f
e (l) �= ∅ can be used to construct a flag curve R̃ ∈ j(M0,g) such that all

the e points coming from the limit of an effective divisor D ∈ V e−f
e (l) specialize to a connected

subcurve of R̃ having arithmetic genus at most min{g, e}.

Proposition 2.2. Let U ⊂ Ce

0,g be an irreducible component of the closure of the locus of

limits of e-secant divisors with respect to linear series gr
d on flag curves from Mg. Assuming

that dim(U) = g − 3 + e − m with 0 � m � e, there exists a point ([R, x1, . . . , xg], ỹ1, . . . , ỹe) ∈
W ∩ (M0,g ×Mg

Ce

g) corresponding to a genus g flag curve

R̃ = R
⋃
x1

E1 ∪ . . .
⋃
xg

Eg and points ỹ1, . . . , ỹe ∈ R̃,

such that either:

(i) ỹ1 = . . . = ỹe ∈ R − {x1, . . . , xg}, or else
(ii) all the points ỹ1, . . . , ỹe lie on a connected subcurve Y ⊂ R̃ satisfying pa(Y ) � min{m, g}

and #(Y ∩ (R̃ − Y )) � 1.

Proof. We start by noting that if m = 0 then U = Ce

0,g and possibility (i) is satisfied.
Thus we may assume that m � 1. First, we claim that dim f(U) = dim U = g − 3 + e − m.
Indeed, since πe(U) = M0,g it follows that p1(f(U)) = (P1)g−3 and we choose a general point
t = (x4, . . . , xg) ∈ (P1 − {0, 1,∞})g−3 such that xi �= xj for i �= j. Then π−1

e (t) = (P1)e and
f|π−1

e (t) is an isomorphism onto its image, and hence f|U is birational onto its image as well.
Obviously, when m � g we can take Y = R̃. From now on we shall assume that 1 � m � g − 1.

Let us assume first that f(U) ∩ Δe �= ∅. Then dim
(
f(U) ∩ Δe

)
� g − m − 2. For dimensional

reasons, there must exist a point z = (x4, . . . , xg, y1, . . . , y1) ∈ f(U) ∩ Δe such that either: (i)
at least g − m − 3 of the points xj with 4 � j � g are mutually distinct and belong to the set
P1 − {0, 1,∞, y1} and y1 ∈ P1 − {0, 1,∞}, or (ii) at least g − m − 2 of the xj (4 � j � g) are
mutually distinct and belong to the set P1 − {0, 1,∞, y1} and then y1 ∈ P1 may or may not
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be equal to one of the points 0, 1 or ∞. Suppose that we are in situation (i), the remaining case
being similar. We fix a point ([R, x1, . . . , xg], y1, . . . , ye) ∈ f−1(z), and hence y1, . . . , ye ∈ R. If
Z ⊂ R denotes the minimal connected subcurve of R containing all the points y1, . . . , ye, then
x1, x2, x3 ∈ R − Z, unless y1 = . . . = ye. (In the latter case either y1 ∈ R − {x1, . . . , xg}, which
corresponds to the situation when all the points ỹi = yi specialize to the same smooth point of
R̃ lying on the rational spine, or else, if y1 = xj for some 4 � j � g, then we can find a connected
subcurve of R̃ of genus 1 containing ỹ1, . . . , ỹe, where pR(ỹi) = yi for 1 � i � e.) Since at least
g − m = 3 + (g − m − 3) of the points x1, . . . , xg lie on Zc, it follows that ỹ1, . . . , ỹe lie on a
connected subcurve of R̃ of genus at most m, which completes the proof in this case.

We are left with the possibility f(U) ∩ Δe = ∅ and we denote by k � e − 1 the largest
integer for which f(U) ∩ Δk �= ∅ and by L an irreducible component of f(U) ∩ Δk. Since by
definition f(U) ∩ Δk+1 = ∅, it follows that there exists a point t0 = (p1, . . . , pe) ∈ (P1)e such
that L ⊂ (P1)g−3 × {t0}. In particular, the projection map p1|L : L → p1(L) is 1 : 1 and then
dim p1(L) = dim(L) � g − m + (e − k − 2) � g − m, unless k = e − 1, when dim p1(L) � g −
m − 1. In the first case it follows that there exists a point (x4, . . . , xg, p1, . . . , pe) ∈ f(U) ∩ Δk

such that at least g − m of the points x4, . . . , xg are equal to a fixed point r ∈ P1 − {p1, . . . , pe}.
In the second case, that is, when k = e − 1, since #{pi}e

i=1 = 2, one of the points 0, 1 or
∞, say 0, does not appear among the pi. Then we can find a point (x4, . . . , xg, p1, . . . , pe) ∈
f(U) ∩ Δe−1 with at least g − m of the xj equal to 0.

The conclusion in both cases is that there exists a point
(
[R, x1, . . . , xg], y1, . . . , ye

) ∈
W ∩ (M0,g ×Mg

Ce

g) corresponding to the flag curve R̃ = R
⋃

x1
E1 ∪ . . .

⋃
xg

Eg, such that

the points y1, . . . , ye lie on a connected subcurve Y ⊂ R̃, where #(Y ∩ (R̃ − Y )) � 1 and
pa(Y ) � m � e.

Proof of Theorem 0.1. We choose R̃ = R
⋃

x1
E1 ∪ . . .

⋃
xg

Eg as above and denote by Y ⊂ R̃
a connected subcurve onto which the points y1, . . . , ye specialize. We know that either: (a)
pa(Y ) = m � min{e, g}, or (b) y1 = . . . = ye ∈ R − {x1, . . . , xg}.

We first deal with case (a) and dispose of (b) at the end using [9]. If m < g we set Z := R̃ − Y
and {p} := Y ∩ Z, and we denote by Y ′ and Z ′ the components of Y and Z, respectively,
containing the point p. When m = g, necessarily e � g and Y := R̃, Z = ∅ and p ∈ R̃ is a
general (smooth) point. By assumption, [R̃, y1, . . . , ye] ∈ W , and hence there exists a proper
flat morphism φ : X → B satisfying the following properties.
• X is a smooth surface, B is a smooth affine curve, 0 ∈ B is a point such that φ−1(0) is a

curve stably equivalent to R̃ and Xt = φ−1(t) is a smooth projective curve of genus g for t �= 0.
Moreover, there are e sections σi : B → X of φ satisfying the condition σi(0) = yi ∈ φ−1(0)reg

for all 1 � i � e.
• If Xη := X − φ−1(0), then there exist a line bundle Lη ∈ Pic(Xη) of relative degree d and

a subvector bundle Vη ⊂ φ∗(Lη) having rank r + 1, such that for t �= 0 we have

dim Vt ∩ H0

⎛⎝Xt, Lt

⎛⎝−
e∑

j=1

σj(t)

⎞⎠⎞⎠ = r + 1 − e + f.

After possibly making a finite base change and resolving the resulting singularities, the pair
(Lη, Vη) induces a (refined) limit gr

d on R̃, which we denote by l. The vector bundle Vη ∩
φ∗

(
Lη ⊗OXη

(−∑e
j=1 σj(B − {0}))) induces a limit linear series gr−e+f

d−e on φ−1(0), which we
denote by m. For a component A of φ−1(0), if (LA, VA) ∈ Gr

d(A) denotes the A-aspect of
l, then there exists a unique effective divisor DA ∈ Ae supported only at the points from
(A ∩ ⋃e

j=1 σj(B)) ∪ (A ∩ φ−1(0) − A) such that the A-aspect of m is of the form

mA =
(
MA := LA ⊗OA(−DA), WA ⊂ VA ∩ H0(MA)

) ∈ Gr−e+f
d−e (A).
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The collection mY := {mA}A⊂Y forms a limit gr−e+f
d−e on Y . We denote by (a0 < . . . < ar) the

vanishing sequence of lY ′ at p, thus {ai}r
i=0 = {ordp(σ)}σ∈VY ′ and we denote by (b0 < . . . < br)

the vanishing sequence alZ′ (p). By ordering the set {ordp(σ)}σ∈WY ′ we obtain a subsequence
(ai0 < . . . < air−e+f

) of alY ′ (p). When we order the entries in {ai}r
i=0 − {aik

}r−e+f
k=0 we obtain

a new sequence (aj0 < aj1 < . . . < aje−f−1). Using Lemma 2.1, we find that there exists a limit
linear series l′Y of type ge−f−1

d on Y with the property that al′Y (p) = (aj0 , aj1 , . . . , aje−f−1).
Let us assume first that we are in the situation m < g; hence Z �= ∅. The point p ∈ Y lies

on a rational component that implies the following inequality corresponding to Y (see also [9,
Theorem 1.1]):

V1 := ρ(m, e − f − 1, d) −
e−f−1∑

k=0

ajk
+

(
e − f

2

)
� 0. (14)

Applying the same principle for the limit linear series mY on Y , we find that the adjusted
Brill–Noether number with respect to the point p is non-negative:

V2 := ρ(m, r − e + f, d − e) −
r−e+f∑

k=0

aik
+

(
r + 1 − e + f

2

)
� 0. (15)

Next we turn our attention to Z and use the fact that the point p ∈ Z does not lie on an elliptic
component; hence [Z, p] satisfies the ‘strong’ pointed Brill–Noether theorem:

V3 := ρ(g − m, r, d) −
r∑

k=0

bk +
(

r + 1
2

)
� 0. (16)

If we add (14)–(16) together and use the fact that
∑r

k=0 bk +
∑r−e+f

k=0 aik
+

∑e−f−1
k=0 ajk

=
(r + 1)d, then we obtain the inequality

ρ(g, r, d) − f(r + 1 − e + f) + e � e − m � 0.

The case m = g, when Y = R̃, is similar but simpler. We add together (14) and (15) (now
there is no (16)) and we write the following inequalities:

ρ(g, r, d) + e − f(r + 1 − e + f) =

(
ρ(g, r − e + f, d − e) −

r−e+f∑
k=0

aik
+

(
r + 1 − e + f

2

))

+

(
ρ(g, e − f − 1, d) −

e−f−1∑
k=0

ajk
+

(
e − f

2

))
+

r−e+f∑
k=0

aik

+
e−f−1∑

k=0

ajk
−

(
r + 1

2

)
+ e − g � e − g

� 0,

since
∑r−e+f

k=0 aik
+

∑e−f−1
k=0 ajk

�
(
r+1
2

)
. Thus we obtain the same numerical conclusion as in

the case m < g.
Assume now that we are in the case (b) when y1 = . . . = ye ∈ R − {x1, . . . , xg}. Then,

reasoning as above, we find a limit gr
d on R̃ having a vanishing sequence at y1 at least

(0, 1, . . . , e − f − 1, e, e + 1, . . . , r + f − 1, r + f). Using once more [9, Theorem 1.1], we obtain
the inequality

ρ(g, r, d) + e − f(r + 1 − e + f) � ρ(g, r, d) − f(r + 1 − e + f) � 0.

Using the semicontinuity of the dimension of the fibres, it follows that for a general curve
[C] ∈ Mg, if π1 : ΣC → Ce is the first projection, then the minimal fibre dimension of π1

cannot exceed the dimension of the space of pairs of limit linear series l ⊃ m consisting
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of a gr
d ⊃ gr−e+f

d−e on the flag curve φ−1(0) such that m = l(−De), where De is a degree e
effective divisor on φ−1(0) with the property that supp(De) ⊂ Y ∩ φ−1(0)reg. Since the map
(l ⊃ m,mY , l′Y ) �→ (mY , l′Y , lZ) ∈ G̃r−e+f

d−e (Y ) × G̃e−f−1
d (Y ) × G̃r

d(Z) is injective, it follows that
for a general divisor Dgen ∈ π1(ΣC) we have the estimate

dim π−1
1 (Dgen) � V1 + V2 + V3 = ρ(g, r, d) − f(r + 1 − e + f) + m,

and hence dim(ΣC) = dimπ−1
1 (Dgen) + e − m � ρ(g, r, d) − f(r + 1 − e + f) + e. This finishes

the proof of Theorem 0.1.

3. Existence of linear series with secant planes

We turn our attention to showing the existence of linear series that possess e-secant (e − f − 1)-
planes. The strategy we pursue is to construct limit linear series gr

d on a curve of compact type
[Y

⋃
p Z] ∈ Mg, where (Y, p) and (Z, p) are suitably general smooth pointed curves of genus e

and g − e, respectively. These limit gr
d will carry a sublinear series gr−e+f

d−e = gr
d(−De), where De

is a degree e effective divisor on Y . As in the proof of Theorem 0.1, such gr
d are determined by

their Z-aspect and by a pair of linear series (gr−e+f
d−e , ge−f−1

d ) on Y . We determine the dimension
of the space of such pairs, which will enable us to show that the original pair (gr−e+f

d−e , ge−f−1
d )

on Y
⋃

p Z can be smoothed to every smooth curve of genus g. This will complete the proof of
Theorem 0.5.

We start by choosing two general pointed curves [Y, p] ∈ Me,1 and [Z, p] ∈ Mg−e,1 such that
both (Y, p) and (Z, p) satisfy the Brill–Noether theorem with prescribed ramification (cf. [9,
Theorem 1.1 and Proposition 1.2]). If α : 0 � α0 � . . . � αr � d − r is a Schubert index of type
(r, d), then (Y, p) possesses a gr

d with ramification sequence at least α at the point p, if and
only if

r∑
i=0

max{αi + g(Y ) − d + r, 0} � g(Y ). (17)

In the case where this inequality is satisfied, dim Gr
d(Y, p, α) = ρ(g, r, d, α) (one obviously has

a similar statement for [Z, p]).
We denote by π : X → (T, 0) the versal deformation space of the stable curve π−1(0) =

X0 := Y
⋃

p Z. Let Δ ⊂ T be the boundary divisor corresponding to singular curves, and write
π−1(Δ) = Δe + Δg−e, where Δe and Δg−e are the divisors corresponding to the marked points
lying on the components of genus e and g − e, respectively. We consider the e-fold fibre product
U := (X − Δg−e) ×T . . . ×T (X − Δg−e), the projection φ : U → T and the induced curve p2 :
X ×T U → U . Then we introduce the stack of limit linear series of type gr

d over U :

σ : G̃r
d(X ×T U/U) −→ U , where G̃r

d(p2) = G̃r
d(X ×T U/U) = G̃r

d(π) ×T U ,

and we write τ := φ ◦ σ : G̃r
d(p2) → T (see [8, Theorem 3.4], for details on the construction

of G̃r
d(π)). The fibre τ−1(t) corresponding to a point t ∈ Δ (in which case one can write

π−1(t) = Yt ∪ Zt, with g(Yt) = e, g(Zt) = g − e), parametrizes limit gr
d on Yt ∪ Zt together with

e-tuples (x1, . . . , xe) ∈ (Yt − Yt ∩ Zt)e. Let us denote by LY a degree d Poincaré bundle on
π2 : X ×T G̃r

d(p2) → G̃r
d(p2) characterized by the property that its restriction to curves of type

Yt ∪ Zt are line bundles of bidegree (d, 0). We also write VY ⊂ (π2)∗(LY ) for the rank r + 1
tautological bundle with fibres that correspond to the global sections of the genus e-aspect
of each limit gr

d. Finally, for 1 � j � e, we denote by Dj ⊂ X ×T G̃r
d(p2) the diagonal divisor

corresponding to pulling back the diagonal under the map X ×T G̃r
d(p2) → X ×T X which

projects onto the jth factor; that is, (x, l, x1, . . . , xe) �→ (x, xj), where x, x1, . . . , xe ∈ π−1(t).
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There exists an evaluation vector bundle morphism over G̃r
d(p2)

χ : VY −→ (π2)∗(LY ⊗O∑e
j=1 Dj

),

and we denote by H the rank e − f degeneracy locus of the map χ. Set-theoretically,
H consists of those points (t, l, x1, . . . , xe) with φ(x1, . . . , xe) = t ∈ T and l ∈ G̃r

d(π
−1(t)),

satisfying the condition that dim l(−x1 − . . . − xe) � r + 1 − e + f . The dimension of every
irreducible component of H is at least ρ(g, r, d) + dimT + e − f(r + 1 − e + f).

In order to show that τ : H → T is dominant, it suffices to prove that τ−1(0) has at least one
irreducible component of dimension ρ(g, r, d) + e − f(r + 1 − e + f). This, in fact, will prove
the stronger statement that ΣC �= ∅ for every [C] ∈ Mg. Indeed, even though τ : G̃r

d(p2) → T is
not a proper morphism, the restriction ττ−1(T−Δ) : τ−1(T − Δ) → T − Δ is proper, and hence
there exists an irreducible component of H which maps onto T − Δ. Since π : X → (T, 0) can
be chosen in such a way that there exists a point t ∈ T with π−1(t) ∼= C, this proves our
contention. We set the integer

α0 :=
[
ρ(e, r − e + f, d − e)

r + 1 − e + f

]
=

[
e

r + 1 − e + f

]
+ d − r − f − e;

thus we can write ρ(e, r − e + f, d − e) = α0 · (r + 1 − e + f) + c, where 0 � c � r − e + f .
Then there exists a unique Schubert index of type (r − e + f, d − e),

α : 0 � α0 � α1 � . . . � αr−e+f � d − r − f,

with αr−e+f − α0 � 1, such that
∑r−e+f

j=0 αj = ρ(e, r − e + f, d − e). We have αj = α0 for 0 �
j � r − e + f − c and αj = α0 + 1 for r − e + f − c + 1 � j � r − e + f . Note that since α0 +
g(Y ) − (d − e) + r − e + f = [e/(r + 1 − e + f)] � 0, condition (17) is verified and the variety
Gr−e+f

d−e (Y, p, α) is non-empty of dimension ρ(e, r − e + f, d − e) − ∑r−e+f
j=0 αj = 0.

Next we set β0 := [e/(e − f)] and write e = β0 · (e − f) + c̃, where 0 � c̃ � e − f − 1. Then
there exists a unique Schubert index of type (e − f − 1, 2e − f − 1),

β : 0 � β0 � β1 � . . . � βe−f−1 � e,

such that βe−f+1 − β0 � 1 and
∑e−f−1

j=0 βj = e. Precisely,

βj = β0 for 0 � j � e − f − c̃ − 1 and βj = β0 + 1 for e − f − c̃ � j � e − f − 1.

By (17), the variety Ge−f−1
2e−f−1(Y, p, β) is non-empty and is of dimension e − ∑e−f−1

j=0 βj = 0.
First, we are going to prove Theorem 0.5 under the assumption that there exist two linear

series (A,WA) ∈ Gr−e+f
d−e (Y, p, α) and (L,WL) ∈ Ge−f−1

2e−f−1(Y, p, β) satisfying the condition

H0
(
Y,L ⊗ A∨ ⊗OY ((d + f − 2e) · p)

)
= 0. (18)

Note that deg
(
L ⊗ A∨ ⊗OY ((d + f − 2e) · p)

= g(Y ) − 1, and (18) states that a suitable
translate of at least one of the finitely many line bundles of type L ⊗ A∨ lies outside the
theta divisor of Y .

Remark 3.1. Condition (18) is a subtle statement concerning [Y, p]. It is not true that
(18) holds for every choice of (A,WA) ∈ Gr−e+f

d−e (Y, p, α) and (L,WL) ∈ Ge−f−1
2e−f−1(Y, p, β). For

instance, in the case e = 2r − 2 and f = r − 1, corresponding to (2r − 2)-secant (r − 2)-planes
which every curve Y ⊂ Pr is expected to possess in finite number, we obtain that A = B ⊗
OY ((d − 3r + 2) · p), where B ∈ W 1

r (Y ) and L ⊗OY (−2p) ∈ W r−2
3r−6(Y ). By Riemann–Roch,

we can write that L = KY ⊗OY (2 · p) ⊗ B̃∨, where B̃ ∈ W 1
r (Y ) and then (18) translates into

the vanishing statement H0(Y,B ⊗ B̃ ⊗OY (−3 · p)) = 0. The curve Y has (2r − 2)!/r!(r − 1)!
pencils g1

r. If we choose B �= B̃ ∈ W 1
r (Y ), then h0(Y,B ⊗ B̃) � 4 and (18) has no chance of

being satisfied. If B = B̃, then the Gieseker–Petri theorem implies that the map H0(Y,B) ⊗
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H0(Y,KY ⊗ B∨) → H0(Y,KY ) is an isomorphism, whence h0(Y,B⊗2) = 3. Choosing p ∈ Y
outside the set of ramification points of the finitely many line bundles B⊗2, where B ∈ W 1

r (Y ),
we obtain that H0(B⊗2 ⊗OY (−3 · p)) = 0. Therefore in this case, condition (18) is equivalent
to the Gieseker–Petri theorem.

We shall study when (18) is actually satisfied. We note that by the Riemann–Roch theorem,
(18) also implies that h0

(
Y,L ⊗ A∨ ⊗OY ((d + f − 2e + 1) · p)

)
= 1. Assuming that (A,WA) ∈

Gr−e+f
d−e (Y, p, α) and (L,WL) ∈ Ge−f−1

2e−f−1(Y, p, β) satisfy (18), it follows from Riemann–Roch
that there exists a unique effective divisor of degree e

D ∈ |L ⊗OY ((d − 2e + f + 1) · p) ⊗ A∨|,
and moreover p /∈ supp(D). We introduce the space of sections

VY := WA + WL ⊂ H0
(
Y,L ⊗OY ((d − 2e + f + 1) · p)

)
,

where we view

WA ⊂ H0
(
L ⊗OY ((d − 2e + f + 1) · p − D)

)
and

WL ⊂ H0(L) ⊂ H0
(
L ⊗OY ((d − 2e + f + 1) · p)

)
.

We claim that dim(VY ) = r + 1, and hence lY = (L ⊗OY ((d − 2e + f + 1) · p), VY ) ∈ Gr
d(Y ).

Moreover, lY has the following vanishing sequence at p:

alY (p) = (α0, . . . , αr−e+f + r − e + f, β0 + d − 2e + f + 1,

β1 + d − 2e + f + 2, . . . , βe−f−1 + d − e). (19)

Indeed, our original assumption that f(r + 1 − e + f) � e is equivalent with the inequality
αr−e+f + r − e + f < d − 2e + f + 1, which shows that sequence (19) contains r + 1 distinct
entries. Since p /∈ supp(D), we obtain that the vanishing orders of the sections from WA ⊂
H0(L ⊗OY ((d − 2e + f + 1) · p)) are precisely

α0, α1 + 1, . . . , αr−e+f + r − e + f,

while those of the sections from WL ⊂ H0(L ⊗OY ((d − 2e + f + 1) · p)) are precisely

β0 + d − 2e + f + 1, β1 + d − 2e + f + 2, . . . , βe−f−1 + e − f − 1 + d − 2e + f + 1
= βe−f−1 + d − e.

We have found r + 1 sections from VY having distinct vanishing orders at the point p, and
hence dim(VY ) = r + 1. Moreover, alY (p) is equal to sequence (19).

Next we choose a linear series lZ ∈ Gr
d(Z, p) such that {lY , lZ} is a refined limit gr

d. Then
the ramification sequence of lZ at the point p must be equal to

αlZ (p) = γ := (e − βe−f−1, e − βe−f−2, . . . , e − β0, d − r

− αr−e+f , . . . , d − r − α1, d − r − α0).

We claim that condition (17) is satisfied for Z and that the variety Gr
d(Z, p, γ) is non-empty

and is of dimension ρ(g − e, r, d, γ) = ρ(g, r, d) + e − f(r + 1 − e + f). For this to happen, one
has to check that the following inequality holds:

r∑
j=0

max
{

αlZ
j (p) + g − e − d + r, 0

}
� g − e. (20)
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There are two things to notice. First, by direct computation we have

αlZ
e−f (p) + g − e − d + r = g − e − αr−e+f = (g − d + r) +

[
f − e

r + 1 − e + f

]
� 0,

and hence αlZ
j (p) + g − e − d + r � 0 for all e − f � j � r. Second, since 0 � βe−f−1 − β0 � 1,

in order to estimate the sum of the first e − f terms in the sum (20), there are two cases to
consider. Either αlZ

0 (p) + g − e − d + r � 0, in which case we find that
r∑

j=0

max{αlZ
j (p) + g − e − d + r, 0} =

r∑
j=0

(αlZ
j (p) + g − e − d + r) = g − e − ρ(g − e, r, d, γ)

= g − e − (
ρ(g, r, d) + e − f(r + 1 − e + f)

)
� g − e.

Otherwise, if αlZ
0 (p) + g − e − d + r � −1, then also αlZ

j (p) + g − e − d + r � 0 for 0 � j � e −
f − 1, and the left-hand side of (20) equals

r∑
j=e−f

(αlZ
j (p) + g − e − d + r) = (r + 1 − e + f)(g − e) −

r−e+f∑
i=0

αi

= g − e − ρ(g, r − e + f, d − e)
� g − e.

In both cases inequality (17) is satisfied, which proves our claim.
Since the chosen (A,WA) ∈ Gr−e+f

d−e (Y, p, α) and (L,WL) ∈ Ge−f−1
2e−f−1(Y, p, β) are isolated

points in their corresponding varieties of linear series on Y , it follows that limit gr
d on X0,

constructed in the way we have just described, fill up a component of τ−1(0) ⊂ H.
Indeed, suppose that (nY , nZ , D̃) ∈ H is a point lying in the same irreducible component of

τ−1(0) as (lY , lZ ,D). Here, nY ∈ Gr
d(Y ), nZ ∈ Gr

d(Z, p, γ), and D̃ ∈ Ye is a divisor such that
p /∈ supp(D̃). Then anY (p) = alY (p), which is given by (19); therefore nY (−(d − 2e + f + 1) ·
p) ∈ G2e−f−1

e−f−1 (Y, p, β), which is a reduced 0-dimensional variety. This implies that nY (−(d −
2e + f + 1) · p) = (L,WL). Next, we consider the linear series nY (−D̃) ∈ Gr−e+f

d−e (Y ). Since
p /∈ supp(D̃), the vanishing sequence of this linear series is a subsequence of length r + 1 −
e + f of alY (p). Necessarily, αnY (−D̃)(p) � α and because ρ(e, r − e + f, d − e, α) = 0, we must
have nY (−D̃) ∈ Gr−e+f

d−e (Y, p, α), which is a discrete set, and hence nY (−D̃) = (A,WA) and
D̃ =D∈Ye. This shows that nY = lY and every point of this component of τ−1(0) is determined
by the nZ . The dimension of this component is thus equal to

ρ(e, r − e + f, d − e, α) + ρ(g − e, r, d, γ) + ρ(e, e − f − 1, 2e − f − 1, β)
= ρ(g, r, d) − f(r + 1 − e + f) + e,

which finishes the proof of Theorem 0.5, subject to proving assumption (18).

Remark 3.2. A slight variation of the argument described above enables us to prove
Theorem 0.5 even in some cases when we cannot establish (18). We start with a linear series
(A,WA) ∈ Gr−e+f

d−e (Y, p, α) and assume that the following condition holds:

H0
(
Y,OY ((d − 1) · p) ⊗ A∨)

= 0. (21)

There exists a unique divisor D ∈ |OY (d · p) ⊗ A∨)|, and (21) guarantees that p /∈ supp(D).
We define the space of sections

VY := H0(OY (2e − f − 1) · p) + WA ⊂ H0(OY (d · p)), where WA ⊂ H0(OY (d · p − D)).



HIGHER RAMIFICATION AND VARIETIES OF SECANT DIVISORS 435

Reasoning along the same lines as in the previous case, since p /∈ supp(D) we find that
dim(VY ) = r + 1, and hence lY = (OY (d · p), VY ) ∈ Gr

d(Y ). Moreover, we can check that

alY (p) = (α0, α1 + 1, . . . , αr−e+f + r − e + f, d − 2e + f + 1, d − 2e + f + 2, . . . , d − e − 1, d).

As in the previous situation, we choose a linear series lZ ∈ Gr
d(Z, p) such that {lY , lZ} is a

refined limit gr
d. Thus we must have the following ramification sequence at p:

αlZ (p) = γ := (0, e, . . . , e, d − r − αr−e+f , . . . , d − r − α1, d − r − α0).

Condition (17) which guarantees the existence of lZ is satisfied if and only if

ρ(g, r, d) � f(r + 1 − e + f) − (g − d + r), in the case g − d + r < e

and
ρ(g, r, d) � f(r + 1 − e + f) − e, in the case g − d + r � e.

Since we are always working under the hypothesis that ρ(g, r, d) − f(r + 1 − e + f) + e � 0,
we see that the previous condition holds whenever g − d + r � e, and that, in general, lZ ∈
Gr

d(Z, p, γ) exists if and only if

ρ(g, r, d) � f(r + 1 − e + f) − (g − d + r). (22)

Assuming (22), the variety Gr
d(Z, p, γ) is non-empty of dimension ρ(g − e, d, r, γ) = ρ(g, r, d) −

f(r + 1 − e + f) + e. The same argument as before shows that limit gr
d on X0, constructed in

such a way, fill up a component of τ−1(0) ⊂ H of expected dimension ρ(g, r, d) − f(r + 1 − e +
f) + e, which completes the proof.

Now we complete the proof of Theorem 0.5 by discussing under which assumptions we can
establish (18).

Proof of Theorem 0.5. We retain the notation introduced above and show that there
exist two linear series (A,WA) ∈ Gr−e+f

d−e (Y, p, α) and (L,WL) ∈ Ge−f−1
2e−f−1(Y, p, β) satisfying

(18) whenever one of the following conditions is satisfied:
(i) 2f � e − 1,
(ii) e = 2r − 2 and f = r − 1,
(iii) e < 2(r + 1 − e + f).

As we have already explained, (18) in case (ii) is a consequence of the Gieseker–Petri theorem.
We now treat case (i) when β0 = 1 and c̃ = f � e − f − 1. By Riemann–Roch we find that

L = KY ⊗OY ((e − 2f + 2) · p) ⊗ B∨, where B ∈ W 1
e−f+1(Y ) is a pencil such that h0

(
Y,B ⊗

OY (−(e − 2f + 1) · p)
)

� 1 (There are finitely many such B ∈ W 1
e−f+1(Y ) for a generic choice

of [Y, p] ∈ Me,1). Applying the base-point-free pencil trick, (18) is equivalent to the injectivity
of the multiplication map

μB,M : H0(Y,B) ⊗ H0(Y,M) −→ H0(Y,B ⊗ M),

where M := KY ⊗ A∨ ⊗OY ((d − f − e + 2) · p) ∈ W e−f
2e−f (Y ) is a complete linear series with

vanishing sequence at p equal to

aM (p) = (0, 1, . . . , e − f − a − 1, e − f − a + c, r − a + 2, r − a + 3, . . . , r, r + 1). (23)

Here we have set a := [e/(r + 1 − e + f)], and hence we can write e = a · (r + 1 − e + f) + c,
where 0 � c � r − e + f . By assumption we have e − 2a > c and clearly ρ(M,αM (p)) = 0; that
is, there are finitely many M ∈ W e−f

2e−f (Y ) satisfying (23).
To prove that μB,M is injective, we degenerate [Y, p] ∈ Me,1 to a particular stable curve:

[Y0, p0] := [E0

⋃
p1

E1 ∪ . . . ∪ Ee−2a−1

⋃
pe−2a

T, p0], where E0, . . . , Ee−2a−1 are elliptic curves,
[T = Ee−2a, pe−2a] ∈ M2a,1 is a Petri general smooth pointed curve and the points pi, pi+1 ∈ Ei
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are such that pi+1 − pi ∈ Pic0(Ei) is not a torsion class for 0 � i � e − 2a − 1. Note that p0 lies
on the first component E0. By contradiction, we assume that μB,M is not injective for every
[Y, p] ∈ Me,1 and for each of the finitely many linear series M ∈ W e−f

2e−f (Y ) satisfying (23) and
each B ∈ G1

e−f+1

(
Y, p, (0, e − 2f)

)
.

We construct a limit ge−f
2e−f on [Y0, p0], say m = {(MEi

, Vi) ∈ Ge−f
2e−f (Ei)}e−2a

i=0 , which satisfies
condition (23) with respect to p0, by specifying the vanishing sequences amEi (pi) for 0 � i �
e − 2a. For 0 � i � c − 1, the sequence amEi+1 (pi+1) is obtained from amEi (pi) by raising all
entries by 1, except for the term

a
mEi+1
e−f−a(pi+1) = a

mEi

e−f−a(pi) = e − f − a + c.

After c steps we arrive at the following vanishing sequence on Ec with respect to pc:

amEc (pc) = (c, c + 1, . . . , e − f − a + c − 1, e − f − a + c, r − a + 2
+ c, r − a + 3 + c, . . . , r + c + 1).

For an index c � i � e − 2a − 1, which we write as i = c + a · β + j, with 0 � j � a − 1 and
0 � β � r − 2 − e + f , we choose amEi+1 (pi+1) to be obtained from amEi (pi) by raising all
entries by 1, except for the term

a
mEi+1
e−f−a+j+1(pi+1) = a

mEi

e−f−a+j+1(pi) = r − a + 2 + c + (a − 1) · β + 2j.

In this way m ∈ G̃e−f
2e−f (Y0) becomes a (refined) limit linear series which smooths to a complete

linear series M ∈ Ge−f
2e−f (Y ) on every smooth pointed curve [Y, p] ∈ Me,1 such that the

ramification condition (23) with respect to p is satisfied.
Next we construct a limit g1

e−f+1 on [Y0, p0], say b = {(BEi
,Wi) ∈ G1

e−f+1(Ei)}e−2a
i=0 such

that ab(p0) = (0, e − 2f + 1). For 0 � i � e − 2f we set abEi (pi) = (i, e − 2f + 1). For an index
of type i = e − 2f + 2k − 1, where 0 � k � f − a, we choose abEi (pi) = (e − 2f + k − 1, e −
2f + k + 1). If i = e − 2f + 2k, we choose the sequence abEi (pi) = (e − 2f + k, e − 2f + k + 1).
It is clear that each sequence abEi (pi) is obtained from abEi−1 (pi−1) by raising one entry
by 1 while keeping the other fixed, and hence b is a limit g1

e−f+1 that smooths to a pencil
B ∈ G1

e−f+1(Y, p, (0, e − 2f)) on every nearby smooth curve [Y, p]. For each 0 � i � e − 2a −
1, there exists a section (unique up to scaling) σi ∈ Wi such that ordpi

(σi) + ordpi+1(σi) =
deg(BEi

). We denote by σc
i ∈ Wi a complementary section such that {ordpi

(σi), ordpi
(σc

i )} =
{abEi

0 (pi), a
bEi
1 (pi)}.

Using the set-up developed in [7] and [10] for studying degenerations of multiplication maps,
we find that the assumption that μB,M is not injective implies the existence elements ρi �=
0, ρi ∈ Ker{Wi ⊗ Vi → H0(Ei, BEi

⊗ MEi
)}, for each i � e − 2a, i � 0, satisfying the property

that ordpi+1(ρi+1) � ordpi
(ρi) + 1, for all i (see, for example [10, Section 4], for an explanation

of how to obtain the ρi). Moreover, if ordpi+1(ρi+1) = ordpi
(ρi) + 1, then if τi ∈ Vi is the section

(unique up to scaling) such that ordpi
(τi) + ordpi+1(τi) = deg(MEi

), then we must have

ordpi
(ρi) = ordpi

(τi) + ordpi
(σc

i ) = ordpi
(σi) + ordpi

(τ ′
i),

where τ ′
i ∈ Vi is another section such that ordpi

(τ ′
i) �= ordpi

(τi). In particular, since we
have explicitly described all the sequences abEi (pi) and amEi (pi), the assumption that
ordpi+1(ρi+1) � ordpi

(ρi) + 1 uniquely determines ordpi
(ρi).

Since abE0 (p0) = (0, e − 2f + 1) and μBE0 ,ME0
(ρ0) = 0, the non-zero section ρ0 must involve

both sections σ0 and σc
0, and then clearly ordp0(ρ0) � e − 2f + 1. We prove inductively that

for all integers i � e − 2a, i � 0, we have the inequality

ordpi
(ρi) � e − 2f + 1 + 2i. (24)
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Assuming (24) for i � e − 2a − 1, since ordpi+1(ρi+1) � ordpi
(ρi) + 1, the only way (24) can fail

for i + 1 is when ordpi
(ρi) = e − 2f + 2i + 1 and ordpi+1(ρi+1) = ordpi

(ρi) + 1. As explained
above, this implies that ordpi

(ρi) = ordpi
(τi) + ordpi

(σc
i ).

Writing i = c + a · β + j as above, ordpi
(τi) = r − a + 2 + c + (a − 1) · β + 2j if i � c, while

ordpi
(τi) = e − f − a + c, for 0 � i � c − 1. We deal only with the case i � c, the case 0 �

i � c − 1 being analogous. To determine ordpi
(σc

i ) we must distinguish between two cases.
When i = e − 2f + 2k − 1 with k � 1, then ordpi

(σc
i ) = e − 2f + k − 1. Otherwise, we write

i = e − 2f + 2k, in which case ordpi
(σc

i ) = e − 2f + k + 1. Suppose that we are in the former
case. Then we obtain the equality

e − 2f + 2i + 1 = ordpi
(ρi) =

(
r − a + 2 + c + (a − 1) · β + 2j

)
+ (e − 2f + k − 1),

which ultimately leads to the relation (a + 2)(r − e + f − β) = a − j − 1. However, j � a − 1
and β � r − e + f − 1, and hence we have reached a contradiction. The case when one can
write i = e − 2f + 2k is dealt with similarly. All in all, we may assume that we have proved
the inequality ordpe−2a

(ρe−2a) � e − 2f + 1 + 2(e − 2a). We note that on the curve [T, q] =
[Ee−2a, pe−2a] we have abT (pe−2a) = (e − f − a, e − f − a + 1), while

amT (pe−2a) = (e − 2a, e − 2a + 1, . . . , 2e − f − 3a, 2e − f − 3a + 3, . . . , 2e − f − 2a + 2).

Equivalently bT = |B| + (e − f − a) · q, where B ∈ W 1
a+1(T ), while mT = (e − 2a) · q + |N |,

where N ∈ Pice−f+2a(T ) has the property that h0
(
T,N(−(e − f − a + 3) · q)) � a. Remem-

bering that ordq(ρe−2a) � (e − 2f + 1) + 2(e − 2a), after subtracting the base locus supported
at q, we find an element

0 �= ρT ∈ Ker{H0(B) ⊗ H0(N) −→ H0(B ⊗ N)}
such that ordq(ρT ) � e − f − a + 1. Equivalently, the multiplication map

μB,N : H0(B) ⊗ H0
(
N(−(e − f − a + 3) · q)) −→ H0

(
B ⊗ N(−(e − f − a + 3) · q))

is not injective. By using Riemann–Roch we find that N(−(e − f − a + 3) · q) = KT ⊗ B̃∨,
where B̃ ∈ W 1

a+1(T ). Choosing B̃ = B ∈ W 1
a+1(T ), we notice that μB,N can be identified with

the Petri map H0(B) ⊗ H0(KT ⊗ B∨) → H0(KT ), which is injective because [T ] ∈ M2a was
chosen to be Petri general. Thus we have reached a contradiction by reducing (18) to the
Gieseker–Petri theorem, which completes the proof in the case (i).

Next we turn to case (iii) when [e/(r + 1 − e + f)] < 2. Since the argument is similar to
that for (i), we only outline the main steps. If e � r − e + f , that is, when α0 = d − r − f − e,
we can easily determine a linear series (A,WA) ∈ Gr−e+f

d−e (Y, p, α). Precisely, one can see that
A = KY ⊗OY ((d − 3e + 2) · p) and

|WA| = (d − r − f − e) · p + |KY ⊗OY

(
(r + f − 2e + 2) · p)|.

In this case we find that |Gr−e+f
d−e (Y, p, α)| = 1. Condition (18) translates into saying that for a

generic (L,WL) ∈ Ge−f−1
2e−f−1(Y, p, β) we have the vanishing statement

H0
(
Y,L ⊗ K∨

Y ((e + f − 2) · p)
)

= 0 ⇐⇒ H0
(
Y,K⊗2

Y ⊗ L∨(−(e + f − 2) · p)
)

= 0. (25)

One can prove (25) by degenerating Y to a generic string of elliptic curves and we skip the
details. Finally, if [e/(r + 1 − e + f)] = 1, then c = 2e − r − f − 1 and condition (18) boils
down to showing that one can find a pencil B ∈ G1

e−c+1

(
Y, p, (0, r − e + f − c + 1)

)
and a

linear series L ∈ Ge−f−1
2e−f−1(Y, p, β), such that the multiplication map

H0(B) ⊗ H0
(
K⊗2

Y ⊗ L∨(−(2e − 4 − r) · p)
)−→ H0(K⊗2

Y ⊗ B ⊗ L∨(−(2e − 4 − r) · p)
)

is injective. This situation is handled along the lines of (i) and we omit the details here.
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Finally, we prove Theorem 0.5 assuming that condition (22) is satisfied. This case is not
covered by cases (i)–(iii) above.

Proposition 3.3. Let [Y, p] ∈ Me,1 be a general pointed curve. Then there exists a linear

series (A,WA) ∈ Gr−e+f
d−e (Y, p, α) such that H0

(
Y,OY ((d − 1) · p ⊗ A∨)

)
= 0.

Proof. By contradiction, we assume that H0(OY ((d − 1) · p) ⊗ A∨) �= 0 for every [Y, p] ∈
Me,1 and for every linear series (A, VA) ∈ Gr−e+f

d−e (Y, p, α). We let [Y, p] degenerate to the
stable curve [Y0 := E0

⋃
p1

E1

⋃
p2

. . .
⋃

pe−3
Ee−3

⋃
pe−2

B, p0], where E0, . . . , Ee−3 are elliptic
curves, the points pi, pi+1 ∈ Ei are such that pi − pi+1 ∈ Pic0(Ei) is not a torsion class, and
[B, pe−2] ∈ M2,1 is such that pe−2 ∈ B is not a Weierstrass point. For all integers 0 � i � e − 3
we find that there exist sections

0 �= τi ∈ H0
(OEi

((d − 1) · pi) ⊗ A∨
Ei

)
and 0 �= τB = τe−2 ∈ H0

(OB((d − 1) · pe−2) ⊗ A∨
B

)
such that

0 � ordp0(τ0) � ordp1(τ1) � . . . � ordpe−3(τe−3) � ordpe−2(τB).

Moreover, we see that ordpi
(τi) � i for 0 � i � e − 2. In particular, ordpe−2(τB) � e − 2. Since

ρ(e, r − e + f, d − e, α) = 0, limits gr−e+f
d−e on E0 ∪ . . . ∪ Ee−3 ∪ B are smoothable to every

curve of genus g. These finitely many limits gr−e+f
d−e are in bijective correspondence with

possibilities of choosing the vanishing sequences {alEi (pi)}0�i�e−3 and alB (pe−2) in such a
way that for all 0 � i � e − 3, the sequence alEi+1 (pi+1) is obtained from alEi (pi) by raising all
entries by 1 except a single entry which remains unchanged. To complete the proof it suffices
to exhibit a single limit gr−e+f

d−e on E0 ∪ . . . ∪ Ee−3 ∪ B having the property that if (AB , VB)
denotes its B-aspect, then H0(OB((d − e + 1) · pe−2) ⊗ A∨

B) = 0.
We describe such a gr−e+f

d−e explicitly by specifying the sequences {αlEi (pi)}0�i�e−3 and
αlB (pe−2). Clearly, αlE0 (p0) equals (α0, . . . , α0, α

lE0
r−e+f+1−c(p0) = α0 + 1, . . . , α0 + 1). For 1 �

i � c, αlEi (pi) is obtained from αlEi−1 (pi−1) by increasing all entries by 1, except for
α

lEi

r−e+f+i−c(pi) = α
lEi−1
r−e+f+i−c(pi−1). Thus αlEc (pc) = (α0 + c, . . . , α0 + c). Next, for an index i

such that c + β(r + 1 − e + f) < i � c + (β + 1)(r + 1 − e + f), where 0 � β � [e/(r + 1 − e +
f)], if we write i ≡ j + cmod r + 1 − e + f , with 1 � j � r − e + f , then the sequence αlEi (pi)
is obtained from αlEi−1 (pi−1) by raising all entries by 1, except for α

lEi
j−1(pi) = α

lEi−1
j−1 (pi−1).

Switching from ramification to vanishing sequences we obtain

alB (pe−2) = (d − r − f − 2, d − r − f − 3, . . . , d − e − 5, d − e − 4, d − e − 2, d − e − 1),

that is, AB = OB((d − e − 2) · pe−2) ⊗ g1
2, and then

H0(OB((d − e + 1) · pe−2) ⊗ A∨
B) = H0(OB(3 · pe−2) ⊗ (g1

2)
∨) = 0.

This contradicts the fact that ordpe−2(τB) � e − 2, which completes the proof.

4. Higher ramification points of a general line bundle

In this section we prove Theorem 0.10. We fix an arbitrary smooth curve C of genus g and for
n � 1 we denote by [n]C : Picd(C) → Picnd(C) the multiplication by n map, [n]C(L) := L⊗n.
It is an immediate consequence of Riemann–Roch that for a general L ∈ Picd(C), we have
h0(L⊗n) = max{nd + 1 − g, 0}.

First we show that for a very general L ∈ Picd(C) we have wL⊗n

(p) � 1 for all p ∈ C and
n � 1. Indeed, let us assume that wL⊗n

(p) � 2, where n is chosen such that nd � g, so that
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h0(C,L⊗n) = nd + 1 − g. Then there are two possibilities:
(i) h0

(
C,L⊗n(−(nd + 2 − g) · p)

)
� 1 or

(ii) h0
(
C,L⊗n(−(nd − g) · p)

)
� 2.

In case (i) we consider the map C × Cg−2 → Picnd(C), (p,E) �→ OC

(
(nd + 2 − g) · p + E

)
,

and we denote by Σn its image, which is a divisor on Picnd(C). Then (i) is equivalent to
L ∈ [n]∗C(Σn), which is a divisorial condition on Picd(C) for each n.

In case (ii) we look at the map C × C1
g → Picnd(C), (p,E) �→ OC

(
(nd − g) · p + E

)
, and we

denote by Vn its image. Since C1
g is generically a P1-bundle over Cg−2, it follows that Vn is a

divisor on Picnd(C) and then possibility (ii) is equivalent to L ∈ [n]∗C(Vn). Thus we see that
for L ∈ Picd(C) − ⋃

n�1[n]∗C(Σn + Vn) all the ramification points of all powers L⊗n with n � 1
are ordinary. This proves the first part of Theorem 0.10. To prove the second part we start
with the following.

Proposition 4.1. We fix a point p ∈ C and integers n and d such that nd � g. Then the
locus

Dn := {L ∈ Picd(C) : h0
(
C,L⊗n(−(nd + 1 − g) · p)

)
� 1}

is an irreducible divisor on Picd(C) and [Dn] = n2θ.

Proof. We set a := max{0, 2g − 1 − nd} and define two vector bundles En and Fn on
Picd(C) of the same rank and having fibres En(L) = H0(C,L⊗n ⊗OC(a · p)) and Fn(L) =
H0(C,L⊗n ⊗O(a+nd+1−g)·p(a · p)) over each point L ∈ Picd(C). Then Dn is the degeneracy
locus of the morphism En → Fn obtained by evaluation sections of L⊗n ⊗OC(a · p) along
(a + nd + 1 − g) · p. The Picard bundle En is negative (that is, E∨

n is ample), because En is the
pull-back under the finite map [n]C of a negative bundle on Picd(C) (cf. [1, p. 310]). Moreover,
Fn is algebraically equivalent to a trivial bundle, and hence E∨

n ⊗Fn is ample too. Applying
the Fulton–Lazarsfeld connectedness theorem (see [12] or [1, p. 311]), we conclude that Dn is
connected. Since Dn is also smooth in codimension 2 we obtain that Dn must be irreducible.
Finally, [Dn] = c1(Fn − En) = [n]∗C(θ) = n2θ.

End of the proof of Theorem 0.10. We fix integers 1 � a < b and consider the variety
Σab := {(p, L) ∈ C × Picd(C) : p ∈ R(L⊗a) ∩ R(L⊗b)} and we denote by φ1 : Σab → C and
φ2 : Σab → Picd(C) the two projections. For a fixed p ∈ C, the fibre φ−1

1 (p) is identified with
the intersection of the two irreducible divisors Da and Db. Since [Da] �= [Db] for a �= b, it
follows that Da ∩ Db is of pure codimension 2 inside Picd(C), and therefore dim(Σab) = g − 1.
We obtain that a line bundle L ∈ Picd(C) − ⋃

a<b φ2(Σab) will enjoy the property that
R(L⊗a) ∩ R(L⊗b) = ∅ for a < b. �
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