Mo IS OF GENERAL TYPE

GAVRIL FARKAS

1. INTRODUCTION

The aim of this paper is to prove the following result:
Theorem: The moduli space of curves of genus 22 is of general type.

We recall that it is a famous result due to Harris, Mumford and Eisenbud that ﬂg
is of general type for g > 24 (cf. [HM], [H1], [EH]). On the other hand, a classical theo-
rem due to Severi says M, is unirational for g < 10 (see [AC1] for a modern exposition).
Similar results for higher g were proved in the 1980’s: Sernesi showed that M5 is uni-
rational (cf. [Se]), then Chang and Ran settled the unirationality of M;i; and M3 and
gave a different proof of Sernesi’s result in genus 12 (cf. [CR1]). One also knows that
M5 and Mg have negative Kodaira dimension (cf. [CR2]). The case of M4 remained
open for a long time until recently when Verra proved that M, is also unirational (cf.
[V]). The highest genus not entirely covered by [EH] is ¢ = 23. One knows that the
Kodaira dimension of M3 is > 2 (cf. [F1]).

Closely related to the problem of determining the Kodaira dimension of M, is
the Harris-Morrison Slope Conjecture which asserts that the slope of every effective
divisor on M, is > 6 + 12/(g + 1) -this quantity being the slope of every Brill-Noether
divisor ﬂ;d of curves [C] € M, carrying a g), when g — (r +1)(g —d+r) = —1
(cf. [HMo], [EH]). Recalling that the canonical divisor on ﬂg is given by the formula
Kyg, = 13X — 200 — 301 — 203 — - -+ — 20}y 9], the Slope Conjecture trivially implies that
k(M) = —oo for all ¢ < 22. However, the Slope Conjecture fails for a large number
of genera (see [FP], [F2], [F3], [Kh]) in the sense that there are examples of effective
divisors on M, of slope < 6 + 12/(g + 1). This raised the prospect of constructing an
effective divisor D on M, for some g < 23, having slope s(D) < 13/2 = s(Kﬂg). In
[F2] we came very close to succeeding in this when we showed that on Mas, the slope

of the closure of the divisor 233 5 consisting of curves [C] € May for which there exists
L
a linear series L € W39(C) such that C B P10 fails to satisfy the Green-Lazarsfeld

property (Na), is equal to s(Z22,2) = 1665/256 = 6.503 ... < 6 + 12/23.

In this paper we construct an effective divisor on My of slope < 13/2 and prove
the following result:

Research partially supported by an Alfred P. Sloan Fellowship, the NSF Grants DMS-0450670 and DMS-
0500747 and a 2006 Texas Summer Research Assignment.

1



2 G. FARKAS
Theorem 1.1. The following locus of smooth curves of genus 22
D9 :={[C] € Myg : IL € WE(C) with Sym?H®(C, L) — H°(C, L®?) not injective}

is a divisor on Mag and the class of its compactification on Moy is given by the formula:

11

_ 17121 14511

Do = 132822768<W)\ — 0= St ) bﬂj)a
j=2

where b; > 1 for 2 < j < 11. It follows that s(Dae) = 17121/2636 = 6.49506. . ., hence Moy
is of general type.

2. THE DIVISOR Dy9

In this section we construct two tautological vector bundles over the Severi vari-
ety of plane curves of genus 22 and degree 17 and define the divisor Dy as the image
of the first degeneration locus of a natural map between these bundles.

We denote by M, the open substack of May consisting of curves [C] € Mgy such
that W3,(C) = 0 and W5 (C) = 0. Standard results in Brill-Noether theory guarantee
that codim(Mas — MYy, M) > 3. If ‘Bic%g denotes the Picard stack of degree 25 over
M), (that is, the étale sheafification of the Picard functor), then we consider the substack
®S. C Pic3) parametrizing pairs [C, L] where [C] € MY, and L € W% (C). We denote
by o : 85, — M), the forgetful morphism. Note that if L € W& (C) then K¢ ® LY €
WE(C) and since the classical Severi variety of plane curves of given degree and genus
is irreducible (cf. [H2]), it follows that &S; is irreducible as well. For a general [C] €
MY, the fibre o 1([C]) = W (C) is a smooth curve and &5; is an irreducible stack of
dimension dim(&5;) = dim(Myz) + 1. Moreover, &5 is smooth at a point [C, L] if an

only if H*(C,N¢) = 0, where N; is normal line bundle of the map f Mol p2 ag

explained in [AC2], Proposition 2.9, the vanishing condition H'(C, Ny) = 0 is satisfied
outside a subset of 5 of dimension < g—8 = 14, hence for the purpose of codimension
< 2 calculations we carry out in this paper, we can work with &$; as if it was a smooth
stack.

We denote by 7 : M3, ; — M3, the universal curve over the moduli stack and
by p2 : M3y X g9, B35 — ©3; the natural projection. If £ is the Poincaré bundle over
M3y1 X pq9, ©35, then by Grauert’s Theorem & := (p2)«(£) and F := (p2).(L#?) are
vector bundles over ®$; with rank(€) = 7 and rank(F) = 29. There is a natural vector
bundle map ¢ : Sym?*(£) — F and we denote by Usy C S its first degeneracy locus.

We set D99 := 0. (Us2) and clearly Uy has expected codimension 2 inside 635 hence Dy
is a virtual divisor on M.

We shall extend the vector bundles € and F over a partial compactification of ®$.
We denote by AY € Ay C My the locus of curves [C U, E], where E is an arbitrary
elliptic curve, [C] € My is a Brill-Noether general curve of genus 21 and y € C' is
an arbitrary point. We also denote by AJ C Ay C Ma, the locus consisting of curves
C/y ~ q, where [C, q] € Mgy, ; is Brill-Noether general and y € C'is arbitary, as well as
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their degenerations [C' U, E] where E is a rational nodal curve (that is, j(E) = 00).
Once we set Myy := MY, UAJUAY, one can extend the map o : 85, — MY, to a proper
map o : @535 — My, from the variety @535 of (generalized) limit linear series g5 over the
tree-like curves from Mgg.

Like in [F2], [F3], our technique for determining the class of the divisor Do is
to intersect it with two standard test curves sitting in the boundary of Mas: we fix a

general pointed curve [C, q] € Ma; 1 and a general elliptic curve [E,y] € M; ;. Then
we define the families

CO::{C/qu:yEC}CAOCMggandCl Z:{CUyE:yEC}CAl CMQQ.
These curves intersect the generators of Pic(Ma2) as follows:
C'A=0,C" §p=-42,C% -6 =1land C°-§; =0for2 < j <11, and
Cl-A=0,C"6,=0,C"- 6 =-40and C' - §; =0 for2 < j < 11.
Before we state the next results, we recall that if X is a stable curve whose dual
graph is a tree and [ is a limit g/; on X, for an irreducible component Y of X, we denote
by ly = (Ly,Vy C H°(Ly)) the Y-aspect of l. For y € Y we denote by {aly (C)}s=o..r

the vanishing sequence of [ at y and by p(ly,y) := p(g,7,d) — Z;":O(aﬁy (y)—1) the adjusted
Brill-Noether number with respect to the point y.

Proposition 2.1. Fix general curves [C] € Moy and [E, y] € M1 and consider the associated
test curve C* C Ay C Maa. Then we have the following equality of 2-cycles in ®$:
U*(Cl) =X+ X1 xXo+TogxZyg+n1-2Z1+n9:-Zo+n3- L3,

where
X = {(y, L) € C x Wg5(C) : h°(L ® Oc(~2y)) = 6},
X1 :={(y,L) € C x W&(C) : a*(y) = (0,2,3,4,5,6,8)},
8

0
Xz = {lp € GY(B) : af" (y) > 2,0 (y) = 8} = P(%>
Ty = {(1,A® Oc(y)) :y € C, A e WE(O)}, Zo = GX(E) = F,
0
Zy = {lp € GS(E) : af’ (y) > 3,alf (y) = 9} = P(goggig%)’
0
Zy = {lp € GS(E) : aif (y) > 3,alf (y) = 8} = P(Zoggigzii)’
0 z
Zs = {lp € G§(E) : a'"(y) 2 (0,2,3,4,5.6,7)} = | P(Zoggigzizg)

z2€E
where the constants ny, ng and ng are explicitly known positive integers.

Remark 2.2. The constants n;,1 < i < 3 have the following enumerative interpretation.
First n; is the number of linear series L € W (C) such that there exists an unspecified
point y € C with a*(y) = (0,2,3,4,5,6,9). Similarly, ns is the number of those L €
W3 (C) for which there exists y € C with a’(y) = (0,2,3,4,5,7,8). Finally ns is the
number of points y € C such that there exists L € W$,(C) which is ramified at y. If ng
is the number of g§,’s on C, then Ty consists of ng disjoint copies of the curve C.
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Proof. By the additivity of the Brill-Noether number, if {ic, [} is a limit g5; on C U, E,
we have that 1 = p(22,6,25) > p(lc,y) + p(lg,y). Since p(lg,y) > 0, we obtain that
pllc,y) <L Ifp(lg,y) = 0, thenlp = 18y + |Og(7y)|, that is, Iy is uniquely determined,
while the C-aspect I¢ is a complete g§- with a cusp at the variable point y € C. This
gives rise to an element from X. In the case when p(lc,y) = 0 and p(ig,y) = 1, we
obtain that the underlying line bundle L¢ of l¢ either has a base point at y and then
(y,Lc) € Ty, or else, Lc belongs to the curve X; and lg(—17y) is a gg on E having
vanishing sequence > (0, 2,3,4,5,6,8), that is, [g(—17y) is an element of X5. Finally,

we have to consider the case when p(lc,y) = —1 and p(lg,y) = 2. There are a finite
number of such points y € C, and running through all the possibilities we obtain the
components Z; for 1 <17 < 3. O

Before stating our next result we introduce some notation. We fix a general pointed
curve [C, ¢] € Ma; 1 and denote by Y the following surface:

Y = {(y. L) € C x W(C) : K(C, L & Oc(—y — q)) = 6}

and by 71 : Y — C the first projection. Inside Y we consider two curves corresponding

to g5;’s with a base point at ¢:

1= {(y. A80c(y)) 1y € C,A € W5, (C)} and Ty == {(y, A®Oc(q)) : y € C, A € Wiy (C)}
intersecting transversally in ng = |[W$,(C)| points (Note that sine [C] € Mo is Brill-
Noether general, W3, (C) is a reduced 0-dimensional scheme consisting of n very am-
ple (in particular, base point free) g5,’s). We denote by Y’ the blow-up of Y at these ng
points and at the points (¢, B) € Y where B € W% (C) is a linear series with the prop-
erty that h°(C, B ® O¢(—8¢q)) > 1. We denote by E4, Eg C Y the exceptional divisors
corresponding to (¢, A ® Oc(q)) and (g, B) respectively, by € : Y’ — Y the projection
and by fl, I's C Y the strict transforms of T'; and Ts.

Proposition 2.3. Fix a general curve [C,q] € Moy 1 and consider the associated test curve
C% C Ag C Maa. Then we have the following equality of 2-cycles in &S:

U*(CO) = Y,/fl &= fg,
that is, o*(C) can be naturally identified with the surface obtained from Y by identifying the
disjoint curves I'y and Ty over each pair (y, A) € C x W$,(C).

Proof. We fix a point y € C — {¢}, denote by [C) := C/y ~ q] € Mo, v : C — Cf
the normalization map, and we investigate the variety ng, (e c P_iCQS(Cg) of torsion-
free sheaves L on C) with deg(L) = 25 and h°(C),L) > 7. If L € Wg5(Cy), that
is, L is locally free, then L is determined by v*(L) € W (C) which has the property
that h°(C,v*L ® Oc(—y — q)) = 6. However, the line bundles of type A @ Oc(y) or
A ® Oc(q) with A € W3,(C), do not appear in this association even though they have
this property. In fact they correspond to the situation when L € W§5 (C{) is not locally
free, in which case necessarily L = v, (A) for some A € W§,(C). Thus Y N7, ' (y) is the
partial normalization of WSS(CS ) at the ng points of the form v, (A) with A € W$,(C).
A special analysis is required when y = g, that is, when C} degenerates to C U, Ex,
where E is a rational nodal cubic. If {lo,lg, } € o 1([C U; Ex)), then an analysis
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along the lines of Theorem 2.1 shows that p(lc,¢) > 0 and p(lg.,q) < 1. Then either
lc has a base point at ¢ and then the underlying line bundle of i¢ is of type A ® O¢(q)
while lp__(—18¢q) € W?(Eoo), or else, a'“(¢q) = (0,2,3,4,5,6,8) and then Ip_(—17q) €
P(H%(E.(8q))/H"(Ex(6q))) = Ep, where B € W;(C) is the underlying line bundle
of lc. O

Throughout the paper we use a few facts about intersection theory on Jacobians
which we briefly recall (see [ACGH] for a general reference). If [C] € M, is Brill-
Noether general, we denote by P the Poincaré bundle on C' x Pic?(C) and by 7 : C' x
Pic?(C) — Cand my : C'xPic?(C) — Pic?(C) the projections. We define the cohomology
class ) = 7% ([point]) € H?(C x Pic*(C)), and if 6y, . .., 82, € H'(C,Z) = H(Pic*(C), Z)
is a symplectic basis, then we set

g
7= = 3 (FH )T (B ra) = T (B 4a)T3(00) )
a=1
We have the formula ¢;(P) = dn + v, corresponding to the Hodge decomposition of
c1(P). We also record that v* = yp = 0, n* = 0 and 7* = —2n73(f). On W} (C) we
have the tautological rank r + 1 vector bundle M := (m2).(Pjcxwr(c)). The Chern
numbers of M can be computed using the Harris-Tu formula (cf. [HT]): if we write
S gci(MY) = (1+21)-- (1 + 2,41), then for every class ¢ € H*(Pic?(C),Z) one has
the following formula:
g9+r—d+ij—j+l
(g+r—d+ij—7j —l—l)!>1§j,l§r+1 ¢
If we use the expression of the Vandermonde determinant, we get the identity
) _ st (i — ay)
(aj +1-DVigjisrer T2 (a5 +7)!

i T+l
.1‘11 "'-/,Cr_i_l C— det(

det(

By repeatedly applying this we get all intersection numbers on W (C) which we’ll need:

Lemma 2.4. If [C] € My is Brill-Noether general and c; := ¢;(M") are the Chern classes of
the dual of the tautological bundle on W2 (C'), we have the following identities in H*(W2(C), Z):

018
W) =—-—" .
Wiz (C) 73156608000
019 . 5 4 - 21
T f: m, ) -£:x3-§:0,f01’any§ - H (PIC (C))
620 .
T1x9 - § = m . é‘, r1x3 - é‘ = X923 - § = 07 fOT anyé‘ S HQ(P1C21(C)).
620 .
.’L‘% . 5 = m . 5, .T% . 5 = —21x2 - 5, .T% . 5 = 0, fOr anyf S H2(P1C21(C)).
3 021 3 t21 3 021
17 7949504192000° “2 T 6584094720000° 3~ 12T T 36870030432000°
.1‘%1‘2 = —ZC%, ZCll‘g = 56%1‘3 = l‘gl‘g = 0, 1‘1%‘% = .1‘%%‘3 = —X1X2x3.

We are going to extend the vector bundles £ and F over the space 6535 of limit
linear series:
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Proposition 2.5. There exist two vector bundles € and F defined over &S5 with rank () = 7
and rank(F) = 29 together with a vector bundle morphism Sym?(E) — F, such that the
following statements hold:

e For (C,L) € &S5 we have that E(L) = H°(C, L) and F(L) = H°(C, L®?).

e Fort = (CU, E,lc,lp) € o= Y (AY), where g(C) = 21,9(E) = land lc = |Lc| is
such that Lc € W(C) has a cusp at y € C, then £(t) = H°(C, L¢) and

F(t) = H(C, LE* (=2y)) © C - u?,

where uw € H°(C, L¢) is any section such that ordy(u) = 0. If Le: has a base point at
y, then £(t) = H°(C, L¢) = HY(C, Lc ® Oc(—y)) and the image of a natural map
F(t) — HO(C, LE?) is the subspace H(C, LE? ® Oc(—2y)).

e Fixt = (C) :=C/y ~q,L) € 07 (A]), with g,y € Cand L € Wg5(02) such that
h(C,v*L ® Oc(—y — q)) = 6, where v : C — CY is the normalization map. In the
case when L is locally free we have that

E(t) = HOC.v" L) and F(t) = H(C.v" L% © Oc(~y — q)) & C -2,
where w € H°(C,v*L) is any section not vanishing at y and q. In the case when L is

not locally free, that is, L € Wg5(Cé/) —WE(CY), then L = v.(A), where A € W3,(C)
and the image of the natural map F(t) — HY(C,v* L®?) is the subspace H°(C, A®?).

We determine the cohomology classes of the surfaces X and Y introduced in
Propositions 2.3 and 2.1.

Proposition 2.6. Let [C'] € Mg be a Brill-Noether general curve and q € C' a general point.
If M denotes the tautological rank 3 vector bundle over W (C) and ¢; := ¢;(M"), then one
has the following relations:

(1) [X] = 75(ca) — 610 + (T4n + 2v)75(c1) € HAH(C x WE(O)).
() [Y] = m5(ca) — 200 + (161 + y)75(c1) € HH(C x WE(C)).

Proof. By Riemann-Roch, if (y, L) € X, then the line bundle M := Ko ® LY ® O¢(2y) €
W2 (C) has a cusp at y. We realize X as the degeneracy locus of a vector bundle map
over C x W (C). For each pair (y, M) € C x W (C), there is a natural map
HY(C,M & Oq,)¥ — H(C, M)V
which globalizes to a vector bundle morphism ¢ : J;(P)V — 73 (M)Y over C x W (C)
(Note that W (C) is a smooth 3-fold). Then we have the identification X = Z;(¢) and
the Thom-Porteous formula gives that [X] = ¢ (75 (M) — J1(PY)). From the usual exact
sequence over C' x Pic!”(C)
0 — 71 (Ke)®@P — J1(P) — P — 0,
we can compute the total Chern class of the jet bundle
(L (P)Y) = (2(1777 + v)j) : (2(5777 + v)j) =1—06n0 + 74n + 27,
720 J=0

which quickly leads to the formula for [X]|. To compute [Y'] we proceed in a similar
way. We denote by p1,ps : C x C x Pic!"(C) — C x Pic!”(C) the two projections, by
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A C O x C x Pic'7(C) the diagonal and we set T, := {q} x Pic!"(C). We introduce the
rank 2 vector bundle B := (p1)+(p5(P) © Oafper )) defined over C' x W7 (C) and we
note that there is a bundle morphism y : BY — (7r2) (M)Y such that Y = Z;(x). Since
we also have that

a(BY) 7= (1+ (ATn+7) + (1T +79)* + - ) (1 =),

we immediately obtained the desired expression for [Y]. O

For future reference we also record the following formulas:
(1) c3(my(M)Y — Ji(P)Y) = m3(es) — 6nms (c1) + (74n + 2y)7w5(c2) and

(2) ca(my(M)Y — J1(P)Y) = w3 (c3)(T4n + 2) — 675 (co)nh.

Proposition 2.7. Let [C] € Ma; be a Brill-Noether general curve and denote by P the Poincaré
bundle on C x Pic*"(C'). We have the following identities in H*(Pic'7(C)):
2

c1 (Rlﬂg*(P\CxW127(C))) =0—c1 and cy (R WQ*(P|C><W (C))) = E — fOc1 + co.

Proof. We recall that in order to obtain a determinantal structure on W (C) one fixes a
divisor D € C. of degree e >> 0 and considers the morphism

(12)+(P ® O(n} D)) — (m2)+(P ® O(W}EDMID)).
Then W (C) is the degeneration locus of rank e — 6 of this map and there is an exact
sequence of vector bundles over W (C):
0 — M — (m2) (PRO(7* D)) — (WQ)*(’P@O(TFTD)MTD) — Rlm, (P\cxW%(C)) — 0,

from which our claim easily follow once we take into account that (). (PRO(7} D) et D)
is numerically trivial and ¢;((m2).(P ® O(r;D))) = e~’. O
Proposition 2.8. Let [C] € Mgy and denote by p1,ps : C x C x Pic!"(C) — C x Pic!"(C)

the natural projections. We denote by As the vector bundle on C x Pic™(C) with fibre at each
point As(y, M) = H(C, K§* ® M®=2 @ O¢(2y)). We have the following formulas:

c1(As) = —40 — 4y — 287 and co(Az) = 86% + 10410 + 16+06.

Proof. Recall that if M € WZ(C) then by duality L := K¢ ® Oc(2y) ® MV € W&(O)
is a linear series with a cusp at y. In this notation, A, is the vector bundle with fi-
bre As(y, M) = H°(C, L®? @ Oc(—2y)). To compute c;(Az2) we apply Grothendieck-
Riemann-Roch to the map ps. If v : C' x C x Pic!"(C) — C denotes the projection onto
the first coordinate, then one obtains that

ch(pa (vi(K§?) @ P2 @ 0(24))) =

= (p2). (ch (v (KE?) @ 9} (PPC2) 0 0(21)) - <1—1u1<f<c>>)

and looking at terms of degree 2 and 3 one finds ¢ (Ay) = —40 —4y—28n and cha(Az) =
—8nb. O

The next proposition is proved along the lines of Proposition 2.8:
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Proposition 2.9. Let [C, q| € M2y 1 be a general pointed curve an we denote by By the vector
bundle on C x Pic'"(C') having fibre By (y, M) = H°(C, K&? @ M®(=2 @ Oc(y + q)) at each
point (y, M) € C x Pic'"(C). Then we have that:

c1(By) = —40 + Ty — 2 and co(Bs) = 86% — 2816 + 86-y.

Now we prove that the virtual degeneracy locus Das is an “honest” divisor on
Mas, that is, the vector bundle morphism Sym?(£) — F is generically non-degenerate:

Theorem 2.10. If [C] € Moy is a sufficiently general smooth curve, then the multiplication
map Sym?H°(L) — HC(L®?) is injective for every L € W (C). It follows that Do is a
divisor on Mos.

Proof. Throughout this proof we use the set-up described in Section 4 of [FP] for un-
derstanding degenerations of multiplication maps on curves. We consider a degenerate
curve [S := C U, D] € Ag C My where (C,q) and (D, q) are suitable general pointed
curves of genus 8 and 14 respectively. Suppose by contradiction that [S] € Da2. Then
there exists a limit g5; on S, say

l={lc=(Lc,Vo € H(Lc)), Ip = (Lp,Vp C H(Lp)} € o ([8]),
together with # 0 elements
pc € Ker{Sym? (V) — H°(LE?)} and pp € Ker{Sym*(Vp) — H°(LE?)},

such that ord,(pc) + ord,(pp) > 50 = deg(L¢) + deg(Lp). Limit linear g5;’s on S are
indexed by partitions 0 < 3y < 1 < ... < B¢ < 3 such that Z?:o B = g(C) =8.1f
we pick such a partition, then Ic(—11¢q) € G$,(C) is a linear series with ramification
sequence (fo, - .., 3) at ¢, while Ip(—5q) € G5,(D) is a linear series with complemen-
tary ramification sequence (3 — 3, ...,3 — (o) at ¢. We claim that by analyzing all the
partitions (53;)o<i<e one can always choose (C,q) and (D, ¢q) general enough such that
either pc or pp must be 0. For simplicity, we carry this out only in a single case, the
other being rather similar. Say we choose the partition (5;)o<i<¢ = (0,0,1,1,1,2,3).
Then if Lo € Pic'*(C) denotes the underlying line bundle of /¢ (—11q), we have that
alc(q) = (0,1,3,4,5,7,9), whereas if Lp € Pic**(D) denotes the underlying line bun-
dle of Ip(—5q) then al?(q) = (0,2,4,5,6,8,9). A careful analysis similar to the one in
the proof of Theorem 5.1 in [FP], shows that the only possible situation when pc and
pp could satisfy the compatibility condition at g, is when ord,(pc) = 9(= 0+9 = 4+5).
More precisely, if We € Sym?H?(L¢) denotes the 13-dimensional space of sections
with order > 13 at ¢, then

0 # pc € Ker{We — H°(LE? ® Oc(—9¢))}

(Note that the kernel is indeed 1-dimensional if [C, q] € Mg ; is sufficiently generic). By
compatibility, then ord,(pp) > 9(= 0+ 9 = 4 +5). If Wp C Sym?H (Lp) is the space
of those pp with ord,(pp) > 9, then dim(Wp) = 17 and we have that

0# pp € Ker{Wp — H’(LE? ® Op(—99))},

where the target is 18-dimensional. One has to show that this is indeed a divisorial con-
dition on M4,1 , which can be seen by further degenerating [D, ¢| to reducible curves
of smaller genus.
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0

As a first step towards computing [Ds2] we determine the §; coefficient in its
expression:

Theorem 2.11. Let [C] € Mgy be Brill-Noether general and denote by C' < A; the associated
test curve. Then o*(C*) - co(F — Sym?(&)) = 4847375988. It follows that the coefficient of &,
in the expansion of Dz is equal to by = 731180268.

Proof. We intersect the degeneracy locus of the map Sym?(£) — F with the surface
o*(C1) and use that the vector bundles £ and F were defined by retaining the sections
of the genus 21 aspect of each limit linear series and dropping the information coming
from the elliptic curve. It follows that Z; - c2(F — Sym?(€)) = 0 for 1 < i < 3 (since F
and Sym?(€)) are both trivial along the surfaces Z;), and [ X x Xs]-co(F—Sym?(£)) = 0
(because co(F—Sym? (€ ))|x1 % X is in fact the pull-back of a codimension 2 class from the
1-dimensional cycle X, therefore the intersection number is 0 for dimensional reasons).
We are left with estimating the contribution coming from X and we write

o (C1)-co(F =Sym?*(€)) = ea(Fix) —e1(Fix )er1 (Sym®E x) + ¢ (Sym”E| x) — 2 (Sym”E| x)
and we are going to compute each term in the right-hand-side of this expression.

Recall that we have constructed in Proposition 2.6 a vector bundle morphism
¢: Ji(P)Y — 73(M)Y and we denote by U := Ker((). In other words, U is a line bundle
on X with fibre

HY(C,M ® Oc(—2y))Y H°(C,L)
HY(C, M)V - HY(C,L® Oc(—2y))

over a point (y, M) € X. The Chern class of U can be computed from the Harris-Tu
formula and we find that (cf. (1)):

al(U)-¢gx = —es(m3(M)" = J1(P)")-§x = —(m5(es) —6nfms (c1) + (T4n+27)m5 (c2)) € x
for any class ¢ € H(C x W(C)), and
cH(U) = ea(my(M)" = Ji(P)") = m5(c3) (741 + 27) = 673 (c2)nf.
If A3 denotes the rank 30 vector bundle on X having fibres
As(y, M) = H(C,L®?) = H(C, K&* ® M®"2 ® Oc(4y)),

Uy, M) =

then there is an injective bundle morphism U®? — Aj3/A; and we consider the quotient
sheaf

As/ Az

®2

We note that since the morphism U ®2 . As/Aj vanishes along the curve I'y corre-
sponding to pairs (y, M) where M has a base point, G has torsion along I'y. A straight-
forward local analysis now shows that 7| x can be identified as a subsheaf of A3 with
the kernel of the map A3 — G. Therefore, there is an exact sequence of vector bundles
on X

G:=

0 — Ayx — Fix — U¥* —0,
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which over a generic point of X corresponds to the decomposition

Fly, M) = H(C,L?* ® Oc(~2y)) & C - v,
where u € HY(C, L) is such that ord,(u) = 1 (The analysis above, shows that the se-
quence stays exact over I'g as well). Hence c1(F|x) = c1(Agx) + 2¢1(U) and co(F|x) =
¢2(Agx). Furthermore, we note that the vector bundle w5 (R'm2.(P)) |VX is a subbundle
of £|x and we have an exact sequence

0— 75 (RITFQ*(P))

|VX—>5|X—>U—>0

from which we find that ¢; (€ x) = —0 + 73(c1) + ¢1(U). Similarly, we have that

2

3) c2(x) = % + m3(c2) — Om3(c1) — cr(U)ms(er) — Oer (U).

Itis elementary to check that ¢; (SmeE‘X) = 8c1(&x) and that CQ(Sym25|X) =27ci(Ex)+
9 c2(€)x), therefore we obtain that

o*(CY) - ca(F — Sym*(€)) = ca(Agyx) + c1(Ag x) e (U?)—
—8c1(Agx)e1(Ex) — 81 (Ex)e1(UF?) + 37¢1 (E1x) — 9e2(Ex) =
- (—120 o + %92 — 160y — 9 wh(ca) + (224 + 32y — 33 O)mi(c1) + 37w§(c§)) X+

+(168 1+ 24y — 250 +49 wi(c1)) - c1(U) + 213 (U) =
= 1754 nfm}(c2) + 1386 1y (c3) — 2498 nlmy(c3) + 741 nf1s(cy) — 4068 nrh(cy)mh(ca)—
—51 0 4 2738 (),
where the last expression lives inside H4(C' x WZ(C)). Using Lemma 2.4 we can evalu-

ate each term in this sum to find that o*(C"!)-co(F —Sym?(€)) = 691 62! /1207084032000,
which implies the stated formula for b;. O

Theorem 2.12. Let [C,q] € Moy be a suitably general pointed curve and L € W%(C) a
linear series with a cusp at q. Then the multiplication map Sym?H°(C, L) — H°(C, L®?) is
injective. It follows that we have the relation a — 12by + b; = 0.

Proof. We consider the pencil R C M, obtained by attaching to C' at the point ¢ a pencil
of plane cubics. It is well-known that R - A = 1,R -6y = 12 and R -6, = —1, thus
the relation a — 12by + b; = 0 would be immediate once we show that R N Dyy =
(). Assume by contradiction that R N Doy # () and then according to Proposition 2.1
there exists Mc € W (C) with h°(Mc ® Oc(—2q)) = 6 such that the multiplication
map Sym’H%(M¢) — H(ME?) is not injective. There are two cases to consider. If
q € Bs|M¢/|, then N := M¢c ® Oc(—q) € W$,(C) is such that the map Sym?H°(N) —
HY(N®2) is not an isomorphism. This is a divisorial condition on [C] € Ma; (cf. [Kh] or
[F3]) and therefore it does not occur if we choose [C] € Mo sufficiently generically. We
are left with the case when M¢ has a cusp at ¢, hence (¢, M) € X. This case is covered
by Theorem 2.10 which finishes the proof.

O
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Theorem 2.13. Let [C,q] € Moy be a Brill-Noether general pointed curve and denote by
CY C Ag the associated test curve. Then o*(C)-co(F—Sym?(£)) = 42by—b; = 4847375988.
It follows that by = 132822768.

Proof. This time we look at the virtual degeneracy locus of the morphism Sym?(£) — F
along the surface o*(C?). The first thing to note is that the vector bundles &|g+(cvy and
Flo+ (o) are both pull-backs of vector bundles on Y. For convenience we denote this
vector bundles also by £ and F, hence to use the notation of Proposition 2.3, £,+(c0)) =
€ (Ely) and F,« oy = €*(Fjy ). We find that

o*(CY) - co(F = Sym*(€)) = c2(Fyy) — e1(Fy) - c1(Ey) + G (Ey) — c2(Ey)

and like in the proof of Theorem 2.11, we are going to compute each term in this ex-
pression. We denote by V' := Ker(x), where x : BY — 75(M)V is the bundle morphism
coming from Proposition 2.6. Thus V is a line bundle on Y with fibre

_ H°(C, L)
- HY(C,L®Oc(~y—q))’

over each point (y, M) € Y, and where L := Kc ® MY ® Oc(y + q) € W(C). By using
again the Harris-Tu Theorem, we find the following formulas for the Chern numbers of
V:

(V) - &y = —(c3(m3(M)Y = BY) - §y) = (w3 (c3) + 75 (c2) (160 + ) — 213 (c1)nb) - &y,
for any class ¢ € H?(C x W (C)), and
A(V) = ea(my(M)Y = BY) = m3(c3) (160 + ) — 25 (c2)n6.

Recall that we introduced the rank 28 vector bundle By over C' x WZ(C) with fibre
Ba(y, M) = HY(C,L®? ® Oc(—y — q)). We claim that one has an exact sequence of
bundles over Y

(4) 0 — Byy — Fy — V® — 0.
If Bj is the rank 30 vector bundle on Y with fibres
Bi(y, M) = H'(C, L®%) = H*(C, K&* ® M®®) © Oc(2y + 29)),

V(y, M)

we have an injective morphism of sheaves V®? — B3 /B, locally given by
v®% = v? mod HY(C, L®? @ Oc(—y — q)),

where v € H°(C, L) is any section not vanishing at ¢ and y. Then F}y is canonically
identified with the kernel of the projection morphism

B;/B;
V®2
and the exact sequence (4) now becomes clear. Therefore c1(Fjy) = c1(Bajy) + 2¢1(V)

and cz(Fjy) = c2(Byy). Reasoning along the lines of Theorem 2.11, we also have an
exact sequence

83—>

0— 75 (R17T2*(77))|\;,

— &y —V—0
and from this we obtain that
2

c1(Ey) = —0+my(cr) +ei(V) and c2(&)y) = %+7T§(02)—97T§(01)—901(V)+01(V)7T§(01)-
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All in all, we can write the following expression for the total intersection number
U*(CO) ~ea(F — Sme(g)) = 02(52|Y) + CI(BQ|Y)CI(V®2)_
—8c1(Bay)e1(Ely) — 8c1(Ey )er(VE?) 4+ 37¢1 (Ely) — 9ea(Ey) =

17
- (592 + 2800 — 86~ — 97} (ca) + (16 — 330 — 56m)m3 (c1) + 377r;(c§)) Y]+

+(49 15 (c1) — 250 — 42+ 127)er (V) + 21c1(V) =
= 428 075 (ca) — 536 s () + 168 nh*m(c1) — 984 nmy (1) s (o) +
4378073 (c3) — 17 n0° + 592075 (c}),
and using once more Lemma 2.4, we get that 42by — b; = 5096031 /5364817920000. Since

we already know the value of b; and a — 12bg + b; = 0, this allows us to calculate a and
bo. O

End of the proof of Theorem 1.1. We write Das = a\ — Z;lzo b;jd;. Since a/by =
17121/2636 < 71/10, we are in a position to apply Corollary 1.2 from [FP] which gives
the inequalities b; > by for 1 < j <11, hence 5(Da2) = a/by < 13/2. O
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