# MODULI OF THETA-CHARACTERISTICS VIA NIKULIN SURFACES 

GAVRIL FARKAS AND ALESSANDRO VERRA

The importance of the locus $\mathcal{K}_{g}:=\left\{[C] \in \mathcal{M}_{g}: C\right.$ lies on a $K 3$ surface $\}$ has been recognized for some time. Fundamental results in the theory of algebraic curves like the Brill-Noether Theorem [Laz], or Green's Conjecture for generic curves [Vo] have been proved by specialization to a general point $[C] \in \mathcal{K}_{g}$. The variety $\mathcal{K}_{g}$ viewed as a subvariety of $\mathcal{M}_{g}$ serves as an obstruction for effective divisors on $\overline{\mathcal{M}}_{g}$ to having small slope [ $\overline{\mathrm{FP}]}$ and thus plays a significant role in determining the cone of effective divisors on $\overline{\mathcal{M}}_{g}$.

The first aim of this paper is to show that at the level of the the Prym moduli space $\mathcal{R}_{g}$ classifying étale double covers of curves of genus $g$, the locus of curves lying on a Nikulin K3 surfaces plays a similar role. The analogy is far-reaching: Nikulin surfaces furnish an explicit unirational parametrization of $\mathcal{R}_{g}$ in small genus, see Theorem 0.2, just like ordinary $K 3$ surfaces do the same for $\mathcal{M}_{g}$; numerous results involving curves on $K 3$ surfaces have a Prym-Nikulin analogue, see Theorem 0.4 and even exceptions to uniform statements concerning curves on $K 3$ surfaces carry over in this analogy!

Our other aim is to complete the birational classification of the moduli space $\overline{\mathcal{S}}_{g}^{+}$of even spin curves of genus $g$. It is known [F] that $\overline{\mathcal{S}}_{g}^{+}$is of general type when $g \geq 9$. Using Nikulin surfaces we show that $\overline{\mathcal{S}}_{g}^{+}$is uniruled for $g \leq 7$, see Theorem 0.7, which leaves $\overline{\mathcal{S}}_{8}^{+}$as the only case missing from the classification. We prove the following:

Theorem 0.1. The Kodaira dimension of $\overline{\mathcal{S}}_{8}^{+}$is equal to zero.
Theorems 0.1 and 0.7 highlight the fact that the birational type of $\overline{\mathcal{S}}_{g}^{+}$is entirely governed by the world of $K 3$ surfaces, in the sense that $\overline{\mathcal{S}}_{g}^{+}$is uniruled precisely when a general even spin curve of genus $g$ moves on a special $K 3$ surface. This is in contrast to $\overline{\mathcal{M}}_{g}$ which is known to be uniruled at least for $g \leq 16$, whereas the general curve of genus $g \geq 12$ does not lie on a $K 3$ surface.

A Nikulin surface [Ni] is a $K 3$ surface $S$ endowed with a non-trivial double cover

$$
f: \tilde{S} \rightarrow S
$$

with a branch divisor $N:=N_{1}+\cdots+N_{8}$ consisting of 8 disjoint smooth rational curves $N_{i} \subset S$. Blowing down the $(-1)$-curves $E_{i}:=f^{-1}\left(N_{i}\right) \subset \tilde{S}$, one obtains a minimal $K 3$ surface $\sigma: \tilde{S} \rightarrow Y$, together with an involution $\iota \in \operatorname{Aut}(Y)$ having 8 fixed points corresponding to the images $\sigma\left(E_{i}\right)$ of the exceptional divisors. The class $\mathcal{O}_{S}(N)$ is divisible by 2 in $\operatorname{Pic}(S)$ and we set $e:=\frac{1}{2} \mathcal{O}_{S}\left(N_{1}+\cdots+N_{8}\right) \in \operatorname{Pic}(S)$. Assume that $C \subset S$ is a smooth curve of genus $g$ such that $C \cdot N_{i}=0$ for $i=1, \ldots, 8$. We say that the triple $\left(S, e, \mathcal{O}_{S}(C)\right.$ ) is a polarized Nikulin surface of genus $g$ and denote by $\mathcal{F}_{g}^{\mathfrak{N}}$ the 11-dimensional moduli space of such objects. Over $\mathcal{F}_{g}^{\mathfrak{N}}$ we consider the $\mathbf{P}^{g}$-bundle

$$
\mathcal{P}_{g}^{\mathfrak{N}}:=\left\{(S, e, C): C \subset S \text { is a smooth curve such that }\left[S, e, \mathcal{O}_{S}(C)\right] \in \mathcal{F}_{g}^{\mathfrak{N}}\right\},
$$

which comes equipped with two maps

where $p_{g}([S, e, C]):=\left[S, e, \mathcal{O}_{S}(C)\right]$ and $\chi_{g}([S, e, C]):=\left[C, e_{C}:=e \otimes \mathcal{O}_{C}\right]$. Since $C \cdot N=0$, it follows that $e_{C}^{\otimes 2}=\mathcal{O}_{C}$. The étale double cover induced by $e_{C}$ is precisely the restriction $f_{C}:=f_{\mid \tilde{C}}: \tilde{C} \rightarrow C$, where $\tilde{C}:=f^{-1}(C)$. Note that $\operatorname{dim}\left(\mathcal{P}_{g}^{\mathfrak{N}}\right)=11+g$ and it is natural to ask when is $\chi_{g}$ dominant and induces a uniruled parametrization of $\mathcal{R}_{g}$.

Theorem 0.2. The general Prym curve $\left[C, e_{C}\right] \in \mathcal{R}_{g}$ lies on a Nikulin surface if and only if $g \leq 7$ and $g \neq 6$, that is, the morphism $\chi_{g}: \mathcal{P}_{g}^{\mathfrak{N}} \rightarrow \mathcal{R}_{g}$ is dominant precisely in this range.

In contrast, the general Prym curve $\left[C, e_{C}\right] \in \mathcal{R}_{6}$ lies on an Enriques surface [V1] but not on a Nikulin surface. Since $\mathcal{P}_{g}^{\mathfrak{N}}$ is a uniruled variety being a $\mathbf{P}^{g}$-bundle over $\mathcal{F}_{g}^{\mathfrak{N}}$, we derive from Theorem 0.2 the following immediate consequence:

Corollary 0.3. The Prym moduli space $\mathcal{R}_{g}$ is uniruled for $g \leq 7$.
The discussion in Sections 2 and 3 implies the stronger result that $\mathcal{F}_{g}^{\mathfrak{N}}$ (and thus $\mathcal{N}_{g}:=\operatorname{Im}\left(\chi_{g}\right)$ ) is unirational for $g \leq 6$. It was known that $\mathcal{R}_{g}$ is rational for $g \leq 4$, see [Do2], [Ca], and unirational for $g=5,6$, see [Do], [ILS], [V1], [V2]. Apart from the result in genus 7 which is new, the significance of Corollary 0.3 is that Nikulin surfaces provide an explicit uniform parametrization of $\mathcal{R}_{g}$ that works for all genera $g \leq 7$.

Before going into a more detailed explanation of our results on $\mathcal{F}_{g}^{\mathfrak{N}}$, it is instructive to recall Mukai's work on the moduli space $\mathcal{F}_{g}$ of polarized $K 3$ surfaces of genus $g$ : Mukai's results [M1], [M2], [M3]:
(1) A general curve $[C] \in \mathcal{M}_{g}$ lies on a $K 3$ surface if and only if $g \leq 11$ and $g \neq 10$, that is, the equality $\mathcal{K}_{g}=\mathcal{M}_{g}$ holds precisely in this range.
(2) $\mathcal{M}_{11}$ is birationally isomorphic to the tautological $\mathbf{P}^{11}$-bundle $\mathcal{P}_{11}$ over the moduli space $\mathcal{F}_{11}$ of polarized $K 3$ surfaces of genus 11 . There is a commutative diagram

with $q_{11}^{-1}([C])=[S, C]$, where $S$ is the unique $K 3$ surface containing a general $[C] \in \mathcal{M}_{11}$. (3) The locus $\mathcal{K}_{10}$ is a divisor on $\mathcal{M}_{10}$ which has the following set-theoretic incarnation:

$$
\mathcal{K}_{10}=\left\{[C] \in \mathcal{M}_{10}: \exists L \in W_{12}^{4}(C) \text { such that } \mu_{0}(L): \operatorname{Sym}^{2} H^{0}(C, L) \xrightarrow{\nRightarrow} H^{0}\left(C, L^{\otimes 2}\right)\right\} .
$$

(4) There exists a rational variety $X \subset \mathbf{P}^{13}$ with $K_{X}=\mathcal{O}_{X}(-3)$ and $\operatorname{dim}(X)=5$, such that the general $K 3$ surface of genus 10 appears as a 2-dimensional linear section of $X$. Such a realization is unique up to the action of $\operatorname{Aut}(X)$ and one has birational isomorphisms:

$$
\mathcal{F}_{10} \stackrel{\cong}{\cong} G\left(\mathbf{P}^{10}, \mathbf{P}^{13}\right)^{\text {ss }} / / \operatorname{Aut}(X) \text { and } \mathcal{K}_{10} \stackrel{\cong}{\cong} G\left(\mathbf{P}^{9}, \mathbf{P}^{13}\right)^{\mathrm{ss}} / / \operatorname{Aut}(X) .
$$

To this list of well-known results, one could add the following statement from [FP]: (5) The closure $\overline{\mathcal{K}}_{10}$ of $\mathcal{K}_{10}$ inside $\overline{\mathcal{M}}_{10}$ is an extremal point in the effective cone $\operatorname{Eff}\left(\overline{\mathcal{M}}_{10}\right)$; its class $\overline{\mathcal{K}}_{10} \equiv 7 \lambda-\delta_{0}-5 \delta_{1}-9 \delta_{2}-12 \delta_{3}-14 \delta_{4}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{10}\right)$ has minimal slope among all effective divisors on $\overline{\mathcal{M}}_{10}$ and provides a counterexample to the Slope Conjecture HMO .

Quite remarkably, each of the statements (1)-(5) has a precise Prym-Nikulin analogue. Theorem 0.2 is the analogue of (1). For the highest genus when the Prym-Nikulin condition is generic, the moduli space acquires a surprising Mori fibre space structure:
Theorem 0.4. The moduli space $\mathcal{R}_{7}$ is birationally isomorphic to the tautological $\boldsymbol{P}^{7}$-bundle $\mathcal{P}_{7}^{\mathfrak{N}}$ and there is a commutative diagram:


Furthermore, $\chi_{7}^{-1}([C, \eta])=[S, C]$, where the unique Nikulin surface $S$ containing $C$ is given by the base locus of the net of quadrics containing the Prym-canonical embedding $\phi_{K_{C} \otimes \eta}: C \rightarrow \boldsymbol{P}^{5}$.

Just like in Mukai's work, the genus next to maximal from the point of view of Prym-Nikulin theory, behaves exotically.

Theorem 0.5. The Prym-Nikulin locus $\mathcal{N}_{6}:=\operatorname{Im}\left(\chi_{6}\right)$ is a divisor on $\mathcal{R}_{6}$ which can be identified with the ramification locus of the Prym map $\operatorname{Pr}_{6}: \mathcal{R}_{6} \rightarrow \mathcal{A}_{5}$ :

$$
\mathcal{N}_{6}=\left\{[C, \eta] \in \mathcal{R}_{6}: \mu_{0}\left(K_{C} \otimes \eta\right): \operatorname{Sym}^{2} H^{0}\left(C, K_{C} \otimes \eta\right) \xrightarrow{\neq} H^{0}\left(C, K_{C}^{\otimes 2}\right)\right\} .
$$

Observe that both divisors $\mathcal{K}_{10}$ and $\mathcal{N}_{6}$ share the same Koszul-theoretic description. Furthermore, they are both extremal points in their respective effective cones, cf. Proposition 3.6. Is there a Prym analogue of the genus 10 Mukai $G_{2}$-variety $X:=G_{2} / P \subset \mathbf{P}^{13}$ ? The answer to this question is in the affirmative and we outline the construction of a Grassmannian model for $\mathcal{F}_{6}^{\mathfrak{N}}$ while referring to Section 3 for details.

Set $V:=\mathbb{C}^{5}$ and $U:=\mathbb{C}^{4}$ and view $\mathbf{P}^{3}=\mathbf{P}(U)$ as the space of planes inside $\mathbf{P}\left(U^{\vee}\right)$. Let us choose a smooth quadric $Q \subset \mathbf{P}(V)$. The quadratic line complex $W_{Q} \subset G(2, V) \subset$ $\mathbf{P}\left(\wedge^{2} V\right)$ consisting of tangent lines to $Q$ is singular along the codimension 2 subvariety $V_{Q}$ of lines contained in $Q$. One can identify $V_{Q}$ with the Veronese 3 -fold

$$
\nu_{2}\left(\mathbf{P}^{3}\right) \subset \mathbf{P}\left(\operatorname{Sym}^{2}(U)\right)=\mathbf{P}\left(\wedge^{2} V\right)=\mathbf{P}^{9} .
$$

The projective tangent bundle $\mathbf{P}_{Q}$ of $Q$, viewed as the blow-up of $W_{Q}$ along $V_{Q}$, is endowed with a double cover branched along $V_{Q}$ and induced by the map

$$
\mathbf{P}^{3} \times \mathbf{P}^{3} \xrightarrow{2: 1} \mathbf{P}\left(\operatorname{Sym}^{2}(U)\right), \quad\left(H_{1}, H_{2}\right) \mapsto H_{1}+H_{2} .
$$

We show in Theorem 3.4 that codimension 3 linear sections of $W_{Q}$ are Nikulin surfaces of genus 6 with general moduli. Moreover there is a birational isomorphism

$$
\mathcal{F}_{6}^{\mathfrak{N} \xrightarrow{\cong}} G\left(7, \wedge^{2} V\right)^{\mathrm{ss}} / / \operatorname{Aut}(Q) .
$$

Taking codimension 4 linear sections of $W_{Q}$ one obtains a similar realization of $\mathcal{N}_{6}$, which should be viewed as the Prym counterpart of Mukai's construction of $\mathcal{K}_{10}$.

The subvariety $\mathcal{K}_{g} \subset \mathcal{M}_{g}$ is intrinsic in moduli, that is, its generic point $[C]$ admits characterizations that involve $C$ alone and the $K 3$ surface containing $C$ is a result of some peculiarity of the canonical curve. For instance [BM], if $[C] \in \mathcal{K}_{g}$ then the Wahl map

$$
\psi_{K_{C}}: \wedge^{2} H^{0}\left(C, K_{C}\right) \rightarrow H^{0}\left(C, K_{C}^{\otimes 3}\right)
$$

is not surjective. It is natural to ask for similar intrinsic characterizations of the PrymNikulin locus $\mathcal{N}_{g} \subset \mathcal{R}_{g}$ in terms of Prym curves alone, without making reference to Nikulin surfaces. In this direction, we prove in Section 1 the following result:
Theorem 0.6. Set $g:=2 i+6$. Then $K_{i, 2}\left(C, K_{C} \otimes \eta\right) \neq 0$ for any $[C, \eta] \in \mathcal{N}_{g}$, that is, the Prym-canonical curve $C \xrightarrow{\left|K_{C} \otimes n\right|} \boldsymbol{P}^{g-2}$ of a Prym-Nikulin section fails to satisfy property $\left(N_{i}\right)$.

It is the content of the Prym-Green Conjecture [FL] that $K_{i, 2}\left(C, K_{C} \otimes \eta\right)=0$ for a general Prym curve $[C, \eta] \in \mathcal{R}_{2 i+6}$. This suggests that curves on Nikulin surfaces can be recognized by extra syzygies of their Prym-canonical embedding.

Our initial motivation for considering Nikulin surfaces was to use them for the birational classification of moduli spaces of even theta-characteristics and we propose to turn our attention to the moduli space $\mathcal{S}_{g}^{+}$of even spin curves classifying pairs $[C, \eta]$, where $[C] \in \mathcal{M}_{g}$ is a smooth curve of genus $g$ and $\eta \in \mathrm{Pic}^{g-1}(C)$ is an even thetacharacteristic. Let $\overline{\mathcal{S}}_{g}^{+}$be the coarse moduli space associated to the Deligne-Mumford stack of even stable spin curves of genus $g$, cf. [Cor]. The projection $\pi: \mathcal{S}_{g}^{+} \rightarrow \mathcal{M}_{g}$ extends to a finite covering $\pi: \overline{\mathcal{S}}_{g}^{+} \rightarrow \overline{\mathcal{M}}_{g}$ branched along the boundary divisor $\Delta_{0}$ of $\overline{\mathcal{M}}_{g}$. It is shown in [F] that $\overline{\mathcal{S}}_{g}^{+}$is a variety of general type as soon as $g \geq 9$.

The existence of the dominant morphism $\chi_{g}: \mathcal{P}_{g}^{\mathfrak{N}} \rightarrow \mathcal{R}_{g}$ when $g \leq 7$ and $g \neq 6$, leads to a straightforward uniruled parametrization of $\overline{\mathcal{S}}_{g}^{+}$, which we briefly describe. Let us start with a general even spin curve $[C, \eta] \in \mathcal{S}_{g}^{+}$and a non-trivial point of order two $e_{C} \in \operatorname{Pic}^{0}(C)$ in the Jacobian, such that $h^{0}\left(C, e_{C} \otimes \eta\right) \geq 1$. Since the curve $[C] \in \mathcal{M}_{g}$ is general, it follows that $h^{0}\left(C, e_{C} \otimes \eta\right)=1$ and $Z:=\operatorname{supp}\left(e_{C} \otimes \eta\right)$ consists of $g-1$ distinct points. Applying Theorem 0.2 , if $g \neq 6$ there exists a Nikulin $K 3$ surface $(S, e)$ containing $C$ such that $e_{C}=e \otimes \mathcal{O}_{C}$. When $g=6$, there exists an Enriques surface ( $S, e$ ) satisfying the same property, see [V1], and the construction described below goes through in that case as well. In the embedding $\phi_{\left|\mathcal{O}_{S}(C)\right|}: S \rightarrow \mathbf{P}^{g}$, the span $\langle Z\rangle \subset \mathbf{P}^{g}$ is a codimension 2 linear subspace and $h^{0}\left(S, \mathcal{I}_{Z / S}(1)\right)=2$. Let

$$
P:=\mathbf{P} H^{0}\left(S, \mathcal{I}_{Z / S}(1)\right) \subset\left|\mathcal{O}_{S}(C)\right|
$$

be the corresponding pencil of curves on $S$. Each curve $D \in P$ is endowed with the odd theta-characteristic $\mathcal{O}_{D}(Z)$. Twisting this line bundle with $e \otimes \mathcal{O}_{D} \in \operatorname{Pic}^{0}(D)$, we obtain an even theta-characteristic on $D$. This procedure induces a rational curve in moduli

$$
m: P \rightarrow \overline{\mathcal{S}}_{g}^{+}, \quad P \ni D \mapsto\left[D, e \otimes \mathcal{O}_{D}(Z)\right],
$$

which passes through the general point $[C, \eta] \in \overline{\mathcal{S}}_{g}^{+}$. This proves the following result:
Theorem 0.7. The moduli space $\overline{\mathcal{S}}_{g}^{+}$is uniruled for $g \leq 7$.
It is known [F] that $\overline{\mathcal{S}}_{g}^{+}$is of general type when $g \geq 9$. We complete the birational classification of $\overline{\mathcal{S}}_{g}^{+}$and wish to highlight the following result, see Theorem 0.1:

$$
\overline{\mathcal{S}}_{8}^{+} \text {is a variety of Calabi-Yau type. }
$$

We observe the curious fact that $\overline{\mathcal{S}}_{8}^{-}$is unirational [FV] whereas $\overline{\mathcal{S}}_{8}^{+}$is not even uniruled. In contrast to the case of $\overline{\mathcal{S}}_{g}^{\mp}$, the birational classification of other important classes of moduli spaces is not complete. The Kodaira dimension of $\overline{\mathcal{M}}_{g}$ is unknown for $17 \leq g \leq 21$, see [HM], [EH1], the birational type of $\overline{\mathcal{R}}_{g}$ is not understood in the range $8 \leq g \leq 13$, see [FL], whereas finding the Kodaira dimension of $\mathcal{A}_{6}$ is a notorious open problem. Settling these outstanding cases is expected to require genuinely new ideas.

The proof of Theorem 0.1 relies on two main ideas: Following [ $F$ ], one finds an explicit effective representative for the canonical divisor $K_{\overline{\mathcal{S}}_{8}^{+}}$as a $\mathbb{Q}$-combination of the divisor $\bar{\Theta}_{\text {null }} \subset \overline{\mathcal{S}}_{8}^{+}$of vanishing theta-nulls, the pull-back $\pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)$ of the Brill-Noether divisor $\overline{\mathcal{M}}_{8,7}^{2}$ on $\overline{\mathcal{M}}_{8}$ of curves with a $\mathfrak{g}_{7}^{2}$, and boundary divisor classes corresponding to spin curves whose underlying stable model is of compact type. This already implies the inequality $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right) \geq 0$. Each irreducible component of this particular representative of $K_{\overline{\mathcal{S}}_{8}^{+}}$is rigid (see Section 3), and the goal is to show that $K_{\overline{\mathcal{S}}_{8}^{+}}$is rigid as well. To that end, we use the existence of a birational model $\mathfrak{M}_{8}$ of $\overline{\mathcal{M}}_{8}$ inspired by Mukai's work [M2]. The space $\mathfrak{M}_{8}$ is realized as the following GIT quotient

$$
\mathfrak{M}_{8}:=G\left(8, \wedge^{2} V\right)^{\mathrm{ss}} / / S L(V),
$$

where $V=\mathbb{C}^{6}$. We note that $\rho\left(\mathfrak{M}_{8}\right)=1$ and there exists a birational morphism

$$
f: \overline{\mathcal{M}}_{8} \longrightarrow \mathfrak{M}_{8}
$$

which contracts all the boundary divisors $\Delta_{1}, \ldots, \Delta_{4}$ as well as $\overline{\mathcal{M}}_{8,7}^{2}$. Using the geometric description of $f$, we establish a geometric characterization of points inside $\bar{\Theta}_{\text {null }}$ :

Proposition 0.8. Let $C$ be a smooth curve of genus 8 without $\mathfrak{a} \mathfrak{g}_{7}^{2}$. The following are equivalent:

- There exists a vanishing theta-null $L$ on $C$, that is, $[C, L] \in \bar{\Theta}_{\text {null }}$.
- There exists a smooth $K 3$ surface $S$ together with elliptic pencils $\left|F_{1}\right|$ and $\left|F_{2}\right|$ on $S$, such that $C \in\left|F_{1}+F_{2}\right|$ and $L=\mathcal{O}_{C}\left(F_{1}\right)=\mathcal{O}_{C}\left(F_{2}\right)$.

The existence of such a doubly elliptic $K 3$ surface $S$ is equivalent to stating that there exists a smooth $K 3$ extension $S \subset \mathbf{P}^{8}$ of the canonical curve $C \subset \mathbf{P}^{7}$, such that the rank three quadric $C \subset Q \subset \mathbf{P}^{7}$ which induces the theta-null $L$, lifts to a rank 4 quadric $S \subset Q_{S} \subset \mathbf{P}^{8}$. Having produced $S$, the pencils $\left|F_{1}\right|$ and $\left|F_{2}\right|$ define a product map

$$
\phi: S \rightarrow \mathbf{P}^{1} \times \mathbf{P}^{1}
$$

such that each smooth member $D \in I:=\left|\phi^{*} \mathcal{O}_{\mathbf{P}^{1} \times \mathbf{P}^{1}}(1,1)\right|$ is a canonical curve contained in a rank 3 quadric. A general pencil in $I$ passing through $C$ induces a rational curve $R \subset$ $\overline{\mathcal{S}}_{8}^{+}$, and after intersection theoretic calculations on the stack $\overline{\mathcal{S}}_{8}^{+}$, we prove the following:

Proposition 0.9. The theta-null divisor $\bar{\Theta}_{\text {null }} \subset \overline{\mathcal{S}}_{8}^{+}$is uniruled and swept by rational curves $R \subset \overline{\mathcal{S}}_{8}^{+}$such that $R \cdot \bar{\Theta}_{\text {null }}<0$ and $R \cdot \pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)=0$. Furthermore $R$ is disjoint from all boundary divisors $\pi^{*}\left(\Delta_{i}\right)$ for $i=1, \ldots, 4$.

Proposition 0.9 implies that $K_{\overline{\mathcal{S}}_{8}^{+}}$, expressed as a weighted sum of $\bar{\Theta}_{\text {null }}$, the pullback $\pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)$ and boundary divisors $\pi^{*}\left(\Delta_{i}\right)$ for $i=1, \ldots, 4$, is rigid as well. Equivalently, $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=0$. Note that since $K_{\overline{\mathcal{S}}_{8}^{+}}$consists of 10 uniruled base components which can be blown-down, the variety $\overline{\mathcal{S}}_{8}^{+}$is not minimal and there exists a birational model $\mathcal{S}$ of $\overline{\mathcal{S}}_{8}^{+}$which is a genuine Calabi-Yau variety in the sense that $K_{\mathcal{S}}=0$. Finding an explicit modular interpretation of this Calabi-Yau 21-fold (or perhaps even its equations!) is a very interesting question.

## 1. Prym-canonical curves on Nikulin surfaces

Let us start with a smooth $K 3$ surface $Y$. A Nikulin involution on $Y$ is an automor$\operatorname{phism} \iota \in \operatorname{Aut}(Y)$ of order 2 which is symplectic, that is, $\iota^{*}(\omega)=\omega$, for all $\omega \in H^{2,0}(Y)$. A Nikulin involution has 8 fixed points, see [Ni] Lemma 3, and the quotient $\bar{Y}:=Y /\langle\iota\rangle$ has 8 ordinary double point singularities. Let $\sigma: \tilde{S} \rightarrow Y$ be the blow-up of the 8 fixed points and denote by $E_{1}, \ldots, E_{8} \subset \tilde{S}$ the exceptional divisors and by $\tilde{\iota} \in \operatorname{Aut}(\tilde{S})$ the automorphism induced by $\iota$. Then $S:=\tilde{S} /\langle\tilde{\iota}\rangle$ is a smooth $K 3$ surface and if $f: \tilde{S} \rightarrow S$ is the projection, then $N_{i}:=f\left(E_{i}\right)$ are (-2)-curves on $S$. The branch divisor of $f$ is equal to $N:=\sum_{i=1}^{8} N_{i}$. We summarize the situation in the following diagram:


Sometimes we shall refer to the pair $(Y, \iota)$ as a Nikulin surface, while keeping the previous diagram in mind. We refer to [M0], [vGS] for a lattice-theoretic study on the action of the Nikulin involution on the cohomology $H^{2}(Y, \mathbb{Z})=U^{3} \oplus E_{8}(-1) \oplus E_{8}(-1)$, where $U$ is the standard rank 2 hyperbolic lattice and $E_{8}$ is the unique even, negative-definite unimodular lattice of rank 8. It follows from [ Mo ] Theorem 5.7 that the orthogonal complement $E_{8}(-2) \cong\left(H^{2}(Y, \mathbb{Z})^{\iota}\right)^{\perp}$ is contained in $\operatorname{Pic}(Y)$, hence $Y$ has Picard number at least 9 . The class $\mathcal{O}_{S}\left(N_{1}+\cdots+N_{8}\right)$ is divisible by 2 , and we denote by $e \in \operatorname{Pic}(S)$ the class such that $e^{\otimes 2}=\mathcal{O}_{S}\left(N_{1}+\cdots+N_{8}\right)$.
Definition 1.1. The Nikulin lattice is an even lattice $\mathfrak{N}$ of rank 8 generated by elements $\left\{\mathfrak{n}_{i}\right\}_{i=1}^{8}$ and $\mathfrak{e}:=\frac{1}{2} \sum_{i=1}^{8} \mathfrak{n}_{i}$, with the bilinear form induced by $\mathfrak{n}_{i}^{2}=-2$ for $i=1, \ldots, 8$ and $\mathfrak{n}_{i} \cdot \mathfrak{n}_{j}=0$ for $i \neq j$.

Note that $\mathfrak{N}$ is the minimal primitive sublattice of $H^{2}(S, \mathbb{Z})$ containing the classes $N_{1}, \ldots, N_{8}$ and $e$. For any Nikulin surface one has an embedding $\mathfrak{N} \subset \operatorname{Pic}(S)$. Assuming that $(Y, \iota)$ defines a general point in an irreducible component of the moduli space of Nikulin involutions, both $Y$ and $S$ have Picard number 9 and there is a decomposition $\operatorname{Pic}(S)=\mathbb{Z} \cdot[C] \oplus \mathfrak{N}$, where $C$ is an integral curve of genus $g \geq 2$. According to [vGS] Proposition 2.2, only two cases are possible: either $C \cdot e=0$ so that the previous decomposition is an orthogonal sum, or else, $C \cdot e \neq 0$, this second case being possible only when $g$ is odd. In this paper we consider only Nikulin surfaces of the first kind.

We fix an integer $g \geq 2$ and consider the lattice $\Lambda_{g}:=\mathbb{Z} \cdot \mathfrak{c} \oplus \mathfrak{N}$, where $\mathfrak{c} \cdot \mathfrak{c}=2 g-2$.
Definition 1.2. A Nikulin surface of genus $g$ is a $K 3$ surface $S$ together with a primitive embedding of lattices $j: \Lambda_{g} \hookrightarrow \operatorname{Pic}(S)$ such that $C:=j(\mathfrak{c})$ is a nef class.

The coarse moduli space $\mathcal{F}_{g}^{\mathfrak{N}}$ of Nikulin surfaces of genus $g$ is the quotient of the 11-dimensional domain

$$
\mathcal{D}_{\Lambda_{g}}:=\left\{\omega \in \mathbf{P}\left(\Lambda_{g} \otimes_{\mathbb{Z}} \mathbb{C}\right): \omega^{2}=0, \omega \cdot \bar{\omega}>0\right\}
$$

by an arithmetic subgroup of $\mathbf{O}\left(\Lambda_{g}\right)$. Its existence follows e.g. from [Do1] Section 3.
We now consider a Nikulin surface $f: \tilde{S} \rightarrow S$, together with a smooth curve $C \subset S$ of genus $g$ such that $C \cdot N=0$. If $\tilde{C}:=f^{-1}(C)$, then $f_{C}:=f_{\mid \tilde{C}}: \tilde{C} \rightarrow C$ is an étale double covering. By the Hodge index theorem, $\tilde{C}$ cannot split in two disjoint connected components, hence $f_{C}$ is non-trivial and $e_{C}:=\mathcal{O}_{C}(e) \in \operatorname{Pic}^{0}(C)$ is the non trivial 2torsion element defining the covering $f_{C}$. We set $H \equiv C-e \in N S(S)$, hence $H^{2}=2 g-6$ and $H \cdot C=2 g-2$. For further reference we collect a few easy facts:

Lemma 1.3. Let $\left[S, e, \mathcal{O}_{S}(C)\right] \in \mathcal{F}_{g}^{\mathfrak{N}}$ be a Nikulin surface such that $\operatorname{Pic}(S)=\Lambda_{g}$. The following statements hold:
(i) $H^{i}(S, e)=0$ for all $i \geq 0$.
(ii) $\operatorname{Cliff}(C)=\left[\frac{g-1}{2}\right]$.
(iii) The line bundle $\mathcal{O}_{S}(H)$ is ample for $g \geq 4$ and very ample for $g \geq 6$. In this range, it defines an embedding $\phi_{H}: S \rightarrow \boldsymbol{P}^{g-2}$ such that the images $\phi_{H}\left(N_{i}\right)$ are lines for all $i=1, \ldots, 8$.
(iv) If $g \geq 7$, the ideal of the surface $\Phi_{H}(S) \subset \boldsymbol{P}^{g-2}$ is cut out by quadrics.

Proof. Recalling that $e^{\otimes 2}=\mathcal{O}_{S}\left(N_{1}+\cdots+N_{8}\right)$ and that the curves $\left\{N_{i}\right\}_{i=1}^{8}$ are pairwise disjoint, it follows that $H^{0}(S, e)=0$ and clearly $H^{2}(S, e)=0$. Since $e^{2}=-4$, by RiemannRoch one finds that $H^{1}(S, e)=0$ as well.

In order to prove (ii) we assume that $\operatorname{Cliff}(C)<\left[\frac{g-1}{2}\right]$. From [GL2] it follows that there exists a divisor $D \in \operatorname{Pic}(S)$ such that $h^{i}\left(S, \mathcal{O}_{C}(D)\right) \geq 2$ for $i=0,1$ and $C \cdot D \leq g-1$, such that $\mathcal{O}_{C}(D)$ computes the Clifford index of $C$, that is, $\operatorname{Cliff}(C)=\operatorname{Cliff}\left(\mathcal{O}_{C}(D)\right)$. But $C \cdot \ell \equiv 0 \bmod 2 g-2$ for every class $\ell \in \operatorname{Pic}(S)$, hence no such divisor $D$ can exist.

Moving to (iii), the ampleness (respectively very ampleness) of $\mathcal{O}_{S}(H)$ is proved in [GS] Proposition 3.2 (respectively Lemma 3.1). From the exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}(-H) \longrightarrow \mathcal{O}_{S}(e) \longrightarrow O_{C}(e) \longrightarrow 0
$$

one finds that $h^{1}\left(S, \mathcal{O}_{S}(H)\right)=0$ and then $\operatorname{dim}|H|=g-2$. Furthermore $H \cdot N_{i}=1$ for $i=1, \ldots, 8$ and the claim follows.

To prove (iv), following [SD] Theorem 7.2, it suffices to show that there exists no irreducible curve $\Gamma \subset S$ with $\Gamma^{2}=0$ and $H \cdot \Gamma=3$. Assume by contradiction that $\Gamma \equiv$ $a C-b_{1} N_{1}-\cdots-b_{8} N_{8}$ is such a curve, where necessarily $a, b_{i} \in \mathbb{Z}_{\leq 0}$. Then $\sum_{i=1}^{8} b_{i}=2 a g-$ $2 a-3$ and $\sum_{i=1}^{8} b_{i}^{2}=a^{2}(g-1)$. Applying the Cauchy-Schwarz inequality $\left(\sum_{i=1}^{8} b_{i}\right)^{2} \leq$ $8\left(\sum_{i=1}^{8} b_{i}^{2}\right)$, we obtain an immediate contradiction.

We consider the $\mathbf{P}^{g}$-bundle $p_{g}: \mathcal{P}_{g}^{\mathfrak{N}} \rightarrow \mathcal{F}_{g}^{\mathfrak{N}}$, as well as the map

$$
\chi_{g}: \mathcal{P}_{g}^{\mathfrak{N}} \rightarrow \mathcal{R}_{g}, \quad \chi_{g}([S, e, C]):=\left[C, e_{C}:=e \otimes \mathcal{O}_{C}\right]
$$

defined in the introduction. We fix a Nikulin surface $\left[S, e, \mathcal{O}_{S}(C)\right] \in \mathcal{P}_{g}^{\mathfrak{N}}$. A Lefschetz pencil of curves $\left\{C_{\lambda}\right\}_{\lambda \in \mathbf{P}^{1}}$ inside $\left|\mathcal{O}_{S}(C)\right|$ induces a rational curve

$$
\Xi_{g}:=\left\{\left[C_{\lambda}, e_{C_{\lambda}}:=e \otimes \mathcal{O}_{C_{\lambda}}\right]: \lambda \in \mathbf{P}^{1}\right\} \subset \overline{\mathcal{R}}_{g} .
$$

In the range where $\chi_{g}$ is a dominant map, $\Xi_{g}$ is a rational curve passing through a general point of $\overline{\mathcal{R}}_{g}$, and it is of some interest to compute its numerical characters. If $\pi: \overline{\mathcal{R}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$ denotes the projection map, we recall the formula [FL] Example 1.4

$$
\begin{equation*}
\pi^{*}\left(\delta_{0}\right)=\delta_{0}^{\prime}+\delta_{0}^{\prime \prime}+2 \delta_{0}^{\mathrm{ram}} \tag{2}
\end{equation*}
$$

where $\delta_{0}^{\prime}:=\left[\Delta_{0}^{\prime}\right], \delta_{0}^{\prime \prime}:=\left[\Delta_{0}^{\prime \prime}\right]$ and $\delta_{0}^{\mathrm{ram}}:=\left[\Delta_{0}^{\mathrm{ram}}\right]$ are boundary divisor classes on $\overline{\mathcal{R}}_{g}$ whose meaning we recall. Let us fix a general point $\left[C_{x y}\right] \in \Delta_{0}$ induced by a 2-pointed curve $[C, x, y] \in \mathcal{M}_{g-1,2}$ and the normalization map $\nu: C \rightarrow C_{x y}$, where $\nu(x)=\nu(y)$. A general point of $\Delta_{0}^{\prime}$ (respectively of $\Delta_{0}^{\prime \prime}$ ) corresponds to a stable Prym curve $\left[C_{x y}, \eta\right]$, where $\eta \in \operatorname{Pic}^{0}\left(C_{x y}\right)[2]$ and $\nu^{*}(\eta) \in \operatorname{Pic}^{0}(C)$ is non-trivial (respectively, $\nu^{*}(\eta)=\mathcal{O}_{C}$ ). A general point of $\Delta_{0}^{\mathrm{ram}}$ is of the form $[X, \eta]$, where $X:=C \cup_{\{x, y\}} \mathbf{P}^{1}$ is a quasi-stable curve, whereas $\eta \in \operatorname{Pic}^{0}(X)$ is characterized by $\eta_{\mathbf{P}^{1}}=\mathcal{O}_{\mathbf{P}^{1}}(1)$ and $\eta_{C}^{\otimes 2}=\mathcal{O}_{C}(-x-y)$.

Proposition 1.4. If $\Xi_{g} \subset \overline{\mathcal{R}}_{g}$ is the curve induced by a pencil on a Nikulin surface, then

$$
\Xi_{g} \cdot \lambda=g+1, \Xi_{g} \cdot \delta_{0}^{\prime}=6 g+2, \quad \Xi_{g} \cdot \delta_{0}^{\prime \prime}=0 \text { and } \Xi_{g} \cdot \delta_{0}^{\mathrm{ram}}=8
$$

It follows that $\Xi_{g} \cdot K_{\overline{\mathcal{R}}_{g}}=g-15$.
Proof. We use [FP] Lemma 2.4 to find that $\Xi_{g} \cdot \lambda=\pi_{*}\left(\Xi_{g}\right) \cdot \lambda=g+1$ and $\Xi_{g} \cdot \pi^{*}\left(\delta_{0}\right)=$ $\pi_{*}\left(\Xi_{g}\right) \cdot \delta_{0}=6 g+18$, as well as $\Xi_{g} \cdot \pi^{*}\left(\delta_{i}\right)=0$ for $1 \leq i \leq[g / 2]$. For each $1 \leq i \leq 8$, the sublinear system $\mathbf{P} H^{0}\left(\mathcal{O}_{S}\left(C-N_{i}\right)\right) \subset \mathbf{P} H^{0}\left(\mathcal{O}_{S}(C)\right)$ intersects $\Xi_{g}$ transversally in one point which corresponds to a curve $N_{i}+C_{i} \in\left|\mathcal{O}_{S}(C)\right|$, where $N_{i} \cdot C_{i}=-N_{i}^{2}=2$ and $C_{i} \equiv C-N_{i}$. Furthermore $e \otimes \mathcal{O}_{N_{i}}=\mathcal{O}_{N_{i}}(1)$ and $e_{C_{i}}^{\otimes 2}=\mathcal{O}_{C_{i}}\left(-N_{i} \cdot C_{i}\right)$. Each of these points lie in the intersection $\Xi_{g} \cap \Delta_{0}^{\mathrm{ram}}$. All remaining curves in $\Xi_{g}$ are irreducible, hence $\Xi_{g} \cdot \delta_{0}^{\mathrm{ram}}=8$. Since $\Xi_{g} \cdot \delta_{0}^{\prime \prime}=0$, from (2) we find that $\Xi_{g} \cdot \delta_{0}^{\prime}=6 g+2$. Finally, according to [FL] Theorem 1.5 the formula $K_{\overline{\mathcal{R}}_{g}} \equiv 13 \lambda-2\left(\delta_{0}^{\prime}+\delta_{0}^{\prime \prime}\right)-3 \delta_{0}^{\mathrm{ram}}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{R}}_{g}\right)$ holds, therefore putting everything together, $\Xi_{g} \cdot K_{\overline{\mathcal{R}}_{g}}=g-15$.

The calculations in Proposition 1.4 are applied now to show that syzygies of Prymcanonical curves on Nikulin surfaces are exceptional when compared to those of general Prym-canonical curves. To make this statement precise, let us recall the Prym-Green Conjecture, see [FL] Conjecture 0.7: If $g:=2 i+6$ with $i \geq 0$, then the locus

$$
\mathcal{U}_{g, i}:=\left\{[C, \eta] \in \mathcal{R}_{2 i+6}: K_{i, 2}\left(C, K_{C} \otimes \eta\right) \neq 0\right\}
$$

is a virtual divisor, that is, the degeneracy locus of two vector bundles of the same rank defined over $\mathcal{R}_{2 i+6}$. The statement of the Prym-Green Conjecture is that this vector bundle morphism is generically non-degenerate:
Prym-Green Conjecture: $K_{i, 2}\left(C, K_{C} \otimes \eta\right)=0$ for a general Prym curve $[C, \eta] \in \mathcal{R}_{2 i+6}$.
The conjecture is known to hold in bounded genus and has been used in [FL] to show that $\overline{\mathcal{R}}_{g}$ is of general type when $g \geq 14$ is even.
Theorem 1.5. For each $[S, e, C] \in \mathcal{P}_{2 i+6}^{\mathfrak{N}}$ one has $K_{i, 2}\left(C, K_{C} \otimes e_{C}\right) \neq 0$. In particular, the Prym-Green Conjecture fails along the locus $\mathcal{N}_{2 i+6}$.

Proof. If the non-vanishing $K_{i, 2}\left(C, K_{C} \otimes \eta\right) \neq 0$ holds for a general point $[C, \eta] \in \mathcal{R}_{g}$, then there is nothing to prove, hence we may assume that $\mathcal{U}_{g, i}$ is a genuine divisor on $\mathcal{R}_{g}$. The
class of its closure inside $\overline{\mathcal{R}}_{g}$ has been calculated [FL] Theorem 0.6:

$$
\overline{\mathcal{U}}_{g, i} \equiv\binom{2 i+2}{i}\left(\frac{3(2 i+7)}{i+3} \lambda-\frac{3}{2} \delta_{0}^{\mathrm{ram}}-\delta_{0}^{\prime}-\alpha \delta_{0}^{\prime \prime}-\cdots\right) \in \operatorname{Pic}\left(\overline{\mathcal{R}}_{2 i+6}\right) .
$$

From Proposition 1.4, by direct calculation one finds that $\Xi_{g} \cdot \overline{\mathcal{U}}_{g, i}=-\binom{2 i+3}{i}<0$, thus $\Xi_{g} \subset \overline{\mathcal{U}}_{g, i}$. By varying $\Xi_{g}$ inside $\overline{\mathcal{R}}_{g}$, we obtain that $\mathcal{N}_{g} \subset \overline{\mathcal{U}}_{g, i}$, which ends the proof.
Remark 1.6. A geometric proof of Theorem 1.5using the Lefschetz hyperplane principle for Koszul cohomology is given in [AF] Theorem 3.5. The indirect proof presented here is however shorter and illustrates how cohomology calculations on $\overline{\mathcal{R}}_{g}$ can be used to derive geometric consequences for individual Prym curves.
Remark 1.7. One might ask whether similar applications to $\mathcal{R}_{g}$ can be obtained using Enriques surfaces. There is a major difference between Prym curves $[C, \eta] \in \mathcal{R}_{g}$ lying on a Nikulin surface and those lying on an Enriques surface. For instance, if $C \subset S$ is a curve of genus $g$ lying on an Enriques surface $S$, then from [CD] Corollary 2.7.1

$$
\operatorname{gon}(C) \leq 2 \inf \left\{F \cdot C: F \in \operatorname{Pic}(S), F^{2}=0, F \not \equiv 0\right\} \leq 2 \sqrt{2 g-2}
$$

In particular, for $g$ sufficiently high, $C$ is far from being Brill-Noether general. On the other hand, we have seen that for $[S, e, C] \in \mathcal{P}_{g}^{\mathfrak{N}}$ such that $\operatorname{Pic}(S)=\Lambda_{g}$, one has that $\operatorname{gon}(C)=\left[\frac{g+3}{2}\right]$. For this reason, the Prym-Nikulin locus $\mathcal{N}_{g}:=\operatorname{Im}\left(\chi_{g}\right) \subset \mathcal{R}_{g}$ appears as a more promising and less constrained locus than the Prym-Enriques locus in $\mathcal{R}_{g}$, being transversal to stratifications of $\mathcal{R}_{g}$ coming from Brill-Noether theory.

## 2. The Prym-Nikulin locus in $\mathcal{R}_{g}$ FOR $g \leq 7$

In this section we give constructive proofs of Theorems 0.2 and 0.4 Comparing the dimensions $\operatorname{dim}\left(\mathcal{P}_{g}^{\mathfrak{N}}\right)=11+g$ and $\operatorname{dim}\left(\mathcal{R}_{g}\right)=3 g-3$, one may inquire whether the morphism $\chi_{g}: \mathcal{P}_{g}^{\mathfrak{N}} \rightarrow \mathcal{R}_{g}$ is dominant when $g \leq 7$. The similar question for ordinary $K 3$ surfaces has been answered by Mukai [M1]. Let $\mathcal{F}_{g}$ denote the 19-dimensional moduli space of polarized $K 3$ surfaces of genus $g$ and consider the associated $\mathbf{P}^{g}$-bundle

$$
\mathcal{P}_{g}:=\left\{[S, C]: C \subset S \text { is a smooth curve such that }\left[S, \mathcal{O}_{S}(C)\right] \in \mathcal{F}_{g}\right\} .
$$

The map $q_{g}: \mathcal{P}_{g} \rightarrow \mathcal{M}_{g}$ forgetting the $K 3$ surface is dominant if and only if $g \leq 11$ and $g \neq 10$. The result for $g=10$ is contrary to untutored expectation since the general fibre of $q_{10}$ is 3 -dimensional, hence $\operatorname{dim}\left(\operatorname{Im}\left(q_{10}\right)\right)=\operatorname{dim}\left(\mathcal{P}_{10}\right)-3=26$. A strikingly similar picture emerges for Nikulin surfaces and Prym curves. The morphism $\chi_{g}: \mathcal{P}_{g}^{\mathfrak{N}} \rightarrow \mathcal{R}_{g}$ is dominant when $g \leq 7$ and $g \neq 6$. For each genus we describe a geometric construction that furnishes a Nikulin surface in the fibre $\chi_{g}^{-1}([C, \eta])$ over a general point $[C, \eta] \in \mathcal{R}_{g}$.
2.1. Nikulin surfaces of genus 7. We start with a general element $[C, \eta] \in \mathcal{R}_{7}$ and construct a Nikulin surface containing $C$. One may assume that $\operatorname{gon}(C)=5$ and that the line bundle $\eta$ does not lie in the difference variety $C_{2}-C_{2} \subset \operatorname{Pic}^{0}(C)$, or equivalently, the linear series $L:=K_{C} \otimes \eta \in W_{12}^{5}(C)$ is very ample. It is a consequence of [GL1] Theorem 2.1 that the Prym-canonical image $C \xrightarrow{|L|} \mathbf{P}^{5}$ is quadratically normal, that is, $h^{0}\left(\mathbf{P}^{5}, \mathcal{I}_{C / \mathbf{P}^{5}}(2)\right)=3$.
Lemma 2.1. For a general $[C, \eta] \in \mathcal{R}_{7}$, the base locus of $\left|\mathcal{I}_{C / P^{5}}(2)\right|$ is a smooth $K 3$ surface.

Proof. The property that the base locus of $\left|\mathcal{I}_{C / \mathbf{P}^{5}}(2)\right|$ is smooth, is open in $\mathcal{R}_{7}$ and it suffices to exhibit a single Prym-canonical curve $[C, \eta] \in \mathcal{R}_{7}$ satisfying it. Let us fix an element $(S, e, C) \in \mathcal{P}_{7}^{\mathfrak{N}}$ such that $\operatorname{Pic}(S)=\Lambda_{7}$ and set $H \equiv C-e$. Then according to Lemma 1.3, $\phi_{H}: S \rightarrow \mathbf{P}^{5}$ is an embedding whose image $\phi_{H}(S)$ is ideal-theoretically cut out by quadrics. Moreover $\operatorname{gon}(C)=5$, hence $K_{C} \otimes e_{C} \in W_{12}^{5}(C)$ is quadratically normal. This implies that $H^{0}\left(S, \mathcal{O}_{S}(2 H-C)\right)=H^{1}\left(S, \mathcal{O}_{S}(2 H-C)\right)=0$, and then $H^{0}\left(\mathbf{P}^{5}, \mathcal{I}_{S / \mathbf{P}^{5}}(2)\right) \cong$ $H^{0}\left(\mathbf{P}^{5}, \mathcal{I}_{C / \mathbf{P}^{5}}(2)\right)$, therefore the quadrics in $\left|\mathcal{I}_{C / \mathbf{P}^{5}}(2)\right|$ cut out precisely the surface $S$.
Remark 2.2. This proof shows that if $[S, e, C] \in \mathcal{P}_{7}^{\mathfrak{N}}$ is general then $\chi_{7}^{-1}\left(\left[C, e_{C}\right]\right)=[S, e, C]$ and in particular the fibre $\chi_{7}^{-1}\left(\left[C, e_{C}\right]\right)$ is reduced. Indeed, let $\left[S^{\prime}, e^{\prime}, C\right] \in \mathcal{P}_{7}^{\mathfrak{N}}$ be an arbitrary Nikulin surface containing $C$. Set $H^{\prime} \equiv C-e^{\prime} \in N S\left(S^{\prime}\right)$. We may assume that $\operatorname{Pic}\left(S^{\prime}\right)=\Lambda_{7}$, therefore the map $\phi_{H^{\prime}}: S^{\prime} \rightarrow \mathbf{P}^{5}$ is an embedding whose image is cut out by quadrics. Since $\operatorname{Cliff}(C)=3$, from Lemma 1.3 we find that $K_{C} \otimes e_{C}$ is quadratically normal and then $S^{\prime}$ is cut out by the quadrics contained in Prym-canonical embedding of $C \subset \mathbf{P}^{5}$.

Since both $\mathcal{P}_{7}^{\mathfrak{N}}$ and $\mathcal{R}_{7}$ are irreducible varieties of dimension 18, Remark [2.2]shows that $\chi_{7}: \mathcal{P}_{7}^{\mathfrak{N}} \rightarrow \mathcal{R}_{7}$ is a birational morphism and we now describe $\chi_{7}^{-1}$.

Proposition 2.3. For a general $[C, \eta] \in \mathcal{R}_{7}$, the surface $S:=\mathrm{bs}\left|\mathcal{I}_{C / P^{5}}(2)\right|$ is a polarized Nikulin surface of genus 7 .

Proof. We show that $\operatorname{Pic}(S) \supset \mathbb{Z} \cdot C \oplus \mathfrak{N}$. Denote by $H \subset S$ the hyperplane class and let $N: \equiv 2(C-H)$, thus $N^{2}=-16, N \cdot H=8$ and $N \cdot C=0$. We aim to prove that $N$ is linearly equivalent to a sum of 8 pairwise disjoint integral ( -2 ) curves on $S$. We consider the following exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}(N-C) \longrightarrow \mathcal{O}_{S}(N) \longrightarrow \mathcal{O}_{C}(N) \longrightarrow 0 .
$$

Note that $\mathcal{O}_{C}(N)$ is trivial because $e_{C}=\mathcal{O}_{C}(C-H)$ and that $h^{1}\left(S, \mathcal{O}_{S}(N-C)\right)=$ $h^{1}\left(S, \mathcal{O}_{S}(C-2 H)\right)=0$, because $C \subset \mathbf{P}^{5}$ is quadratically normal. Passing to the long exact sequence, it follows that $h^{0}\left(S, \mathcal{O}_{S}(N)\right)=1$. Using Remark [2.2 it follows that $N \equiv N_{1}+\cdots+N_{8}$, where $N_{i} \cdot N_{j}=-2 \delta_{i j}$. Finally, to conclude that $[S, \mathbb{Z} \cdot C \oplus \mathfrak{N}] \in \mathcal{F}_{7}^{\mathfrak{N}}$ we must show that there is a primitive embedding $\mathbb{Z} \cdot C \oplus \mathfrak{N} \hookrightarrow \operatorname{Pic}(S)$. We apply [vGS] Proposition 2.7. Since $H^{0}\left(\tilde{S}, \mathcal{O}_{S}(\tilde{C})\right)=H^{0}\left(S, \mathcal{O}_{S}(C)\right) \oplus H^{0}\left(S, \mathcal{O}_{S}(C) \otimes e^{\vee}\right)$ and sections in the second summand vanish on the exceptional divisor of the morphism $\sigma: \tilde{S} \rightarrow Y$, it follows that this is precisely the decomposition of $H^{0}\left(Y, \mathcal{O}_{Y}(\tilde{C})\right)$ into $\iota_{Y}^{*}$-eigenspaces. Invoking loc. cit., we finish the proof.
2.2. The symmetric determinantal cubic hypersurface and Prym curves. We provide a general set-up that allows us to reconstruct a Nikulin surface from a Prym curve of genus $g \leq 5$. Let us start with a curve $[C, \eta] \in \mathcal{R}_{g}$ inducing an étale double cover $f: \tilde{C} \rightarrow C$ together with an involution $\iota: \tilde{C} \rightarrow \tilde{C}$ such that $f \circ \iota=f$. For each integer $r \geq-1$, the Prym-Brill-Noether locus is defined as the locus

$$
V^{r}(C, \eta):=\left\{L \in \operatorname{Pic}^{2 g-2}(\tilde{C}): \operatorname{Nm}_{f}(L)=K_{C}, h^{0}(L) \geq r+1 \text { and } h^{0}(L) \equiv r+1 \bmod 2\right\} .
$$

Note that $V^{-1}(C, \eta)=\operatorname{Pr}(C, \eta)$. For each line bundle $L \in V^{r}(C, \eta)$, the Petri map

$$
\mu_{0}(L): H^{0}(\tilde{C}, L) \otimes H^{0}\left(\tilde{C}, K_{\tilde{C}} \otimes L^{\vee}\right) \rightarrow H^{0}\left(\tilde{C}, K_{\tilde{C}}\right)
$$

splits into an $\iota$-anti-invariant part

$$
\mu_{0}^{-}(L): \Lambda^{2} H^{0}(\tilde{C}, L) \rightarrow H^{0}\left(C, K_{C} \otimes \eta\right), \quad s \wedge t \mapsto s \cdot \iota^{*}(t)-t \cdot \iota^{*}(s)
$$

and an $\iota$-invariant part respectively

$$
\mu_{0}^{+}(L): \operatorname{Sym}^{2} H^{0}(\tilde{C}, L) \rightarrow H^{0}\left(C, K_{C}\right), \quad s \otimes t+t \otimes s \mapsto s \cdot \iota^{*}(t)+t \cdot \iota^{*}(s)
$$

For a general $[C, \eta] \in \mathcal{R}_{g}$, the Prym-Petri map $\mu_{0}^{-}(L)$ is injective for every $L \in V^{r}(C, \eta)$ and $V^{r}(C, \eta)$ is equidimensional of dimension $g-1-\binom{r+1}{2}$, see [We]. We introduce the universal Prym-Brill-Noether variety

$$
\mathcal{R}_{g}^{r}:=\left\{([C, \eta], L):[C, \eta] \in \mathcal{R}_{g}, L \in V^{r}(C, \eta)\right\} .
$$

When $g-1-\binom{r+1}{2} \geq 0$, the variety $\mathcal{R}_{g}^{r}$ is irreducible of dimension $4 g-4-\binom{r+1}{2}$. We propose to focus on the case $r=2$ and $g \geq 4$ and choose a general triple $(f: \tilde{C} \rightarrow C, L) \in$ $\mathcal{R}_{g}^{2}$, such that $L$ is base point free and $h^{0}(\tilde{C}, L)=3$.

Setting $\mathbf{P}^{2}:=\mathbf{P}\left(H^{0}(L)^{\vee}\right)$, we consider the quasi-étale double cover $q: \mathbf{P}^{2} \times \mathbf{P}^{2} \rightarrow \mathbf{P}^{5}$ obtained by projecting via the Segre embedding to the space of symmetric tensors. Note that $q$ is ramified along the diagonal $\Delta \subset \mathbf{P}^{2} \times \mathbf{P}^{2}$ and $V_{4}:=q(\Delta) \subset \mathbf{P}^{5}$ is the Veronese surface. Moreover $\Sigma:=\operatorname{Im}(q)$ is the determinantal symmetric cubic hypersurface isomorphic to the secant variety of $V_{4}$. We have the following commutative diagram:


Observe that the involution $\iota: \mathbf{P}^{8} \rightarrow \mathbf{P}^{8}$ given by $\iota[v \otimes w]:=[w \otimes v]$ where $v, w \in H^{0}(L)$, is compatible with $\iota: \tilde{C} \rightarrow \tilde{C}$. To summarize, giving a point $(\tilde{C} \rightarrow C, L) \in \mathcal{R}_{g}^{2}$ is equivalent to specifying a symmetric determinantal cubic hypersurface $\Sigma \in H^{0}\left(\mathbf{P}^{g-1}, \mathcal{I}_{C / \mathbf{P}^{g-1}}(3)\right)$ containing the canonical curve.
2.3. A birational model of $\mathcal{F}_{4}^{\mathfrak{N}}$. As a warm-up, we indicate how the set-up described above is a generalization of the construction that Catanese [Ca] used to prove that $\mathcal{R}_{4}$ is rational. For a general point $[C, \eta] \in \mathcal{R}_{4}$ we find that $V^{2}(C, \eta)=\left\{L, \iota^{*} L\right\}$, that is, the pair $\left(L, \iota^{*} L\right)$ is uniquely determined. The map $\mu_{0}(L)$ has corank 2 and $\mathbf{P}_{\tilde{C}}^{6}:=\mathbf{P}\left(\operatorname{Im} \mu_{0}(L)\right) \subset$ $\mathbf{P}^{8}$ has codimension 2. The intersection $\tilde{T}:=\left(\mathbf{P}^{2} \times \mathbf{P}^{2}\right) \cap \mathbf{P}_{\tilde{C}}^{6}$ is a del Pezzo surface of degree 6 , whereas $T:=\Sigma \cap \mathbf{P}_{+}^{3}$ is a 4-nodal Cayley cubic. Here we set $\mathbf{P}_{+}^{3}:=\mathbf{P}\left(H^{0}\left(K_{C}\right)^{\vee}\right)$. The double cover $q: \tilde{T} \rightarrow T$ is ramified at the singular points of $T$.

To obtain a Nikulin surface containing $[C, \eta]$, we reverse this construction and start with a quartic rational normal curve $R \subset \mathbf{P}^{4}$ and denote by $\overline{\mathcal{Y}}:=\operatorname{Sec}(R) \subset \mathbf{P}^{4}$ its secant variety, which we view as a hyperplane section of $\Sigma \subset \mathbf{P}^{5}$. Retaining the notation of diagram (1), for a general quadric $Q \in\left|\mathcal{O}_{\mathbf{P}^{4}}(2)\right|$, the intersection $\bar{Y}:=\overline{\mathcal{Y}} \cap Q$ is a $K 3$ surface with 8 rational double points at $R \cap Q$. There exists a cover $q: Y \xrightarrow{2: 1} \bar{Y}$ ramified at the singular points of $Y$, induced by restriction from the map $q: \mathbf{P}^{2} \times \mathbf{P}^{2} \rightarrow \Sigma$. Clearly
$q: Y \rightarrow \bar{Y}$ is a Nikulin covering, and a hyperplane section in $\left|\mathcal{O}_{\bar{Y}}(1)\right|$ induces a Prym curve $[C, \eta] \in \mathcal{R}_{4}$ having general moduli. Moreover we have a birational isomorphism

$$
\mathcal{F}_{4}^{\mathfrak{N}} \xlongequal{\cong} \mathbf{P}\left(H^{0}\left(\mathcal{O}_{\mathbf{P}^{4}}(2)\right)\right)^{\mathrm{ss}} / / S L_{2},
$$

where $P G L_{2}=\operatorname{Aut}(R) \subset P G L_{5}$. An immediate consequence is that $\mathcal{F}_{4}^{\mathfrak{N}}$ is unirational.
2.4. Nikulin surfaces of genus 3 . We prove that $\chi_{3}: \mathcal{P}_{3}^{\mathfrak{N}} \rightarrow \mathcal{R}_{3}$ is dominant and fix a complete intersection of 3 quadrics $Y \subset \mathbf{P}^{5}$ invariant with respect to an involution fixing a line $L \subset \mathbf{P}^{5}$ and a 3 -dimensional linear subspace $\Lambda \subset \mathbf{P}^{5}$. The projection $\pi_{L}: \mathbf{P}^{5} \rightarrow \Lambda$ induces a quartic $\bar{Y}:=\pi_{L}(Y)$ with 8 nodes, which is a Nikulin surface. We check that a general Prym curve $[C, \eta] \in \mathcal{R}_{3}$ corresponding to an étale cover $f: \tilde{C} \rightarrow C$ embeds in such a surface.

Indeed, the canonical model $\tilde{C} \subset \mathbf{P}^{4}$ is a complete intersection of 3 quadrics. Fixing projective coordinates on $\mathbf{P}^{4}$, we can assume that the involution $\iota: \tilde{C} \rightarrow \tilde{C}$ is induced by the projective involution $[x: y: u: v: t] \leftrightarrow[-x:-y: u: v: t]$. Note that the $\iota^{*}$ anti-invariant quadratic forms are vectors $q=a x+b y$, where $a, b$ are linear forms in $u, v, t$. Since $\tilde{C}$ is complete intersection of 3 quadrics, no non-zero quadric $q=a x+b y$ vanishes on $\tilde{C}$, for not, $\tilde{C}$ would intersect the plane $\{x=y=0\}$ and then $\iota$ would have fixed points. Thus $\iota$ acts as the identity on the space $H^{0}\left(\mathbf{P}^{4}, \mathcal{I}_{\tilde{C} / \mathbf{P}^{4}}(2)\right)$. Hence it follows $\tilde{C}=\left\{a_{1}+b_{1}=a_{2}+b_{2}=a_{3}+b_{3}=0\right\}$, where $a_{i}, b_{i}$ are quadratic forms in $x, y$ and $u, v, t$. Passing to $\mathbf{P}^{5}$ by adding one coordinate $h$, we can choose quadratic forms $a_{i}+b_{i}+h l_{i}$, where $l_{i}$ is a general linear form in $h, u, v, t$. Consider the surface $Y \subset \mathbf{P}^{5}$ defined by the latter 3 equations. Then $[x: y: h: u: v: t] \leftrightarrow[-x:-y: h: u: v: t]$ induces a Nikulin involution on $Y$. Let $\pi_{L}: Y \rightarrow \mathbf{P}^{3}$ be the projection of center $L=\{h=u=v=t=0\}$. Then $\bar{Y}:=\pi_{L}(Y)$ is a quartic Nikulin surface and $C=\pi_{L}(\tilde{C})$ is a plane section of it.
2.5. Nikulin surfaces of genus 5 . To describe the morphism $\chi_{5}: \mathcal{P}_{5}^{\mathfrak{N}} \rightarrow \mathcal{R}_{5}$ more geometrically, we use the set-up introduced in Subsection 2.2. If $[C, \eta] \in \mathcal{R}_{5}$ is general, then $\operatorname{dim} V^{2}(C, \eta)=1$, the $\iota$-invariant Petri map $\mu_{0}^{-}(L)$ is injective, $\mu_{0}^{+}(L)$ surjective, thus $\operatorname{dim}\left(\right.$ Coker $\left.\mu_{0}(L)\right)=1$. We consider the hyperplane

$$
\mathbf{P}_{\widetilde{C}}^{7}:=\mathbf{P}\left(\operatorname{Im}\left(\mu_{0}(L)\right) \subset \mathbf{P}\left(H^{0}(L)^{\vee} \otimes H^{0}(L)^{\vee}\right)\right.
$$

and also set $\mathbf{P}_{+}^{4}:=\mathbf{P}\left(H^{0}\left(K_{C}\right)^{\vee}\right) \subset \mathbf{P}^{5}$. Then we further denote

$$
\tilde{T}:=\left(\mathbf{P}^{2} \times \mathbf{P}^{2}\right) \cap \mathbf{P}_{\tilde{C}}^{7} \text { and } T:=\Sigma \cap \mathbf{P}_{+}^{4} .
$$

Note that $\tilde{T}$ is a degree 6 threefold in $\mathbf{P}_{\tilde{C}}^{7}$. Since the hyperplane $\mathbf{P}_{\tilde{C}}^{7}$ is $\iota$-invariant, it follows $\tilde{T}$ is also endowed with the involution $\iota_{\tilde{T}} \in \operatorname{Aut}(\tilde{T})$ such that $\operatorname{Fix}\left(\iota_{\tilde{T}}\right)=\Delta \cap \tilde{T}$ is a rational quartic curve in $\mathbf{P}_{+}^{4}$. Furthermore $T \subset \mathbf{P}_{+}^{4}$ is the secant variety of $R$.

Proposition 2.4. For a general point $[C, \eta, L] \in \mathcal{R}_{5}^{2}$ the following statements hold:
(i) The threefold $\tilde{T} \subset \boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ is smooth, while $T \subset \boldsymbol{P}_{+}^{4}$ is singular precisely along $R$.
(ii) $h^{0}\left(\tilde{T}, \mathcal{I}_{\tilde{C} / \tilde{T}}(2)\right)=3$. Moreover $H^{i}\left(\tilde{T}, \mathcal{I}_{\tilde{C} / \tilde{T}}(2)\right)=0$ for $i=1,2$.
(iii) Every quadratic section in the linear system $\left|\mathcal{I}_{\tilde{C} / \tilde{T}}(2)\right|$ is $\iota$-invariant, that is,

$$
H^{0}\left(\tilde{T}, \mathcal{I}_{\tilde{C} / \tilde{T}}(2)\right)=q^{*} H^{0}\left(T, \mathcal{I}_{C / T}(2)\right)
$$

(iv) A general quadratic section $Y \in\left|\mathcal{I}_{\tilde{C} / \tilde{T}}(2)\right|$ is a smooth $K 3$ surface endowed with an involution $\iota_{Y}$ with fixed points precisely at the 8 points in the intersection $R \cap Y$.

Proof. We take cohomology in the following exact sequence

$$
0 \longrightarrow \mathcal{I}_{\tilde{C} / \mathbf{P}^{2} \times \mathbf{P}^{2}}(2) \longrightarrow \mathcal{O}_{\mathbf{P}^{2} \times \mathbf{P}^{2}}(2) \longrightarrow K_{\tilde{C}}^{\otimes 2} \longrightarrow 0
$$

to note that $h^{0}\left(\mathcal{I}_{\tilde{C} / \tilde{T}}(2)\right)=3\left(\Leftrightarrow H^{1}\left(\mathcal{I}_{\tilde{C} / \mathbf{P}^{2} \times \mathbf{P}^{2}}(2)\right)=0\right)$, if and only if the composed map

$$
\operatorname{Sym}^{2} H^{0}(\tilde{C}, L) \otimes \operatorname{Sym}^{2} H^{0}\left(\tilde{C}, \iota^{*} L\right) \rightarrow H^{0}\left(\tilde{C}, L^{\otimes 2}\right) \otimes H^{0}\left(\tilde{C}, \iota^{*}\left(L^{\otimes 2}\right)\right) \rightarrow H^{0}\left(\tilde{C}, K_{\tilde{C}}^{\otimes 2}\right)
$$

is surjective. This is an open condition and a triple $(\tilde{C} \xrightarrow{f} C, L) \in \mathcal{R}_{g}^{2}$ satisfying it, and for which moreover $\tilde{T} \subset \mathbf{P}^{2} \times \mathbf{P}^{2}$ is smooth, has been constructed in [V2] Section 4. Finally, from the exact sequence

$$
0 \longrightarrow \mathcal{I}_{T / \mathbf{P}_{+}^{4}}(2) \longrightarrow \mathcal{I}_{C / \mathbf{P}_{+}^{4}}(2) \longrightarrow \mathcal{I}_{C / T}(2) \rightarrow 0
$$

we compute that $h^{0}\left(T, \mathcal{I}_{C, T}(2)\right)=3$, therefore $q^{*}: H^{0}\left(T, \mathcal{I}_{C / T}(2)\right) \rightarrow H^{0}\left(\tilde{T}, \mathcal{I}_{\tilde{C} / \tilde{T}}(2)\right)$ is an isomorphism, based on dimension count. Part (iv) is a consequence of (i)-(iii). Assume that $\bar{Y}=T \cap Q$, where $Q \in H^{0}\left(\mathcal{I}_{C / \mathbf{P}_{+}^{4}}(2)\right)$. Then $Y=\tilde{T} \cap q^{*}(Q)$ and $\bar{Y}$ is the quotient of $Y$ by the involution $\iota_{Y}$ obtained by restriction from $\iota \in \operatorname{Aut}\left(\mathbf{P}^{2} \times \mathbf{P}^{2}\right)$. It follows that the covering $q: Y \rightarrow \bar{Y}$ is a Nikulin surface such that $C \subset \bar{Y} \subset \mathbf{P}_{+}^{4}$. To conclude, we must check that for a general choice of $Y \in\left|\mathcal{I}_{\tilde{C} / \tilde{T}}(2)\right|$, the point $\left[Y, \iota_{Y}\right]$ gives rise to an element of $\mathcal{F}_{5}^{\mathfrak{N}}$, that is, using the notation of diagram (1), that $\operatorname{Pic}(S)=\Lambda_{5}$. Proposition 2.7 from VGS picks out two possibilities for $\operatorname{Pic}(Y)$ (or equivalently for $\operatorname{Pic}(S)$ ), and we must check that $\mathbb{Z} \cdot \mathcal{O}_{Y}(\tilde{C}) \oplus E_{8}(-2)$ has index 2 in $\operatorname{Pic}(Y)$, see also [GS] Corollary 2.2. (]

This is achieved by finding the decomposition of $H^{0}\left(\mathcal{O}_{Y}(\tilde{C})\right)$ into $\iota_{Y}^{*}$-eigenspaces. In the course of the proof of [V2] Proposition 5.2 an example of a smooth quadratic section $Y \in\left|\mathcal{I}_{\tilde{C} / \tilde{T}}(2)\right|$ is constructed such that

$$
H^{0}\left(Y, \mathcal{O}_{Y}(\tilde{C})\right)^{+}=q^{*} H^{0}\left(\bar{Y}, \mathcal{O}_{\bar{Y}}(C)\right)
$$

In particular the $(+1)$-eigenspace of $H^{0}\left(Y, \mathcal{O}_{Y}(\tilde{C})\right)$ is 6-dimensional and invoking once more VGS] Proposition 2.7, we conclude that $\left[Y, \iota_{Y}\right] \in \mathcal{F}_{5}^{\mathfrak{N}}$.

We close this subsection with an amusing result on a geometric divisor on $\mathcal{R}_{5}$. For a Prym curve $[C, \eta] \in \mathcal{R}_{5}$ and $L:=K_{C} \otimes \eta \in W_{8}^{3}(C)$, we observe that the vector spaces entering the multiplication map $\nu_{3}(L): \operatorname{Sym}^{3} H^{0}(C, L) \rightarrow H^{0}\left(C, L^{\otimes 3}\right)$ have the same dimension. The condition that $\nu_{3}(L)$ be not an isomorphism is divisorial in $\mathcal{R}_{5}$. We have not been able to find a direct proof of the following equality of cycles on $\mathcal{R}_{5}$, even though one inclusion is straightforward:
Theorem 2.5. Let $[C, \eta] \in \mathcal{R}_{5}$ be a Prym curve such that the Prym-canonical line bundle $K_{C} \otimes \eta$ is very ample. Then $\phi_{K_{C} \otimes \eta}: C \rightarrow \boldsymbol{P}^{3}$ lies on a cubic surface if and only if $C$ is trigonal.
Proof. Let $\mathfrak{D}_{1}$ be the locus of Prym curves whose Prym-canonical model lies on a cubic

$$
\mathfrak{D}_{1}:=\left\{[C, \eta] \in \overline{\mathcal{R}}_{5}: \nu_{3}\left(\omega_{C} \otimes \eta\right): \operatorname{Sym}^{3} H^{0}\left(C, \omega_{C} \otimes \eta\right) \xrightarrow{\neq} H^{0}\left(C, \omega_{C}^{\otimes 3} \otimes \eta^{\otimes 3}\right)\right\},
$$

[^0]and $\mathfrak{D}_{2}$ the closure inside $\overline{\mathcal{R}}_{5}$ of the divisor $\left\{[C, \eta] \in \mathcal{R}_{5}: \eta \in C_{2}-C_{2}\right\}$ of smooth Prym curves for which $L:=K_{C} \otimes \eta \in W_{8}^{3}(C)$ is not very ample. Obviously, $\mathfrak{D}_{1}-\mathfrak{D}_{2} \geq 0$, for if $L$ is not very ample, then the multiplication map $\nu_{3}(L): \operatorname{Sym}^{3} H^{0}(C, L) \rightarrow H^{0}\left(C, L^{\otimes 3}\right)$ cannot be an isomorphism. The class of $\mathfrak{D}_{2}$ can be read off [FL] Theorem 5.2:
$$
\mathfrak{D}_{2} \equiv 14 \lambda-2\left(\delta_{0}^{\prime}+\delta_{0}^{\prime \prime}\right)-\frac{5}{2} \delta_{0}^{\mathrm{ram}}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{R}}_{5}\right)
$$

For $i \geq 1$, let $\mathbb{E}_{i}$ be the vector bundle over $\overline{\mathcal{R}}_{5}$ with fibre $\mathbb{E}_{i}[C, \eta]=H^{0}\left(C, \omega_{C}^{\otimes i} \otimes \eta^{\otimes i}\right)$ for every $[C, \eta] \in \overline{\mathcal{R}}_{g}$. One has the following formulas from [FL] Proposition 1.7:

$$
c_{1}\left(\mathbb{E}_{i}\right)=\binom{i}{2}\left(12 \lambda-\delta_{0}^{\prime}-\delta_{0}^{\prime \prime}-2 \delta_{0}^{\mathrm{ram}}\right)+\lambda-\frac{i^{2}}{4} \delta_{0}^{\mathrm{ram}} \in \operatorname{Pic}\left(\overline{\mathcal{R}}_{g}\right)
$$

As a consequence, $\mathfrak{D}_{1} \equiv c_{1}\left(\mathbb{E}_{3}\right)-c_{1}\left(\operatorname{Sym}^{3} \mathbb{E}_{1}\right) \equiv 37 \lambda-3\left(\delta_{0}+\delta_{0}^{\prime \prime}\right)-\frac{33}{4} \delta_{0}^{\text {ram }}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{R}}_{5}\right)$, therefore $\mathfrak{D}_{1}-\mathfrak{D}_{2} \equiv 8 \lambda-\left(\delta_{0}^{\prime}+\delta_{0}^{\prime \prime}\right)-2 \delta_{0}^{\text {ram }}-\cdots=\pi^{*}\left(8 \lambda-\delta_{0}-\cdots\right) \geq 0$, where the terms left out are combinations of boundary divisors $\pi^{*}\left(\delta_{i}\right)$ with $i \geq 1$, corresponding to reducible curves. The only effective divisors $D \equiv a \lambda-b_{0} \delta_{0}-b_{1} \delta_{1}-b_{2} \delta_{2}$ on $\overline{\mathcal{M}}_{5}$ such that $\frac{a}{b_{0}} \leq 8$ and satisfying $\Delta_{i} \nsubseteq \operatorname{supp}(D)$ for $i=1,2$, are multiples of the trigonal locus $\overline{\mathcal{M}}_{5,3}^{1}$ (the proof is identical to that of Proposition [5.1). This proves that if $[C, \eta] \in \mathfrak{D}_{1}-\mathfrak{D}_{2}$, with $C$ being a smooth curve, then necessarily $[C] \in \mathcal{M}_{5,3}^{1}$, which finishes the proof.

## 3. A SINGULAR QUADRATIC COMPLEX AND A BIRATIONAL MODEL FOR $\mathcal{F}_{6}^{\mathfrak{N}}$

Let us set $V:=\mathbb{C}^{n+1}$ and denote by $\mathbf{G}:=G(2, V) \subset \mathbf{P}\left(\wedge^{2} V\right)$ the Grassmannian of lines in $\mathbf{P}(V)$. We fix once and for all a smooth quadric $Q \subset \mathbf{P}(V)$. The projective tangent bundle $\mathbf{P}_{Q}:=\mathbf{P}\left(T_{Q}\right)$ can be realized as the incidence correspondence

$$
\mathbf{P}_{Q}=\left\{(x, \ell) \in Q \times \mathbf{G}: x \in \ell \subset \mathbf{P}\left(T_{x} Q\right)\right\}
$$

For each point $x \in Q$, the fibre $\mathbf{P}_{Q}(x)$ is the space of lines tangent to $Q$ at $x$. We introduce the projections $p: \mathbf{P}_{Q} \rightarrow \mathbf{G}$ and $q: \mathbf{P}_{Q} \rightarrow Q$, then set

$$
W_{Q}:=p\left(\mathbf{P}_{Q}\right)=\{\ell \in \mathbf{G}: \ell \text { is tangent to the quadric } Q\} .
$$

Note that $W_{Q}$ contains the Hilbert scheme of lines in $Q$, which we denote by $V_{Q} \subset W_{Q}$. It is well-known that $V_{Q}$ is smooth, irreducible and $\operatorname{dim}\left(V_{Q}\right)=2 n-5$. The restriction $p_{\mid p^{-1}\left(W_{Q}-V_{Q}\right)}$ is an isomorphism and $E_{Q}:=p^{-1}\left(V_{Q}\right) \subset \mathbf{P}_{Q}$ is the exceptional divisor of $p$.

Proposition 3.1. The variety $W_{Q}$ is a quadratic complex of lines in $\boldsymbol{G}$. Its singular locus is equal to $V_{Q}$ and each point of $V_{Q}$ is an ordinary double point of $W_{Q}$.
Proof. Let $Q: V \rightarrow \mathbb{C}$ be the quadratic form whose zero locus is the quadric hypersurface also denoted by $Q \subset \mathbf{P}(V)$, and $\tilde{Q}: V \times V \rightarrow \mathbb{C}$ the associated bilinear map. We define the bilinear map $\nu_{2}(\tilde{Q}): \wedge^{2} V \times \wedge^{2} V \rightarrow \mathbb{C}$ by the formula

$$
\nu_{2}(\tilde{Q})(u \wedge v, s \wedge t):=\tilde{Q}(u, s) \tilde{Q}(v, t)-\tilde{Q}(v, s) \tilde{Q}(u, t)
$$

for $u, v, s, t \in V$, and denote by $\nu_{2}(Q): \wedge^{2} V \rightarrow \mathbb{C}$ the induced quadratic form.
For fixed points $x=[u] \in Q$ and $y=[v] \in \mathbf{P}(V)$, we observe that the line $\ell=\langle x, y\rangle$ is tangent to $Q$ if and only if $\tilde{Q}(u, v)=0 \Leftrightarrow \nu_{2}(Q)(u \wedge v)=0$. Therefore $W_{Q}=\mathbf{G} \cap \nu_{2}(Q)$ is a quadratic line complex in $\mathbf{G}$, being the vanishing locus of $\nu_{2}(Q)$.

Keeping the same notation, a point $\ell=[u \wedge v] \in W_{Q}$ is a singular point, if and only if the linear form $\nu_{2}(\tilde{Q})(u \wedge v,-)$ vanishes along $\mathbf{P}\left(T_{\ell} \mathbf{G}\right)$. Since $\mathbf{P}\left(T_{\ell} \mathbf{G}\right)$ is spanned by
the Schubert cycle $\{m \in \mathbf{G}: m \cap \ell \neq \emptyset\}$, any tangent vector in $T_{\ell}(\mathbf{G})$ has a representative of the form $u \wedge a-v \wedge b$, where $a, b \in V$. We obtain that $[u \wedge v] \in \operatorname{Sing}\left(W_{Q}\right)$ if and only if $Q(v, v)=0$, that is, $\ell=[u \wedge v] \in V_{Q}$. Since $W_{Q}$ is a quadratic complex, each point $\ell \in V_{Q}$ has multiplicity 2 .

The map $p: \mathbf{P}_{Q} \rightarrow W_{Q}$ appears as a desingularization of the quadratic complex $W_{Q}$. We shall compute the class of the exceptional divisor $E_{Q}$ of $\mathbf{P}_{Q}$. Let $H:=p^{*}\left(\mathcal{O}_{\mathbf{G}}(1)\right)$ be the class of the family of tangent lines to $Q$ intersecting a fixed ( $n-2$ )-plane in $\mathbf{P}(V)$ and $B:=q^{*}\left(\mathcal{O}_{Q}(1)\right) \in \operatorname{Pic}\left(\mathbf{P}_{Q}\right)$. Furthermore, we consider the class $h \in N S_{1}\left(\mathbf{P}_{Q}\right)$ of the pencil of tangent lines to $Q$ with center a given point $x \in Q$. It is clear that

$$
h \cdot H=1 \text { and } h \cdot B=0 .
$$

If $\ell \in V_{Q}$ is a fixed line, let $s \in N S_{1}\left(\mathbf{P}_{Q}\right)$ be the class of the family $\{(x, \ell): x \in \ell\}$. Then

$$
s \cdot H=0 \text { and } s \cdot B=1 .
$$

Lemma 3.2. The linear equivalence $E_{Q} \equiv 2 H-2 B$ in $\operatorname{Pic}\left(\boldsymbol{P}_{Q}\right)$ holds. In particular, the class $E_{Q}$ is divisible by 2 and it is the branch divisor of a double cover

$$
f: \tilde{\mathbf{P}}_{Q} \rightarrow \mathbf{P}_{Q}
$$

Proof. To compute the class of $E_{Q}$ it suffices to compute $h \cdot E_{Q}$ and $s \cdot E_{Q}$. First we note that $h \cdot E_{Q}=2$. Indeed a pencil of tangent lines to $Q$ through a fixed point $x \in Q$ has two elements which are in $Q$. Finally, recalling that $V_{Q}=\operatorname{Sing}\left(W_{Q}\right)$ consists of ordinary double points, we obtain that $s \cdot E_{Q}=-2$, since $p^{-1}(\ell)$ is a conic inside $\mathbf{P}\left(N_{V_{Q} / \mathbf{G}}(\ell)\right)$.
3.1. A birational model for $\mathcal{F}_{6}^{\mathfrak{N}}$. Let us now specialize to the case $n=4$, that is,

$$
Q \subset \mathbf{P}^{4}, \mathbf{G}=G(2,5) \subset \mathbf{P}^{9} \text { and } \operatorname{dim}\left(W_{Q}\right)=5
$$

The class of $V_{Q}$ equals $4 \sigma_{2,1} \in H^{6}(\mathbf{G}, \mathbb{Z})$, therefore $\operatorname{deg}\left(V_{Q}\right)=4 \sigma_{2,1} \cdot \sigma_{1}^{3}=8$. This can also be seen by recalling that $V_{Q}$ is isomorphic to the Veronese 3-fold $\nu_{2}\left(\mathbf{P}^{3}\right) \subset \mathbf{P}^{9}$.

The double covering $f: \tilde{\mathbf{P}}_{Q} \rightarrow \mathbf{P}_{Q}$ constructed above has a transparent projective interpretation. For $(x, \ell) \in \mathbf{P}_{Q}$, we denote by $\Pi_{\ell} \in G(3, V)$ the polar space of $\ell$ defined as the base locus of the pencil of polar hyperplanes $\{z \in \mathbf{P}(V): \tilde{Q}(y, z)=0\}_{y \in \ell}$. Clearly $x \in \Pi_{\ell} \subset \mathbf{P}\left(T_{x} Q\right)$ and $Q \cap \Pi_{\ell}$ is a conic of rank at most 2 in $\Pi_{\ell}$. When $\ell \in W_{Q}-V_{Q}$, the quadric has rank exactly 2 which corresponds to a pair of lines $\ell_{1}+\ell_{2}$ with $\ell_{1}, \ell_{2} \in V_{Q}$. The double cover is induced by the map from the parameter space of the lines themselves.

In the next statement we shall keep in mind the notation of diagram (1):
Proposition 3.3. A general codimension 3 linear section $\bar{Y}:=\Lambda \cap W_{Q}$ of the quadratic complex $W_{Q}$ where $\Lambda \in G\left(7, \wedge^{2} V\right)$, is a 8-nodal $K 3$ surface with desingularization

$$
p: S:=p^{-1}(\bar{Y}) \rightarrow \bar{Y} .
$$

The triple $\left[S, \mathcal{O}_{S}(H-B), \mathcal{O}_{S}(H)\right] \in \mathcal{F}_{6}^{\mathfrak{N}}$ is a Nikulin surface of genus 6 and the induced double cover is the restriction $f: \tilde{S}:=f^{-1}(S) \rightarrow S$.
Proof. We fix a general 6-plane $\Lambda \in G\left(7, \wedge^{2} V\right)$. Since $K_{W_{Q}}=\mathcal{O}_{W_{Q}}(-3 H)$, by adjunction we obtain that $\bar{Y}:=\Lambda \cap W_{Q}$ is a $K 3$ surface. From Bertini's theorem, $\bar{Y}$ has ordinary double points at the 8 points of intersection $\Lambda \cap V_{Q}$. General hyperplane sections of $C \in\left|\mathcal{O}_{\bar{Y}}(H)\right|$, viewed as codimension 4 linear sections of $W_{Q}$, are canonical curves of
genus 6 , endowed with a line bundle of order 2 given by $\mathcal{O}_{C}(H-B)$. The remaining statements are immediate.

It turns out that the general Nikulin surface of genus 6 arises in this way:
Theorem 3.4. Let $V:=\mathbb{C}^{5}$ and $Q \subset \boldsymbol{P}(V)$ be a smooth quadric. One has a dominant map

$$
\varphi: G\left(7, \wedge^{2} V\right)^{\mathrm{ss}} / / \operatorname{Aut}(Q) \longrightarrow \mathcal{F}_{6}^{\mathfrak{N}}
$$

given by $\varphi(\Lambda):=\left[S:=p^{-1}\left(\Lambda \cap W_{Q}\right), \mathcal{O}_{S}(H-B), \mathcal{O}_{S}(H)\right]$.
Proof. Via the embedding $\operatorname{Aut}(Q) \subset P G L(V) \hookrightarrow P G L\left(\wedge^{2} V\right)$, we observe that every automorphism of $Q$ induces an automorphism of $\mathbf{P}\left(\wedge^{2} V\right)$ that fixes both $W_{Q}$ and $V_{Q}$. Since (i) the moduli space $\mathcal{F}_{6}^{\mathfrak{T}}$ is irreducible and (ii) polarized Nikulin surfaces have finite automorphism groups, it suffices to observe that $\operatorname{dim} G\left(7, \wedge^{2} V\right) / / \operatorname{Aut}(Q)=21-10=11$ and $\operatorname{dim}\left(\mathcal{F}_{6}^{\mathfrak{Y}}\right)=11$ as well.

Corollary 3.5. The Prym-Nikulin locus $\mathcal{N}_{6} \subset \mathcal{R}_{6}$ is an irreducible unirational divisor, which is set-theoretically equal to the ramification locus of the Prym map $\operatorname{Pr}: \mathcal{R}_{6} \rightarrow \mathcal{A}_{5}$

$$
\mathcal{U}_{6,0}=\left\{[C, \eta] \in \mathcal{R}_{6}: K_{0,2}\left(C, K_{C} \otimes \eta\right) \neq 0\right\} .
$$

Furthermore, the exists a dominant rational map $G\left(6, \wedge^{2} V\right)^{\text {ss }} / / \operatorname{Aut}(Q) \rightarrow \mathcal{N}_{6}$.
Proof. Just observe that $\langle C\rangle=\mathbf{P}^{5}$ and that this has codimension 4 in $\mathbf{P}\left(\wedge^{2} V\right)$, hence there is a $\mathbf{P}^{3}$ of Nikulin sections of $W_{Q}$ containing $C$.

The divisor $\overline{\mathcal{K}}_{10} \subset \overline{\mathcal{M}}_{10}$ of sections of $K 3$ surfaces is known to be an extremal point of the effective cone $\operatorname{Eff}\left(\overline{\mathcal{M}}_{10}\right)$. An analogous result holds for the closure of $\mathcal{N}_{6}$ :

Proposition 3.6. The Prym-Nikulin divisor $\overline{\mathcal{N}}_{6}$ is extremal in the effective cone $\operatorname{Eff}\left(\overline{\mathcal{R}}_{6}\right)$ :
Proof. It follows from [FL] Theorem 0.6 that $\overline{\mathcal{N}}_{6} \equiv 7 \lambda-\frac{3}{2} \delta_{0}^{\text {ram }}-\left(\delta_{0}^{\prime}+\delta_{0}^{\prime \prime}\right)-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{R}}_{6}\right)$. The divisor $\mathcal{K N}_{6}$ is filled-up by the rational curves $\Xi_{6} \subset \overline{\mathcal{R}}_{6}$ constructed in the course of proving Theorem 1.4 We compute that $\Xi_{6} \cdot \overline{\mathcal{N}}_{6}=-1$, which completes the proof.

## 4. Spin Curves and the divisor $\bar{\Theta}_{\text {null }}$

We turn our attention to the moduli space of spin curves and begin by setting notation and terminology. If $\mathbf{M}$ is a Deligne-Mumford stack, we denote by $\mathcal{M}$ its associated coarse moduli space. A $\mathbb{Q}$-Weil divisor $D$ on a normal $\mathbb{Q}$-factorial projective variety $X$ is said to be movable if $\operatorname{codim}\left(\bigcap_{m} \mathrm{Bs}|m D|, X\right) \geq 2$, where the intersection is taken over all $m$ which are sufficiently large and divisible. We say that $D$ is rigid if $|m D|=\{m D\}$, for all $m \geq 1$ such that $m D$ is an integral Cartier divisor. The Kodaira-Iitaka dimension of a divisor $D$ on $X$ is denoted by $\kappa(X, D)$.

If $D=m_{1} D_{1}+\cdots+m_{s} D_{s}$ is an effective $\mathbb{Q}$-divisor on $X$, with irreducible components $D_{i} \subset X$ and $m_{i}>0$ for $i=1, \ldots, s$, a (trivial) way of showing that $\kappa(X, D)=0$ is by exhibiting for each $1 \leq i \leq s$, an irreducible curve $\Gamma_{i} \subset X$ passing through a general point of $D_{i}$, such that $\Gamma_{i} \cdot D_{i}<0$ and $\Gamma_{i} \cdot D_{j}=0$ for $i \neq j$.

We recall basic facts about the moduli space $\overline{\mathcal{S}}_{g}^{+}$and refer to [Cor], [ $\left.\overline{\mathrm{F}}\right]$ for details.

Definition 4.1. An even spin curve of genus $g$ consists of a triple $(X, \eta, \beta)$, where $X$ is a genus $g$ quasi-stable curve, $\eta \in \operatorname{Pic}^{g-1}(X)$ is a line bundle of degree $g-1$ such that $\eta_{E}=$ $\mathcal{O}_{E}(1)$ for every rational component $E \subset X$ with $|E \cap(\overline{X-E})|=2$ (such a component is called exceptional), $h^{0}(X, \eta) \equiv 0 \bmod 2$, and $\beta: \eta^{\otimes 2} \rightarrow \omega_{X}$ is a morphism of sheaves which is generically non-zero along each non-exceptional component of $X$.

Even spin curves of genus $g$ form a smooth Deligne-Mumford stack $\pi: \overline{\mathbf{S}}_{g}^{+} \rightarrow \overline{\mathbf{M}}_{g}$. At the level of coarse moduli schemes, the morphism $\pi: \overline{\mathcal{S}}_{g}^{+} \rightarrow \overline{\mathcal{M}}_{g}$ is the stabilization $\operatorname{map} \pi([X, \eta, \beta]):=[\operatorname{st}(X)]$, which associates to a quasi-stable curve its stable model.

We explain the boundary structure of $\overline{\mathcal{S}}_{g}^{+}$: If $[X, \eta, \beta] \in \pi^{-1}\left(\left[C \cup_{y} D\right]\right)$, where $[C, y] \in$ $\mathcal{M}_{i, 1},[D, y] \in \mathcal{M}_{g-i, 1}$ and $1 \leq i \leq[g / 2]$, then necessarily $X=C \cup_{y_{1}} E \cup_{y_{2}} D$, where $E$ is an exceptional component such that $C \cap E=\left\{y_{1}\right\}$ and $D \cap E=\left\{y_{2}\right\}$. Moreover $\eta=\left(\eta_{C}, \eta_{D}, \eta_{E}=\mathcal{O}_{E}(1)\right) \in \operatorname{Pic}^{g-1}(X)$, where $\eta_{C}^{\otimes 2}=K_{C}, \eta_{D}^{\otimes 2}=K_{D}$. The condition $h^{0}(X, \eta) \equiv 0 \bmod 2$, implies that the theta-characteristics $\eta_{C}$ and $\eta_{D}$ have the same parity. We denote by $A_{i} \subset \overline{\mathcal{S}}_{g}^{+}$the closure of the locus corresponding to pairs

$$
\left(\left[C, y, \eta_{C}\right],\left[D, y, \eta_{D}\right]\right) \in \mathcal{S}_{i, 1}^{+} \times \mathcal{S}_{g-i, 1}^{+}
$$

and by $B_{i} \subset \overline{\mathcal{S}}_{g}^{+}$the closure of the locus corresponding to pairs

$$
\left(\left[C, y, \eta_{C}\right],\left[D, y, \eta_{D}\right]\right) \in \mathcal{S}_{i, 1}^{-} \times \mathcal{S}_{g-i, 1}^{-}
$$

We set $\alpha_{i}:=\left[A_{i}\right] \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right), \beta_{i}:=\left[B_{i}\right] \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$, and then one has the relation

$$
\begin{equation*}
\pi^{*}\left(\delta_{i}\right)=\alpha_{i}+\beta_{i} \tag{3}
\end{equation*}
$$

We recall the description of the ramification divisor of the covering $\pi: \overline{\mathcal{S}}_{g}^{+} \rightarrow \overline{\mathcal{M}}_{g}$. For a point $[X, \eta, \beta] \in \overline{\mathcal{S}}_{g}^{+}$corresponding to a stable model $\operatorname{st}(X)=C_{y q}:=C / y \sim q$, with $[C, y, q] \in \mathcal{M}_{g-1,2}$, there are two possibilities depending on whether $X$ possesses an exceptional component or not. If $X=C_{y q}$ (i.e. $X$ has no exceptional component) and $\eta_{C}:=\nu^{*}(\eta)$ where $\nu: C \rightarrow X$ denotes the normalization map, then $\eta_{C}^{\otimes 2}=K_{C}(y+q)$. For each choice of $\eta_{C} \in \mathrm{Pic}^{g-1}(C)$ as above, there is precisely one choice of gluing the fibres $\eta_{C}(y)$ and $\eta_{C}(q)$ such that $h^{0}(X, \eta) \equiv 0 \bmod 2$. We denote by $A_{0}$ the closure in $\overline{\mathcal{S}}_{g}^{+}$of the locus of spin curves $\left[C_{y q}, \eta_{C} \in \sqrt{K_{C}(y+q)}\right]$ as above.

If $X=C \cup_{\{y, q\}} E$, where $E$ is an exceptional component, then $\eta_{C}:=\eta \otimes \mathcal{O}_{C}$ is a theta-characteristic on $C$. Since $H^{0}(X, \omega) \cong H^{0}\left(C, \omega_{C}\right)$, it follows that $\left[C, \eta_{C}\right] \in \mathcal{S}_{g-1}^{+}$. We denote by $B_{0} \subset \overline{\mathcal{S}}_{g}^{+}$the closure of the locus of spin curves

$$
\left[C \cup_{\{y, q\}} E, E \cong \mathbf{P}^{1}, \eta_{C} \in \sqrt{K_{C}}, \eta_{E}=\mathcal{O}_{E}(1)\right] \in \mathcal{S}_{g}^{+}
$$

If $\alpha_{0}:=\left[A_{0}\right], \beta_{0}:=\left[B_{0}\right] \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$, we have the relation, see [Cor]:

$$
\begin{equation*}
\pi^{*}\left(\delta_{0}\right)=\alpha_{0}+2 \beta_{0} \tag{4}
\end{equation*}
$$

In particular, $B_{0}$ is the ramification divisor of $\pi$. An important effective divisor on $\overline{\mathcal{S}}_{g}^{+}$is the locus of vanishing theta-nulls

$$
\Theta_{\mathrm{null}}:=\left\{[C, \eta] \in \mathcal{S}_{g}^{+}: H^{0}(C, \eta) \neq 0\right\}
$$

The class of its compactification inside $\overline{\mathcal{S}}_{g}^{+}$is given by the formula, cf. [F]:

$$
\begin{equation*}
\bar{\Theta}_{\text {null }} \equiv \frac{1}{4} \lambda-\frac{1}{16} \alpha_{0}-\frac{1}{2} \sum_{i=1}^{[g / 2]} \beta_{i} \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right) \tag{5}
\end{equation*}
$$

It is also useful to recall the formula for the canonical class of $\overline{\mathcal{S}}_{g}^{+}$:

$$
K_{\overline{\mathcal{S}}_{g}^{+}} \equiv \pi^{*}\left(K_{\overline{\mathcal{M}}_{g}}\right)+\beta_{0} \equiv 13 \lambda-2 \alpha_{0}-3 \beta_{0}-2 \sum_{i=1}^{[g / 2]}\left(\alpha_{i}+\beta_{i}\right)-\left(\alpha_{1}+\beta_{1}\right) .
$$

An argument involving spin curves on certain singular canonical surfaces in $\mathbf{P}^{6}$, implies that for $g \leq 9$, the divisor $\bar{\Theta}_{\text {null }}$ is uniruled and a rigid point in the cone of effective divisors $\operatorname{Eff}\left(\overline{\mathcal{S}}_{g}^{+}\right)$:

Theorem 4.2. For $g \leq 9$ the divisor $\bar{\Theta}_{\text {null }} \subset \overline{\mathcal{S}}_{g}^{+}$is uniruled and rigid. Precisely, through a general point of $\bar{\Theta}_{\text {null }}$ there passes a rational curve $\Gamma \subset \overline{\mathcal{S}}_{g}^{+}$such that $\Gamma \cdot \bar{\Theta}_{\text {null }}<0$. In particular, if $D$ is an effective divisor on $\overline{\mathcal{S}}_{g}^{+}$with $D \equiv n \bar{\Theta}_{\text {null }}$ for some $n \geq 1$, then $D=n \bar{\Theta}_{\text {null }}$.

Proof. A general point $\left[C, \eta_{C}\right] \in \Theta_{\text {null }}$ corresponds to a canonical curve $C \xrightarrow[\left|K_{C}\right|]{\hookrightarrow} \mathbf{P}^{g-1}$ lying on a rank 3 quadric $Q \subset \mathbf{P}^{g-1}$ such that $C \cap \operatorname{Sing}(Q)=\emptyset$. The pencil $\eta_{C}$ is recovered from the ruling of $Q$. We construct the pencil $\Gamma \subset \overline{\mathcal{S}}_{g}^{+}$by representing $C$ as a section of a nodal canonical surface $S \subset Q$ and noting that $\operatorname{dim}\left|\mathcal{O}_{S}(C)\right|=1$. The construction of $S$ depends on the genus and we describe the various cases separately.
(i) $7 \leq g \leq 9$. We choose $V \in G\left(7, H^{0}\left(C, K_{C}\right)\right)$ such that if $\pi_{V}: \mathbf{P}^{g-1} \rightarrow \mathbf{P}\left(V^{\vee}\right)$ denotes the projection, then $\tilde{Q}:=\pi_{V}(Q)$ is a quadric of rank 3. Let $C^{\prime}:=\pi_{V}(C) \subset \mathbf{P}\left(V^{\vee}\right)$ be the projection of the canonical curve $C$. By counting dimensions we find that

$$
\operatorname{dim}\left\{I_{C^{\prime} / \mathbf{P}\left(V^{\vee}\right)}(2):=\operatorname{Ker}\left\{\operatorname{Sym}^{2}(V) \rightarrow H^{0}\left(C, K_{C}^{\otimes 2}\right)\right\}\right\} \geq 31-3 g \geq 4
$$

that is, the embedded curve $C^{\prime} \subset \mathbf{P}^{6}$ lies on at least 4 independent quadrics, namely the rank 3 quadric $\tilde{Q}$ and $Q_{1}, Q_{2}, Q_{3} \in\left|I_{C^{\prime} / \mathbf{P}\left(V^{\vee}\right)}(2)\right|$. By choosing $V$ sufficiently general we make sure that $S:=\tilde{Q} \cap Q_{1} \cap Q_{2} \cap Q_{3}$ is a canonical surface in $\mathbf{P}\left(V^{\vee}\right)$ with 8 nodes corresponding to the intersection $\bigcap_{i=1}^{3} Q_{i} \cap \operatorname{Sing}(\tilde{Q})$ (This transversality statement can also be checked with Macaulay by representing $C$ as a section of the corresponding Mukai variety). From the exact sequence on $S$,

$$
0 \longrightarrow \mathcal{O}_{S} \longrightarrow \mathcal{O}_{S}(C) \longrightarrow \mathcal{O}_{C}(C) \longrightarrow 0
$$

coupled with the adjunction formula $\mathcal{O}_{C}(C)=K_{C} \otimes K_{S \mid C}^{\vee}=\mathcal{O}_{C}$, as well as the fact $H^{1}\left(S, \mathcal{O}_{S}\right)=0$, it follows that $\operatorname{dim}|C|=1$, that is, $C \subset S$ moves in its linear system. In particular, $\bar{\Theta}_{\text {null }}$ is a uniruled divisor for $g \leq 9$.

We determine the numerical parameters of the family $\Gamma \subset \overline{\mathcal{S}}_{g}^{+}$induced by varying $C \subset S$. Since $C^{2}=0$, the pencil $|C|$ is base point free and gives rise to a fibration $f: \tilde{S} \rightarrow \mathbf{P}^{1}$, where $\tilde{S}:=\operatorname{Bl}_{8}(S)$ is the blow-up of the nodes of $S$. This in turn induces a moduli map $m: \mathbf{P}^{1} \rightarrow \overline{\mathcal{S}}_{g}^{+}$and $\Gamma=: m\left(\mathbf{P}^{1}\right)$. We have the formulas

$$
\Gamma \cdot \lambda=m^{*}(\lambda)=\chi\left(S, \mathcal{O}_{S}\right)+g-1=8+g-1=g+7
$$

and

$$
\Gamma \cdot \alpha_{0}+2 \Gamma \cdot \beta_{0}=m^{*}\left(\pi^{*}\left(\delta_{0}\right)\right)=m^{*}\left(\alpha_{0}\right)+2 m^{*}\left(\beta_{0}\right)=c_{2}(\tilde{S})+4(g-1)
$$

Noether's formula gives that $c_{2}(\tilde{S})=12 \chi\left(\tilde{S}, \mathcal{O}_{\tilde{S}}\right)-K_{\tilde{S}}^{2}=12 \chi\left(S, \mathcal{O}_{S}\right)-K_{S}^{2}=80$, hence $m^{*}\left(\alpha_{0}\right)+2 m^{*}\left(\beta_{0}\right)=4 g+76$. The singular fibres corresponding to spin curves lying in $B_{0}$ are those in the fibres over the blown-up nodes and all contribute with multiplicity 1 , that is, $\Gamma \cdot \beta_{0}=8$ and then $\Gamma \cdot \alpha_{0}=4 g+60$. It follows that $\Gamma \cdot \bar{\Theta}_{\text {null }}=-2<0$ (independent of $g!$ ), which finishes the proof.
(ii) $g=5$. In the case $C \subset Q \subset \mathbf{P}^{4}$ and we choose a general quartic $X \in H^{0}\left(\mathbf{P}^{4}, \mathcal{I}_{C / \mathbf{P}^{4}}(4)\right)$ and set $S:=Q \cap X$. Then $S$ is a canonical surface with nodes at the 4 points $X \cap \operatorname{Sing}(Q)$. As in the previous case $\operatorname{dim}|C|=1$, and the numerical characters of the induced family $\Gamma \subset \overline{\mathcal{S}}_{5}^{+}$can be readily computed:

$$
\Gamma \cdot \lambda=g+5=10, \Gamma \cdot \beta_{0}=|\operatorname{Sing}(S)|=4, \text { and } \Gamma \cdot \alpha_{0}=4 g+52,
$$

where the last equality is a consequence of Noether's formula $\Gamma \cdot\left(\alpha_{0}+2 \beta_{0}\right)=12 \chi\left(S, \mathcal{O}_{S}\right)-$ $K_{S}^{2}+4(g-1)=4 g+60$. By direct calculation, we obtain once more that $\Gamma \cdot \bar{\Theta}_{\text {null }}=-2$. The case $g=6$ is similar, except that the canonical surface $S$ is a $(2,2,3)$ complete intersection in $\mathbf{P}^{5}$, where one of the quadrics is the rank 3 quadric $Q$.
(iii) $g=4$. In this last case we proceed slightly differently and denote by $S=\mathbb{F}_{2}$ the blowup of the vertex of a cone $Q \subset \mathbf{P}^{3}$ over a conic in $\mathbf{P}^{3}$ and write $\operatorname{Pic}(S)=\mathbb{Z} \cdot F+\mathbb{Z} \cdot C_{0}$, where $F^{2}=0, C_{0}^{2}=-2$ and $C_{0} \cdot F=1$. We choose a Lefschetz pencil of genus 4 curves in the linear system $\left|3\left(C_{0}+2 F\right)\right|$. By blowing-up the $18=9\left(C_{0}+2 F\right)^{2}$ base points, we obtain a fibration $f: \tilde{S}:=\mathrm{Bl}_{18}(S) \rightarrow \mathbf{P}^{1}$ which induces a family of spin curves $m: \mathbf{P}^{1} \rightarrow \overline{\mathcal{S}}_{4}^{+}$ given by $m(t):=\left[f^{-1}(t), \mathcal{O}_{f^{-1}(t)}(F)\right]$. We have the formulas

$$
\begin{gathered}
m^{*}(\lambda)=\chi\left(\tilde{S}, \mathcal{O}_{\tilde{S}}\right)+g-1=4, \quad \text { and } \\
m^{*}\left(\pi^{*}\left(\delta_{0}\right)\right)=m^{*}\left(\alpha_{0}\right)+2 m^{*}\left(\beta_{0}\right)=c_{2}(\tilde{S})+4(g-1)=34
\end{gathered}
$$

The singular fibres lying in $B_{0}$ correspond to curves in the Lefschetz pencil on $Q$ passing through the vertex of the cone, that is, when $f^{-1}\left(t_{0}\right)$ splits as $C_{0}+D$, where $D \subset \tilde{S}$ is the residual curve. Since $C_{0} \cdot D=2$ and $\mathcal{O}_{C_{0}}(F)=\mathcal{O}_{C_{0}}(1)$, it follows that $m\left(t_{0}\right) \in B_{0}$. One finds that $m^{*}\left(\beta_{0}\right)=1$, hence $m^{*}\left(\alpha_{0}\right)=32$ and $m^{*}\left(\bar{\Theta}_{\text {null }}\right)=-1$. Since $\Gamma:=m\left(\mathbf{P}^{1}\right)$ fills-up the divisor $\bar{\Theta}_{\text {null }}$, we obtain that $\left[\bar{\Theta}_{\text {null }}\right] \in \operatorname{Eff}\left(\overline{\mathcal{S}}_{4}^{+}\right)$is rigid.

## 5. Spin curves of genus 8

The moduli space $\mathcal{M}_{8}$ carries one Brill-Noether divisor, the locus of plane septics

$$
\mathcal{M}_{8,7}^{2}:=\left\{[C] \in \mathcal{M}_{8}: G_{7}^{2}(C) \neq \emptyset\right\}
$$

The locus $\overline{\mathcal{M}}_{8,7}^{2}$ is irreducible and for a known constant $c_{8,7}^{2} \in \mathbb{Z}_{>0}$, one has, cf. [EH1],

$$
\mathfrak{b n}_{8}:=\frac{1}{c_{8,7}^{2}} \overline{\mathcal{M}}_{8,7}^{2} \equiv 22 \lambda-3 \delta_{0}-14 \delta_{1}-24 \delta_{2}-30 \delta_{3}-32 \delta_{4} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{8}\right) .
$$

In particular, $s\left(\overline{\mathcal{M}}_{8,7}^{2}\right)=6+12 /(g+1)$ and this is the minimal slope of an effective divisor on $\overline{\mathcal{M}}_{8}$. The following fact is probably well-known:
Proposition 5.1. Through a general point of $\overline{\mathcal{M}}_{8,7}^{2}$ there passes a rational curve $R \subset \overline{\mathcal{M}}_{8}$ such that $R \cdot \overline{\mathcal{M}}_{8,7}^{2}<0$. In particular, the class $\left[\overline{\mathcal{M}}_{8,7}^{2}\right] \in \operatorname{Eff}\left(\overline{\mathcal{M}}_{8}\right)$ is rigid.

Proof. One takes a Lefschetz pencil of nodal plane septic curves with 7 assigned nodes in general position (and 21 unassigned base points). After blowing up the 21 unassigned base points as well as the 7 nodes, we obtain a fibration $f: S:=\mathrm{Bl}_{28}\left(\mathbf{P}^{2}\right) \rightarrow \mathbf{P}^{1}$, and the corresponding moduli map $m: \mathbf{P}^{1} \rightarrow \overline{\mathcal{M}}_{8}$ is a covering curve for the irreducible divisor $\overline{\mathcal{M}}_{8,7}^{2}$. The numerical invariants of this pencil are

$$
m^{*}(\lambda)=\chi\left(S, \mathcal{O}_{S}\right)+g-1=8 \text { and } m^{*}\left(\delta_{0}\right)=c_{2}(S)+4(g-1)=59
$$

while $m^{*}\left(\delta_{i}\right)=0$ for $i=1, \ldots, 4$. We find $m^{*}\left(\left[\overline{\mathcal{M}}_{8,7}^{2}\right]\right)=c_{8,7}^{2}(8 \cdot 22-3 \cdot 59)=-c_{8,7}^{2}<0$.
Using (5) we find the following explicit representative for the canonical class $K_{\overline{\mathcal{S}}_{8}^{+}}$:

$$
\begin{equation*}
K_{\overline{\mathcal{S}}_{8}^{+}} \equiv \frac{1}{2} \pi^{*}\left(\mathfrak{b n}_{8}\right)+8 \bar{\Theta}_{\mathrm{null}}+\sum_{i=1}^{4}\left(a_{i} \alpha_{i}+b_{i} \beta_{i}\right), \tag{6}
\end{equation*}
$$

where $a_{i}, b_{i}>0$ for $i=1, \ldots, 4$. The multiples of each irreducible component appearing in (6) are rigid divisors on $\overline{\mathcal{S}}_{8}^{+}$, but in principle, their sum could still be a movable class. Assuming for a moment Proposition 0.9 , we explain how this implies Theorem 0.1 .
Proof of Theorem 0.1 The covering curve $R \subset \bar{\Theta}_{\text {null }}$ constructed in Proposition 0.9, satisfies $R \cdot \bar{\Theta}_{\text {null }}<0$ as well as $R \cdot \pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)=0$ and $R \cdot \alpha_{i}=R \cdot \beta_{i}=0$ for $i=1, \ldots, 4$. It follows from (6) that for each $n \geq 1$, one has an equality of linear series on $\overline{\mathcal{S}}_{8}^{+}$

$$
\left|n K_{\overline{\mathcal{S}}_{8}^{+}}\right|=8 n \bar{\Theta}_{\text {null }}+\left|n\left(K_{\overline{\mathcal{S}}_{8}^{+}}-8 \bar{\Theta}_{\text {null }}\right)\right| .
$$

Furthermore, from (6) one finds constants $a_{i}^{\prime}>0$ for $i=1, \ldots, 4$, such that if

$$
D \equiv 22 \lambda-3 \delta_{0}-\sum_{i=1}^{4} a_{i}^{\prime} \delta_{i} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{8}\right)
$$

then the difference $\frac{1}{2} \pi^{*}(D)-\left(K_{\overline{\mathcal{S}}_{8}^{+}}-8 \bar{\Theta}_{\text {null }}\right)$ is still effective on $\overline{\mathcal{S}}_{8}^{+}$. We can thus write

$$
0 \leq \kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=\kappa\left(\overline{\mathcal{S}}_{8}^{+}, K_{\overline{\mathcal{S}}_{8}^{+}}-8 \bar{\Theta}_{\text {null }}\right) \leq \kappa\left(\overline{\mathcal{S}}_{8}^{+}, \frac{1}{2} \pi^{*}(D)\right)=\kappa\left(\overline{\mathcal{S}}_{8}^{+}, \pi^{*}(D)\right)
$$

We claim that $\kappa\left(\overline{\mathcal{S}}_{8}^{+}, \pi^{*}(D)\right)=0$. Indeed, in the course of the proof of Proposition 5.1 we have constructed a covering family $B \subset \overline{\mathcal{M}}_{8}$ for the divisor $\overline{\mathcal{M}}_{8,7}^{2}$ such that $B \cdot \overline{\mathcal{M}}_{8,7}^{2}<0$ and $B \cdot \delta_{i}=0$ for $i=1, \ldots, 4$. We lift $B$ to a family $R \subset \overline{\mathcal{S}}_{8}^{+}$of spin curves by taking

$$
\tilde{B}:=B \times_{\overline{\mathcal{M}}_{8}} \overline{\mathcal{S}}_{8}^{+}=\left\{\left[C_{t}, \eta_{C_{t}}\right] \in \overline{\mathcal{S}}_{8}^{+}:\left[C_{t}\right] \in B, \eta_{C_{t}} \in \overline{\operatorname{Pic}}^{7}\left(C_{t}\right), t \in \mathbf{P}^{1}\right\} \subset \overline{\mathcal{S}}_{8}^{+} .
$$

One notes that $\tilde{B}$ is disjoint from the boundary divisors $A_{i}, B_{i} \subset \overline{\mathcal{S}}_{8}^{+}$for $i=1, \ldots, 4$, hence $\tilde{B} \cdot \pi^{*}(D)=2^{g-1}\left(2^{g}+1\right)\left(B \cdot \overline{\mathcal{M}}_{8,7}^{2}\right)_{\overline{\mathcal{M}}_{8}}<0$. Thus we write that

$$
\kappa\left(\overline{\mathcal{S}}_{8}^{+}, \pi^{*}(D)\right)=\kappa\left(\overline{\mathcal{S}}_{8}^{+}, \pi^{*}\left(D-\left(22 \lambda-3 \delta_{0}\right)\right)=\kappa\left(\overline{\mathcal{S}}_{8}^{+}, \sum_{i=1}^{4} a_{i}^{\prime}\left(\alpha_{i}+\beta_{i}\right)\right)=0\right.
$$

6. A FAMILY OF SPIN CURVES $R \subset \overline{\mathcal{S}}_{8}^{+}$WITH $R \cdot \pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)=0$ AND $R \cdot \bar{\Theta}_{\text {null }}<0$

The aim of this section is to prove Proposition 0.9, which is the key ingredient in the proof of Theorem 0.1. We begin by reviewing facts about the geometry of $\overline{\mathcal{M}}_{8}$, in particular the construction of general curves of genus 8 as complete intersections in a rational homogeneous variety, see [M2].

We fix $V:=\mathbb{C}^{6}$ and denote by $\mathbf{G}:=G(2, V) \subset \mathbf{P}\left(\wedge^{2} V\right)$ the Grassmannian of lines. Noting that smooth codimension 7 linear sections of $G$ are canonical curves of genus 8, one is led to consider the Mukai model of the moduli space of curves of genus 8

$$
\mathfrak{M}_{8}:=G\left(8, \wedge^{2} V\right)^{\mathrm{st}} / / S L(V)
$$

There is a birational map $f: \overline{\mathcal{M}}_{8} \rightarrow \mathfrak{M}_{8}$, whose inverse is given by $f^{-1}(H):=\mathbf{G} \cap H$, for a general $H \in G\left(8, \wedge^{2} V\right)$. The map $f$ is constructed as follows: Starting with a curve $[C] \in \mathcal{M}_{8}-\mathcal{M}_{8,7}^{2}$, one notes that $C$ has a finite number of pencils $\mathfrak{g}_{5}^{1}$. We choose $A \in$ $W_{5}^{1}(C)$ and set $L:=K_{C} \otimes A^{\vee} \in W_{9}^{3}(C)$. There exists a unique rank 2 vector bundle $E \in S U_{C}\left(2, K_{C}\right)$ (independent of $A!$ ), sitting in an extension

$$
0 \longrightarrow A \longrightarrow E \longrightarrow L \longrightarrow 0
$$

such that $h^{0}(E)=h^{0}(A)+h^{0}(L)=6$. Since $E$ is globally generated, we define the map

$$
\phi_{E}: C \rightarrow G\left(2, H^{0}(E)^{\vee}\right), \quad \phi_{E}(p):=E(p)^{\vee}\left(\hookrightarrow H^{0}(E)^{\vee}\right)
$$

and let $\wp: G\left(2, H^{0}(E)^{\vee}\right) \rightarrow \mathbf{P}\left(\wedge^{2} H^{0}(E)^{\vee}\right)$ be the Plücker embedding. The determinant $\operatorname{map} u: \wedge^{2} H^{0}(E) \rightarrow H^{0}\left(K_{C}\right)$ is surjective and we can view $H^{0}\left(K_{C}\right)^{\vee} \in G\left(8, \wedge^{2} H^{0}(E)^{\vee}\right)$, see [M2] Theorem C. We set

$$
f([C]):=H^{0}\left(K_{C}\right)^{\vee} \bmod S L\left(H^{0}(E)^{\vee}\right) \in \mathfrak{M}_{8}
$$

that is, we assign to $C$ its linear span $\langle C\rangle$ under the Plücker map $\wp \circ \phi_{E}: C \rightarrow \mathbf{P}\left(\wedge^{2} H^{0}(E)^{\vee}\right)$.
Even though this is not strictly needed for our proof, it follows from [M2] that the exceptional divisors of $f$ are the Brill-Noether locus $\overline{\mathcal{M}}_{8,7}^{2}$ and the boundary divisors $\Delta_{1}, \ldots, \Delta_{4}$. The map $f^{-1}$ does not contract any divisors.

Inside the moduli space $\mathcal{F}_{8}$ of polarized $K 3$ surfaces $[S, h]$ of degree $h^{2}=14$, we consider the following Noether-Lefschetz divisor

$$
\mathfrak{N L}:=\left\{\left[S, \mathcal{O}_{S}\left(C_{1}+C_{2}\right)\right] \in \mathcal{F}_{8}: \operatorname{Pic}(S) \supset \mathbb{Z} \cdot C_{1} \oplus \mathbb{Z} \cdot C_{2}, \quad C_{1}^{2}=C_{2}^{2}=0, C_{1} \cdot C_{2}=7\right\}
$$

of doubly-elliptic $K 3$ surfaces. For a general element $\left[S, \mathcal{O}_{S}(C)\right] \in \mathfrak{N} \mathfrak{L}$, the embedded surface $\phi_{\mathcal{O}_{S}(C)}: S \hookrightarrow \mathbf{P}^{8}$ lies on a rank 4 quadric whose rulings induce the elliptic pencils $\left|C_{1}\right|$ and $\left|C_{2}\right|$ on $S$.

Let $\mathcal{U} \rightarrow \mathfrak{N L}$ be the space classifying pairs $\left(\left[S, \mathcal{O}_{S}\left(C_{1}+C_{2}\right)\right], C \subset S\right)$, where

$$
C \in\left|H^{0}\left(S, \mathcal{O}_{S}\left(C_{1}\right)\right) \otimes H^{0}\left(S, \mathcal{O}_{S}\left(C_{2}\right)\right)\right| \subset\left|H^{0}\left(S, \mathcal{O}_{S}\left(C_{1}+C_{2}\right)\right)\right|
$$

An element of $\mathcal{U}$ corresponds to a hyperplane section $C \subset S \subset \mathbf{P}^{8}$ of a doubly-elliptic $K 3$ surface, such that the intersection of $\langle C\rangle$ with the rank 4 quadric induced by the elliptic pencils, has rank at most 3 . There exists a rational map

$$
q: \mathcal{U} \rightarrow \bar{\Theta}_{\text {null }}, \quad q\left(\left[S, \mathcal{O}_{S}\left(C_{1}+C_{2}\right)\right], C\right):=\left[C, \mathcal{O}_{C}\left(C_{1}\right)=\mathcal{O}_{C}\left(C_{2}\right)\right]
$$

Since $\mathcal{U}$ is birational to a $\mathbf{P}^{3}$-bundle over an open subvariety of $\mathfrak{N L}$, we obtain that $\mathcal{U}$ is irreducible and $\operatorname{dim}(\mathcal{U})=21(=3+\operatorname{dim}(\mathfrak{N L}))$. We shall show that the morphism $q$ is dominant (see Corollary 6.3) and begin with some preparations.

We fix a general point $[C, \eta] \in \bar{\Theta}_{\text {null }} \subset \overline{\mathcal{S}}_{8}^{+}$, with $\eta$ a vanishing theta-null. Then

$$
C \subset Q \subset \mathbf{P}^{7}:=\mathbf{P}\left(H^{0}\left(C, K_{C}\right)^{\vee}\right),
$$

where $Q \in H^{0}\left(\mathbf{P}^{7}, \mathcal{I}_{C / \mathbf{P}^{7}}(2)\right)$ is the rank 3 quadric such that the ruling of $Q$ cuts out on $C$ precisely $\eta$. As explained, there exists a linear embedding $\mathbf{P}^{7} \subset \mathbf{P}^{14}:=\mathbf{P}\left(\wedge^{2} H^{0}(E)^{\vee}\right)$ such that $\mathbf{P}^{7} \cap \mathbf{G}=C$. The restriction map yields an isomorphism between spaces of quadrics, cf. [M2],

$$
\operatorname{res}_{C}: H^{0}\left(\mathbf{G}, \mathcal{I}_{\mathbf{G} / \mathbf{P}^{14}}(2)\right) \stackrel{\cong}{\leftrightarrows} H^{0}\left(\mathbf{P}^{7}, \mathcal{I}_{C / \mathbf{P}^{7}}(2)\right) .
$$

In particular there is a unique quadric $\mathbf{G} \subset \tilde{Q} \subset \mathbf{P}^{14}$ such that $\tilde{Q} \cap \mathbf{P}^{7}=Q$.
There are three possibilities for the rank of any quadric $\tilde{Q} \in H^{0}\left(\mathbf{P}^{14}, \mathcal{I}_{\mathbf{G} / \mathbf{P}^{14}}(2)\right)$ : (a) $\operatorname{rk}(\tilde{Q})=15$, (b) $\operatorname{rk}(\tilde{Q})=6$ and then $\tilde{Q}$ is a Plücker quadric, or (c) $\operatorname{rk}(\tilde{Q})=10$, in which case $\tilde{Q}$ is a sum of two Plücker quadrics, see [M2] Proposition 1.4.
Proposition 6.1. For a general $[C, \eta] \in \bar{\Theta}_{\text {null, }}$, the quadric $\tilde{Q}$ is smooth, that is, $\operatorname{rk}(\tilde{Q})=15$.
Proof. We may assume that $\operatorname{dim} G_{5}^{1}(C)=0$ (in particular $C$ has no $\mathfrak{g}_{4}^{1}$ 's), and $G_{7}^{2}(C)=\emptyset$. The space $\mathbf{P}(\operatorname{Ker}(u)) \subset \mathbf{P}\left(\wedge^{2} H^{0}(E)\right)$ is identified with the space of hyperplanes $H \in$ $\left(\mathbf{P}^{14}\right)^{\vee}$ containing the canonical space $\mathbf{P}^{7}$.
Claim: If $\operatorname{rk}(\tilde{Q})<15$, there exists a pencil of 8-dimensional planes $\mathbf{P}^{7} \subset \Xi \subset \mathbf{P}^{14}$, such that $S:=\mathbf{G} \cap \Xi$ is a $K 3$ surface containing $C$ as a hyperplane section, and

$$
\operatorname{rk}\left\{Q_{\Xi}:=\tilde{Q} \cap \Xi \in H^{0}\left(\Xi, \mathcal{I}_{S / \Xi}(2)\right)\right\}=3 .
$$

The conclusion of the claim contradicts the assumption that $[C, \eta] \in \bar{\Theta}_{\text {null }}$ is general. Indeed, we pick such an 8 -plane $\Xi$ and corresponding $K 3$ surface $S$. Since $\operatorname{Sing}(Q) \cap C=$ $\emptyset$, where $Q_{\Xi} \cap \mathbf{P}^{7}=Q$, it follows that $S \cap \operatorname{Sing}\left(Q_{\Xi}\right)$ is finite. The ruling of $Q_{\Xi}$ cuts out an elliptic pencil $|E|$ on $S$. Furthermore, $S$ has nodes at the points $S \cap \operatorname{Sing}\left(Q_{\Xi}\right)$. For numerical reasons, $|\operatorname{Sing}(S)|=7$, and then on the surface $\tilde{S}$ obtained from $S$ by resolving the 7 nodes, one has the linear equivalence

$$
C \equiv 2 E+\Gamma_{1}+\cdots+\Gamma_{7},
$$

where $\Gamma_{i}^{2}=-2, \Gamma_{i} \cdot E=1$ for $i=1, \ldots, 7$ and $\Gamma_{i} \cdot \Gamma_{j}=0$ for $i \neq j$. In particular $\operatorname{rk}(\operatorname{Pic}(\tilde{S})) \geq 8$. A standard parameter count, see e.g. [Do1], shows that

$$
\operatorname{dim}\left\{(S, C): C \in\left|\mathcal{O}_{S}\left(2 E+\Gamma_{1}+\cdots+\Gamma_{7}\right)\right|\right\} \leq 19-7+\operatorname{dim}\left|\mathcal{O}_{\tilde{S}}(C)\right|=20
$$

Since $\operatorname{dim}\left(\bar{\Theta}_{\text {null }}\right)=20$ and a general curve $[C] \in \bar{\Theta}_{\text {null }}$ lies on infinitely many such $K 3$ surfaces $S$, one obtains a contradiction.

We are left with proving the claim made in the course of the proof. The key point is to describe the intersection $\mathbf{P}(\operatorname{Ker}(u)) \cap \tilde{Q}^{\vee}$, where we recall that the linear span $\left\langle\tilde{Q}^{\vee}\right\rangle$ classifies hyperplanes $H \in\left(\mathbf{P}^{14}\right)^{\vee}$ such that $\operatorname{rk}(\tilde{Q} \cap H) \leq \operatorname{rk}(\tilde{Q})-1$. Note also that $\operatorname{dim}\langle\tilde{Q}\rangle=\operatorname{rk}(\tilde{Q})-2$.

If $\operatorname{rk}(\tilde{Q})=6$, then $\tilde{Q}^{\vee}$ is contained in the dual Grassmannian $\mathbf{G}^{\vee}:=G\left(2, H^{0}(E)\right)$, cf. [M2] Proposition 1.8. Points in the intersection $\mathbf{P}(\operatorname{Ker}(u)) \cap \mathbf{G}^{\vee}$ correspond to decomposable tensors $s_{1} \wedge s_{2}$, with $s_{1}, s_{2} \in H^{0}(C, E)$, such that $u\left(s_{1} \wedge s_{2}\right)=0$. The image of the morphism $\mathcal{O}_{C}^{\oplus} \xrightarrow{\left(s_{1}, s_{2}\right)} E$ is thus a subbundle $\mathfrak{g}_{5}^{1}$ of $E$ and there is a bijection

$$
\mathbf{P}(\operatorname{Ker}(u)) \cap \mathbf{G}\left(2, H^{0}(E)\right) \cong W_{5}^{1}(C) .
$$

It follows, there are at most finitely many tangent hyperplanes to $\tilde{Q}$ containing the space $\mathbf{P}^{7}=\langle C\rangle$, and consequently, $\operatorname{dim}\left(\mathbf{P}(\operatorname{Ker}(u)) \cap\left\langle\tilde{Q}^{\vee}\right\rangle\right) \leq 1$. Then there exists a codimension 2 linear space $W^{12} \subset \mathbf{P}^{14}$ such that $\operatorname{rk}(\tilde{Q} \cap W)=3$, which proves the claim (and much more), in the case $\operatorname{rk}(\tilde{Q})=6$.

When $\operatorname{rk}(\tilde{Q})=10$, using the explicit description of the dual quadric $\tilde{Q}^{\vee}$ provided in [M2] Proposition 1.8, one finds that $\operatorname{dim}\left(\mathbf{P}(\operatorname{Ker}(u)) \cap\left\langle\tilde{Q}^{\vee}\right\rangle\right) \leq 4$. Thus there exists a codimension 5 linear section $W^{9} \subset \mathbf{P}^{14}$ such that $\operatorname{rk}(\tilde{Q} \cap W)=3$, which implies the claim when $\operatorname{rk}(\tilde{Q})=10$ as well.

We consider an 8-dimensional linear extension $\mathbf{P}^{7} \subset \Lambda^{8} \subset \mathbf{P}^{14}$ of the canonical space $\mathbf{P}^{7}=\langle C\rangle$, such that $S_{\Lambda}:=\Lambda \cap \mathbf{G}$ is a smooth K3 surface. The restriction map

$$
\operatorname{res}_{C / S_{\Lambda}}: H^{0}\left(\Lambda, \mathcal{I}_{S_{\Lambda} / \Lambda}(2)\right) \rightarrow H^{0}\left(\mathbf{P}^{7}, \mathcal{I}_{C / \mathbf{P}^{7}}(2)\right)
$$

is an isomorphism, see [SD]. Thus there exists a unique quadric $S_{\Lambda} \subset Q_{\Lambda} \subset \Lambda$ with $Q_{\Lambda} \cap \mathbf{P}^{7}=Q$. Since $\operatorname{rk}(Q)=3$, it follows that $3 \leq \operatorname{rk}\left(Q_{\Lambda}\right) \leq 5$ and it is easy to see that for a general $\Lambda$, the corresponding quadric $Q_{\Lambda} \subset \Lambda$ is of rank 5 . We show however, that one can find $K 3$-extensions of the canonical curve $C$, which lie on quadrics of rank 4:

Proposition 6.2. For a general $[C, \eta] \in \bar{\Theta}_{\text {null }}$, there exists a pencil of 8-dimensional extensions

$$
\boldsymbol{P}\left(H^{0}\left(C, K_{C}\right)^{\vee}\right) \subset \Lambda \subset \boldsymbol{P}^{14}
$$

such that $\operatorname{rk}\left(Q_{\Lambda}\right)=4$. It follows that there exists a smooth $K 3$ surface $S_{\Lambda} \subset \Lambda$ containing $C$ as a transversal hyperplane section, such that $\mathrm{rk}\left(Q_{\Lambda}\right)=4$.
Proof. We pass from projective to vector spaces and view the rank 15 quadric

$$
\tilde{Q}: \wedge^{2} H^{0}(C, E)^{\vee} \xrightarrow{\sim} \wedge^{2} H^{0}(C, E)
$$

as an isomorphism, which by restriction to $H^{0}\left(C, K_{C}\right)^{\vee} \subset \wedge^{2} H^{0}(C, E)^{\vee}$, induces the rank 3 quadric $Q: H^{0}\left(C, K_{C}\right)^{\vee} \rightarrow H^{0}\left(C, K_{C}\right)$. The map $u \circ \tilde{Q}: \wedge^{2} H^{0}(E)^{\vee} \rightarrow H^{0}\left(K_{C}\right)$ being surjective, its kernel $\operatorname{Ker}(u \circ \tilde{Q})$ is a 7 -dimensional vector space containing the 5 dimensional subspace $\operatorname{Ker}(Q)$. We choose an arbitrary element

$$
[\bar{v}:=v+\operatorname{Ker}(Q)] \in \mathbf{P}\left(\frac{\operatorname{Ker}(u \circ \tilde{Q})}{\operatorname{Ker}(Q)}\right)=\mathbf{P}^{1}
$$

inducing a subspace $H^{0}\left(C, K_{C}\right)^{\vee} \subset \Lambda:=H^{0}\left(C, K_{C}\right)^{\vee}+\mathbb{C} v \subset \wedge^{2} H^{0}(C, E)^{\vee}$, with the property that $\operatorname{Ker}\left(Q_{\Lambda}\right)=\operatorname{Ker}(Q)$, where $Q_{\Lambda}: \Lambda \rightarrow \Lambda^{\vee}$ is induced from $\tilde{Q}$ by restriction and projection. It follows that $\operatorname{rk}\left(Q_{\Lambda}\right)=4$ and there is a pencil of 8-planes $\Lambda \supset \mathbf{P}^{7}$ with this property.

Let $C \subset Q \subset \mathbf{P}^{7}$ be a general canonical curve endowed with a vanishing theta-null, where $Q \in H^{0}\left(\mathbf{P}^{7}, I_{C / \mathbf{P}^{7}}(2)\right)$ is the corresponding rank 3 quadric. We choose a general 8-plane $\mathbf{P}^{7} \subset \Lambda \subset \mathbf{P}^{14}$ such that $S:=\Lambda \cap \mathbf{G}$ is a smooth K3 surface, and the lift of $Q$ to $\Lambda$

$$
Q_{\Lambda} \in H^{0}\left(\Lambda, \mathcal{I}_{S / \Lambda}(2)\right)
$$

has rank 4 (cf. Proposition 6.2). Moreover, we can assume that $S \cap \operatorname{Sing}\left(Q_{\Lambda}\right)=\emptyset$. The linear projection $f_{\Lambda}: \Lambda \rightarrow \mathbf{P}^{3}$ with center $\operatorname{Sing}\left(Q_{\Lambda}\right)$, induces a regular map $f: S \rightarrow \mathbf{P}^{3}$ with image the smooth quadric $Q_{0} \subset \mathbf{P}^{3}$. Then $S$ is endowed with two elliptic pencils
$\left|C_{1}\right|$ and $\left|C_{2}\right|$ corresponding to the projections of $Q_{0} \cong \mathbf{P}^{1} \times \mathbf{P}^{1}$ onto the two factors. Since $C \in\left|\mathcal{O}_{S}(1)\right|$, one has a linear equivalence $C \equiv C_{1}+C_{2}$, on $S$. As already pointed out, $\operatorname{deg}(f)=C_{1} \cdot C_{2}=C^{2} / 2=7$. The condition $\operatorname{rk}\left(Q_{\Lambda} \cap \mathbf{P}^{7}\right)=\operatorname{rk}\left(Q_{\Lambda}\right)-1$, implies that the hyperplane $\mathbf{P}^{7} \in(\Lambda)^{\vee}$ is the pull-back of a hyperplane from $\mathbf{P}^{3}$, that is, $\mathbf{P}^{7}=f_{\Lambda}^{-1}\left(\Pi_{0}\right)$, where $\Pi_{0} \in\left(\mathbf{P}^{3}\right)^{\vee}$. This proves the following:
Corollary 6.3. The rational morphism $q: \mathcal{U} \rightarrow \bar{\Theta}_{\text {null }}$ is dominant.
Proof. Keeping the notation from above, if $[C] \in \bar{\Theta}_{\text {null }}$ is a general point corresponding to the rank 3 quadric $Q \in H^{0}\left(\mathbf{P}^{7}, \mathcal{I}_{C / \mathbf{P}^{7}}(2)\right)$, then $\left[S, \mathcal{O}_{S}\left(C_{1}+C_{2}\right), C\right] \in q^{-1}([C])$.

We begin the proof of Proposition 0.9 while retaining the set-up described above. Let us choose a general line $l_{0} \subset \Pi_{0}$ and denote by $\left\{q_{1}, q_{2}\right\}:=l_{0} \cap Q_{0}$. We consider the pencil $\left\{\Pi_{t}\right\}_{t \in \mathbf{P}^{1}} \subset\left(\mathbf{P}^{3}\right)^{\vee}$ of planes through $l_{0}$ as well as the induced pencil of curves of genus 8

$$
\left\{C_{t}:=f^{-1}\left(\Pi_{t}\right) \subset S\right\}_{t \in \mathbf{P}^{1}}
$$

each endowed with a vanishing theta-null induced by the pencil $f_{t}: C_{t} \rightarrow Q_{0} \cap \Pi_{t}$.
This pencil contains precisely two reducible curves, corresponding to the planes $\Pi_{1}, \Pi_{2}$ in $\mathbf{P}^{3}$ spanned by the rulings of $Q_{0}$ passing through $q_{1}$ and $q_{2}$ respectively. Precisely, if $l_{i}, m_{i} \subset Q_{0}$ are the rulings passing through $q_{i}$ such that $l_{1} \cdot l_{2}=m_{1} \cdot m_{2}=0$, then it follows that for $\Pi_{1}=\left\langle l_{1}, m_{2}\right\rangle, \Pi_{2}=\left\langle l_{2}, m_{1}\right\rangle$, the fibres $f^{-1}\left(\Pi_{1}\right)$ and $f^{-1}\left(\Pi_{2}\right)$ split into two elliptic curves $f^{-1}\left(l_{i}\right)$ and $f^{-1}\left(m_{j}\right)$ meeting transversally in 7 points. The half-canonical $\mathfrak{g}_{7}^{1}$ specializes to a degree 7 admissible covering

$$
f^{-1}\left(l_{i}\right) \cup f^{-1}\left(m_{j}\right) \xrightarrow{f} l_{i} \cup m_{j}, \quad i \neq j,
$$

such that the 7 points in $f^{-1}\left(l_{i}\right) \cap f^{-1}\left(m_{j}\right)$ map to $l_{i} \cap m_{j}$. To determine the point in $\overline{\mathcal{S}}_{8}^{+}$ corresponding to the admissible covering $\left(f^{-1}\left(l_{i}\right) \cup f^{-1}\left(m_{j}\right), f_{\mid f^{-1}\left(l_{i}\right) \cup f^{-1}\left(m_{j}\right)}\right)$, one must insert 7 exceptional components at all the points of intersection of the two components. We denote by $R \subset \bar{\Theta}_{\text {null }} \subset \overline{\mathcal{S}}_{8}^{+}$the pencil of spin curves obtained via this construction.
Lemma 6.4. Each member $C_{t} \subset S$ in the above constructed pencil is nodal. Moreover, each curve $C_{t}$ different from $f^{-1}\left(l_{1}\right) \cup f^{-1}\left(m_{2}\right)$ and $f^{-1}\left(l_{2}\right) \cup f^{-1}\left(m_{1}\right)$ is irreducible. It follows that $R \cdot \alpha_{i}=R \cdot \beta_{i}=0$ for $i=1, \ldots, 4$.

Proof. This follows since $f: S \rightarrow Q_{0}$ is a regular morphism and the base line $l_{0} \subset H_{0}$ of the pencil $\left\{\Pi_{t}\right\}_{t \in \mathbf{P}^{1}}$ is chosen to be general.
Lemma 6.5. $R \cdot \pi^{*}\left(\overline{\mathcal{M}}_{7,8}^{2}\right)=0$.
Proof. We show instead that $\pi_{*}(R) \cdot \overline{\mathcal{M}}_{8,7}^{2}=0$. From Lemma 6.4, the curve $R$ is disjoint from the divisors $A_{i}, B_{i}$ for $i=1, \ldots, 4$, hence $\pi_{*}(R)$ has the numerical characteristics of a Lefschetz pencil of curves of genus 8 on a fixed $K 3$ surface.
In particular, $\pi_{*}(R) \cdot \delta / \pi_{*}(R) \cdot \lambda=6+12 /(g+1)=s\left(\overline{\mathcal{M}}_{8,7}^{2}\right)$ and $\pi_{*}(R) \cdot \delta_{i}=0$ for $i=1, \ldots, 4$. This implies the statement.

Lemma 6.6. $R \cdot \bar{\Theta}_{\text {null }}=-1$.

Proof. We have already determined that $R \cdot \lambda=\pi_{*}(R) \cdot \lambda=\chi\left(\tilde{S}, \mathcal{O}_{\tilde{S}}\right)+g-1=9$, where $\tilde{S}:=\mathrm{Bl}_{2 g-2}(S)$ is the blow-up of $S$ at the points $f^{-1}\left(q_{1}\right) \cup f^{-1}\left(q_{2}\right)$. Moreover,

$$
\begin{equation*}
R \cdot \alpha_{0}+2 R \cdot \beta_{0}=\pi_{*}(R) \cdot \delta_{0}=c_{2}(\tilde{X})+4(g-1)=38+28=66 \tag{7}
\end{equation*}
$$

To determine $R \cdot \beta_{0}$ we study the local structure of $\overline{\mathcal{S}}_{8}^{+}$in a neighbourhood of one of the two points, say $t^{*} \in R$ corresponding to a reducible curve, say $f^{-1}\left(l_{1}\right) \cup f^{-1}\left(m_{2}\right)$, the situation for $f^{-1}\left(l_{2}\right) \cup f^{-1}\left(m_{1}\right)$ being of course identical. We set $\{p\}:=l_{1} \cap m_{2} \in Q_{0}$ and $\left\{x_{1}, \ldots, x_{7}\right\}:=f^{-1}(p) \subset S$. We insert exceptional components $E_{1}, \ldots, E_{7}$ at the nodes $x_{1}, \ldots, x_{7}$ of $f^{-1}\left(l_{1}\right) \cup f^{-1}\left(m_{2}\right)$ and denote by $X$ the resulting quasi-stable curve. If

$$
\mu: f^{-1}\left(l_{1}\right) \cup f^{-1}\left(m_{2}\right) \cup E_{1} \cup \ldots \cup E_{7} \rightarrow f^{-1}\left(l_{1}\right) \cup f^{-1}\left(m_{2}\right)
$$

is the stabilization morphism, we set $\left\{y_{i}, z_{i}\right\}:=\mu^{-1}\left(x_{i}\right)$, where $y_{i} \in E_{i} \cap f^{-1}\left(l_{1}\right)$ and $z_{i} \in E_{i} \cap f^{-1}\left(m_{2}\right)$ for $i=1, \ldots, 7$. If $t^{*}=[X, \eta, \beta]$, then $\eta_{f^{-1}\left(l_{1}\right)}=\mathcal{O}_{f^{-1}\left(l_{1}\right)}, \eta_{f^{-1}\left(m_{2}\right)}=$ $\mathcal{O}_{f^{-1}\left(m_{2}\right)}$, and of course $\eta_{E_{i}}=\mathcal{O}_{E_{i}}(1)$. Moreover, one computes that $\operatorname{Aut}(X, \eta, \beta)=\mathbb{Z}_{2}$, see [Cor] Lemma 2.2, while clearly $\operatorname{Aut}\left(f^{-1}\left(l_{1}\right) \cup f^{-1}\left(m_{2}\right)\right)=\{\operatorname{Id}\}$.

If $\mathbb{C}_{\tau}^{3 g-3}$ denotes the versal deformation space of $[X, \eta, \beta] \in \overline{\mathcal{S}}_{g}^{+}$, then there are local parameters $\left(\tau_{1}, \ldots, \tau_{3 g-3}\right)$, such that for $i=1, \ldots, 7$, the locus $\left(\tau_{i}=0\right) \subset \mathbb{C}_{\tau}^{3 g-3}$ parameterizes spin curves for which the exceptional component $E_{i}$ persists. It particular, the pull-back $\mathbb{C}_{\tau}^{3 g-3} \times_{\overline{\mathcal{S}}_{g}^{+}} B_{0}$ of the boundary divisor $B_{0} \subset \overline{\mathcal{S}}_{g}^{+}$is given by the equation $\left(\tau_{1} \cdots \tau_{7}=0\right) \subset \mathbb{C}_{\tau}^{3 g-3}$. The group $\operatorname{Aut}(X, \eta, \beta)$ acts on $\mathbb{C}_{\tau}^{3 g-3}$ by

$$
\left(\tau_{1}, \ldots, \tau_{7}, \tau_{8}, \ldots, \tau_{3 g-3}\right) \mapsto\left(-\tau_{1}, \ldots,-\tau_{7}, \tau_{8}, \ldots, \tau_{3 g-3}\right)
$$

and since an étale neighbourhood of $t^{*} \in \overline{\mathcal{S}}_{g}^{+}$is isomorphic to $\mathbb{C}_{\tau}^{3 g-3} / \operatorname{Aut}(X, \eta, \beta)$, we find that the Weil divisor $B_{0}$ is not Cartier around $t^{*}$ (though $2 B_{0}$ is Cartier). It follows that the intersection multiplicity of $R \times_{\overline{\mathcal{S}}_{g}^{+}} \mathbb{C}_{\tau}^{3 g-3}$ with the locus $\left(\tau_{1} \cdots \tau_{7}\right)=0$ equals 7 , that is, the intersection multiplicity of $R \cap \beta_{0}$ at the point $t^{*}$ equals $7 / 2$, hence

$$
R \cdot \beta_{0}=\left(R \cdot \beta_{0}\right)_{f^{-1}\left(l_{1}\right) \cup f^{-1}\left(m_{2}\right)}+\left(R \cdot \beta_{0}\right)_{f^{-1}\left(l_{2}\right) \cap f^{-1}\left(m_{1}\right)}=\frac{7}{2}+\frac{7}{2}=7 .
$$

Then using (7) we find that $R \cdot \alpha_{0}=66-14=52$, and finally

$$
R \cdot \bar{\Theta}_{\text {null }}=\frac{1}{4} R \cdot \lambda-\frac{1}{16} R \cdot \alpha_{0}=\frac{9}{4}-\frac{52}{16}=-1 .
$$

## REFERENCES

[AF] M. Aprodu and G. Farkas, Green's Conjecture for general covers, arXiv:1105.3933.
[BM] A. Beauville and Y. Merindol, Sections hyperplanes des surfaces K3, Duke Math. Journal 4 (1987), 873878.
[Ca] F. Catanese, On the rationality of certain moduli spaces related to curves of genus 4, Springer Lecture Notes in Mathematics 1008 (1983), 30-50.
[Cor] M. Cornalba, Moduli of curves and theta-characteristics, in: Lectures on Riemann surfaces (Trieste, 1987), 560-589.
[CD] F. Cossec and I. Dolgachev, Enriques surfaces, Progress in Mathematics Vol. 76, 1989, Birkhäuser.
[Do1] I. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sciences 81 (1996), 2599-2630.
[Do2] I. Dolgachev, Rationality of $\mathcal{R}_{2}$ and $\mathcal{R}_{3}$, Pure and Applied Math. Quarterly, 4 (2008), 501-508.
[Do] R. Donagi, The unirationality of $\mathcal{A}_{5}$, Annals of Mathematics 119 (1984), 269-307.
[EH1] D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus 23 , Inventiones Math. 90 (1987), 359-387.
[F] G. Farkas, The birational type of the moduli space of even spin curves, Advances in Mathematics 223 (2010), 433-443.
[FL] G. Farkas and K. Ludwig, The Kodaira dimension of the moduli space of Prym varieties, Journal of the European Mathematical Society 12 (2010), 755-795.
[FP] G. Farkas and M. Popa, Effective divisors on $\overline{\mathcal{M}}_{g}$, curves on $K 3$ surfaces and the Slope Conjecture, Journal of Algebraic Geometry 14 (2005), 151-174.
[FV] G. Farkas and A. Verra, The geometry of the moduli space of odd spin curves, arXiv:1004.0278.
[GS] A. Garbagnati and A. Sarti, Projective models of $K 3$ surfaces with an even set, Advances in Geometry 8 (2008), 413-440.
[vGS] B. van Geemen and A. Sarti, Nikulin involutions on K3 surfaces, Mathematische Zeitschrift 255 (2007), 731-753.
[GL1] M. Green and R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Inventiones Math. 83 (1986), 73-90.
[GL2] M. Green and R. Lazarsfeld, Special divisors on curves on a K3 surface, Inventiones Math. 89 (1987), 357-370.
[HM] J. Harris and D. Mumford, On the Kodaira dimension of $\overline{\mathcal{M}}_{g}$, Inventiones Math. 67 (1982), 23-88.
[ HMo ] J. Harris and I. Morrison, Slopes of effective divisors on the moduli space of stable curves, Inventiones Math. 99 (1990), 321-355.
[ILS] E. Izadi, M. Lo Giudice and G. Sankaran, The moduli space of étale double covers of genus 5 is unirational, Pacific Journal of Mathematics 239 (2009), 39-52.
[Laz] R. Lazarsfeld, Brill-Noether-Petri without degenerations, Journal of Differential Geometry 23 (1986), 299307.
[Mo] D. Morrison, On K3 surfaces with large Picard number, Inventiones Math. 75 (1984), 105-121.
[M1] S. Mukai, Curves, K3 surfaces and Fano 3-folds of genus $\leq 10$, in: Algebraic geometry and commutative algebra 357-377, 1988 Kinokuniya, Tokyo.
[M2] S. Mukai, Curves and Grassmannians, in: Algebraic Geometry and Related Topics, eds. J.-H. Yang, Y. Namikawa, K. Ueno, 19-40, 1992 International Press.
[M3] S. Mukai, Curves and K3 surfaces of genus eleven, in: Moduli of vector bundles, Lecture Notes in Pure and Applied Mathematics Vol. 179, Dekker (1996), 189-197.
[M4] S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proceedings of the National Academy Sciences USA, Vol. 86, 3000-3002, 1989.
[Ni] V.V. Nikulin, Kummer surfaces, Izvestia Akad. Nauk SSSR 39 (1975), 278-293.
[SD] B. Saint-Donat, Projective models of K3 surfaces, American Journal of Mathematics 96 (1974), 602-639.
[V1] A. Verra, A short proof of the unirationality of $\mathcal{A}_{5}$, Indagationes Math. 46 (1984), 339-355.
[V2] A. Verra, On the universal principally polarized abelian variety of dimension 4, in: Curves and abelian varieties (Athens, Georgia, 2007) Contemporary Mathematics Vol. 345, 2008, 253-274.
[Vo] C. Voisin, Green's generic syzygy conjecture for curves of even genus lying on a K3 surface, Journal of European Mathematical Society 4 (2002), 363-404.
[We] G. Welters, A theorem of Gieseker-Petri type for Prym varieties, Annales Scientifique École Normale Supérieure 18 (1985), 671-683.

Humboldt-Universität zu Berlin, Institut Für Mathematik, Unter den Linden 6 10099 BERLIN, GERMANY
E-mail address: farkas@math.hu-berlin.de
Universitá Roma Tre, Dipartimento di Matematica, Largo San Leonardo Murialdo 1-00146 Roma, Italy
E-mail address: verra@mat.unirom3.it


[^0]:    ${ }^{1}$ We are grateful to the referee for raising this point that he have initially overlooked.

