PRYM VARIETIES AND MODULI OF POLARIZED NIKULIN SURFACES

GAVRIL FARKAS AND ALESSANDRO VERRA

Abstract

We present a structure theorem for the moduli space \mathcal{R}_{7} of Prym curves of genus 7 as a projective bundle over the moduli space of 7 -nodal rational curves. The existence of this parametrization implies the unirationality of \mathcal{R}_{7} and that of the moduli space of Nikulin surfaces of genus 7 , as well as the rationality of the moduli space of Nikulin surfaces of genus 7 with a distinguished line. Using the results in genus 7 , we then establish that \mathcal{R}_{8} is uniruled.

A polarized Nikulin surface of genus g is a smooth polarized $K 3$ surface (S, \mathfrak{c}), where $\mathfrak{c} \in \operatorname{Pic}(S)$ with $\mathfrak{c}^{2}=2 g-2$, equipped with a double cover $f: \widetilde{S} \rightarrow S$ branched along disjoint rational curves $N_{1}, \ldots, N_{8} \subset S$, such that $\mathfrak{c} \cdot N_{i}=0$ for $i=1, \ldots, 8$. Denoting by $e \in \operatorname{Pic}(S)$ the class defined by the equality $e^{\otimes 2}=\mathcal{O}_{S}\left(\sum_{i=1}^{8} N_{i}\right)$, one forms the Nikulin lattice

$$
\mathfrak{N}:=\left\langle\mathcal{O}_{S}\left(N_{1}\right), \ldots, \mathcal{O}_{S}\left(N_{8}\right), e\right\rangle
$$

and obtains a primitive embedding $j: \Lambda_{g}:=\mathbb{Z} \cdot[\mathfrak{c}] \oplus \mathfrak{N} \hookrightarrow \operatorname{Pic}(S)$. Nikulin surfaces of genus g form an irreducible 11-dimensional moduli space $\mathcal{F}_{g}^{\mathfrak{N}}$ which has been studied in [Do1] and [VGS]. The connection between $\mathcal{F}_{g}^{\mathfrak{N}}$ and the moduli space \mathcal{R}_{g} of pairs $[C, \eta]$, where C is a curve of genus g and $\eta \in \operatorname{Pic}^{0}(C)[2]$ is a 2 -torsion point, has been pointed out in [FV] and used to describe \mathcal{R}_{g} in small genus. Over $\mathcal{F}_{g}^{\mathfrak{N}}$ one considers the open set in a tautological \mathbf{P}^{g}-bundle

$$
\mathcal{P}_{g}^{\mathfrak{N}}:=\left\{\left[S, j: \Lambda_{g} \hookrightarrow \operatorname{Pic}(S), C\right]: C \in|\mathfrak{c}| \text { is a smooth curve of genus } g\right\}
$$

which is endowed with the two projection maps

defined by $p_{g}([S, j, C]):=[S, j]$ and $\chi_{g}([S, j, C]):=\left[C, e_{C}:=e \otimes \mathcal{O}_{C}\right]$ respectively.
Observe that $\operatorname{dim}\left(\mathcal{P}_{7}^{\mathfrak{N}}\right)=\operatorname{dim}\left(\mathcal{R}_{7}\right)=18$. The map $\chi_{7}: \mathcal{P}_{7}^{\mathfrak{N}} \rightarrow \mathcal{R}_{7}$ is a birational isomorphism, precisely \mathcal{R}_{7} is birational to a Zariski locally trivial \mathbf{P}^{7}-bundle over $\mathcal{F}_{7}^{\mathfrak{N}}$. This is reminiscent of Mukai's result [Mu]: \mathcal{M}_{11} is birational to a projective bundle over the moduli space \mathcal{F}_{11} of polarized $K 3$ surfaces of genus 11 . Note that \mathcal{M}_{11} and \mathcal{R}_{7} are the only known examples of moduli spaces of curves admitting a non-trivial fibre bundle structure over a moduli space of polarized $K 3$ surfaces. Here we describe the structure of $\mathcal{F}_{7}^{\mathfrak{\Re} \text { : }}$

Theorem 0.1. The Nikulin moduli space $\mathcal{F}_{7}^{\mathfrak{N}}$ is unirational. The Prym moduli space \mathcal{R}_{7} is birationally isomorphic to a $\boldsymbol{P}^{\boldsymbol{7}}$-bundle over $\mathcal{F}_{7}^{\mathfrak{~}}$. It follows that \mathcal{R}_{7} is unirational as well.

It is well-known that \mathcal{R}_{g} is unirational for $g \leq 6$, see [Do], [ILS], [V], and even rational for $g \leq 4$, see [Do2], [Cat]. On the other hand, the Deligne-Mumford moduli space $\overline{\mathcal{R}}_{g}$ of
stable Prym curves of genus g is a variety of general type for $g \geq 14$, whereas $\operatorname{kod}\left(\overline{\mathcal{R}}_{12}\right) \geq 0$, see [FL]. Nothing seems to be known about the Kodaira dimension of $\overline{\mathcal{R}}_{g}$, for $g=9,10,11$.

We now discuss the structure of $\mathcal{F}_{7}^{\mathfrak{N}}$. For each positive g, we denote by

$$
\mathfrak{R a t}_{g}:=\overline{\mathcal{M}}_{0,2 g} / \mathbb{Z}_{2}^{\oplus g} \rtimes S_{g}
$$

the moduli space of g-nodal stable rational curves of genus g. The action of the group $\mathbb{Z}_{2}^{\oplus g}$ is given by permuting the marked points labeled by $\{1,2\}, \ldots,\{2 g-1,2 g\}$ respectively, while the symmetric group S_{g} acts by permuting the 2 -cycles $(1,2), \ldots,(2 g-1,2 g)$ respectively. The variety $\mathfrak{\Re a t}{ }_{g}$, viewed as a subvariety of $\overline{\mathcal{M}}_{g}$, has been studied by Castelnuovo [Cas] at the end of the 19th century in the course of his famous attempt to prove the Brill-Noether Theorem, as well as much more recently, for instance in [GKM] in the context of determining the ample cone of $\overline{\mathcal{M}}_{g}$. Using the identification $\operatorname{Sym}^{2}\left(\mathbf{P}^{1}\right) \cong \mathbf{P}^{2}$, we obtain a birational isomorphism

$$
\mathfrak{R a t}_{g} \cong \operatorname{Hilb}^{g}\left(\mathbf{P}^{2}\right) / / P G L(2),
$$

where $P G L(2) \subset P G L(3)$ is regarded as the group of projective automorphisms of \mathbf{P}^{2} preserving the image of a fixed smooth conic in \mathbf{P}^{2}.

Let us fix once and for all a smooth rational quintic curve $R \subset \mathbf{P}^{5}$. For general points $x_{1}, y_{1}, \ldots, x_{7}, y_{7} \in R$, we note that $\left[R,\left(x_{1}+y_{1}\right)+\cdots+\left(x_{7}+y_{7}\right)\right] \in \mathfrak{R a t} t_{7}$. We denote by

$$
N_{1}:=\left\langle x_{1}, y_{1}\right\rangle, \ldots, N_{7}:=\left\langle x_{7}, y_{7}\right\rangle \in G(2,6),
$$

the corresponding bisecant lines to R and observe that $C:=R \cup N_{1} \cup \ldots \cup N_{7}$ is a nodal curve of genus 7 and degree 12 in \mathbf{P}^{5}. By writing down the Mayer-Vietoris sequence for C, we find the following identifications:

$$
H^{0}\left(C, \mathcal{O}_{C}(1)\right) \cong H^{0}\left(\mathcal{O}_{R}(1)\right) \text { and } H^{0}\left(C, \mathcal{O}_{C}(2)\right) \cong H^{0}\left(\mathcal{O}_{R}(2)\right) \oplus\left(\oplus_{i=1}^{7} H^{0}\left(\mathcal{O}_{N_{i}}\right)\right)
$$

It can easily be checked that the base locus

$$
S:=\operatorname{Bs}\left|\mathcal{I}_{C / \mathbf{P}^{5}}(2)\right|
$$

is a smooth $K 3$ surface which is a complete intersection of three quadrics in \mathbf{P}^{5}. Obviously, S is equipped with the seven lines N_{1}, \ldots, N_{7}. In fact, S carries an eight line as well! If $H \in\left|\mathcal{O}_{S}(1)\right|$ is a hyperplane section, after setting

$$
N_{8}:=2 R+N_{1}+\cdots+N_{7}-2 H \in \operatorname{Div}(S),
$$

we compute that $N_{8}^{2}=-2, N_{8} \cdot H=1$ and $N_{8} \cdot N_{i}=0$, for $i=1, \ldots, 7$. Therefore N_{8} is equivalent to an effective divisor on S, which is embedded in \mathbf{P}^{5} as a line by the linear system $\left|\mathcal{O}_{S}(1)\right|$. Furthermore,

$$
N_{1}+\cdots+N_{8}=2\left(R+N_{1}+\cdots+N_{7}-H\right) \in \operatorname{Pic}(S)
$$

hence by denoting $e:=R+N_{1}+\cdots+N_{7}-H$, we obtain an embedding $\mathfrak{N} \hookrightarrow \operatorname{Pic}(S)$. Moreover $C \cdot N_{i}=0$ for $i=1, \ldots, 8$ and we may view $\Lambda_{7} \hookrightarrow \operatorname{Pic}(S)$. In this way S becomes a Nikulin surface of genus 7 .

We introduce the moduli space $\widehat{\mathcal{F}}_{g}^{\mathfrak{N}}$ of decorated Nikulin surfaces consisting of polarized Nikulin surfaces $\left[S, j: \Lambda_{g} \hookrightarrow \operatorname{Pic}(S)\right]$ of genus g, together with a distinguished line $N_{8} \subset S$ viewed as a component of the branch divisor of the double covering $f: \widetilde{S} \rightarrow S$. There is an

[^0]obvious forgetful map $\widehat{\mathcal{F}}_{g}^{\mathfrak{N}} \rightarrow \mathcal{F}_{g}^{\mathfrak{N}}$ of degree 8 . Having specified $N_{8} \subset S$, we can also specify the divisor $N_{1}+\cdots+N_{7} \subset S$ such that $e^{\otimes 2}=\mathcal{O}_{S}\left(N_{1}+\cdots+N_{7}+N_{8}\right)$. We summarize what has been discussed so far:

Theorem 0.2. The rational map $\varphi: \mathfrak{R a t}_{7} \rightarrow \widehat{\mathcal{F}}_{7}^{\mathfrak{Y}}$ given by

$$
\varphi\left(\left[R,\left(x_{1}+y_{1}\right)+\cdots+\left(x_{7}+y_{7}\right)\right]\right):=\left[S, \mathcal{O}_{S}\left(R+N_{1}+\cdots+N_{7}\right), N_{8}\right]
$$

is a birational isomorphism.
A construction of the inverse map φ^{-1} using the geometry of Prym canonical curves of genus 7 is presented in Section 2. The moduli space $\mathfrak{R a t}_{g}$ is related to the configuration space

$$
U_{g}^{2}:=\operatorname{Hilb}^{g}\left(\mathbf{P}^{2}\right) / / P G L(3)
$$

of g unordered points in the plane. Using the isomorphism $P G L(3) / P G L(2) \cong \mathbf{P}^{5}$, we observe in Section 2 that there exists a (locally trivial) \mathbf{P}^{5}-bundle structure $\mathfrak{R a t}{ }_{g} \rightarrow U_{g}^{2}$. In particular $\mathfrak{R a t} \mathfrak{t}_{g}$ is rational whenever U_{g}^{2} is. Since the rationality of U_{7}^{2} has been established by Katsylo [Ka] (see also [Bo]), we are led to the following result:
Theorem 0.3. The moduli space $\widehat{\mathcal{F}}_{7}^{\mathfrak{Y}}$ of marked Nikulin surfaces of genus 7 is rational.
Putting together Theorems 0.2 and 0.3 , we conclude that there exists a dominant rational map $\mathbf{P}^{18} \rightarrow \mathcal{R}_{7}$ of degree 8 . We are not aware of any dominant map from a rational variety to \mathcal{R}_{7} of degree smaller than 8 . It would be very interesting to know whether \mathcal{R}_{7} itself is a rational variety. We recall that although \mathcal{M}_{g} is known to be rational for $g \leq 6$ (see [Bo] and the references therein), the rationality of \mathcal{M}_{7} is an open problem.

We sum up the construction described above in the following commutative diagram:

The concrete geometry of \mathcal{R}_{7} has direct consequences concerning the Kodaira dimension of $\overline{\mathcal{R}}_{8}$. The projective bundle structure of \mathcal{R}_{7} over $\mathcal{F}_{7}^{\mathfrak{N}}$ can be lifted to a boundary divisor of $\overline{\mathcal{R}}_{8}$. Denoting by $\pi: \overline{\mathcal{R}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$ the map forgetting the Prym structure, one has the formula

$$
\pi^{*}\left(\delta_{0}\right)=\delta_{0}^{\prime}+\delta_{0}^{\prime \prime}+2 \delta_{0}^{\mathrm{ram}} \in C H^{1}\left(\overline{\mathcal{R}}_{g}\right)
$$

where $\delta_{0}^{\prime}:=\left[\Delta_{0}^{\prime}\right], \delta_{0}^{\prime \prime}:=\left[\Delta_{0}^{\prime \prime}\right]$, and $\delta_{0}^{\mathrm{ram}}:=\left[\Delta_{0}^{\mathrm{ram}}\right]$ are boundary divisor classes on $\overline{\mathcal{R}}_{g}$ whose meaning will be recalled in Section 3. Note that up to a \mathbb{Z}_{2}-factor, a general point of Δ_{0}^{\prime} corresponds to a 2-pointed Prym curve of genus 7, for which we apply our Theorem 0.1. We establish the following result:
Theorem 0.4. The moduli space $\overline{\mathcal{R}}_{8}$ is uniruled.
Using the parametrization of \mathcal{R}_{7} via Nikulin surfaces, we construct a sweeping curve Γ of the boundary divisor Δ_{0}^{\prime} of $\overline{\mathcal{R}}_{8}$ such that $\Gamma \cdot \delta_{0}^{\prime}>0$ and $\Gamma \cdot K_{\overline{\mathcal{R}}_{8}}<0$. This implies that the canonical class $K_{\overline{\mathcal{R}}_{8}}$ cannot be pseudoeffective, hence via [BDPP], the moduli space $\overline{\mathcal{R}}_{8}$ is uniruled. This way of showing uniruledness of a moduli space, though quite effective, does not lead to an explicit uniruled parametrization of \mathcal{R}_{8}. In Section 3, we sketch an alternative,
more geometric way of showing that \mathcal{R}_{8} is uniruled, by embedding a general Prym-curve of genus 8 in a certain canonical surface. A rational curve through a general point of $\overline{\mathcal{R}}_{8}$ is then induced by a pencil on this surface.

1. Polarized Nikulin surfaces

We briefly recall some basics on Nikulin surfaces, while referring to [vGS], [GS] for details. A symplectic involution ι on a smooth $K 3$ surface Y has 8 fixed points and we denote by $\bar{Y}:=Y /\langle\iota\rangle$ the quotient. The surface \bar{Y} has 8 nodes. Letting $\sigma: \widetilde{S} \rightarrow Y$ be the blow-up of the fixed points, the involution ι lifts to an involution $\tilde{\iota}: \widetilde{S} \rightarrow \widetilde{S}$ fixing the eight (-1)curves $E_{1}, \ldots, E_{8} \subset \widetilde{S}$. Denoting by $f: \widetilde{S} \rightarrow S$ the quotient map by the involution $\widetilde{\iota}$, we obtain a smooth $K 3$ surface S, together with a primitive embedding of the Nikulin lattice $\mathfrak{N} \cong E_{8}(-2) \hookrightarrow \operatorname{Pic}(S)$, where $N_{i}=f\left(E_{i}\right)$ for $i=1, \ldots, 8$. In particular, the sum of rational curves $N:=N_{1}+\cdots+N_{8}$ is an even divisor on S, that is, there exists a class $e \in \operatorname{Pic}(S)$ such that $e^{\otimes 2}=\mathcal{O}_{S}\left(N_{1}+\cdots+N_{8}\right)$. The cover $f: \widetilde{S} \rightarrow S$ is branched precisely along the curves N_{1}, \ldots, N_{8}. The following diagram summarizes the notation introduced so far and will be used throughout the paper:

Nikulin [Ni] showed that the possible configurations of even sets of disjoint (-2)-curves on a $K 3$ surface S are only those consisting of either 8 curves (in which case S is a Nikulin surface as defined in this paper), or of 16 curves, in which case S is a Kummer surface. From this point of view, Nikulin surfaces appear naturally as the Prym analogues of $K 3$ surfaces.
Definition 1.1. A polarized Nikulin surface of genus g consists of a smooth $K 3$ surface and a primitive embedding j of the lattice $\Lambda_{g}=\mathbb{Z} \cdot \mathfrak{c} \oplus \mathfrak{N} \hookrightarrow \operatorname{Pic}(S)$, such that $\mathfrak{c}^{2}=2 g-2$ and the class $j(\mathfrak{c})$ is nef.

Polarized Nikulin surfaces of genus g form an irreducible moduli 11-dimensional moduli space $\mathcal{F}_{g}^{\mathfrak{N}}$, see for instance [Do1]. Structure theorems for $\mathcal{F}_{g}^{\mathfrak{N}}$ for genus $g \leq 6$ have been established in [FV]. For instance the following result is proven in loc.cit. for Nikulin surfaces of genus $g=6$. Let $V=\mathbb{C}^{5}$ and fix a smooth quadric $Q \subset \mathbf{P}(V)$. Then one has a birational isomorphism, which, in particular, shows that $\mathcal{F}_{6}^{\mathfrak{N}}$ is unirational:

$$
\mathcal{F}_{6}^{\mathfrak{N}} \cong=G\left(7, \bigwedge_{-}^{2} V\right)^{\mathrm{ss}} / / \operatorname{Aut}(Q)
$$

On the other hand, fundamental facts about $\mathcal{F}_{g}^{\mathfrak{N}}$ are still not known. For instance, it is not clear whether $\mathcal{F}_{g}^{\mathfrak{N}}$ is a variety of general type for large g. Nikulin surfaces have been recently used decisively in [FK] to prove the Prym-Green Conjecture on syzygies of general Prym-canonical curves of even genus.

For a polarized Nikulin surface (S, j) of genus g as above, we set $C:=j(\mathfrak{c})$ and then $H \equiv C-e \in \operatorname{Pic}(S)$. It is shown in [GS], that for any Nikulin surface S having minimal Picard lattice $\operatorname{Pic}(S)=\Lambda_{g}$, the linear system $\mathcal{O}_{S}(H)$ is very ample for $g \geq 6$. We compute that $H^{2}=2 g-6$ and denote by $\phi_{H}: S \rightarrow \mathbf{P}^{g-2}$ the corresponding embedding. Since $N_{i} \cdot H=1$ for $i=1, \ldots, 8$, it follows that the images $\phi_{H}\left(N_{i}\right) \subset \mathbf{P}^{g-2}$ are lines. The existence of two closely
linked distinguished polarizations $\mathcal{O}_{S}(C)$ and $\mathcal{O}_{S}(H)$ of genus g and $g-2$ respectively on any Nikulin surface is one of the main sources for the rich geometry of the moduli space $\mathcal{F}_{g}^{\mathfrak{N}}$ for $g \leq 6$, see [FV] and [VGS].

Suppose that $\left[S, j: \Lambda_{7} \hookrightarrow \operatorname{Pic}(S)\right]$ is a polarized Nikulin surface of genus 7. In this case

$$
\phi_{H}: S \hookrightarrow \mathbf{P}^{5}
$$

is a surface of degree 8 which is a complete intersection of three quadrics. For each smooth curve $C \in\left|\mathcal{O}_{S}(j(\mathfrak{c}))\right|$, we have that $\left[C, \eta:=e_{C}\right] \in \mathcal{R}_{7}$. Since $\mathcal{O}_{C}(1)=K_{C} \otimes \eta$, it follows that the restriction $\phi_{H \mid C}: C \hookrightarrow \mathbf{P}^{5}$ is a Prym-canonically embedded curve of genus 7. This assignment gives rise to the map $\chi_{7}: \mathcal{P}_{7}^{\mathfrak{N}} \rightarrow \mathcal{R}_{7}$.

Conversely, to a general Prym curve $[C, \eta] \in \mathcal{R}_{7}$ we associate a unique Nikulin surface of genus 7 as follows. We consider the Prym-canonical embedding $\phi_{K_{C} \otimes \eta}: C \hookrightarrow \mathbf{P}^{5}$ and observe that $S:=\mathrm{bs}\left(\left|\mathcal{I}_{C / \mathrm{P}^{5}}(2)\right|\right)$ is a complete intersection of three quadrics, that is, if smooth, a $K 3$ surfaces of degree 8 . In fact, S is smooth for a general choice of $[C, \eta] \in \mathcal{R}_{7}$, see [FV] Proposition 2.3. We then set $N \equiv 2(C-H) \in \operatorname{Pic}(S)$ and note that $N^{2}=-16$ and $N \cdot H=8$. Using the cohomology exact sequence

$$
0 \longrightarrow H^{0}\left(S, \mathcal{O}_{S}(N-C)\right) \longrightarrow H^{0}\left(S, \mathcal{O}_{S}(N)\right) \longrightarrow H^{0}\left(C, \mathcal{O}_{C}(N)\right) \longrightarrow 0
$$

since $\mathcal{O}_{C}(N)$ is trivial, we conclude that the divisor N is effective on S. It is shown in loc.cit. that for a general $[C, \eta] \in \mathcal{R}_{7}$, we have a splitting $N=N_{1}+\ldots+N_{8}$ into a sum of 8 disjoint lines with $C \cdot N_{i}=0$ for $i=1, \ldots, 8$. This turns S into a Nikulin surface and explains the birational isomorphisms

$$
\chi_{7}^{-1}: \mathcal{P}_{7}^{\mathfrak{N}} \stackrel{\cong}{\leftrightarrows} \mathcal{R}_{7}
$$

referred to in the Introduction.
Suppose now that $\left[S, \mathcal{O}_{S}(C), N_{8}\right] \in \widehat{\mathcal{F}}_{7}^{\mathfrak{Y}}$, that is, we single out a (-2)-curve in the Nikulin lattice. Writing $e^{\otimes 2}=\mathcal{O}_{C}\left(N_{1}+\cdots+N_{8}\right)$, the choice of N_{8} also determines the sum of the seven remaining lines $N_{1}+\cdots+N_{7}$, where $H \cdot N_{i}=1$, for $i=1, \ldots, 8$. We compute

$$
\left(C-N_{1}-\ldots-N_{7}\right)^{2}=-2 \text { and }\left(C-N_{1}-\ldots-N_{7}\right) \cdot H=5,
$$

in particular, there exists an effective divisor R on S, with $R \equiv C-N_{1}-\ldots-N_{7}$. Note also that $R \cdot N_{i}=2$, for $i=1, \ldots, 7$, that is, $R \subset \mathbf{P}^{5}$ comes endowed with seven bisecant lines.
Proposition 1.2. For a decorated Nikulin surface $\left[S, \mathcal{O}_{S}(C), N_{8}\right] \in \widehat{\mathcal{F}}_{7}^{\mathfrak{N}}$ satisfying $\operatorname{Pic}(S)=\Lambda_{7}$, we have that $H^{1}\left(S, \mathcal{O}_{S}\left(C-N_{1}-\cdots-N_{7}\right)\right)=0$. In particular,

$$
R \in\left|\mathcal{O}_{S}\left(C-N_{1}-\cdots-N_{7}\right)\right|
$$

is a smooth rational quintic curve on S.
Proof. Assume by contradiction that the curve $R \subset S$ is reducible. In that case, there exists a smooth irreducible (-2)-curve $Y \subset S$, such that $Y \cdot R<0$ and $H^{0}\left(S, \mathcal{O}_{S}(R-Y)\right) \neq 0$. Assuming $\operatorname{Pic}(S)$ is generated by C, N_{1}, \ldots, N_{8} and the class $e=\left(N_{1}+\cdots+N_{8}\right) / 2$, there exist integers $a, b, c_{1}, \ldots, c_{8} \in \mathbb{Z}$, such that

$$
Y \equiv a \cdot C+\left(c_{1}+\frac{b}{2}\right) \cdot N_{1}+\cdots+\left(c_{8}+\frac{b}{2}\right) \cdot N_{8} .
$$

Setting $b_{i}:=c_{i}+\frac{b}{2}$, the numerical hypotheses on Y can be rewritten in the following form:

$$
\begin{equation*}
b_{1}^{2}+\cdots+b_{8}^{2}=6 a^{2}+1 \text { and } 6 a+b_{1}+\cdots+b_{8} \leq-1 . \tag{2}
\end{equation*}
$$

Since Y is effective, we find that $a \geq 0$ (use that $C \subset S$ is nef). Applying the same considerations to the effective divisor $R-Y$, we obtain that $a \in\{0,1\}$.

If $a=0$, then $Y \equiv b_{1} N_{1}+\cdots+b_{8} N_{8} \geq 0$, hence $b_{i} \geq 0$ for $i=1, \ldots, 8$, which contradicts the inequality $b_{1}+\cdots+b_{8} \leq-1$, so this case does not appear.

If $a=1$, then $R-Y \equiv-\left(1+b_{1}\right) N_{1}-\cdots-\left(1+b_{7}\right) N_{7}-b_{8} N_{8} \geq 0$, therefore $b_{8} \leq 0$ and $b_{i} \leq-1$ for $i=1, \ldots, 7$. From (2), we obtain that $b_{8}=0$ and $b_{1}=\cdots=b_{7}=-1$. Thus $Y \equiv R$, which is a contradiction, for Y was assumed to be a proper irreducible component of R.

Retaining the notation above, we obtain a map $\psi: \widehat{\mathcal{F}}_{7}^{\mathfrak{Y}} \rightarrow \mathfrak{R a t}_{7}$, defined by

$$
\psi\left(\left[S, \mathcal{O}_{S}(C), N_{8}\right]\right):=\left[R, N_{1} \cdot R+\ldots+N_{7} \cdot R\right]
$$

where the cycle $N_{i} \cdot R \in \operatorname{Sym}^{2}(R)$ is regarded as an effective divisor of degree 2 on R. The map ψ is regular over the dense open subset of $\widehat{\mathcal{F}}_{7}^{\mathfrak{Y}}$ consisting of Nikulin surfaces having the minimal Picard lattice Λ_{7}. We are going to show that ψ is a birational isomorphism by explicitly constructing its inverse.

We fix a smooth rational quintic curve $R \subset \mathbf{P}^{5}$ and recall the canonical identification

$$
\begin{equation*}
\left|\mathcal{I}_{R / \mathbf{P}^{5}}(2)\right|=\left|\mathcal{O}_{\mathrm{Sym}^{2}(R)}(3)\right| \tag{3}
\end{equation*}
$$

between the linear system of quadrics containing $R \subset \mathbf{P}^{5}$ and that of plane cubics. Here we use the isomorphism $\operatorname{Sym}^{2}(R) \xrightarrow{\cong} \mathbf{P}^{2}$, under which to a quadric $Q \in H^{0}\left(\mathbf{P}^{5}, \mathcal{I}_{R / \mathbf{P}^{5}}(2)\right)$ one assigns the symmetric correspondence

$$
\Sigma_{Q}:=\left\{x+y \in \operatorname{Sym}^{2}(R):\langle x, y\rangle \subset Q\right\},
$$

which is a cubic curve in $\operatorname{Sym}^{2}(R)$.
Let N_{1}, \ldots, N_{7} general bisecant lines to R and consider the semi-stable curve of genus 7

$$
C:=R \cup N_{1} \cup \ldots \cup N_{7} \subset \mathbf{P}^{5}
$$

Proposition 1.3. For a general choice of the bisecants N_{1}, \ldots, N_{7} of the curve $R \subset \boldsymbol{P}^{5}$, the base locus

$$
S:=\operatorname{Bs}\left|\mathcal{I}_{C / P^{5}}(2)\right|
$$

is a smooth K3 surface of degree 8 .
Proof. The bisecant line N_{i} is determined by the degree 2 divisor $N_{i} \cdot R \in \operatorname{Sym}^{2}(R)$. Under the identification (3), the quadrics containing the line N_{i} are identified with the cubics in $\left|\mathcal{O}_{\text {Sym }^{2}(R)}(3)\right|$ that pass through the point $N_{i} \cdot R$. It follows that the linear system $\left|\mathcal{I}_{C / \mathbf{P}^{5}}(2)\right|$ corresponds to the linear system of cubics in $\operatorname{Sym}^{2}(R)$ passing through 7 general points. Since the secants N_{i} (and hence the points $N_{i} \cdot R \in \operatorname{Sym}^{2}(R)$) have been chosen to be general, we obtain that $\operatorname{dim}\left|\mathcal{I}_{C / \mathbf{P}^{5}}(2)\right|=2$.

We have showed in Proposition 1.2, that for a general Nikulin surface S,

$$
H^{1}\left(S, \mathcal{O}_{S}\left(H-N_{1}-\cdots-\hat{N}_{i}-\cdots-N_{8}\right)\right)=0
$$

for all $i=1, \ldots, 8$. In particular, the morphism ψ is defined on all components of $\widehat{\mathcal{F}}_{7}^{\mathfrak{N}}$ and the image of each component is an element of $\mathfrak{R a} \boldsymbol{q}_{7}$. For such a point in $\operatorname{Im}(\psi)$, it follows that $\mathrm{bs}\left|\mathcal{I}_{C / \mathbf{P}^{5}(2)}\right|$ is a smooth surface, in fact a general Nikulin surface of genus 7 .

Proof of Theorem 0.2. As explained in the Introduction, the map $\varphi: \mathfrak{R a t}_{7} \rightarrow \widehat{\mathcal{F}}_{7}^{\mathfrak{Y}}$ is welldefined and clearly the inverse of ψ. In particular, it follows that $\widehat{\mathcal{F}}_{7}^{\mathfrak{N}}$ is also irreducible (and in fact unirational).

2. CONFIGURATION SPACES OF POINTS IN THE PLANE

Throughout this section we use the identification $\operatorname{Sym}^{2}\left(\mathbf{P}^{1}\right) \cong \mathbf{P}^{2}$ induced by the map $\rho: \mathbf{P}^{1} \times \mathbf{P}^{1} \rightarrow \mathbf{P}^{2}$ obtained by taking the projection of the Segre embedding of $\mathbf{P}^{1} \times \mathbf{P}^{1}$ to the space of symmetric tensors, that is, $\rho\left(\left[a_{0}, a_{1}\right],\left[b_{0}, b_{1}\right]\right)=\left[a_{0} b_{0}, a_{1} b_{1}, a_{0} b_{1}+a_{1} b_{0}\right]$. We identify the diagonal $\Delta \subset \mathbf{P}^{1} \times \mathbf{P}^{1}$ with its image $\rho(\Delta)$ in \mathbf{P}^{2}. We view $P G L(2)$ as the subgroup of automorphisms of \mathbf{P}^{2} that preserve the conic Δ. Furthermore, the choice of Δ induces a canonical identification

$$
P G L(3) / P G L(2)=\left|\mathcal{O}_{\mathbf{P}^{2}}(2)\right|=\mathbf{P}^{5} .
$$

For $g \geq 5$, we consider the projection

$$
\beta: \mathfrak{R a t}_{g}:=\operatorname{Hilb}^{g}\left(\mathbf{P}^{2}\right) / / S L(2) \rightarrow \operatorname{Hilb}^{g}\left(\mathbf{P}^{2}\right) / / S L(3)=: U_{g}^{2} .
$$

Definition 2.1. If X is a del Pezzo surface of degree 2, a contraction of X is the blow-up $f: X \rightarrow \mathbf{P}^{2}$ of 7 points in general position in \mathbf{P}^{2}.

Specifying a pair (X, f) as above, amounts to giving a plane model of the del Pezzo surface, that is, a pair (X, L), where X is a del Pezzo surface with $K_{X}^{2}=2$ and $L \in \operatorname{Pic}(S)$ is such that $L^{2}=1$ and $K_{X} \cdot L=-2$. Therefore U_{7}^{2} is the GIT moduli space of pairs (X, f) (or equivalently of pairs (X, L)) as above.
Proposition 2.2. The morphism $\beta: \operatorname{Hilb}^{g}\left(\boldsymbol{P}^{2}\right) / / S L(2) \rightarrow U_{g}^{2}$ is a locally trivial \boldsymbol{P}^{5}-fibration.
Proof. Having fixed the conic $\Delta \subset \mathbf{P}^{2}$, we have an identification $\mathbf{P}^{2} \cong \operatorname{Sym}^{2}(\Delta) \cong\left(\mathbf{P}^{2}\right)^{\vee}$, that is, we view points in $\operatorname{Sym}^{2}(\Delta)$ as lines in \mathbf{P}^{2}. A general point $D \in \operatorname{Hilb}^{g}\left(\mathbf{P}^{2}\right)$ corresponds to a union $D=\ell_{1}+\cdots+\ell_{g}$ of g lines in \mathbf{P}^{2}, such that $\operatorname{Aut}\left(\left\{\ell_{1}, \ldots, \ell_{g}\right\}\right)=1$. We consider the rank 6 vector bundle \mathcal{E} over $\operatorname{Hilb}^{g}\left(\mathbf{P}^{2}\right)$ with fibre

$$
\mathcal{E}\left(\ell_{1}+\cdots+\ell_{g}\right):=H^{0}\left(\mathcal{O}_{\ell_{1}+\cdots+\ell_{g}}(2)\right) .
$$

Clearly \mathcal{E} descends to a vector bundle E over the quotient U_{g}^{2}. We then observe that one has a canonical identification $\mathbf{P}(E) \cong \operatorname{Hilb}^{g}\left(\mathbf{P}^{2}\right) / / S L(2)$, or more geometrically, $\mathfrak{R a t}_{g}$ is the moduli space of pairs consisting of an unordered configuration of g lines and a conic in \mathbf{P}^{2}. The birational isomorphism $\mathbf{P}(E) \rightarrow \operatorname{Hilb}^{g}\left(\mathbf{P}^{2}\right) / / S L(2)$ is given by the assignment

$$
\left(\ell_{1}+\cdots+\ell_{g}, Q\right) \bmod S L(3) \mapsto \sigma\left(\ell_{1}\right)+\cdots+\sigma\left(\ell_{g}\right) \bmod S L(2),
$$

where $\sigma \in S L(3)$ is an automorphism such that $\sigma(Q)=\Delta$.
Proof of Theorem 0.3. We have established that the moduli space $\widehat{\mathcal{F}}_{7}^{\mathfrak{N}}$ is birationally isomorphic to the projectivization of a \mathbf{P}^{5}-bundle over U_{7}^{2}. Since U_{7}^{2} is rational, cf. [Bo] Theorem 2.2.4.2, we conclude.

Remark 2.3. In view of Theorem 0.3, it is natural to ask whether there exists a rational modular degree 8 cover $\widehat{\mathcal{R}}_{7} \rightarrow \mathcal{R}_{7}$ which is a locally trivial \mathbf{P}^{7}-bundle over the rational variety $\widehat{\mathcal{F}}_{7}^{\mathfrak{N}}$, such
that the following diagram is commutative:

One candidate for the cover $\hat{\mathcal{R}}_{7}$ is the universal singular locus of the Prym-theta divisor,

$$
\widehat{\mathcal{R}}_{7}:=\left\{[C, \eta, L] \in \mathcal{R}_{7}:[C, \eta] \in \mathcal{R}_{7} \text { and } L \in \operatorname{Sing}(\Xi) / \pm\right\}
$$

where $\operatorname{Sing}(\Xi)=\left\{L \in \operatorname{Pic}^{2 g-2}(\widetilde{C}): \operatorname{Nm}_{f}(L)=K_{C}, h^{0}(C, L) \geq 4, h^{0}(C, L) \equiv 0 \bmod 2\right\}$. It is shown in [De] that for a general point $[C, \eta] \in \mathcal{R}_{7}$, the locus $\operatorname{Sing}(\Xi)$ is reduced and consists of 16 points, so indeed $\operatorname{deg}\left(\widehat{\mathcal{R}}_{7} / \mathcal{R}_{7}\right)=8$.

3. The uniruledness of $\overline{\mathcal{R}}_{8}$

We now explain how our structure results on $\mathcal{F}_{7}^{\mathfrak{N}}$ and \mathcal{R}_{7} lead to an easy proof of the uniruledness of $\overline{\mathcal{R}}_{8}$. We begin by reviewing a few facts about the compactification $\overline{\mathcal{R}}_{g}$ of \mathcal{R}_{g} by means of stable Prym curves, see [FL] for details. The geometric points of the coarse moduli space $\overline{\mathcal{R}}_{g}$ are triples (X, η, β), where X is a quasi-stable curve of genus $g, \eta \in \operatorname{Pic}(X)$ is a line bundle of total degree is 0 such that $\eta_{E}=\mathcal{O}_{E}(1)$ for each smooth rational component $E \subset X$ with $|E \cap \overline{X-E}|=2$ (such a component is said to be exceptional), and $\beta: \eta^{\otimes 2} \rightarrow \mathcal{O}_{X}$ is a sheaf homomorphism whose restriction to any non-exceptional component is an isomorphism. If $\pi: \overline{\mathcal{R}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$ is the map dropping the Prym structure, one has the formula [FL]

$$
\begin{equation*}
\pi^{*}\left(\delta_{0}\right)=\delta_{0}^{\prime}+\delta_{0}^{\prime \prime}+2 \delta_{0}^{\mathrm{ram}} \in C H^{1}\left(\overline{\mathcal{R}}_{g}\right) \tag{4}
\end{equation*}
$$

where $\delta_{0}^{\prime}:=\left[\Delta_{0}^{\prime}\right], \delta_{0}^{\prime \prime}:=\left[\Delta_{0}^{\prime \prime}\right]$, and $\delta_{0}^{\mathrm{ram}}:=\left[\Delta_{0}^{\mathrm{ram}}\right]$ are irreducible boundary divisor classes on $\overline{\mathcal{R}}_{g}$, which we describe by specifying their respective general points.

We choose a general point $\left[C_{x y}\right] \in \Delta_{0} \subset \overline{\mathcal{M}}_{g}$ corresponding to a smooth 2-pointed curve (C, x, y) of genus $g-1$ and consider the normalization $\operatorname{map} \nu: C \rightarrow C_{x y}$, where $\nu(x)=\nu(y)$. A general point of Δ_{0}^{\prime} (respectively of $\Delta_{0}^{\prime \prime}$) corresponds to a pair $\left[C_{x y}, \eta\right]$, where $\eta \in \operatorname{Pic}^{0}\left(C_{x y}\right)[2]$ and $\nu^{*}(\eta) \in \operatorname{Pic}^{0}(C)$ is non-trivial (respectively, $\nu^{*}(\eta)=\mathcal{O}_{C}$. A general point of $\Delta_{0}^{\mathrm{ram}}$ is a Prym curve of the form (X, η), where $X:=C \cup_{\{x, y\}} \mathbf{P}^{1}$ is a quasi-stable curve with $p_{a}(X)=g$ and $\eta \in \operatorname{Pic}^{0}(X)$ is a line bundle such that $\eta_{\mathbf{P}^{1}}=\mathcal{O}_{\mathbf{P}^{1}}(1)$ and $\eta_{C}^{\otimes 2}=\mathcal{O}_{C}(-x-y)$. In this case, the choice of the homomorphism β is uniquely determined by X and η. Therefore, we drop β from the notation of such a Prym curve. There are similar decompositions of the pull-back $\pi^{*}\left(\left[\Delta_{i}\right]\right)$ of the other boundary divisors $\Delta_{i} \subset \overline{\mathcal{M}}_{g}$ for $1 \leq i \leq\left\lfloor\frac{g}{2}\right\rfloor$, see again [FL] for details.

Via Nikulin surfaces we construct a sweeping curve for the divisor $\Delta_{0}^{\prime} \subset \overline{\mathcal{R}}_{8}$. Let us start with a general element of Δ_{0}^{\prime} corresponding to a smooth 2-pointed curve $[C, x, y] \in \mathcal{M}_{7,2}$ and a 2-torsion point $\eta \in \operatorname{Pic}^{0}\left(C_{x y}\right)[2]$ and set $\eta_{C}:=\nu^{*}(\eta) \in \operatorname{Pic}^{0}(C)[2]$. Using [FV] Theorem 0.2 , there exists a Nikulin surface $f: \widetilde{S} \rightarrow S$ branched along 8 rational curves $N_{1}, \ldots, N_{8} \subset S$ and an embedding $C \subset S$, such that $C \cdot N_{i}=0$ for $i=1, \ldots, 8$ and $\eta_{C}=e_{C}$, where $e \in \operatorname{Pic}(S)$ is the even class with $e^{\otimes 2}=\mathcal{O}_{S}\left(N_{1}+\cdots+N_{8}\right)$. We can also assume that $\operatorname{Pic}(S)=\Lambda_{7}$. By moving C in its linear system on S, we may assume that $x, y \notin N_{1} \cup \ldots \cup N_{8}$, and we set $\left\{x_{1}, x_{2}\right\}=f^{-1}(x)$ and $\left\{y_{1}, y_{2}\right\}=f^{-1}(y)$.

We pick a Lefschetz pencil $\Lambda:=\left\{C_{t}\right\}_{t \in \mathbf{P}^{1}}$ consisting of curves on S passing through the points x and y. Since the locus $\left\{D \in\left|\mathcal{O}_{S}(C)\right|: D \supset N_{i}\right\}$ is a hyperplane in $\left|\mathcal{O}_{S}(C)\right|$, it follows that there are precisely eight distinct values $t_{1}, \ldots, t_{8} \in \mathbf{P}^{1}$ such that

$$
C_{t_{i}}=: C_{i}=N_{i}+D_{i},
$$

where D_{i} is a smooth curve of genus 6 which contains x and y and intersects N_{i} transversally at two points. For each $t \in \mathbf{P}^{1}-\left\{t_{1}, \ldots, t_{8}\right\}$, we may assume that C_{t} is a smooth curve and denoting $\left[\bar{C}_{t}:=C_{t} / x \sim y\right] \in \overline{\mathcal{M}}_{8}$, we have an exact sequence

$$
0 \longrightarrow \mathbb{Z}_{2} \longrightarrow \operatorname{Pic}^{0}\left(\bar{C}_{t}\right)[2] \longrightarrow \operatorname{Pic}^{0}\left(C_{t}\right)[2] \longrightarrow 0 .
$$

In particular, there exist two distinct line bundles $\eta_{t}^{\prime}, \eta_{t}^{\prime \prime} \in \operatorname{Pic}^{0}\left(\bar{C}_{t}\right)$ such that

$$
\nu_{t}^{*}\left(\eta_{t}^{\prime}\right)=\nu_{t}^{*}\left(\eta_{t}^{\prime \prime}\right)=e_{C_{t}} .
$$

Using the Nikulin surfaces, we can consistently distinguish η_{t}^{\prime} from $\eta_{t}^{\prime \prime}$. Precisely, η_{t}^{\prime} corresponds to the admissible cover

$$
f^{-1}\left(C_{t}\right) / x_{1} \sim y_{1}, x_{2} \sim y_{2} \xrightarrow{2: 1} \bar{C}_{t}
$$

whereas $\eta_{t}^{\prime \prime}$ corresponds to the admissible cover

$$
f^{-1}\left(C_{t}\right) / x_{1} \sim y_{2}, x_{2} \sim y_{1} \xrightarrow{2: 1} \bar{C}_{t} .
$$

First we construct the pencil $R:=\left\{\bar{C}_{t}\right\}_{t \in \mathbf{P}^{1}} \hookrightarrow \overline{\mathcal{M}}_{8}$. Formally, we have a fibration $u: \mathrm{Bl}_{2 g-2}(S) \rightarrow \mathbf{P}^{1}$ induced by the pencil Λ by blowing-up S at its $2 g-2$ base points (two of which being x and y respectively), which comes endowed with sections E_{x} and E_{y} given by the corresponding exceptional divisors. The pencil R is obtained from u, by identifying inside the surface $\mathrm{Bl}_{2 g-2}(S)$ the sections E_{x} and E_{y} respectively.

Lemma 3.1. The pencil $R \subset \overline{\mathcal{M}}_{8}$ has the following numerical characters:

$$
R \cdot \lambda=g+1=8, \quad R \cdot \delta_{0}=6 g+16=58, \text { and } R \cdot \delta_{j}=0 \text { for } j=1, \ldots, 4 \text {. }
$$

Proof. We observe that $(R \cdot \lambda)_{\overline{\mathcal{M}}_{8}}=(\Lambda \cdot \lambda)_{\overline{\mathcal{M}}_{7}}=g+1=8$ and $\left(R \cdot \delta_{j}\right)_{\overline{\mathcal{M}}_{8}}=\left(\Lambda \cdot \delta_{j}\right)_{\overline{\mathcal{M}}_{7}}=0$ for $j \geq 1$. Finally, in order to determine the degree of the normal bundle of Δ_{0} along R, we write:

$$
\left(R \cdot \delta_{0}\right)_{\overline{\mathcal{M}}_{8}}=\left(\Lambda \cdot \delta_{0}\right)_{\overline{\mathcal{M}}_{7}}+E_{x}^{2}+E_{y}^{2}=6 g+18-2=58,
$$

where we have used the well-known fact that a Lefschetz pencil of curves of genus g on a $K 3$ surface possesses $6 g+18$ singular fibres (counted with their multiplicities) and that $E_{x}^{2}=E_{y}^{2}=-1$.

Next, note that the family $\left\{\left[\bar{C}_{t}, \eta_{t}\right]: \nu_{t}^{*}\left(\eta_{t}\right)=e_{C_{t}}\right\}_{t \in \mathbf{P}^{\mathbf{1}}} \hookrightarrow \overline{\mathcal{R}}_{8}$ splits into two irreducible components meeting in eight points. We consider one of the irreducible components, say

$$
\Gamma:=\left\{\left[\bar{C}_{t}, \eta_{t}^{\prime}\right]\right\}_{t \in \mathbf{P}^{1}} \hookrightarrow \overline{\mathcal{R}}_{8} .
$$

Lemma 3.2. The curve $\Gamma \subset \overline{\mathcal{R}}_{8}$ constructed above has the following numerical features:

$$
\Gamma \cdot \lambda=8, \quad \Gamma \cdot \delta_{0}^{\prime}=42, \quad \Gamma \cdot \delta_{0}^{\prime \prime}=0 \text { and } \Gamma \cdot \delta_{0}^{\mathrm{ram}}=8
$$

Furthermore, Γ is disjoint from all boundary components contained in $\pi^{*}\left(\Delta_{j}\right)$ for $j=1, \ldots, 4$.

Proof. First we observe that Γ intersects the divisor $\Delta_{0}^{\mathrm{ram}}$ transversally at the points corresponding to the values $t_{1}, \ldots, t_{8} \in \mathbf{P}^{1}$, when the curve C_{i} acquires the (-2)-curve N_{i} as a component. Indeed, for each of these points $e_{D_{i}}^{\otimes(-2)}=\mathcal{O}_{D_{i}}\left(-N_{i}\right)$ and $e_{N_{i}}^{\vee}=\mathcal{O}_{N_{i}}(1)$, therefore $\left[C_{i}, e_{C_{i}}\right] \in \Delta_{0}^{\mathrm{ram}}$. Furthermore, using Lemma 3.1]we write $(\Gamma \cdot \lambda)_{\overline{\mathcal{R}}_{8}}=\pi_{*}(\Gamma) \cdot \lambda=8$ and

$$
\Gamma \cdot\left(\delta_{0}^{\prime}+\delta_{0}^{\prime \prime}+2 \delta_{0}^{\mathrm{ram}}\right)=\Gamma \cdot \pi^{*}\left(\delta_{0}\right)=R \cdot \delta_{0}=58
$$

Furthermore, for $t \in \mathbf{P}^{1}-\left\{t_{1}, \ldots, t_{8}\right\}$, the curve $f^{-1}\left(C_{t}\right)$ cannot split into two components, else $\operatorname{Pic}(S) \nsupseteq \Lambda_{7}$. Therefore $\gamma \cdot \delta_{0}^{\prime \prime}=0$ and hence $\Gamma \cdot \delta_{0}^{\prime}=42$.

Proof of Theorem 0.4 The curve $\Gamma \subset \overline{\mathcal{R}}_{8}$ constructed above is a sweeping curve for the irreducible boundary divisor Δ_{0}^{\prime}, in particular it intersects non-negatively every irreducible effective divisor D on $\overline{\mathcal{R}}_{8}$ which is different from Δ_{0}^{\prime}. Since $\Gamma \cdot \delta_{0}^{\prime}>0$, it follows that D intersects non-negatively every pseudoeffective divisor on $\overline{\mathcal{R}}_{8}$. Using the formula for the canonical divisor [FL]

$$
K_{\overline{\mathcal{R}}_{8}}=13 \lambda-2\left(\delta_{0}^{\prime}+\delta_{0}^{\prime \prime}\right)-3 \delta_{0}^{\mathrm{ram}}-\cdots \in C H^{1}\left(\overline{\mathcal{R}}_{8}\right),
$$

applying Lemma 3.2 we obtain that $\Gamma \cdot K_{\overline{\mathcal{R}}_{8}}=-4<0$, thus $K_{\overline{\mathcal{R}}_{8}} \notin \operatorname{Eff}\left(\overline{\mathcal{R}}_{8}\right)$. Using [BDPP], we conclude that $\overline{\mathcal{R}}_{8}$ is uniruled, in particular its Kodaira dimension is negative.
3.1. The uniruledness of the universal singular locus of the theta divisor over $\overline{\mathcal{R}}_{8}$. In what follows, we sketch a second, more geometric proof of Theorem 0.4, skipping some details. This proof provides a concrete way of constructing a rational curve through a general point of $\overline{\mathcal{R}}_{8}$. We fix a general element $[C, \eta] \in \mathcal{R}_{8}$ and denote by $f: \widetilde{C} \rightarrow C$ the corresponding unramified double cover and by $\iota: \widetilde{C} \rightarrow \widetilde{C}$ the involution exchanging the sheets of f. Following [W], we consider the singular locus of the Prym theta divisor, that is, the locus
$V^{3}(C, \eta)=\operatorname{Sing}(\Xi):=\left\{L \in \operatorname{Pic}^{14}(\tilde{C}): \operatorname{Nm}_{f}(L)=K_{C}, h^{0}(C, L) \geq 4\right.$ and $\left.h^{0}(C, L) \equiv 0 \bmod 2\right\}$.
It follows from [W], that $V^{3}(C, \eta)$ is a smooth curve. We pick a line bundle $L \in V^{3}(C, \eta)$ with $h^{0}(\widetilde{C}, L)=4$, a general point $\tilde{x} \in \widetilde{C}$ and consider the ι-invariant part of the Petri map, that is,

$$
\mu_{0}^{+}(L(-\tilde{x})): \operatorname{Sym}^{2} H^{0}(\widetilde{C}, L(-\tilde{x})) \rightarrow H^{0}\left(C, K_{C}(-x)\right), \quad s \otimes t+t \otimes s \mapsto s \cdot \iota^{*}(t)+t \cdot \iota^{*}(s),
$$

where $x:=f(\tilde{x}) \in C$. We set $\mathbf{P}^{2}:=\mathbf{P}\left(H^{0}(L(-\tilde{x}))^{\vee}\right)$, and similarly to [FV] Section 2.2, we consider the map $q: \mathbf{P}^{2} \times \mathbf{P}^{2} \rightarrow \mathbf{P}^{5}$ obtained from the Segre embedding $\mathbf{P}^{2} \times \mathbf{P}^{2} \hookrightarrow \mathbf{P}^{8}$ and then projecting onto the space of symmetric tensors. We have the following commutative diagram:

Let $\Sigma:=\operatorname{Im}(q) \subset \mathbf{P}^{5}$ be the determinantal cubic surface; its singular locus is the Veronese surface V_{4}. For a general choice of $[C, \eta] \in \mathcal{R}_{8}, L \in V^{3}(C, \eta)$ and of $\tilde{x} \in \tilde{C}$, the map
$\mu_{0}^{+}(L(-\tilde{x}))$ is injective and let $W \subset H^{0}\left(C, K_{C}(-x)\right)$ be its 6-dimensional image. Comparing dimensions, we observe that the kernel of the multiplication map

$$
\operatorname{Sym}^{2}(W) \longrightarrow H^{0}\left(C, K_{C}^{\otimes 2}(-2 x)\right)
$$

is at least 2-dimensional. In particular, there exist distinct quadrics $Q_{1}, Q_{2} \subset \mathbf{P}^{5}$ such that

$$
C \subset S:=Q_{1} \cap Q_{2} \cap \Sigma \subset \mathbf{P}^{5}
$$

Since $\operatorname{Sing}(\Sigma)=V_{4}$, the surface S is singular at the 16 points of intersection $Q_{1} \cap Q_{2} \cap V_{4}$. Assuming we can find (C, η, L, \tilde{x}) such that $\operatorname{Sing}(S)=Q_{1} \cap Q_{2} \cap V_{4}$, we obtain that S is a canonical surface, that is, $K_{S}=\mathcal{O}_{S}(1)$.

Using the exact sequence $0 \rightarrow H^{0}\left(S, \mathcal{O}_{S}\right) \rightarrow H^{0}\left(S, \mathcal{O}_{S}(C)\right) \rightarrow H^{0}\left(\mathcal{O}_{C}(C)\right) \rightarrow 0$, since $\mathcal{O}_{C}(C)=\mathcal{O}_{C}(x)$, we obtain that $\operatorname{dim}\left|\mathcal{O}_{S}(C)\right|=1$, that is, C moves on S. Moreover the pencil $\left|\mathcal{O}_{S}(C)\right|$ has $x \in S$ as a base point.

We denote by $\widetilde{S}:=q^{-1}(S) \subset \mathbf{P}^{2} \times \mathbf{P}^{2}$. For each curve $C_{t} \in\left|\mathcal{O}_{S}(C)\right|$, we denote by $\widetilde{C}_{t}:=q^{-1}\left(C_{t}\right) \subset \widetilde{S}$ the corresponding double cover. Furthermore, we define a line bundle $L_{t} \in \operatorname{Pic}^{14}\left(\widetilde{C}_{t}\right)$, by setting $\mathcal{O}_{\widetilde{C}_{t}}(1,0)=L_{t}(-\tilde{x})$ (in which case, $\mathcal{O}_{\widetilde{C}_{t}}(0,1)=\iota^{*}\left(L_{t}(-\tilde{x})\right)$).

The construction we just explained induces a uniruled parametrization of the universal singular locus of the Prym theta divisor in genus 8 (which dominates \mathcal{R}_{8}). Our result is conditional to a (very plausible) transversality assumption:
Theorem 3.3. Assume there exists $[C, \eta, L, x]$ as above, such that $S=Q_{1} \cap Q_{2} \cap \Sigma \subset P^{5}$ is a 16 -nodal canonical surface. Then the moduli space

$$
\mathcal{R}_{8}^{3}:=\left\{[C, \eta, L]:[C, \eta] \in \mathcal{R}_{8}, L \in V^{3}(C, \eta)\right\}
$$

is uniruled.
Proof. The assignment $\mathbf{P}^{1} \ni t \mapsto\left[\widetilde{C}_{t} / C_{t}, L_{t}\right] \in \mathcal{R}_{8}^{3}$ described above provides a rational curve passing through a general point of \mathcal{R}_{8}^{3}.

References

[BDPP] S. Boucksom, J.P. Demailly, M. Păun and T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, Journal of Algebraic Geometry 22 (2013), 201-248.
[Bo] C. Böhning, The rationality problem in algebraic geometry, Habilitationsschrift, Göttingen 2009.
[Cas] G. Castelnuovo, Numero delle involuzioni razionali giacenti sopra una curva di dato genere, Rendiconti R. Accad. Lincei 5 (1889) 130-133.
[Cat] F. Catanese, On the rationality of certain moduli spaces related to curves of genus 4, Springer Lecture Notes in Mathematics 1008 (1983), 30-50.
[De] O. Debarre, Sur le probleme de Torelli pour les varietes de Prym, American J. Math. 111 (1989), 111-134.
[Do1] I. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sciences 81 (1996), 2599-2630.
[Do2] I. Dolgachev, Rationality of \mathcal{R}_{2} and \mathcal{R}_{3}, Pure and Applied Math. Quarterly, 4 (2008), 501-508.
[Do3] I. Dolgachev, Classical algebraic geometry: A modern view, Cambridge University Press 2012.
[Do] R. Donagi, The unirationality of \mathcal{A}_{5}, Annals of Mathematics 119 (1984), 269-307.
[FK] G. Farkas and M. Kemeny, The generic Green-Lazarsfeld conjecture, arXiv:1408.4164.
[FL] G. Farkas and K. Ludwig, The Kodaira dimension of the moduli space of Prym varieties, Journal of the European Mathematical Society 12 (2010), 755-795.
[FV] G. Farkas and A. Verra, Moduli of theta-characteristics via Nikulin surfaces, Mathematische Annalen 354 (2012), 465-496.
[GS] A. Garbagnati and A. Sarti, Projective models of $K 3$ surfaces with an even set, Advances in Geometry 8 (2008), 413-440.
[GKM] A. Gibney, S. Keel and I. Morrison, Towards the ample cone of $\overline{\mathcal{M}}_{g, n}$, Journal of the American Mathematical Society 15 (2002), 273-294.
[vGS] B. van Geemen and A. Sarti, Nikulin involutions on K3 surfaces, Mathematische Zeitschrift 255 (2007), 731-753.
[ILS] E. Izadi, M. Lo Giudice and G. Sankaran, The moduli space of étale double covers of genus 5 is unirational, Pacific Journal of Mathematics 239 (2009), 39-52.
[Ka] P. Katsylo, On the birational geometry of $\left(\boldsymbol{P}^{n}\right)^{(m)} / G L_{n+1}$, Max-Planck Institut Preprint, MPI/94-144 (1994).
[Mu] S. Mukai, Curves and K3 surfaces of genus eleven, in: Moduli of vector bundles, Lecture Notes in Pure and Applied Mathematics Vol. 179, Dekker (1996), 189-197.
[Ni] V.V. Nikulin, Kummer surfaces, Izvestia Akad. Nauk SSSR 39 (1975), 278-293.
[V] A. Verra, A short proof of the unirationality of \mathcal{A}_{5}, Indagationes Math. 46 (1984), 339-355.
[W] G. Welters, A theorem of Gieseker-Petri type for Prym varieties, Annales Sci. École Normale Supérieure 18 (1985), 671-683.

Humboldt-Universität Zu Berlin, Institut für Mathematik, Unter den Linden 6 10099 BERLIN, GERMANY
E-mail address: farkas@math.hu-berlin.de

[^1]
[^0]: ${ }^{1}$ Unfortunately, in $\left.\mid \overline{G K M}\right]$ the notation $\overline{\mathcal{R}}_{g}$ (reserved for the Prym moduli space) is proposed for what we denote in this paper by $\mathfrak{R a t}_{g}$.

[^1]: Universitá Roma Tre, Dipartimento di Matematica, Largo San Leonardo Murialdo 1-00146 Roma, Italy
 E-mail address: verra@mat.uniroma3.it

