PRYM VARIETIES AND MODULI OF POLARIZED NIKULIN SURFACES

GAVRIL FARKAS AND ALESSANDRO VERRA

ABSTRACT. We present a structure theorem for the moduli space \mathcal{R}_7 of Prym curves of genus 7 as a projective bundle over the moduli space of 7-nodal rational curves. The existence of this parametrization implies the unirationality of \mathcal{R}_7 and that of the moduli space of Nikulin surfaces of genus 7, as well as the rationality of the moduli space of Nikulin surfaces of genus 7 with a distinguished line. Using the results in genus 7, we then establish that \mathcal{R}_8 is uniruled.

A polarized Nikulin surface of genus g is a smooth polarized K3 surface (S, \mathfrak{c}) , where $\mathfrak{c} \in \operatorname{Pic}(S)$ with $\mathfrak{c}^2 = 2g - 2$, equipped with a double cover $f : \widetilde{S} \to S$ branched along disjoint rational curves $N_1, \ldots, N_8 \subset S$, such that $\mathfrak{c} \cdot N_i = 0$ for $i = 1, \ldots, 8$. Denoting by $e \in \operatorname{Pic}(S)$ the class defined by the equality $e^{\otimes 2} = \mathcal{O}_S(\sum_{i=1}^8 N_i)$, one forms the Nikulin lattice

$$\mathfrak{N} := \left\langle \mathcal{O}_S(N_1), \dots, \mathcal{O}_S(N_8), e \right\rangle$$

and obtains a primitive embedding $j : \Lambda_q := \mathbb{Z} \cdot [\mathfrak{c}] \oplus \mathfrak{N} \hookrightarrow \operatorname{Pic}(S)$. Nikulin surfaces of genus g form an irreducible 11-dimensional moduli space $\mathcal{F}_{g}^{\mathfrak{N}}$ which has been studied in [Do1] and [vGS]. The connection between $\mathcal{F}_{g}^{\mathfrak{N}}$ and the moduli space \mathcal{R}_{g} of pairs $[C, \eta]$, where C is a curve of genus g and $\eta \in \text{Pic}^{0}(C)[2]$ is a 2-torsion point, has been pointed out in [FV] and used to describe \mathcal{R}_g in small genus. Over $\mathcal{F}_q^{\mathfrak{N}}$ one considers the open set in a tautological \mathbf{P}^g -bundle

 $\mathcal{P}_{g}^{\mathfrak{N}} := \Big\{ \big[S, j : \Lambda_{g} \hookrightarrow \operatorname{Pic}(S), C \big] : C \in |\mathfrak{c}| \text{ is a smooth curve of genus } g \Big\},$

which is endowed with the two projection maps

defined by $p_g([S, j, C]) := [S, j]$ and $\chi_g([S, j, C]) := [C, e_C := e \otimes \mathcal{O}_C]$ respectively. Observe that $\dim(\mathcal{P}_7^{\mathfrak{N}}) = \dim(\mathcal{R}_7) = 18$. The map $\chi_7 : \mathcal{P}_7^{\mathfrak{N}} \dashrightarrow \mathcal{R}_7$ is a birational isomorphism, precisely \mathcal{R}_7 is birational to a Zariski locally trivial \mathbf{P}^7 -bundle over $\mathcal{F}_7^{\mathfrak{N}}$. This is reminiscent of Mukai's result [Mu]: M_{11} is birational to a projective bundle over the moduli space \mathcal{F}_{11} of polarized K3 surfaces of genus 11. Note that \mathcal{M}_{11} and \mathcal{R}_7 are the only known examples of moduli spaces of curves admitting a non-trivial fibre bundle structure over a moduli space of polarized K3 surfaces. Here we describe the structure of $\mathcal{F}_7^{\mathfrak{N}}$:

Theorem 0.1. The Nikulin moduli space $\mathcal{F}_7^{\mathfrak{N}}$ is unirational. The Prym moduli space \mathcal{R}_7 is birationally isomorphic to a \mathbf{P}^7 -bundle over $\mathcal{F}_7^{\mathfrak{N}}$. It follows that \mathcal{R}_7 is unirational as well.

It is well-known that \mathcal{R}_g is unirational for $g \leq 6$, see [Do], [ILS], [V], and even rational for $g \leq 4$, see [Do2], [Cat]. On the other hand, the Deligne-Mumford moduli space $\overline{\mathcal{R}}_g$ of stable Prym curves of genus g is a variety of general type for $g \ge 14$, whereas kod($\overline{\mathcal{R}}_{12}$) ≥ 0 , see [FL]. Nothing seems to be known about the Kodaira dimension of $\overline{\mathcal{R}}_{g}$, for g = 9, 10, 11.

We now discuss the structure of $\mathcal{F}_7^{\mathfrak{N}}$. For each positive *g*, we denote by

$$\mathfrak{Rat}_g := \overline{\mathcal{M}}_{0,2g} / \mathbb{Z}_2^{\oplus g} \rtimes S_g$$

the moduli space of *g*-nodal stable rational curves of genus *g*. The action of the group $\mathbb{Z}_2^{\oplus g}$ is given by permuting the marked points labeled by $\{1, 2\}, \ldots, \{2g - 1, 2g\}$ respectively, while the symmetric group S_g acts by permuting the 2-cycles $(1, 2), \ldots, (2g - 1, 2g)$ respectively. The variety \mathfrak{Rat}_g , viewed as a subvariety of $\overline{\mathcal{M}}_g$, has been studied by Castelnuovo [Cas] at the end of the 19th century in the course of his famous attempt to prove the Brill-Noether Theorem, as well as much more recently, for instance in [GKM]¹, in the context of determining the ample cone of $\overline{\mathcal{M}}_g$. Using the identification $\operatorname{Sym}^2(\mathbf{P}^1) \cong \mathbf{P}^2$, we obtain a birational isomorphism

$$\mathfrak{Rat}_q \cong \mathrm{Hilb}^g(\mathbf{P}^2) // PGL(2)$$

where $PGL(2) \subset PGL(3)$ is regarded as the group of projective automorphisms of \mathbf{P}^2 preserving the image of a fixed smooth conic in \mathbf{P}^2 .

Let us fix once and for all a smooth rational quintic curve $R \subset \mathbf{P}^5$. For general points $x_1, y_1, \ldots, x_7, y_7 \in R$, we note that $[R, (x_1 + y_1) + \cdots + (x_7 + y_7)] \in \mathfrak{Rat}_7$. We denote by

$$N_1 := \langle x_1, y_1 \rangle, \dots, N_7 := \langle x_7, y_7 \rangle \in G(2, 6),$$

the corresponding bisecant lines to R and observe that $C := R \cup N_1 \cup \ldots \cup N_7$ is a nodal curve of genus 7 and degree 12 in \mathbf{P}^5 . By writing down the Mayer-Vietoris sequence for C, we find the following identifications:

$$H^0(C, \mathcal{O}_C(1)) \cong H^0(\mathcal{O}_R(1)) \text{ and } H^0(C, \mathcal{O}_C(2)) \cong H^0(\mathcal{O}_R(2)) \oplus \left(\bigoplus_{i=1}^7 H^0(\mathcal{O}_{N_i}) \right).$$

It can easily be checked that the base locus

$$S := \operatorname{Bs} \left| \mathcal{I}_{C/\mathbf{P}^5}(2) \right|$$

is a smooth K3 surface which is a complete intersection of three quadrics in \mathbf{P}^5 . Obviously, S is equipped with the seven lines N_1, \ldots, N_7 . In fact, S carries an eight line as well! If $H \in |\mathcal{O}_S(1)|$ is a hyperplane section, after setting

$$N_8 := 2R + N_1 + \dots + N_7 - 2H \in \operatorname{Div}(S).$$

we compute that $N_8^2 = -2$, $N_8 \cdot H = 1$ and $N_8 \cdot N_i = 0$, for i = 1, ..., 7. Therefore N_8 is equivalent to an effective divisor on S, which is embedded in \mathbf{P}^5 as a line by the linear system $|\mathcal{O}_S(1)|$. Furthermore,

$$N_1 + \dots + N_8 = 2(R + N_1 + \dots + N_7 - H) \in \operatorname{Pic}(S),$$

hence by denoting $e := R + N_1 + \cdots + N_7 - H$, we obtain an embedding $\mathfrak{N} \hookrightarrow \operatorname{Pic}(S)$. Moreover $C \cdot N_i = 0$ for $i = 1, \ldots, 8$ and we may view $\Lambda_7 \hookrightarrow \operatorname{Pic}(S)$. In this way S becomes a Nikulin surface of genus 7.

We introduce the moduli space $\widehat{\mathcal{F}}_{g}^{\mathfrak{N}}$ of *decorated* Nikulin surfaces consisting of polarized Nikulin surfaces $[S, j : \Lambda_g \hookrightarrow \operatorname{Pic}(S)]$ of genus g, together with a distinguished line $N_8 \subset S$ viewed as a component of the branch divisor of the double covering $f : \widetilde{S} \to S$. There is an

¹Unfortunately, in [GKM] the notation $\overline{\mathcal{R}}_g$ (reserved for the Prym moduli space) is proposed for what we denote in this paper by \mathfrak{Rat}_g .

obvious forgetful map $\widehat{\mathcal{F}}_g^{\mathfrak{N}} \to \mathcal{F}_g^{\mathfrak{N}}$ of degree 8. Having specified $N_8 \subset S$, we can also specify the divisor $N_1 + \cdots + N_7 \subset S$ such that $e^{\otimes 2} = \mathcal{O}_S(N_1 + \cdots + N_7 + N_8)$. We summarize what has been discussed so far:

Theorem 0.2. The rational map $\varphi : \mathfrak{Rat}_7 \dashrightarrow \widehat{\mathcal{F}}_7^{\mathfrak{N}}$ given by

$$\varphi\Big(\big[R,(x_1+y_1)+\dots+(x_7+y_7)\big]\Big) := \big[S,\mathcal{O}_S(R+N_1+\dots+N_7),N_8\big]$$

is a birational isomorphism.

A construction of the inverse map φ^{-1} using the geometry of Prym canonical curves of genus 7 is presented in Section 2. The moduli space \mathfrak{Rat}_q is related to the configuration space

$$U_q^2 := \operatorname{Hilb}^g(\mathbf{P}^2) // PGL(3)$$

of g unordered points in the plane. Using the isomorphism $PGL(3)/PGL(2) \cong \mathbf{P}^5$, we observe in Section 2 that there exists a (locally trivial) \mathbf{P}^5 -bundle structure $\Re\mathfrak{at}_g \dashrightarrow U_g^2$. In particular $\Re\mathfrak{at}_g$ is rational whenever U_g^2 is. Since the rationality of U_7^2 has been established by Katsylo [Ka] (see also [Bo]), we are led to the following result:

Theorem 0.3. The moduli space $\widehat{\mathcal{F}}_{7}^{\mathfrak{N}}$ of marked Nikulin surfaces of genus 7 is rational.

Putting together Theorems 0.2 and 0.3, we conclude that there exists a dominant rational map $\mathbf{P}^{18} \longrightarrow \mathcal{R}_7$ of degree 8. We are not aware of any dominant map from a rational variety to \mathcal{R}_7 of degree smaller than 8. It would be very interesting to know whether \mathcal{R}_7 itself is a rational variety. We recall that although \mathcal{M}_g is known to be rational for $g \leq 6$ (see [Bo] and the references therein), the rationality of \mathcal{M}_7 is an open problem.

We sum up the construction described above in the following commutative diagram:

$$\begin{array}{c} \overline{\mathcal{M}}_{0,14} \xrightarrow{(2^{7} \cdot 7!):1} \mathfrak{Rat}_{7} \\ \downarrow & \downarrow \\ \downarrow & \cong \downarrow \\ \mathfrak{F}_{7}^{\mathfrak{N}} \xleftarrow{ } \mathfrak{F}_{7}^{\mathfrak{N}} \xrightarrow{ } \mathfrak{F}_{7}^{\mathfrak{N}} \xrightarrow{ \mathbf{P}^{5}} U_{7}^{2} \end{array}$$

The concrete geometry of \mathcal{R}_7 has direct consequences concerning the Kodaira dimension of $\overline{\mathcal{R}}_8$. The projective bundle structure of \mathcal{R}_7 over $\mathcal{F}_7^{\mathfrak{N}}$ can be lifted to a boundary divisor of $\overline{\mathcal{R}}_8$. Denoting by $\pi : \overline{\mathcal{R}}_g \to \overline{\mathcal{M}}_g$ the map forgetting the Prym structure, one has the formula

$$\pi^*(\delta_0) = \delta'_0 + \delta''_0 + 2\delta_0^{\operatorname{ram}} \in CH^1(\overline{\mathcal{R}}_g),$$

where $\delta'_0 := [\Delta'_0], \, \delta''_0 := [\Delta''_0]$, and $\delta^{\text{ram}}_0 := [\Delta^{\text{ram}}_0]$ are boundary divisor classes on $\overline{\mathcal{R}}_g$ whose meaning will be recalled in Section 3. Note that up to a \mathbb{Z}_2 -factor, a general point of Δ'_0 corresponds to a 2-pointed Prym curve of genus 7, for which we apply our Theorem 0.1. We establish the following result:

Theorem 0.4. *The moduli space* $\overline{\mathcal{R}}_8$ *is uniruled.*

Using the parametrization of \mathcal{R}_7 via Nikulin surfaces, we construct a sweeping curve Γ of the boundary divisor Δ'_0 of $\overline{\mathcal{R}}_8$ such that $\Gamma \cdot \delta'_0 > 0$ and $\Gamma \cdot K_{\overline{\mathcal{R}}_8} < 0$. This implies that the canonical class $K_{\overline{\mathcal{R}}_8}$ cannot be pseudoeffective, hence via [BDPP], the moduli space $\overline{\mathcal{R}}_8$ is uniruled. This way of showing uniruledness of a moduli space, though quite effective, does not lead to an *explicit* uniruled parametrization of \mathcal{R}_8 . In Section 3, we sketch an alternative,

more geometric way of showing that \mathcal{R}_8 is uniruled, by embedding a general Prym-curve of genus 8 in a certain canonical surface. A rational curve through a general point of $\overline{\mathcal{R}}_8$ is then induced by a pencil on this surface.

1. POLARIZED NIKULIN SURFACES

We briefly recall some basics on Nikulin surfaces, while referring to [vGS], [GS] for details. A symplectic involution ι on a smooth K3 surface Y has 8 fixed points and we denote by $\overline{Y} := Y/\langle \iota \rangle$ the quotient. The surface \overline{Y} has 8 nodes. Letting $\sigma : \widetilde{S} \to Y$ be the blow-up of the fixed points, the involution ι lifts to an involution $\widetilde{\iota} : \widetilde{S} \to \widetilde{S}$ fixing the eight (-1)-curves $E_1, \ldots, E_8 \subset \widetilde{S}$. Denoting by $f : \widetilde{S} \to S$ the quotient map by the involution $\widetilde{\iota}$, we obtain a smooth K3 surface S, together with a primitive embedding of the Nikulin lattice $\mathfrak{N} \cong E_8(-2) \hookrightarrow \operatorname{Pic}(S)$, where $N_i = f(E_i)$ for $i = 1, \ldots, 8$. In particular, the sum of rational curves $N := N_1 + \cdots + N_8$ is an even divisor on S, that is, there exists a class $e \in \operatorname{Pic}(S)$ such that $e^{\otimes 2} = \mathcal{O}_S(N_1 + \cdots + N_8)$. The cover $f : \widetilde{S} \to S$ is branched precisely along the curves N_1, \ldots, N_8 . The following diagram summarizes the notation introduced so far and will be used throughout the paper:

(1)
$$\tilde{S} \xrightarrow{\sigma} Y$$

 $f \downarrow \qquad \downarrow$
 $S \longrightarrow \bar{Y}$

Nikulin [Ni] showed that the possible configurations of even sets of disjoint (-2)-curves on a K3 surface S are only those consisting of either 8 curves (in which case S is a Nikulin surface as defined in this paper), or of 16 curves, in which case S is a Kummer surface. From this point of view, Nikulin surfaces appear naturally as the *Prym analogues* of K3 surfaces.

Definition 1.1. A *polarized Nikulin surface* of genus g consists of a smooth K3 surface and a primitive embedding j of the lattice $\Lambda_g = \mathbb{Z} \cdot \mathfrak{c} \oplus \mathfrak{N} \hookrightarrow \operatorname{Pic}(S)$, such that $\mathfrak{c}^2 = 2g - 2$ and the class $j(\mathfrak{c})$ is nef.

Polarized Nikulin surfaces of genus g form an irreducible moduli 11-dimensional moduli space $\mathcal{F}_g^{\mathfrak{N}}$, see for instance [Do1]. Structure theorems for $\mathcal{F}_g^{\mathfrak{N}}$ for genus $g \leq 6$ have been established in [FV]. For instance the following result is proven in *loc.cit*. for Nikulin surfaces of genus g = 6. Let $V = \mathbb{C}^5$ and fix a smooth quadric $Q \subset \mathbf{P}(V)$. Then one has a birational isomorphism, which, in particular, shows that $\mathcal{F}_6^{\mathfrak{N}}$ is unirational:

$$\mathcal{F}_6^{\mathfrak{N}} \xrightarrow{\cong} G\left(7, \bigwedge^2 V\right)^{\mathrm{ss}} //\mathrm{Aut}(Q).$$

On the other hand, fundamental facts about $\mathcal{F}_g^{\mathfrak{N}}$ are still not known. For instance, it is not clear whether $\mathcal{F}_g^{\mathfrak{N}}$ is a variety of general type for large g. Nikulin surfaces have been recently used decisively in [FK] to prove the Prym-Green Conjecture on syzygies of general Prym-canonical curves of even genus.

For a polarized Nikulin surface (S, j) of genus g as above, we set $C := j(\mathfrak{c})$ and then $H \equiv C - e \in \operatorname{Pic}(S)$. It is shown in [GS], that for any Nikulin surface S having minimal Picard lattice $\operatorname{Pic}(S) = \Lambda_g$, the linear system $\mathcal{O}_S(H)$ is very ample for $g \ge 6$. We compute that $H^2 = 2g - 6$ and denote by $\phi_H : S \to \mathbf{P}^{g-2}$ the corresponding embedding. Since $N_i \cdot H = 1$ for $i = 1, \ldots, 8$, it follows that the images $\phi_H(N_i) \subset \mathbf{P}^{g-2}$ are lines. The existence of two closely

linked distinguished polarizations $\mathcal{O}_S(C)$ and $\mathcal{O}_S(H)$ of genus g and g-2 respectively on any Nikulin surface is one of the main sources for the rich geometry of the moduli space $\mathcal{F}_g^{\mathfrak{N}}$ for $g \leq 6$, see [FV] and [vGS].

Suppose that $[S, j : \Lambda_7 \hookrightarrow \text{Pic}(S)]$ is a polarized Nikulin surface of genus 7. In this case

$$\phi_H: S \hookrightarrow \mathbf{P}^5$$

is a surface of degree 8 which is a complete intersection of three quadrics. For each smooth curve $C \in |\mathcal{O}_S(j(\mathfrak{c}))|$, we have that $[C, \eta := e_C] \in \mathcal{R}_7$. Since $\mathcal{O}_C(1) = K_C \otimes \eta$, it follows that the restriction $\phi_{H|C} : C \hookrightarrow \mathbf{P}^5$ is a Prym-canonically embedded curve of genus 7. This assignment gives rise to the map $\chi_7 : \mathcal{P}_7^{\mathfrak{N}} \to \mathcal{R}_7$.

Conversely, to a general Prym curve $[C, \eta] \in \mathcal{R}_7$ we associate a unique Nikulin surface of genus 7 as follows. We consider the Prym-canonical embedding $\phi_{K_C \otimes \eta} : C \hookrightarrow \mathbf{P}^5$ and observe that $S := \operatorname{bs}(|\mathcal{I}_{C/\mathbf{P}^5}(2)|)$ is a complete intersection of three quadrics, that is, if smooth, a K3 surfaces of degree 8. In fact, S is smooth for a general choice of $[C, \eta] \in \mathcal{R}_7$, see [FV] Proposition 2.3. We then set $N \equiv 2(C - H) \in \operatorname{Pic}(S)$ and note that $N^2 = -16$ and $N \cdot H = 8$. Using the cohomology exact sequence

$$0 \longrightarrow H^0(S, \mathcal{O}_S(N-C)) \longrightarrow H^0(S, \mathcal{O}_S(N)) \longrightarrow H^0(C, \mathcal{O}_C(N)) \longrightarrow 0,$$

since $\mathcal{O}_C(N)$ is trivial, we conclude that the divisor N is effective on S. It is shown in *loc.cit*. that for a general $[C, \eta] \in \mathcal{R}_7$, we have a splitting $N = N_1 + \ldots + N_8$ into a sum of 8 disjoint lines with $C \cdot N_i = 0$ for $i = 1, \ldots, 8$. This turns S into a Nikulin surface and explains the birational isomorphisms

$$\chi_7^{-1}: \mathcal{P}_7^{\mathfrak{N}} \xrightarrow{\cong} \mathcal{R}_7$$

referred to in the Introduction.

Suppose now that $[S, \mathcal{O}_S(C), N_8] \in \widehat{\mathcal{F}}_7^{\mathfrak{N}}$, that is, we single out a (-2)-curve in the Nikulin lattice. Writing $e^{\otimes 2} = \mathcal{O}_C(N_1 + \cdots + N_8)$, the choice of N_8 also determines the sum of the seven remaining lines $N_1 + \cdots + N_7$, where $H \cdot N_i = 1$, for $i = 1, \ldots, 8$. We compute

$$(C - N_1 - \ldots - N_7)^2 = -2$$
 and $(C - N_1 - \ldots - N_7) \cdot H = 5$,

in particular, there exists an effective divisor R on S, with $R \equiv C - N_1 - \ldots - N_7$. Note also that $R \cdot N_i = 2$, for $i = 1, \ldots, 7$, that is, $R \subset \mathbf{P}^5$ comes endowed with seven bisecant lines.

Proposition 1.2. For a decorated Nikulin surface $[S, \mathcal{O}_S(C), N_8] \in \widehat{\mathcal{F}}_7^{\mathfrak{N}}$ satisfying $\operatorname{Pic}(S) = \Lambda_7$, we have that $H^1(S, \mathcal{O}_S(C - N_1 - \cdots - N_7)) = 0$. In particular,

$$R \in |\mathcal{O}_S(C - N_1 - \dots - N_7)|$$

is a smooth rational quintic curve on S.

Proof. Assume by contradiction that the curve $R \subset S$ is reducible. In that case, there exists a smooth irreducible (-2)-curve $Y \subset S$, such that $Y \cdot R < 0$ and $H^0(S, \mathcal{O}_S(R - Y)) \neq 0$. Assuming $\operatorname{Pic}(S)$ is generated by C, N_1, \ldots, N_8 and the class $e = (N_1 + \cdots + N_8)/2$, there exist integers $a, b, c_1, \ldots, c_8 \in \mathbb{Z}$, such that

$$Y \equiv a \cdot C + \left(c_1 + \frac{b}{2}\right) \cdot N_1 + \dots + \left(c_8 + \frac{b}{2}\right) \cdot N_8.$$

Setting $b_i := c_i + \frac{b}{2}$, the numerical hypotheses on *Y* can be rewritten in the following form:

(2)
$$b_1^2 + \dots + b_8^2 = 6a^2 + 1 \text{ and } 6a + b_1 + \dots + b_8 \le -1.$$

Since *Y* is effective, we find that $a \ge 0$ (use that $C \subset S$ is nef). Applying the same considerations to the effective divisor R - Y, we obtain that $a \in \{0, 1\}$.

If a = 0, then $Y \equiv b_1N_1 + \cdots + b_8N_8 \ge 0$, hence $b_i \ge 0$ for $i = 1, \dots, 8$, which contradicts the inequality $b_1 + \cdots + b_8 \le -1$, so this case does not appear.

If a = 1, then $R - Y \equiv -(1 + b_1)N_1 - \cdots - (1 + b_7)N_7 - b_8N_8 \ge 0$, therefore $b_8 \le 0$ and $b_i \le -1$ for i = 1, ..., 7. From (2), we obtain that $b_8 = 0$ and $b_1 = \cdots = b_7 = -1$. Thus $Y \equiv R$, which is a contradiction, for Y was assumed to be a proper irreducible component of R. \Box

Retaining the notation above, we obtain a map $\psi : \widehat{\mathcal{F}}_7^{\mathfrak{N}} \dashrightarrow \mathfrak{Rat}_7$, defined by

$$\psi\Big([S,\mathcal{O}_S(C),N_8]\Big):=[R,\ N_1\cdot R+\ldots+N_7\cdot R],$$

where the cycle $N_i \cdot R \in \text{Sym}^2(R)$ is regarded as an effective divisor of degree 2 on R. The map ψ is regular over the dense open subset of $\widehat{\mathcal{F}}_7^{\mathfrak{N}}$ consisting of Nikulin surfaces having the minimal Picard lattice Λ_7 . We are going to show that ψ is a birational isomorphism by explicitly constructing its inverse.

We fix a smooth rational quintic curve $R \subset \mathbf{P}^5$ and recall the canonical identification

(3)
$$\left|\mathcal{I}_{R/\mathbf{P}^{5}}(2)\right| = \left|\mathcal{O}_{\mathrm{Sym}^{2}(R)}(3)\right|$$

between the linear system of quadrics containing $R \subset \mathbf{P}^5$ and that of plane cubics. Here we use the isomorphism $\operatorname{Sym}^2(R) \xrightarrow{\cong} \mathbf{P}^2$, under which to a quadric $Q \in H^0(\mathbf{P}^5, \mathcal{I}_{R/\mathbf{P}^5}(2))$ one assigns the symmetric correspondence

$$\Sigma_Q := \{ x + y \in \operatorname{Sym}^2(R) : \langle x, y \rangle \subset Q \},\$$

which is a cubic curve in $\text{Sym}^2(R)$.

Let N_1, \ldots, N_7 general bisecant lines to R and consider the semi-stable curve of genus 7

$$C := R \cup N_1 \cup \ldots \cup N_7 \subset \mathbf{P}^5.$$

Proposition 1.3. For a general choice of the bisecants N_1, \ldots, N_7 of the curve $R \subset \mathbf{P}^5$, the base locus

$$S := \operatorname{Bs} \left| \mathcal{I}_{C/\mathbf{P}^5}(2) \right|$$

is a smooth K3 surface of degree 8.

Proof. The bisecant line N_i is determined by the degree 2 divisor $N_i \cdot R \in \text{Sym}^2(R)$. Under the identification (3), the quadrics containing the line N_i are identified with the cubics in $|\mathcal{O}_{\text{Sym}^2(R)}(3)|$ that pass through the point $N_i \cdot R$. It follows that the linear system $|\mathcal{I}_{C/\mathbf{P}^5}(2)|$ corresponds to the linear system of cubics in $\text{Sym}^2(R)$ passing through 7 general points. Since the secants N_i (and hence the points $N_i \cdot R \in \text{Sym}^2(R)$) have been chosen to be general, we obtain that dim $|\mathcal{I}_{C/\mathbf{P}^5}(2)| = 2$.

We have showed in Proposition 1.2, that for a general Nikulin surface *S*,

$$H^{1}(S, \mathcal{O}_{S}(H - N_{1} - \dots - \hat{N}_{i} - \dots - N_{8})) = 0,$$

for all i = 1, ..., 8. In particular, the morphism ψ is defined on all components of $\widehat{\mathcal{F}}_7^{\mathfrak{N}}$ and the image of each component is an element of \mathfrak{Rat}_7 . For such a point in $\mathrm{Im}(\psi)$, it follows that bs $|\mathcal{I}_{C/\mathbf{P}^5}(2)|$ is a smooth surface, in fact a general Nikulin surface of genus 7.

Proof of Theorem 0.2. As explained in the Introduction, the map $\varphi : \mathfrak{Rat}_7 \dashrightarrow \widehat{\mathcal{F}}_7^{\mathfrak{N}}$ is well-defined and clearly the inverse of ψ . In particular, it follows that $\widehat{\mathcal{F}}_7^{\mathfrak{N}}$ is also irreducible (and in fact unirational).

2. CONFIGURATION SPACES OF POINTS IN THE PLANE

Throughout this section we use the identification $\operatorname{Sym}^2(\mathbf{P}^1) \cong \mathbf{P}^2$ induced by the map $\rho : \mathbf{P}^1 \times \mathbf{P}^1 \to \mathbf{P}^2$ obtained by taking the projection of the Segre embedding of $\mathbf{P}^1 \times \mathbf{P}^1$ to the space of symmetric tensors, that is, $\rho([a_0, a_1], [b_0, b_1]) = [a_0b_0, a_1b_1, a_0b_1 + a_1b_0]$. We identify the diagonal $\Delta \subset \mathbf{P}^1 \times \mathbf{P}^1$ with its image $\rho(\Delta)$ in \mathbf{P}^2 . We view PGL(2) as the subgroup of automorphisms of \mathbf{P}^2 that preserve the conic Δ . Furthermore, the choice of Δ induces a canonical identification

$$PGL(3)/PGL(2) = |\mathcal{O}_{\mathbf{P}^2}(2)| = \mathbf{P}^5.$$

For $g \ge 5$, we consider the projection

$$\beta : \mathfrak{Rat}_q := \mathrm{Hilb}^g(\mathbf{P}^2) / / SL(2) \to \mathrm{Hilb}^g(\mathbf{P}^2) / / SL(3) =: U_q^2$$

Definition 2.1. If *X* is a del Pezzo surface of degree 2, a *contraction* of *X* is the blow-up $f : X \to \mathbf{P}^2$ of 7 points in general position in \mathbf{P}^2 .

Specifying a pair (X, f) as above, amounts to giving a *plane model* of the del Pezzo surface, that is, a pair (X, L), where X is a del Pezzo surface with $K_X^2 = 2$ and $L \in \text{Pic}(S)$ is such that $L^2 = 1$ and $K_X \cdot L = -2$. Therefore U_7^2 is the GIT moduli space of pairs (X, f) (or equivalently of pairs (X, L)) as above.

Proposition 2.2. The morphism β : Hilb^{*g*}(\mathbf{P}^2)//*SL*(2) $\rightarrow U_a^2$ is a locally trivial \mathbf{P}^5 -fibration.

Proof. Having fixed the conic $\Delta \subset \mathbf{P}^2$, we have an identification $\mathbf{P}^2 \cong \operatorname{Sym}^2(\Delta) \cong (\mathbf{P}^2)^{\vee}$, that is, we view points in $\operatorname{Sym}^2(\Delta)$ as lines in \mathbf{P}^2 . A general point $D \in \operatorname{Hilb}^g(\mathbf{P}^2)$ corresponds to a union $D = \ell_1 + \cdots + \ell_g$ of g lines in \mathbf{P}^2 , such that $\operatorname{Aut}(\{\ell_1, \ldots, \ell_g\}) = 1$. We consider the rank 6 vector bundle \mathcal{E} over $\operatorname{Hilb}^g(\mathbf{P}^2)$ with fibre

$$\mathcal{E}(\ell_1 + \dots + \ell_g) := H^0(\mathcal{O}_{\ell_1 + \dots + \ell_g}(2)).$$

Clearly \mathcal{E} descends to a vector bundle E over the quotient U_g^2 . We then observe that one has a canonical identification $\mathbf{P}(E) \cong \text{Hilb}^g(\mathbf{P}^2) / / SL(2)$, or more geometrically, $\Re \mathfrak{at}_g$ is the moduli space of pairs consisting of an unordered configuration of g lines and a conic in \mathbf{P}^2 . The birational isomorphism $\mathbf{P}(E) \to \text{Hilb}^g(\mathbf{P}^2) / / SL(2)$ is given by the assignment

$$(\ell_1 + \dots + \ell_g, Q) \mod SL(3) \mapsto \sigma(\ell_1) + \dots + \sigma(\ell_g) \mod SL(2),$$

where $\sigma \in SL(3)$ is an automorphism such that $\sigma(Q) = \Delta$.

Proof of Theorem 0.3. We have established that the moduli space $\widehat{\mathcal{F}}_7^{\mathfrak{N}}$ is birationally isomorphic to the projectivization of a \mathbf{P}^5 -bundle over U_7^2 . Since U_7^2 is rational, cf. [Bo] Theorem 2.2.4.2, we conclude.

Remark 2.3. In view of Theorem 0.3, it is natural to ask whether there exists a rational *modular* degree 8 cover $\hat{\mathcal{R}}_7 \to \mathcal{R}_7$ which is a locally trivial \mathbf{P}^7 -bundle over the rational variety $\hat{\mathcal{F}}_7^{\mathfrak{N}}$, such

that the following diagram is commutative:

$$\begin{array}{c} \widehat{\mathcal{R}}_{7} \xrightarrow{?} \widehat{\mathcal{F}}_{7}^{\mathfrak{N}} \xrightarrow{\cong} \mathfrak{Rat}_{7} \\ 8:1 \\ \downarrow & 8:1 \\ \mathcal{R}_{7} \xrightarrow{\mathbf{P}^{7}} \mathcal{F}_{7}^{\mathfrak{N}} \end{array}$$

One candidate for the cover $\hat{\mathcal{R}}_7$ is the universal singular locus of the Prym-theta divisor,

$$\widehat{\mathcal{R}}_7 := \Big\{ [C, \eta, L] \in \mathcal{R}_7 : [C, \eta] \in \mathcal{R}_7 \text{ and } L \in \operatorname{Sing}(\Xi) / \pm \Big\},\$$

where $\operatorname{Sing}(\Xi) = \{L \in \operatorname{Pic}^{2g-2}(\widetilde{C}) : \operatorname{Nm}_f(L) = K_C, h^0(C, L) \ge 4, h^0(C, L) \equiv 0 \mod 2\}$. It is shown in [De] that for a general point $[C, \eta] \in \mathcal{R}_7$, the locus $\operatorname{Sing}(\Xi)$ is reduced and consists of 16 points, so indeed $\operatorname{deg}(\widehat{\mathcal{R}}_7/\mathcal{R}_7) = 8$.

3. The uniruledness of $\overline{\mathcal{R}}_8$

We now explain how our structure results on $\mathcal{F}_7^{\mathfrak{N}}$ and \mathcal{R}_7 lead to an easy proof of the uniruledness of $\overline{\mathcal{R}}_8$. We begin by reviewing a few facts about the compactification $\overline{\mathcal{R}}_g$ of \mathcal{R}_g by means of stable Prym curves, see [FL] for details. The geometric points of the coarse moduli space $\overline{\mathcal{R}}_g$ are triples (X, η, β) , where X is a quasi-stable curve of genus $g, \eta \in \operatorname{Pic}(X)$ is a line bundle of total degree is 0 such that $\eta_E = \mathcal{O}_E(1)$ for each smooth rational component $E \subset X$ with $|E \cap \overline{X} - \overline{E}| = 2$ (such a component is said to be *exceptional*), and $\beta : \eta^{\otimes 2} \to \mathcal{O}_X$ is a sheaf homomorphism whose restriction to any non-exceptional component is an isomorphism. If $\pi : \overline{\mathcal{R}}_g \to \overline{\mathcal{M}}_g$ is the map dropping the Prym structure, one has the formula [FL]

(4)
$$\pi^*(\delta_0) = \delta'_0 + \delta''_0 + 2\delta_0^{\operatorname{ram}} \in CH^1(\overline{\mathcal{R}}_g),$$

where $\delta'_0 := [\Delta'_0], \, \delta''_0 := [\Delta''_0]$, and $\delta^{\text{ram}}_0 := [\Delta^{\text{ram}}_0]$ are irreducible boundary divisor classes on $\overline{\mathcal{R}}_g$, which we describe by specifying their respective general points.

We choose a general point $[C_{xy}] \in \Delta_0 \subset \overline{\mathcal{M}}_g$ corresponding to a smooth 2-pointed curve (C, x, y) of genus g-1 and consider the normalization map $\nu : C \to C_{xy}$, where $\nu(x) = \nu(y)$. A general point of Δ'_0 (respectively of Δ''_0) corresponds to a pair $[C_{xy}, \eta]$, where $\eta \in \operatorname{Pic}^0(C_{xy})[2]$ and $\nu^*(\eta) \in \operatorname{Pic}^0(C)$ is non-trivial (respectively, $\nu^*(\eta) = \mathcal{O}_C$). A general point of $\Delta_0^{\operatorname{ram}}$ is a Prym curve of the form (X, η) , where $X := C \cup_{\{x,y\}} \mathbf{P}^1$ is a quasi-stable curve with $p_a(X) = g$ and $\eta \in \operatorname{Pic}^0(X)$ is a line bundle such that $\eta_{\mathbf{P}^1} = \mathcal{O}_{\mathbf{P}^1}(1)$ and $\eta_C^{\otimes 2} = \mathcal{O}_C(-x-y)$. In this case, the choice of the homomorphism β is uniquely determined by X and η . Therefore, we drop β from the notation of such a Prym curve. There are similar decompositions of the pull-back $\pi^*([\Delta_i])$ of the other boundary divisors $\Delta_i \subset \overline{\mathcal{M}}_g$ for $1 \le i \le \lfloor \frac{g}{2} \rfloor$, see again [FL] for details.

Via Nikulin surfaces we construct a sweeping curve for the divisor $\Delta'_0 \subset \overline{\mathcal{R}}_8$. Let us start with a general element of Δ'_0 corresponding to a smooth 2-pointed curve $[C, x, y] \in \mathcal{M}_{7,2}$ and a 2-torsion point $\eta \in \operatorname{Pic}^0(C_{xy})[2]$ and set $\eta_C := \nu^*(\eta) \in \operatorname{Pic}^0(C)[2]$. Using [FV] Theorem 0.2, there exists a Nikulin surface $f : \widetilde{S} \to S$ branched along 8 rational curves $N_1, \ldots, N_8 \subset S$ and an embedding $C \subset S$, such that $C \cdot N_i = 0$ for $i = 1, \ldots, 8$ and $\eta_C = e_C$, where $e \in \operatorname{Pic}(S)$ is the even class with $e^{\otimes 2} = \mathcal{O}_S(N_1 + \cdots + N_8)$. We can also assume that $\operatorname{Pic}(S) = \Lambda_7$. By moving C in its linear system on S, we may assume that $x, y \notin N_1 \cup \ldots \cup N_8$, and we set $\{x_1, x_2\} = f^{-1}(x)$ and $\{y_1, y_2\} = f^{-1}(y)$. We pick a Lefschetz pencil $\Lambda := \{C_t\}_{t \in \mathbf{P}^1}$ consisting of curves on S passing through the points x and y. Since the locus $\{D \in |\mathcal{O}_S(C)| : D \supset N_i\}$ is a hyperplane in $|\mathcal{O}_S(C)|$, it follows that there are precisely eight distinct values $t_1, \ldots, t_8 \in \mathbf{P}^1$ such that

$$C_{t_i} =: C_i = N_i + D_i,$$

where D_i is a smooth curve of genus 6 which contains x and y and intersects N_i transversally at two points. For each $t \in \mathbf{P}^1 - \{t_1, \ldots, t_8\}$, we may assume that C_t is a smooth curve and denoting $[\overline{C}_t := C_t/x \sim y] \in \overline{\mathcal{M}}_8$, we have an exact sequence

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow \operatorname{Pic}^0(\bar{C}_t)[2] \longrightarrow \operatorname{Pic}^0(C_t)[2] \longrightarrow 0.$$

In particular, there exist two distinct line bundles $\eta'_t, \eta''_t \in \text{Pic}^0(\bar{C}_t)$ such that

$$\nu_t^*(\eta_t') = \nu_t^*(\eta_t'') = e_{C_t}$$

Using the Nikulin surfaces, we can consistently distinguish η'_t from η''_t . Precisely, η'_t corresponds to the admissible cover

$$f^{-1}(C_t)/x_1 \sim y_1, x_2 \sim y_2 \xrightarrow{2:1} \bar{C}_t$$

whereas η''_t corresponds to the admissible cover

$$f^{-1}(C_t)/x_1 \sim y_2, x_2 \sim y_1 \xrightarrow{2:1} \bar{C}_t.$$

First we construct the pencil $R := {\overline{C}_t}_{t \in \mathbf{P}^1} \hookrightarrow \overline{\mathcal{M}}_8$. Formally, we have a fibration $u : \operatorname{Bl}_{2g-2}(S) \to \mathbf{P}^1$ induced by the pencil Λ by blowing-up S at its 2g - 2 base points (two of which being x and y respectively), which comes endowed with sections E_x and E_y given by the corresponding exceptional divisors. The pencil R is obtained from u, by identifying inside the surface $\operatorname{Bl}_{2g-2}(S)$ the sections E_x and E_y respectively.

Lemma 3.1. The pencil $R \subset \overline{\mathcal{M}}_8$ has the following numerical characters:

$$R \cdot \lambda = g + 1 = 8$$
, $R \cdot \delta_0 = 6g + 16 = 58$, and $R \cdot \delta_j = 0$ for $j = 1, \dots, 4$.

Proof. We observe that $(R \cdot \lambda)_{\overline{\mathcal{M}}_8} = (\Lambda \cdot \lambda)_{\overline{\mathcal{M}}_7} = g + 1 = 8$ and $(R \cdot \delta_j)_{\overline{\mathcal{M}}_8} = (\Lambda \cdot \delta_j)_{\overline{\mathcal{M}}_7} = 0$ for $j \ge 1$. Finally, in order to determine the degree of the normal bundle of Δ_0 along R, we write:

$$(R \cdot \delta_0)_{\overline{\mathcal{M}}_8} = (\Lambda \cdot \delta_0)_{\overline{\mathcal{M}}_7} + E_x^2 + E_y^2 = 6g + 18 - 2 = 58,$$

where we have used the well-known fact that a Lefschetz pencil of curves of genus g on a K3 surface possesses 6g + 18 singular fibres (counted with their multiplicities) and that $E_x^2 = E_y^2 = -1$.

Next, note that the family $\left\{ [\overline{C}_t, \eta_t] : \nu_t^*(\eta_t) = e_{C_t} \right\}_{t \in \mathbf{P}^1} \hookrightarrow \overline{\mathcal{R}}_8$ splits into two irreducible components meeting in eight points. We consider one of the irreducible components, say

$$\Gamma := \left\{ [\bar{C}_t, \eta'_t] \right\}_{t \in \mathbf{P}^1} \hookrightarrow \overline{\mathcal{R}}_8$$

Lemma 3.2. The curve $\Gamma \subset \overline{\mathcal{R}}_8$ constructed above has the following numerical features:

$$\Gamma \cdot \lambda = 8, \ \Gamma \cdot \delta_0' = 42, \ \Gamma \cdot \delta_0'' = 0 \ and \ \Gamma \cdot \delta_0^{\operatorname{ram}} = 8.$$

Furthermore, Γ is disjoint from all boundary components contained in $\pi^*(\Delta_j)$ for $j = 1, \ldots, 4$.

Proof. First we observe that Γ intersects the divisor Δ_0^{ram} transversally at the points corresponding to the values $t_1, \ldots, t_8 \in \mathbf{P}^1$, when the curve C_i acquires the (-2)-curve N_i as a component. Indeed, for each of these points $e_{D_i}^{\otimes (-2)} = \mathcal{O}_{D_i}(-N_i)$ and $e_{N_i}^{\vee} = \mathcal{O}_{N_i}(1)$, therefore $[C_i, e_{C_i}] \in \Delta_0^{\text{ram}}$. Furthermore, using Lemma 3.1 we write $(\Gamma \cdot \lambda)_{\overline{\mathcal{R}}_8} = \pi_*(\Gamma) \cdot \lambda = 8$ and

$$\Gamma \cdot (\delta_0' + \delta_0'' + 2\delta_0^{\operatorname{ram}}) = \Gamma \cdot \pi^*(\delta_0) = R \cdot \delta_0 = 58.$$

Furthermore, for $t \in \mathbf{P}^1 - \{t_1, \ldots, t_8\}$, the curve $f^{-1}(C_t)$ cannot split into two components, else $\operatorname{Pic}(S) \supseteq \Lambda_7$. Therefore $\gamma \cdot \delta_0'' = 0$ and hence $\Gamma \cdot \delta_0' = 42$.

Proof of Theorem 0.4. The curve $\Gamma \subset \overline{\mathcal{R}}_8$ constructed above is a sweeping curve for the irreducible boundary divisor Δ'_0 , in particular it intersects non-negatively every irreducible effective divisor D on $\overline{\mathcal{R}}_8$ which is different from Δ'_0 . Since $\Gamma \cdot \delta'_0 > 0$, it follows that D intersects non-negatively *every* pseudoeffective divisor on $\overline{\mathcal{R}}_8$. Using the formula for the canonical divisor [FL]

$$K_{\overline{\mathcal{R}}_8} = 13\lambda - 2(\delta_0' + \delta_0'') - 3\delta_0^{\operatorname{ram}} - \dots \in CH^1(\overline{\mathcal{R}}_8),$$

applying Lemma 3.2 we obtain that $\Gamma \cdot K_{\overline{\mathcal{R}}_8} = -4 < 0$, thus $K_{\overline{\mathcal{R}}_8} \notin \text{Eff}(\overline{\mathcal{R}}_8)$. Using [BDPP], we conclude that $\overline{\mathcal{R}}_8$ is uniruled, in particular its Kodaira dimension is negative.

3.1. The uniruledness of the universal singular locus of the theta divisor over $\overline{\mathcal{R}}_8$. In what follows, we sketch a second, more geometric proof of Theorem 0.4, skipping some details. This proof provides a *concrete* way of constructing a rational curve through a general point of $\overline{\mathcal{R}}_8$. We fix a general element $[C, \eta] \in \mathcal{R}_8$ and denote by $f : \widetilde{C} \to C$ the corresponding unramified double cover and by $\iota : \widetilde{C} \to \widetilde{C}$ the involution exchanging the sheets of f. Following [W], we consider the singular locus of the Prym theta divisor, that is, the locus

$$V^{3}(C,\eta) = \operatorname{Sing}(\Xi) := \left\{ L \in \operatorname{Pic}^{14}(\tilde{C}) : \operatorname{Nm}_{f}(L) = K_{C}, \ h^{0}(C,L) \ge 4 \text{ and } h^{0}(C,L) \equiv 0 \mod 2 \right\}$$

It follows from [W], that $V^3(C, \eta)$ is a smooth curve. We pick a line bundle $L \in V^3(C, \eta)$ with $h^0(\widetilde{C}, L) = 4$, a general point $\widetilde{x} \in \widetilde{C}$ and consider the ι -invariant part of the Petri map, that is,

$$\mu_0^+(L(-\tilde{x})) : \operatorname{Sym}^2 H^0(\tilde{C}, L(-\tilde{x})) \to H^0(C, K_C(-x)), \quad s \otimes t + t \otimes s \mapsto s \cdot \iota^*(t) + t \cdot \iota^*(s),$$

where $x := f(\tilde{x}) \in C$. We set $\mathbf{P}^2 := \mathbf{P}(H^0(L(-\tilde{x}))^{\vee})$, and similarly to [FV] Section 2.2, we consider the map $q : \mathbf{P}^2 \times \mathbf{P}^2 \to \mathbf{P}^5$ obtained from the Segre embedding $\mathbf{P}^2 \times \mathbf{P}^2 \to \mathbf{P}^8$ and then projecting onto the space of symmetric tensors. We have the following commutative diagram:

$$\begin{array}{c} \widetilde{C} \xrightarrow{\left(L(-\tilde{x}),\iota^{*}(L(-\tilde{x}))\right)} \mathbf{P}^{2} \times \mathbf{P}^{2} \\ f \\ \downarrow \\ \downarrow \\ C \xrightarrow{\left|\mu_{0}^{+}(L(-\tilde{x}))\right|} \mathbf{P}^{5} = \mathbf{P}(\operatorname{Sym}^{2}H^{0}(L(-\tilde{x}))^{\vee}) \\ \end{array}$$

Let $\Sigma := \text{Im}(q) \subset \mathbf{P}^5$ be the determinantal cubic surface; its singular locus is the Veronese surface V_4 . For a general choice of $[C, \eta] \in \mathcal{R}_8, L \in V^3(C, \eta)$ and of $\tilde{x} \in \tilde{C}$, the map

 $\mu_0^+(L(-\tilde{x}))$ is injective and let $W \subset H^0(C, K_C(-x))$ be its 6-dimensional image. Comparing dimensions, we observe that the kernel of the multiplication map

$$\operatorname{Sym}^2(W) \longrightarrow H^0(C, K_C^{\otimes 2}(-2x))$$

is at least 2-dimensional. In particular, there exist distinct quadrics $Q_1, Q_2 \subset \mathbf{P}^5$ such that

$$C \subset S := Q_1 \cap Q_2 \cap \Sigma \subset \mathbf{P}^5.$$

Since $\operatorname{Sing}(\Sigma) = V_4$, the surface *S* is singular at the 16 points of intersection $Q_1 \cap Q_2 \cap V_4$. Assuming we can find (C, η, L, \tilde{x}) such that $\operatorname{Sing}(S) = Q_1 \cap Q_2 \cap V_4$, we obtain that *S* is a canonical surface, that is, $K_S = \mathcal{O}_S(1)$.

Using the exact sequence $0 \to H^0(S, \mathcal{O}_S) \to H^0(S, \mathcal{O}_S(C)) \to H^0(\mathcal{O}_C(C)) \to 0$, since $\mathcal{O}_C(C) = \mathcal{O}_C(x)$, we obtain that dim $|\mathcal{O}_S(C)| = 1$, that is, *C* moves on *S*. Moreover the pencil $|\mathcal{O}_S(C)|$ has $x \in S$ as a base point.

We denote by $\widetilde{S} := q^{-1}(S) \subset \mathbf{P}^2 \times \mathbf{P}^2$. For each curve $C_t \in |\mathcal{O}_S(C)|$, we denote by $\widetilde{C}_t := q^{-1}(C_t) \subset \widetilde{S}$ the corresponding double cover. Furthermore, we define a line bundle $L_t \in \operatorname{Pic}^{14}(\widetilde{C}_t)$, by setting $\mathcal{O}_{\widetilde{C}_t}(1,0) = L_t(-\widetilde{x})$ (in which case, $\mathcal{O}_{\widetilde{C}_t}(0,1) = \iota^*(L_t(-\widetilde{x}))$).

The construction we just explained induces a uniruled parametrization of the universal singular locus of the Prym theta divisor in genus 8 (which dominates \mathcal{R}_8). Our result is conditional to a (very plausible) transversality assumption:

Theorem 3.3. Assume there exists $[C, \eta, L, x]$ as above, such that $S = Q_1 \cap Q_2 \cap \Sigma \subset \mathbf{P}^5$ is a 16-nodal canonical surface. Then the moduli space

$$\mathcal{R}_8^3 := \left\{ [C, \eta, L] : [C, \eta] \in \mathcal{R}_8, \ L \in V^3(C, \eta) \right\}$$

is uniruled.

Proof. The assignment $\mathbf{P}^1 \ni t \mapsto [\widetilde{C}_t/C_t, L_t] \in \mathcal{R}^3_8$ described above provides a rational curve passing through a general point of \mathcal{R}^3_8 .

References

- [BDPP] S. Boucksom, J.P. Demailly, M. Păun and T. Peternell, *The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension*, Journal of Algebraic Geometry **22** (2013), 201-248.
- [Bo] C. Böhning, The rationality problem in algebraic geometry, Habilitationsschrift, Göttingen 2009.
- [Cas] G. Castelnuovo, Numero delle involuzioni razionali giacenti sopra una curva di dato genere, Rendiconti R. Accad. Lincei 5 (1889) 130-133.
- [Cat] F. Catanese, On the rationality of certain moduli spaces related to curves of genus 4, Springer Lecture Notes in Mathematics 1008 (1983), 30-50.
- [De] O. Debarre, Sur le probleme de Torelli pour les varietes de Prym, American J. Math. 111 (1989), 111-134.
- [Do1] I. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sciences 81 (1996), 2599-2630.
- [Do2] I. Dolgachev, *Rationality of* \mathcal{R}_2 and \mathcal{R}_3 , Pure and Applied Math. Quarterly, 4 (2008), 501-508.
- [Do3] I. Dolgachev, Classical algebraic geometry: A modern view, Cambridge University Press 2012.
- [Do] R. Donagi, *The unirationality of A*₅, Annals of Mathematics **119** (1984), 269-307.
- [FK] G. Farkas and M. Kemeny, *The generic Green-Lazarsfeld conjecture*, arXiv:1408.4164.
- [FL] G. Farkas and K. Ludwig, The Kodaira dimension of the moduli space of Prym varieties, Journal of the European Mathematical Society 12 (2010), 755-795.
- [FV] G. Farkas and A. Verra, Moduli of theta-characteristics via Nikulin surfaces, Mathematische Annalen 354 (2012), 465-496.
- [GS] A. Garbagnati and A. Sarti, *Projective models of K3 surfaces with an even set*, Advances in Geometry 8 (2008), 413-440.

G. FARKAS AND A. VERRA

- [GKM] A. Gibney, S. Keel and I. Morrison, *Towards the ample cone of* $\overline{\mathcal{M}}_{g,n}$, Journal of the American Mathematical Society **15** (2002), 273-294.
- [vGS] B. van Geemen and A. Sarti, Nikulin involutions on K3 surfaces, Mathematische Zeitschrift 255 (2007), 731-753.
- [ILS] E. Izadi, M. Lo Giudice and G. Sankaran, *The moduli space of étale double covers of genus* 5 *is unirational*, Pacific Journal of Mathematics **239** (2009), 39-52.
- [Ka] P. Katsylo, On the birational geometry of $(\mathbf{P}^n)^{(m)}/GL_{n+1}$, Max-Planck Institut Preprint, MPI/94-144 (1994).
- [Mu] S. Mukai, *Curves and K3 surfaces of genus eleven*, in: Moduli of vector bundles, Lecture Notes in Pure and Applied Mathematics Vol. 179, Dekker (1996), 189-197.
- [Ni] V.V. Nikulin, Kummer surfaces, Izvestia Akad. Nauk SSSR 39 (1975), 278-293.
- [V] A. Verra, A short proof of the unirationality of A_5 , Indagationes Math. **46** (1984), 339-355.
- [W] G. Welters, A theorem of Gieseker-Petri type for Prym varieties, Annales Sci. École Normale Supérieure 18 (1985), 671–683.

HUMBOLDT-UNIVERSITÄT ZU BERLIN, INSTITUT FÜR MATHEMATIK, UNTER DEN LINDEN 6 10099 BERLIN, GERMANY *E-mail address*: farkas@math.hu-berlin.de

UNIVERSITÀ ROMA TRE, DIPARTIMENTO DI MATEMATICA, LARGO SAN LEONARDO MURIALDO 1-00146 ROMA, ITALY *E-mail address*: verra@mat.uniroma3.it