BRILL-NOETHER GEOMETRY ON MODULI SPACES OF SPIN CURVES

GAVRIL FARKAS

The aim of this paper is to initiate a study of geometric divisors of Brill-Noether type on the moduli space $\overline{\mathcal{S}}_{g}$ of spin curves of genus g. The moduli space $\overline{\mathcal{S}}_{g}$ is a compactification the parameter space \mathcal{S}_{g} of pairs $[C, \eta]$, consisting of a smooth genus g curve C and a theta-characteristic $\eta \in \mathrm{Pic}^{g-1}(C)$, see [C]. The study of the birational properties of $\overline{\mathcal{S}}_{g}$ as well as other moduli spaces of curves with level structure has received an impetus in recent years, see [BV] [FL], [F2], [Lud], to mention only a few results. Using syzygy divisors, it has been proved in [FL] that the Prym moduli space $\overline{\mathcal{R}}_{g}:=\overline{\mathcal{M}}_{g}\left(\mathcal{B} \mathbb{Z}_{2}\right)$ classifying curves of genus g together with a point of order 2 in the Jacobian variety, is a variety of general type for $g \geq 13$ and $g \neq 15$. The moduli space $\overline{\mathcal{S}}_{g}^{+}$of even spin curves of genus g is known to be of general type for $g>8$, uniruled for $g<8$, see [F2], whereas the Kodaira dimension of $\overline{\mathcal{S}}_{8}^{+}$is equal to zero, [FV]. This was the first example of a naturally defined moduli space of curves of genus $g \geq 2$, having intermediate Kodaira dimension. An application of the main construction of this paper, gives a new way of computing the class of the divisor $\bar{\Theta}_{\text {null }}$ of vanishing theta-nulls on $\overline{\mathcal{S}}_{g}^{+}$, reproving thus the main result of [F2].

Virtually all attempts to show that a certain moduli space $\overline{\mathcal{M}}_{g, n}$ is of general type, rely on the calculation of certain effective divisors $D \subset \overline{\mathcal{M}}_{g, n}$ enjoying extremality properties in their effective cones $\operatorname{Eff}\left(\overline{\mathcal{M}}_{g, n}\right)$, so that the canonical class $K_{\overline{\mathcal{M}}_{g, n}}$ lies in the cone spanned by $[D]$, boundary classes $\delta_{i: S}$, tautological classes $\lambda, \psi_{1}, \ldots, \psi_{n}$, and possible other effective geometric classes. Examples of such a program being carried out, can be found in [EH2], [HM]-for the case of Brill-Noether divisors on $\overline{\mathcal{M}}_{g}$ consisting of curves with a \mathfrak{g}_{d}^{r} when $\rho(g, r, d)=-1,[\overline{\log }]$-where pointed Brill-Noether divisors on $\overline{\mathcal{M}}_{g, n}$ are studied, and [F1]-for the case of Koszul divisors on $\overline{\mathcal{M}}_{g}$, which provide counterexamples to the Slope Conjecture on $\overline{\mathcal{M}}_{g}$. A natural question is what the analogous geometric divisors on the spin moduli space of curves $\overline{\mathcal{S}}_{g}$ should be?

In this paper we propose a construction for spin Brill-Noether divisors on both spaces $\overline{\mathcal{S}}_{g}^{+}$and $\overline{\mathcal{S}}_{g}^{-}$, defined in terms of the relative position of theta-characteristics with respect to difference varieties on Jacobians. Precisely, we fix integers $r, s \geq 1$ such that $d:=r s+r \equiv 0 \bmod 2$, and then set $g:=r s+s$. One can write $d=2 i$. By standard Brill-Noether theory, a general curve $[C] \in \mathcal{M}_{g}$ carries a finite number of (necessarily complete and base point free) linear series \mathfrak{g}_{d}^{r}. One considers the following loci of spin curves (both odd and even)

$$
\mathcal{U}_{g, d}^{r}:=\left\{[C, \eta] \in \mathcal{S}_{g}^{\mp}: \exists L \in W_{d}^{r}(C) \text { such that } \eta \otimes L^{\vee} \in C_{g-i-1}-C_{i}\right\} .
$$

Thus $\mathcal{U}_{g, d}^{r}$ consists of spin curves such that the embedded curve $C \xrightarrow{|\eta \otimes L|} \mathbf{P}^{d-1}$ admits an i-secant $(i-2)$-plane. We shall prove that for $s \geq 2$, the locus $\mathcal{U}_{g, d}^{r}$ is always a divisor on

[^0]\mathcal{S}_{g}^{\mp}, and we find a formula for the class of its compactification in $\overline{\mathcal{S}}_{g}^{\mp}$. For simplicity, we display this formula in the introduction only in the case $r=1$, when $g \equiv 2 \bmod 4$:
Theorem 0.1. We fix an integer $a \geq 1$ and set $g:=4 a+2$. The locus
$$
\mathcal{U}_{4 a+2,2 a+2}^{1}:=\left\{[C, \eta] \in \mathcal{S}_{4 a+2}^{\mp}: \exists L \in W_{2 a+2}^{1}(C) \text { such that } \eta \otimes L^{\vee} \in C_{3 a}-C_{a+1}\right\}
$$
is an effective divisor and the class of its compactification in $\overline{\mathcal{S}}_{g}^{\mp}$ is given by
\[

$$
\begin{aligned}
& \overline{\mathcal{U}}_{4 a+2,2 a+2}^{1} \equiv\binom{4 a}{a}\binom{4 a+2}{2 a} \frac{a+2}{8(2 a+1)(4 a+1)}\left(\left(192 a^{3}+736 a^{2}+692 a+184\right) \lambda-\right. \\
& \left.-\left(32 a^{3}+104 a^{2}+82 a+19\right) \alpha_{0}-\left(64 a^{3}+176 a^{2}+148 a+36\right) \beta_{0}-\cdots\right) \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{\mp}\right) .
\end{aligned}
$$
\]

To specialize further, in Theorem 0.1]we set $a=1$, and find the class of (the closure of) the locus of spin curves $[C, \eta] \in \mathcal{S}_{6}^{\mp}$, such that there exists a pencil $L \in W_{4}^{1}(C)$ for which the linear series $C \xrightarrow{|\eta \otimes L|} \mathbf{P}^{3}$ is not very ample:

$$
\overline{\mathcal{U}}_{6,4}^{1} \equiv 451 \lambda-\frac{237}{4} \alpha_{0}-106 \beta_{0}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{6}^{\mp}\right) .
$$

The case $s=1$, when necessarily $L=K_{C} \in W_{2 g-2}^{g-1}(C)$, produces a divisor only on $\overline{\mathcal{S}}_{g}^{+}$, and we recover in this way the main calculation from [F2], used to prove that $\overline{\mathcal{S}}_{g}^{+}$ is a variety of general type for $g>8$. We recall that $\Theta_{\text {null }}:=\left\{[C, \eta] \in \mathcal{S}_{g}^{+}: H^{0}(C, \eta) \neq 0\right\}$ denotes the divisor of vanishing theta-nulls.

Theorem 0.2. Let $\pi: \overline{\mathcal{S}}_{g}^{+} \rightarrow \overline{\mathcal{M}}_{g}$ be the ramified covering which forgets the spin structure. For $g \geq 3$, one has the following equality $\overline{\mathcal{U}}_{g, 2 g-2}^{g-1}=2 \cdot \bar{\Theta}_{\text {null }}$ of codimension 1-cycles on the open subvariety $\pi^{-1}\left(\mathcal{M}_{g} \cup \Delta_{0}\right)$ of $\overline{\mathcal{S}}_{g}^{+}$. Moreover, there is an equality of classes

$$
\overline{\mathcal{U}}_{g, 2 g-2}^{g-1} \equiv 2 \cdot \bar{\Theta}_{\text {null }} \equiv \frac{1}{2} \lambda-\frac{1}{8} \alpha_{0}-0 \cdot \beta_{0}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right) .
$$

We remark once more, the low slope of the divisor $\bar{\Theta}_{\text {null }}$. No similar divisor with such remarkable class is known to exist on $\overline{\mathcal{R}}_{g}$. In Section 4, we present a third way of calculating the class $\left[\bar{\Theta}_{\text {null }}\right]$, by rephrasing the condition that a curve C have a vanishing theta-null η, if and only if, for a pencil A on C of minimal degree, the multiplication map of sections

$$
H^{0}(C, A) \otimes H^{0}(C, A \otimes \eta) \rightarrow H^{0}\left(C, A^{\otimes 2} \otimes \eta\right)
$$

is not an isomorphism. For $[C] \in \mathcal{M}_{g}$ sufficiently general, we note that

$$
\operatorname{dim} H^{0}(C, A) \otimes H^{0}(C, A \otimes \eta)=\operatorname{dim} H^{0}\left(C, A^{\otimes 2} \otimes \eta\right)
$$

In this way, $\bar{\Theta}_{\text {null }}$ appears as the push-forward of a degeneracy locus of a morphism between vector bundles of the same rank defined over a Hurwitz stack of coverings. To compute the push-forward of tautological classes from a Hurwitz stack, we use the techniques developed in [F1] and [Kh].

In the last section of the paper, we study the divisor $\bar{\Theta}_{g, 1}$ on the universal curve $\overline{\mathcal{M}}_{g, 1}$, which consists of points in the support of odd theta-characteristics. This divisor, somewhat similar to the divisor $\overline{\mathcal{W}}_{g}$ of Weierstrass points on $\overline{\mathcal{M}}_{g, 1}$, cf. [Cu$]$, should be of some importance in the study of the birational geometry of $\overline{\mathcal{M}}_{g, 1}$:

Theorem 0.3. The class of the compactification in $\overline{\mathcal{M}}_{g, 1}$ of the effective divisor

$$
\Theta_{g, 1}:=\left\{[C, q] \in \mathcal{M}_{g, 1}: q \in \operatorname{supp}(\eta) \text { for some }[C, \eta] \in \mathcal{S}_{g}^{-}\right\}
$$

is given by the following formula:
$\bar{\Theta}_{g, 1} \equiv 2^{g-3}\left(\left(2^{g}-1\right)(\lambda+2 \psi)-2^{g-3} \delta_{\text {irr }}-\left(2^{g}-2\right) \delta_{1}-\sum_{i=1}^{g-1}\left(2^{i}+1\right)\left(2^{g-i}-1\right) \delta_{i}\right) \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right)$.
When $g=2$, the divisor Θ_{2} specializes to the divisor of Weierstrass points:

$$
\Theta_{2,1}=\mathcal{W}_{2}:=\left\{[C, q] \in \mathcal{M}_{2,1}: q \in C \text { is a Weierstrass point }\right\} .
$$

If we use Mumford's formula $\lambda=\delta_{0} / 10+\delta_{1} / 5 \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{2}\right)$, Theorem 0.3 reads

$$
\bar{\Theta}_{2,1} \equiv \frac{3}{2} \lambda+3 \psi-\frac{1}{4} \delta_{\mathrm{irr}}-\frac{3}{2} \delta_{1}=-\lambda+3 \psi-\delta_{1} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right),
$$

that is, we recover the formula for the class of the Weierstrass divisor on $\overline{\mathcal{M}}_{2,1}$, cf. [EH2]. When $g=3$, the condition $[C, q] \in \Theta_{3,1}$, states that the point $q \in C$ lies on one of the 28 bitangent lines of the canonically embedded curve $C \xrightarrow{\left|K_{C}\right|} \mathbf{P}^{2}$.
Corollary 0.4. The class of the compactification in $\overline{\mathcal{M}}_{3,1}$ of the bitangent locus

$$
\Theta_{3,1}:=\left\{[C, q] \in \mathcal{M}_{3,1}: q \text { lies on a bitangent of } C\right\}
$$

is equal to $\bar{\Theta}_{3,1} \equiv 7 \lambda+14 \psi-\delta_{\text {irr }}-9 \delta_{1}-5 \delta_{2} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{3,1}\right)$.
If $p: \overline{\mathcal{M}}_{g, 1} \rightarrow \overline{\mathcal{M}}_{g}$ is the map forgetting the marked point, we note the equality

$$
\overline{\mathcal{D}}_{3} \equiv p^{*}\left(\overline{\mathcal{M}}_{3,2}^{1}\right)+2 \cdot \overline{\mathcal{W}}_{3}+2 \psi \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{3,1}\right),
$$

where $\overline{\mathcal{W}}_{3} \equiv-\lambda+6 \psi-3 \delta_{1}-\delta_{2}$ is the divisor of Weierstrass points on $\overline{\mathcal{M}}_{3,1}$. Since the class $\psi \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{3,1}\right)$ is big and nef, it follows that $\bar{\Theta}_{3,1}$ (unlike the divisor $\bar{\Theta}_{2,1} \in$ $\left.\operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)\right)$, lies in the interior of the cone of effective divisors $\operatorname{Eff}\left(\overline{\mathcal{M}}_{3,1}\right)$, or it other words, it is big. In particular, it cannot be contracted by a rational map $\overline{\mathcal{M}}_{3,1} \rightarrow X$ to any projective variety X. This phenomenon extends to all higher genera:
Corollary 0.5. For every $g \geq 3$, the divisor $\bar{\Theta}_{g, 1} \in \operatorname{Eff}\left(\overline{\mathcal{M}}_{g, 1}\right)$ is big.
It is not known whether the Weierstrass divisor $\overline{\mathcal{W}}_{g}$ lies on the boundary of the effective cone $\operatorname{Eff}\left(\overline{\mathcal{M}}_{g, 1}\right)$ for g sufficiently large.

1. Generalities about $\overline{\mathcal{S}}_{g}$

As usual, we follow that the convention that if \mathbf{M} is a Deligne-Mumford stack, then \mathcal{M} denotes its associated coarse moduli space. We first recall basic facts about Cornalba's stack of stable spin curves $\pi: \overline{\mathbf{S}}_{g} \rightarrow \overline{\mathbf{M}}_{g}$, see [C], [F2], [Lud] for details and other basic properties. If X is a nodal curve, a smooth rational component $R \subset X$ is said to be exceptional if $\#(R \cap \overline{X-R})=2$. The curve X is said to be quasi-stable if $\#(R \cap \bar{X}-R) \geq 2$ for any smooth rational component $R \subset X$, and moreover, any two exceptional components of X are disjoint. A quasi-stable curve is obtained from a stable curve by possibly inserting a rational curve at each of its nodes. We denote by $[\operatorname{st}(X)] \in \overline{\mathcal{M}}_{g}$ the stable model of the quasi-stable curve X.

Definition 1.1. A spin curve of genus g consists of a triple (X, η, β), where X is a genus g quasi-stable curve, $\eta \in \operatorname{Pic}^{g-1}(X)$ is a line bundle of degree $g-1$ such that $\eta_{R}=\mathcal{O}_{R}(1)$ for every exceptional component $R \subset X$, and $\beta: \eta^{\otimes 2} \rightarrow \omega_{X}$ is a sheaf homomorphism which is generically non-zero along each non-exceptional component of X.

Stable spin curves of genus g form a smooth Deligne-Mumford stack $\overline{\mathbf{S}}_{g}$ which splits into two connected components $\overline{\mathbf{S}}_{g}^{+}$and $\overline{\mathbf{S}}_{g}^{-}$, according to the parity of $h^{0}(X, \eta)$. Let $f: \mathcal{C} \rightarrow \overline{\mathbf{S}}_{g}$ be the universal family of spin curves of genus g. In particular, for every point $[X, \eta, \beta] \in \overline{\mathcal{S}}_{g}$, there is an isomorphism between $f^{-1}([X, \eta, \beta])$ and the quasistable curve X. There exists a (universal) spin line bundle $\mathcal{P} \in \operatorname{Pic}(\mathcal{C})$ of relative degree $g-1$, as well as a morphism of $\mathcal{O}_{\mathcal{C}}$-modules $B: \mathcal{P}^{\otimes 2} \rightarrow \omega_{f}$ having the property that $\mathcal{P}_{\mid f^{-1}([X, \eta, \beta])}=\eta$ and $B_{\mid f^{-1}([X, \eta, \beta])}=\beta: \eta^{\otimes 2} \rightarrow \omega_{X}$, for all spin curves $[X, \eta, \beta] \in \overline{\mathcal{S}}_{g}$. Throughout we use the canonical isomorphism $\operatorname{Pic}\left(\overline{\mathbf{S}}_{\mathbf{g}}\right)_{\mathbb{Q}} \cong \operatorname{Pic}\left(\overline{\mathcal{S}}_{\mathbf{g}}\right)_{\mathbb{Q}}$ and we make little distinction between line bundles on the stack and the corresponding moduli space.

1.1. The boundary divisors of $\overline{\mathcal{S}}_{g}$.

We discuss the structure of the boundary divisors of $\overline{\mathcal{S}}_{g}$ and concentrate on the case of $\overline{\mathcal{S}}_{g}^{+}$, the differences compared to the situation on $\overline{\mathcal{S}}_{g}^{-}$being minor. We describe the pull-backs of the boundary divisors $\Delta_{i} \subset \overline{\mathcal{M}}_{g}$ under the map π. First we fix an integer $1 \leq i \leq[g / 2]$ and let $[X, \eta, \beta] \in \pi^{-1}\left(\left[C \cup_{y} D\right]\right)$, where $[C, y] \in \mathcal{M}_{i, 1}$ and $[D, y] \in \mathcal{M}_{g-i, 1}$. For degree reasons, then $X=C \cup_{y_{1}} R \cup_{y_{2}} D$, where R is an exceptional component such that $C \cap R=\left\{y_{1}\right\}$ and $D \cap R=\left\{y_{2}\right\}$. Furthermore $\eta=\left(\eta_{C}, \eta_{D}, \eta_{R}=\mathcal{O}_{R}(1)\right) \in \operatorname{Pic}^{g-1}(X)$, where $\eta_{C}^{\otimes 2}=K_{C}$ and $\eta_{D}^{\otimes 2}=K_{D}$. The thetacharacteristics η_{C} and η_{D} have the same parity in the case of $\overline{\mathcal{S}}_{g}^{+}$(and opposite parities for $\overline{\mathcal{S}}_{g}^{-}$). One denotes by $A_{i} \subset \overline{\mathcal{S}}_{g}^{+}$the closure of the locus corresponding to pairs of pointed spin curves

$$
\left(\left[C, y, \eta_{C}\right],\left[D, y, \eta_{D}\right]\right) \in \mathcal{S}_{i, 1}^{+} \times \mathcal{S}_{g-i, 1}^{+}
$$

and by $B_{i} \subset \overline{\mathcal{S}}_{g}^{+}$the closure of the locus corresponding to pairs

$$
\left(\left[C, y, \eta_{C}\right],\left[D, y, \eta_{D}\right]\right) \in \mathcal{S}_{i, 1}^{-} \times \mathcal{S}_{g-i, 1}^{-} .
$$

If $\alpha:=\left[A_{i}\right], \beta_{i}:=\left[B_{i}\right] \in \operatorname{Pic}\left(\overline{\mathbf{S}}_{g}^{+}\right)$, we have the relation $\pi^{*}\left(\delta_{i}\right)=\alpha_{i}+\beta_{i}$.
Next, we describe $\pi^{*}\left(\delta_{0}\right)$ and pick a stable spin curve $[X, \eta, \beta]$ such that $\operatorname{st}(X)=$ $C_{y q}:=C / y \sim q$, with $[C, y, q] \in \mathcal{M}_{g-1,2}$. There are two possibilities depending on whether X possesses an exceptional component or not. If $X=C_{y q}$ and $\eta_{C}:=\nu^{*}(\eta)$ where $\nu: C \rightarrow X$ denotes the normalization map, then $\eta_{C}^{\otimes 2}=K_{C}(y+q)$. For each choice of $\eta_{C} \in \mathrm{Pic}^{g-1}(C)$ as above, there is precisely one choice of gluing the fibres $\eta_{C}(y)$ and $\eta_{C}(q)$ such that $h^{0}(X, \eta) \equiv 0 \bmod 2$. We denote by A_{0} the closure in $\overline{\mathcal{S}}_{g}^{+}$of the locus of points $\left[C_{y q}, \eta_{C} \in \operatorname{Pic}^{g-1}(C), \eta_{C}^{\otimes 2}=K_{C}(y+q)\right]$ as above.

If $X=C \cup_{\{y, q\}} R$, where R is an exceptional component, then $\eta_{C}:=\eta \otimes \mathcal{O}_{C}$ is a theta-characteristic on C. Since $H^{0}(X, \omega) \cong H^{0}\left(C, \omega_{C}\right)$, it follows that $\left[C, \eta_{C}\right] \in \mathcal{S}_{g-1}^{+}$. We denote by $B_{0} \subset \overline{\mathcal{S}}_{g}^{+}$the closure of the locus of points

$$
\left[C \cup_{\{y, q\}} R, \eta_{C} \in \sqrt{K_{C}}, \eta_{R}=\mathcal{O}_{R}(1)\right] \in \overline{\mathcal{S}}_{g}^{+} .
$$

A local analysis carried out in $[\mathrm{C}]$, shows that B_{0} is the branch locus of π and the ramification is simple. If $\alpha_{0}=\left[A_{0}\right] \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$and $\beta_{0}=\left[B_{0}\right] \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$, we have the relation

$$
\begin{equation*}
\pi^{*}\left(\delta_{0}\right)=\alpha_{0}+2 \beta_{0} \tag{1}
\end{equation*}
$$

2. DIFFERENCE VARIETIES AND THETA-CHARACTERISTICS

We describe a way of calculating the class of a series of effective divisors on both moduli spaces $\overline{\mathcal{S}}_{g}^{-}$and $\overline{\mathcal{S}}_{g}^{+}$, defined in terms of the relative position of a thetacharacteristic with respect to the divisorial difference varieties in the Jacobian of a curve. These loci, which should be thought of as divisors of Brill-Noether type on $\overline{\mathcal{S}}_{g}$, inherit a determinantal description over the entire moduli stack of spin curves, via the interpretation of difference varieties in $\mathrm{Pic}^{g-2 i-1}(C)$ as Raynaud theta-divisors for exterior powers of Lazarsfeld bundles provided in [FMP]. The determinantal description is then extended over a partial compactification $\widetilde{\mathbf{S}}_{g}$ of $\mathbf{S}_{\mathbf{g}}$, using the explicit description of stable spin curves. The formulas we obtain for the class of these divisors are identical over both $\overline{\mathbf{S}}_{g}^{-}$and $\overline{\mathbf{S}}_{g}^{+}$, therefore we sometimes use the symbol $\overline{\mathbf{S}}_{g}^{\mp}$ (or even $\overline{\mathbf{S}}_{g}$), to denote one of the two spin moduli spaces.

We start with a curve $[C] \in \mathcal{M}_{g}$ and denote as usual by $Q_{C}:=M_{K_{C}}^{\vee}$ the associated Lazarsfeld bundle [L] defined via the exact sequence on C

$$
0 \rightarrow M_{K_{C}} \rightarrow H^{0}\left(C, K_{C}\right) \otimes \mathcal{O}_{C} \xrightarrow{\text { ev }} K_{C} \rightarrow 0
$$

Note that Q_{C} is a semistable vector bundle on C (even stable, when the curve C is nonhyperelliptic), and $\mu\left(Q_{C}\right)=2$. For integers $0 \leq i \leq g-1$, one defines the divisorial difference variety $C_{g-i-1}-C_{i} \subset \mathrm{Pic}^{g-2 i-1}(C)$ as being the image of the difference map

$$
\phi: C_{g-i-1} \times C_{i} \rightarrow \operatorname{Pic}^{g-2 i-1}(C), \quad \phi(D, E):=\mathcal{O}_{C}(D-E) .
$$

The main result from [FMP] provides a scheme-theoretic identification of divisors on the Jacobian variety

$$
\begin{equation*}
C_{g-i-1}-C_{i}=\Theta_{\wedge^{i} Q_{C}} \subset \operatorname{Pic}^{g-2 i-1}(C), \tag{2}
\end{equation*}
$$

where the right-hand-side denotes the Raynaud locus [R]

$$
\Theta_{\wedge^{i} Q_{C}}:=\left\{\eta \in \operatorname{Pic}^{g-2 i-1}(C): H^{0}\left(C, \wedge^{i} Q_{C} \otimes \eta\right) \neq 0\right\} .
$$

The non-vanishing $H^{0}\left(C, \wedge^{i} Q_{C} \otimes \xi\right) \neq 0$ for all line bundles $\xi=\mathcal{O}_{C}(D-E)$, where $D \in C_{g-i-1}$ and $E \in C_{i}$, follows from [L]. The thrust of [FMP] is that the reverse inclusion $\Theta_{\wedge^{i} Q_{C}} \subset C_{g-i-1}-C_{i}$ also holds. Moreover, identification (2) shows that, somewhat similarly to Riemann's Singularity Theorem, the product $C_{g-i-1} \times C_{i}$ can be thought of as a canonical desingularization of the generalized theta-divisor $\Theta_{\wedge^{i} Q_{C}}$.

We fix integers $r, s>0$ and set $d:=r s+r, g:=r s+s$, therefore the Brill-Noether number $\rho(g, r, d)=0$. We assume moreover that $d \equiv 0 \bmod 2$, that is, either r is even or s is odd, and write $d=2 i$. We define the following locus in the spin moduli space \mathcal{S}_{g}^{\mp} :

$$
\mathcal{U}_{g, d}^{r}:=\left\{[C, \eta] \in \mathcal{S}_{g}^{\mp}: \exists L \in W_{d}^{r}(C) \text { such that } \eta \otimes L^{\vee} \in C_{g-i-1}-C_{i}\right\} .
$$

Using (2), the condition $[C, \eta] \in \mathcal{U}_{g, d}^{r}$ can be rewritten in a determinantal way as,

$$
H^{0}\left(C, \wedge^{i} M_{K_{C}} \otimes \eta \otimes L\right) \neq 0
$$

Tensoring by $\eta \otimes L$ the exact sequence coming from the definition of $M_{K_{C}}$, namely

$$
0 \longrightarrow \wedge^{i} M_{K_{C}} \longrightarrow \wedge^{i} H^{0}\left(C, K_{C}\right) \otimes \mathcal{O}_{C} \longrightarrow \wedge^{i-1} M_{K_{C}} \otimes K_{C} \longrightarrow 0,
$$

then taking global sections and finally using that $M_{K_{C}}$ (hence all of its exterior powers) are semi-stable vector bundles, we find that $[C, \eta] \in \mathcal{U}_{g, d}^{r}$ if and only if the map

$$
\begin{equation*}
\phi(C, \eta, L): \wedge^{i} H^{0}\left(C, K_{C}\right) \otimes H^{0}(C, \eta \otimes L) \rightarrow H^{0}\left(C, \wedge^{i-1} M_{K_{C}} \otimes K_{C} \otimes \eta \otimes L\right) \tag{3}
\end{equation*}
$$

is not an isomorphism for a certain $L \in W_{d}^{r}(C)$. Since $\mu\left(\wedge^{i-1} M_{K_{C}} \otimes K_{C} \otimes \eta \otimes L\right) \geq 2 g-1$ and $\wedge^{i-1} M_{K_{C}}$ is a semi-stable vector bundle on C, it follows that

$$
h^{0}\left(C, \wedge^{i-1} M_{K_{C}} \otimes K_{C} \otimes \eta \otimes L\right)=\chi\left(C, \wedge^{i-1} M_{K_{C}} \otimes K_{C} \otimes \eta \otimes L\right)=\binom{g}{i} d .
$$

We assume that $h^{1}(C, \eta \otimes L)=0$. This condition is satisfied outside a locus of \mathcal{S}_{g}^{\mp} of codimension at least 2 ; if $H^{1}(C, \eta \otimes L) \neq 0$, then $H^{1}\left(C, K_{C} \otimes L^{\otimes(-2)}\right) \neq 0$, in particular the Petri map

$$
\mu_{0}(C, L): H^{0}(C, L) \otimes H^{0}\left(C, K_{C} \otimes L^{\vee}\right) \rightarrow H^{0}\left(C, K_{C}\right)
$$

is not injective. Then $h^{0}(C, L \otimes \eta)=d$ and we note that $\phi(C, \eta, L)$ is a map between vector spaces of the same rank. This obviously suggests a determinantal presentation of $\mathcal{U}_{g, d}^{r}$ as the (push-forward of) a degeneracy locus between vector bundles of the same rank. In what follows we extend this presentation over a partial compactification of $\overline{\mathbf{S}}_{g}^{\mp}$. We refer to [FL] Section 2 for a similar calculation over the Prym moduli stack $\overline{\mathbf{R}}_{g}$.

We denote by $\mathbf{M}_{g}^{0} \subset \mathbf{M}_{g}$ the open substack classifying curves $[C] \in \mathcal{M}_{g}$ such that $W_{d-1}^{r}(C)=\emptyset, W_{d}^{r+1}(C)=\emptyset$ and moreover $H^{1}(C, L \otimes \eta)=0$, for every $L \in W_{d}^{r}(C)$ and each odd-theta characteristic $\eta \in \operatorname{Pic}^{g-1}(C)$. From general Brill-Noether theory one knows that $\operatorname{codim}\left(\mathcal{M}_{g}-\mathcal{M}_{g}^{0}, \mathcal{M}_{g}\right) \geq 2$. Then we define $\widetilde{\Delta}_{0} \subset \Delta_{0}$ to be the open substack consisting of 1-nodal stable curves $\left[C_{y q}:=C / y \sim q\right]$, where $[C] \in \mathcal{M}_{g-1}$ is a curve satisfying the Brill-Noether theorem and $y, q \in C$. We then set $\overline{\mathbf{M}}_{g}^{0}:=\mathbf{M}_{g}^{0} \cup \widetilde{\Delta}_{0}$, hence $\overline{\mathbf{M}}_{g}^{0} \subset \widetilde{\mathbf{M}}_{g}$ and then $\overline{\mathbf{S}}_{g}^{0}:=\pi^{-1}\left(\overline{\mathbf{M}}_{g}^{0}\right)=\left(\overline{\mathbf{S}}_{g}^{0}\right)^{+} \cup\left(\overline{\mathbf{S}}_{g}^{0}\right)^{-}$. Following [EH1], [F1], we consider the proper Deligne-Mumford stack

$$
\sigma_{0}: \mathfrak{G}_{d}^{r} \rightarrow \overline{\mathbf{M}}_{g}^{0}
$$

classifying pairs $[C, L]$ with $[C] \in \overline{\mathcal{M}}_{g}^{0}$ and $L \in W_{d}^{r}(C)$. For any curve $[C] \in \overline{\mathcal{M}}_{g}^{0}$ and $L \in W_{d}^{r}(C)$, we have that $h^{0}(C, L)=r+1$, that is, \mathfrak{G}_{d}^{r} parameterizes only complete linear series. For a point $\left[C_{y q}:=C / y \sim q\right] \in \widetilde{\Delta}_{0}$, we have the identification

$$
\sigma_{0}^{-1}\left[C_{y q}\right]=\left\{L \in W_{d}^{r}(C): h^{0}\left(C, L \otimes \mathcal{O}_{C}(-y-q)\right)=r\right\},
$$

that is, we view linear series on singular curves as linear series on the normalization such that the divisor of the nodes imposes only one condition. We denote by $f_{d}^{r}: \mathfrak{C}_{g, d}^{r}:=$ $\overline{\mathbf{M}}_{g, 1}^{0} \times{\overline{\mathbf{M}_{g}}}^{0} \mathfrak{G}_{d}^{r} \rightarrow \mathfrak{G}_{d}^{r}$ the pull-back of the universal curve $p: \overline{\mathbf{M}}_{g, 1}^{0} \rightarrow \overline{\mathbf{M}}_{g}^{0}$ to \mathfrak{G}_{d}^{r}. Once we have chosen a Poincaré bundle \mathcal{L} on $\mathfrak{C}_{g, d^{\prime}}^{r}$, we can form the three codimension 1 tautological classes in $A^{1}\left(\mathfrak{G}_{d}^{r}\right)$:

$$
\begin{equation*}
\mathfrak{a}:=\left(f_{d}^{r}\right)_{*}\left(c_{1}(\mathcal{L})^{2}\right), \mathfrak{b}:=\left(f_{d}^{r}\right)_{*}\left(c_{1}(\mathcal{L}) \cdot c_{1}\left(\omega_{f_{d}^{r}}\right)\right), \mathfrak{c}:=\left(f_{d}^{r}\right)_{*}\left(c_{1}\left(\omega_{f_{d}^{r}}\right)^{2}\right)=\left(\sigma_{0}\right)^{*}\left(\left(\kappa_{1}\right)_{\overline{\mathbf{M}}_{g}^{0}}\right) . \tag{4}
\end{equation*}
$$

The dependence on $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ on the choice of \mathcal{L} is discussed in both [F2] and [FL]. We introduce the stack of $\mathfrak{g}_{d}^{r \prime}$ s on spin curves
and then the corresponding universal spin curve over the \mathfrak{g}_{d}^{r} parameter space

$$
f^{\prime}: \mathcal{C}_{d}^{r}:=\mathcal{C} \times{ }_{\overline{\mathbf{S}}_{g}^{0}} \mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right) \rightarrow \mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right) .
$$

We note that f^{\prime} is a family of quasi-stable curves carrying at the same time a spin structure as well as a \mathfrak{g}_{d}^{r}. Just like in [FL], the boundary divisors of $\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$ are denoted by the same symbols, that is, one sets $A_{0}^{\prime}:=\sigma^{*}\left(A_{0}^{\prime}\right)$ and $B_{0}^{\prime}:=\sigma^{*}\left(B_{0}^{\prime}\right)$ and then

$$
\alpha_{0}:=\left[A_{0}^{\prime}\right], \quad \beta_{0}:=\left[B_{0}^{\prime}\right] \in A^{1}\left(\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)\right) .
$$

We observe that two tautological line bundles live on \mathcal{C}_{d}^{r}, namely the pull-back of the universal spin bundle $\mathcal{P}_{d}^{r} \in \operatorname{Pic}\left(\mathcal{C}_{d}^{r}\right)$ and a Poincaré bundle $\mathcal{L} \in \operatorname{Pic}\left(\mathcal{C}_{d}^{r}\right)$ singling out the $\mathfrak{g}_{d}^{r \prime}$ s, that is, $\mathcal{L}_{\mid f^{\prime-1}[X, \eta, \beta, L]}=L \in W_{d}^{r}(C)$, for each point $[X, \eta, \beta, L] \in \mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$. Naturally, one also has the classes $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in A^{1}\left(\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)\right)$ defined by the formulas (4).

The following result is easy to prove and we skip details:
Proposition 2.1. We denote by $f^{\prime}: \mathcal{C}_{d}^{r} \rightarrow \mathfrak{G}_{d}^{r}\left(\overline{\boldsymbol{S}}_{g}^{0} / \overline{\boldsymbol{M}}_{g}^{0}\right)$ the universal quasi-stable spin curve and by $\mathcal{P}_{d}^{r} \in \operatorname{Pic}\left(\mathcal{C}_{d}^{r}\right)$ the universal spin bundle of relative degree $g-1$. One has the following formulas in $A^{1}\left(\mathfrak{G}_{d}^{r}\left(\overline{\boldsymbol{S}}_{g}^{0} / \overline{\boldsymbol{M}}_{g}^{0}\right)\right)$:
(i) $f_{*}^{\prime}\left(c_{1}\left(\omega_{f^{\prime}}\right) \cdot c_{1}\left(\mathcal{P}_{d}^{r}\right)\right)=\frac{1}{2} \mathrm{c}$.
(ii) $f_{*}^{\prime}\left(c_{1}\left(\mathcal{P}_{d}^{r}\right)^{2}\right)=\frac{1}{4} \mathfrak{c}-\frac{1}{2} \beta_{0}$.
(iii) $f_{*}^{\prime}\left(c_{1}(\mathcal{L}) \cdot c_{1}\left(\mathcal{P}_{d}^{r}\right)\right)=\frac{1}{2} \mathfrak{b}$.

We determine the class of a compactification of $\mathcal{U}_{g, d}^{r}$ by pushing-forward a codimension 1 degeneracy locus via the map $\sigma: \mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right) \rightarrow \overline{\mathbf{S}}_{g}^{0}$. To that end, we define a sequence of tautological vector bundles on $\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$: First, for $l \geq 0$ we set

$$
\mathcal{A}_{0, l}:=f_{*}^{\prime}\left(\mathcal{L} \otimes \omega_{f^{\prime}}^{\otimes l} \otimes \mathcal{P}_{d}^{r}\right)
$$

It is easy to verify that $R^{1} f_{*}^{\prime}\left(\mathcal{L} \otimes \omega_{f^{\prime}}^{\otimes l} \otimes \mathcal{P}_{d}^{r}\right)=0$, hence $\mathcal{A}_{0, l}$ is locally free over $\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$ of rank equal to $h^{0}\left(X, L \otimes \omega_{X}^{\otimes l} \otimes \eta\right)=l(2 g-2)+d$. Next we introduce the global Lazarsfeld vector bundle \mathcal{M} over \mathcal{C}_{d}^{r} by the exact sequence

$$
0 \longrightarrow \mathcal{M} \longrightarrow\left(f^{\prime}\right)^{*}\left(f_{*}^{\prime} \omega_{f^{\prime}}\right) \longrightarrow \omega_{f^{\prime}} \longrightarrow 0,
$$

and then for all integers $a, j \geq 1$ we define the sheaf over $\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$

$$
\mathcal{A}_{a, j}:=f_{*}^{\prime}\left(\wedge^{a} \mathcal{M} \otimes \omega_{f^{\prime}}^{\otimes j} \otimes \mathcal{L} \otimes \mathcal{P}_{d}^{r}\right) .
$$

In a way similar to [FL] Proposition 2.5 one shows that $R^{1} f_{*}^{\prime}\left(\wedge^{a} \mathcal{M} \otimes \omega_{f^{\prime}}^{\otimes(i-a)} \otimes \mathcal{L} \otimes \mathcal{P}_{d}^{r}\right)=$ 0 , therefore by Grauert's theorem $\mathcal{A}_{a, i-a}$ is a vector bundle over $\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$ of rank

$$
\operatorname{rk}\left(\mathcal{A}_{a, i-a}\right)=\chi\left(X, \wedge^{a} M_{\omega_{X}} \otimes \omega_{X}^{\otimes(i-a)} \otimes L \otimes \eta\right)=2(i-a) g\binom{g-1}{a} .
$$

Furthermore, for all $1 \leq a \leq i-1$, the vector bundles $\mathcal{A}_{a, i-a}$ sit in exact sequences

$$
\begin{equation*}
0 \longrightarrow \mathcal{A}_{a, i-a} \longrightarrow \wedge^{a} f_{*}^{\prime}\left(\omega_{f^{\prime}}\right) \otimes \mathcal{A}_{0, i-a} \longrightarrow \mathcal{A}_{a-1, i-a+1} \longrightarrow 0, \tag{5}
\end{equation*}
$$

where the right exactness boils down to showing that $H^{1}\left(X, \wedge^{a} M_{\omega_{X}} \otimes \omega_{X}^{\otimes(i-a)} \otimes \eta \otimes L\right)=$ 0 for all $[X, \eta, \beta, L] \in \mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$.

We denote as usual $\mathbb{E}:=f_{*}^{\prime}\left(\omega_{f^{\prime}}\right)$ the Hodge bundle over $\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$ and then note that there exists a vector bundle map

$$
\begin{equation*}
\phi: \wedge^{i} \mathbb{E} \otimes \mathcal{A}_{0,0} \rightarrow \mathcal{A}_{i-1,1} \tag{6}
\end{equation*}
$$

between vector bundles of the same rank over $\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$. For $[C, \eta, L] \in \sigma^{-1}\left(\mathcal{M}_{g}^{0}\right)$ the fibre of this morphism is precisely the map $\phi(C, \eta, L)$ defined by (3).

Theorem 2.2. The vector bundle morphism $\phi: \wedge^{i} \mathbb{E} \otimes \mathcal{A}_{0,0} \rightarrow \mathcal{A}_{i-1,1}$ is generically nondegenerate over $\mathfrak{G}_{d}^{r}\left(\overline{\boldsymbol{S}}_{g}^{0} / \overline{\boldsymbol{M}}_{g}^{0}\right)$. It follows that $\mathcal{U}_{g, d}^{r}$ is an effective divisor over \mathcal{S}_{g}^{+}for all $s \geq 1$, and over \mathcal{S}_{g}^{-}as well for $s \geq 2$.

Proof. We specialize C to a hyperelliptic curve, and denote by $A \in W_{2}^{1}(C)$ the hyperelliptic involution. The Lazarsfeld bundle splits into a sum of line bundles $Q_{C} \cong A^{\oplus(g-1)}$, therefore the condition $H^{0}\left(C, \wedge^{i} M_{K_{C}} \otimes \eta \otimes L\right)=0$ translates into $H^{0}\left(C, \eta \otimes A^{\otimes i} \otimes L^{\vee}\right)=0$. Suppose that $h^{0}\left(C, \eta \otimes A^{\otimes i} \otimes L^{\vee}\right) \geq 1$ for any $L=A^{\otimes r} \otimes \mathcal{O}_{C}\left(x_{1}+\cdots+x_{d-2 r}\right) \in$ $W_{d}^{r}(C)$, where the $x_{1}, \ldots, x_{d-2 r} \in C$ are arbitrarily chosen points. This implies that $h^{0}\left(C, \eta \otimes A^{\otimes(i-r)}\right) \geq d-2 r+1$. Any theta-characteristic on C is of the form

$$
\eta=A^{\otimes m} \otimes \mathcal{O}_{C}\left(p_{1}+\cdots+p_{g-2 m-1}\right),
$$

where $1 \leq m \leq(g-1) / 2$ and $p_{1}, \ldots, p_{g-2 m-1} \in C$ are Weierstrass points. Choosing a theta-characteristic on C for which $m \leq i-r-1$ (which can be done in all cases except on \mathcal{S}_{g}^{-}when $i=r$), we obtain that $h^{0}\left(C, \eta \otimes A^{\otimes(i-r)}\right) \leq d-2 r$, a contradiction.

Proof of Theorem 0.1. To compute the class of the degeneracy locus of ϕ we use repeatedly the exact sequence (5). We write the following identities in $A^{1}\left(\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)\right)$:

$$
\begin{gathered}
c_{1}\left(\mathcal{A}_{i-1,1}-\wedge^{i} \mathbb{E} \otimes \mathcal{A}_{0,0}\right)=\sum_{l=0}^{i}(-1)^{l-1} c_{1}\left(\wedge^{i-l} \mathbb{E} \otimes \mathcal{A}_{0, l}\right)= \\
=\sum_{l=0}^{i}(-1)^{l+1}\left((2 l(g-1)+d)\binom{g-1}{i-l-1} c_{1}(\mathbb{E})+\binom{g}{i-l} c_{1}\left(\mathcal{A}_{0, l}\right)\right) .
\end{gathered}
$$

Using Proposition 2.1 one can show via the Grothendieck-Riemann-Roch formula applied to $f^{\prime}: \mathcal{C}_{d}^{r} \rightarrow \mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$ that one has that

$$
c_{1}\left(\mathcal{A}_{0, l}\right)=\lambda+\left(\frac{l^{2}}{2}-\frac{1}{8}\right) \mathfrak{c}+\frac{1}{2} \mathfrak{a}+l \mathfrak{b}-\frac{1}{4} \beta_{0} \in A^{1}\left(\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)\right) .
$$

To determine $\sigma_{*}\left(c_{1}\left(\mathcal{A}_{i-1,1}-\wedge^{i} \mathbb{E}\right)\right) \in A^{1}\left(\overline{\mathbf{S}}_{g}\right)$ we use [F1], [Kh]: If

$$
N:=\operatorname{deg}(\sigma)=\#\left(W_{d}^{r}(C)\right)
$$

denotes the number of $\mathfrak{g}_{d}^{r \prime}$ s on a general curve $[C] \in \mathcal{M}_{g}$, then there exists a precisely described choice of a Poincaré bundle on $\mathfrak{C}_{g, d}^{r}$ such that the push-forwards of the tautological classes on $\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right.$) are given as follows (cf. [F1], [Kh] and especially [FL] Section 2, for the similar argument in the Prym case):
$\sigma_{*}(\mathfrak{a})=\frac{d N}{(g-1)(g-2)}\left(\left(g d-2 g^{2}+8 d-8 g+4\right) \lambda+\frac{1}{6}\left(2 g^{2}-g d+3 g-4 d-2\right)\left(\alpha_{0}+2 \beta_{0}\right)\right)$
and

$$
\sigma_{*}(\mathfrak{b})=\frac{d N}{2 g-2}\left(12 \lambda-\alpha_{0}-2 \beta_{0}\right) \in A^{1}\left(\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)\right)
$$

One notes that $c_{1}\left(\mathcal{A}_{i-1,1}-\wedge^{i} \mathbb{E} \otimes \mathcal{A}_{0,0}\right) \in A^{1}\left(\mathfrak{G}_{d}^{r}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)\right)$ does not depend of the Poincaré bundle. Using the previous formulas, after some arithmetic, one computes the class of the partial compactification of $\mathcal{U}_{g, d}^{r}$ and finishes the proof.

When $s=2 a+1$, hence $g=(2 a+1)(r+1)$ and $d=2 r(a+1)$, our calculation shows that

$$
\overline{\mathcal{U}}_{g, d}^{r} \equiv c_{a, r}\left(\bar{\lambda} \lambda-\bar{\alpha}_{0} \alpha_{0}-\bar{\beta}_{0} \beta_{0}-\cdots\right) \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{\mp}\right),
$$

where $c_{a, r} \in \mathbb{Q}_{>0}$ is explicitly known and

$$
\begin{gathered}
\bar{\lambda}=12 r^{3}-12 r^{2}-48 a^{2}+96 a^{3}+48 r^{4} a+2208 r^{3} a^{3}+1968 r^{3} a^{2}+3936 r^{2} a^{3}+2208 r a^{3}+552 r^{3} a+3984 r^{2} a^{2}+ \\
1080 r^{2} a+2160 a^{2}+528 r a+192 r^{4} a^{4}+384 r^{4} a^{3}+768 r^{3} a^{4}+960 r^{2} a^{4}+240 r^{4} a^{2}+384 r a^{4}, \\
\bar{\alpha}_{0}=220 r a^{2}+536 r^{2} a^{3}+32 r^{4} a^{4}+36 r a+24 a^{3}+328 r^{3} a^{3}+296 r a^{3}+8 r^{4} a+64 r^{4} a^{3}+3 r^{3}+468 r^{2} a^{2}+ \\
128 r^{3} a^{4}+74 r^{3} a+40 r^{4} a^{2}+160 r^{2} a^{4}+64 r a^{4}+268 r^{3} a^{2}+110 r^{2} a-3 r^{2}-12 a^{2}
\end{gathered}
$$

and

$$
\begin{gathered}
\bar{\beta}_{0}=96 r a+64 r^{4} a^{4}+16 r^{4} a+416 r a^{2}+928 r^{2} a^{3}+448 r a^{3}+208 r^{2} a+608 r^{3} a^{3}+256 r^{3} a^{4}+112 r^{3} a+ \\
80 r^{4} a^{2}+320 r^{2} a^{4}+128 r a^{4}+464 r^{3} a^{2}+128 r^{4} a^{3}+816 r^{2} a^{2} .
\end{gathered}
$$

These formulas, though unwieldy, carry a great deal of information about $\overline{\mathcal{S}}_{g}$. In the simplest case, $s=1$ (that is, $a=0$) and $r=g-1$, then necessarily $L=K_{C} \in$ $W_{2 g-2}^{g-1}(C)$ and the condition $\eta-K_{C} \in-C_{g-1}$ is equivalent to $H^{0}(C, \eta) \neq 0$. In this way we recover the theta-null divisor $\bar{\Theta}_{\text {null }}$ on $\overline{\mathcal{S}}_{g}^{+}$, or more precisely also taking into account multiplicities [F2],

$$
\mathcal{U}_{g, 2 g-2}^{g-1}=2 \cdot \Theta_{\text {null }} .
$$

At the same time, on \mathcal{S}_{g}^{+}one does not get a divisor at all. In particular, we find that

$$
\overline{\mathcal{U}}_{g, 2 g-2}^{g-1} \equiv 2 \cdot \bar{\Theta}_{\text {null }} \equiv \frac{1}{2} \lambda-\frac{1}{8} \alpha_{0}-0 \cdot \beta_{0}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right) .
$$

Another interesting case is when $r=2$, hence $g=3 s, L \in W_{2 s+2}^{2}(C)$ and the condition $\eta \otimes L^{\vee} \in C_{2 s-2}-C_{s+1}$ is equivalent to requiring that the embedded curve $C \xrightarrow{|\eta \otimes L|} \mathbf{P}^{2 s+1}$ has an $(s+1)$-secant $(s-1)$-plane:

Theorem 2.3. For $g=3 s, d=2 s+2$, the class of the closure in $\overline{\boldsymbol{S}}_{g}^{\mp}$ of the effective divisor

$$
\mathcal{U}_{g, d}^{2}:=\left\{[C, \eta] \in \mathcal{S}_{3 s}^{\mp}: \exists L \in W_{2 s+2}^{2}(C) \text { such that } \eta \otimes L^{\vee} \in C_{2 s-2}-C_{s+1}\right\}
$$

is given by the formula in $\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{\mp}\right)$:

$$
\begin{aligned}
& \overline{\mathcal{U}}_{g, d}^{2} \equiv\binom{g}{s+2}\binom{g}{s, s, s} \frac{1}{24 g(g-1)^{2}(g-2)(s+1)^{2}}\left(4\left(216 s^{4}+513 s^{3}-348 s^{2}-387 s+18\right) \lambda-\right. \\
&\left.-\left(144 s^{4}+225 s^{3}-268 s^{2}-99 s+10\right) \alpha_{0}-\left(288 s^{4}+288 s^{3}+320 s^{2}+32\right) \beta_{0}-\cdots\right) .
\end{aligned}
$$

For instance, for $g=9$, we obtain the class of the closure of the locus spin curves $[C, \eta] \in \mathcal{S}_{9}^{\mp}$, for which there exists a net $L \in W_{8}^{2}(C)$ such that $\eta \otimes L^{\vee} \in C_{4}-C_{4}$:

$$
\overline{\mathcal{U}}_{9,8}^{2} \equiv 235 \cdot 35\left(\frac{36}{5} \lambda-\alpha_{0}-\frac{428}{235} \beta_{0}-\cdots\right) \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{9}^{\mp}\right) .
$$

3. The class of $\bar{\Theta}_{\text {null }}$ ON $\overline{\mathcal{S}}_{g}^{+}$: An alternative proof using the Hurwitz stack

We present an alternative way of computing the class of the divisor [$\bar{\Theta}_{\text {null }}$] (in even genus), as the push-forward of a determinantal cycle on a Hurwitz scheme of degree k coverings of genus g curves. We set

$$
g=2 k-2, r=1, d=k,
$$

hence $\rho(g, 1, k)=0$, and use the notation from the previous section. In particular, we have the proper morphism $\sigma_{0}: \mathfrak{G}_{k}^{1} \rightarrow \overline{\mathbf{M}}_{g}^{0}$ from the Hurwitz stack of $\mathfrak{g}_{k}^{1 \prime}$ s, and the universal spin curve over the Hurwitz stack

$$
f^{\prime}: \mathcal{C}_{1}^{k}:=\mathcal{C} \times_{\overline{\mathbf{S}}_{g}^{0}} \mathfrak{G}_{k}^{1}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right) \rightarrow \mathfrak{G}_{k}^{1}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right) .
$$

Once more, we introduce a number of vector bundles over $\mathfrak{G}_{k}^{1}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$: First, we set $\mathcal{H}:=f_{*}^{\prime}(\mathcal{L})$. By Grauert's theorem, \mathcal{H} is a vector bundle of rank 2 over $\mathfrak{G}_{k}^{1}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$, having fibre $\mathcal{H}[X, \eta, \beta, L]=H^{0}(X, L)$, where $L \in W_{k}^{1}(X)$. Then for $j \geq 1$ we define

$$
\mathcal{B}_{j}:=f_{*}^{\prime}\left(\mathcal{L}^{\otimes j} \otimes \mathcal{P}_{k}^{1}\right) .
$$

Since $R^{1} f_{*}^{\prime}\left(\mathcal{L}^{\otimes j} \otimes \mathcal{P}_{k}^{1}\right)=0$, we find that \mathcal{B}_{j} is a vector bundle over $\mathfrak{G}_{k}^{1}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$ of rank equal to $h^{0}\left(X, L^{\otimes j} \otimes \eta\right)=k j$.
Proposition 3.1. If $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ are the codimension 1 tautological classes on $\mathfrak{G}_{k}^{1}\left(\overline{\boldsymbol{S}}_{g}^{0} / \overline{\boldsymbol{M}}_{g}^{0}\right)$ defined by (4), then for all $j \geq 1$ one has the following formula in $A^{1}\left(\mathfrak{G}_{k}^{1}\left(\overline{\boldsymbol{S}}_{g}^{0} / \overline{\boldsymbol{M}}_{g}^{0}\right)\right)$:

$$
c_{1}\left(\mathcal{B}_{j}\right)=\lambda-\frac{1}{8} \mathfrak{c}+\frac{j^{2}}{2} \mathfrak{a}-\frac{j}{2} \mathfrak{b}-\frac{1}{4} \beta_{0} .
$$

Proof. We apply Grothendieck-Riemann-Roch to the morphism $f^{\prime}: \mathcal{C}_{k}^{1} \rightarrow \mathfrak{G}_{k}^{1}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$:

$$
\begin{gathered}
c_{1}\left(\mathcal{B}_{j}\right)=c_{1}\left(f_{!}^{\prime}\left(\mathcal{L}^{\otimes j} \otimes \mathcal{P}_{k}^{1}\right)\right)= \\
=f_{*}^{\prime}\left[\left(1+c_{1}\left(\mathcal{L}^{\otimes j} \otimes \mathcal{P}_{k}^{1}\right)+\frac{c_{1}^{2}\left(\mathcal{L}^{\otimes j} \otimes \mathcal{P}_{k}^{1}\right)}{2}\right)\left(1-\frac{c_{1}\left(\omega_{f^{\prime}}\right)}{2}+\frac{c_{1}^{2}\left(\omega_{f^{\prime}}\right)+\left[\operatorname{Sing}\left(f^{\prime}\right)\right]}{12}\right)\right]_{2}
\end{gathered}
$$

where $\operatorname{Sing}\left(f^{\prime}\right) \subset \mathcal{X}_{k}^{1}$ denotes the codimension 2 singular locus of the morphism f^{\prime}, therefore $f_{*}^{\prime}\left[\operatorname{Sing}\left(f^{\prime}\right)\right]=\alpha_{0}+2 \beta_{0}$. We then use Mumford's formula [HM] pulled back from $\overline{\mathbf{M}}_{g}^{0}$ to $\mathfrak{G}_{k}^{1}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$, to write that

$$
\kappa_{1}=f_{*}^{\prime}\left(c_{1}^{2}\left(\omega_{f^{\prime}}\right)\right)=12 \lambda-\left(\alpha_{0}+2 \beta_{0}\right)
$$

and then note that $f_{*}^{\prime}\left(c_{1}(\mathcal{L}) \cdot c_{1}\left(\mathcal{P}_{k}^{1}\right)\right)=0$ (the restriction of \mathcal{L} to the exceptional divisor of $f^{\prime}: \mathcal{C}_{k}^{1} \rightarrow \mathfrak{G}_{k}^{1}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$ is trivial). Similarly, we note that $f_{*}^{\prime}\left(c_{1}\left(\omega_{f^{\prime}}\right) \cdot c_{1}\left(\mathcal{P}_{k}^{1}\right)\right)=\mathfrak{c} / 2$. Finally, we write that $f_{*}^{\prime}\left(c_{1}^{2}\left(\mathcal{P}_{k}^{1}\right)\right)=\mathfrak{c} / 4-\beta_{0} / 2$.

For $j \geq 1$ there are natural vector bundle morphisms over $\mathfrak{G}_{k}^{1}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right)$

$$
\chi_{j}: \mathcal{H} \otimes \mathcal{B}_{j} \rightarrow \mathcal{B}_{j+1}
$$

Over a point $\left[C, \eta_{C}, L\right] \in \mathcal{S}_{g}^{+} \times \mathcal{M}_{g} \mathfrak{G}_{k}^{1}$ corresponding to an even theta-characteristic η_{C} and a pencil $L \in W_{k}^{1}(C)$, the morphism χ_{j} is given by multiplications of global sections

$$
\chi_{j}[C, \eta, L]: H^{0}(C, L) \otimes H^{0}\left(C, L^{\otimes j} \otimes \eta_{C}\right) \rightarrow H^{0}\left(C, L^{\otimes(j+1)} \otimes \eta_{C}\right)
$$

In particular, $\chi_{1}: \mathcal{H} \otimes \mathcal{B}_{1} \rightarrow \mathcal{B}_{2}$ is a morphism between vector bundles of the same rank. From the base point free pencil trick, the degeneration locus $Z_{1}\left(\chi_{1}\right)$ is (set-theoretically) equal to the inverse image $\sigma^{-1}\left(\bar{\Theta}_{\text {null }} \cap\left(\overline{\mathcal{S}}_{g}^{0}\right)^{+}\right)$.

Theorem 3.2. We fix $g=2 k-2$. The vector bundle morphism $\chi_{1}: \mathcal{H} \otimes \mathcal{B}_{1} \rightarrow \mathcal{B}_{2}$ defined over $\mathfrak{G}_{k}^{1}\left(\overline{\boldsymbol{S}}_{g}^{0} / \overline{\boldsymbol{M}}_{g}^{0}\right)$ is generically non-degenerate and we have the following formula for the class of its degeneracy locus:

$$
\left[Z_{1}\left(\chi_{1}\right)\right]=c_{1}\left(\mathcal{B}_{2}-\mathcal{H} \otimes \mathcal{B}_{1}\right)=\frac{1}{2} \lambda-\frac{1}{8} \alpha_{0}+\mathfrak{a}-k c_{1}(\mathcal{H}) \in A^{1}\left(\mathfrak{G}_{k}^{1}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\boldsymbol{M}}_{g}^{0}\right)\right) .
$$

The class of the push-forward $\sigma_{*}\left[Z_{1}\left(\chi_{1}\right)\right]$ to $\overline{\mathcal{S}}_{g}^{+}$is given by the formula:
$\sigma_{*}\left(c_{1}\left(\mathcal{B}_{2}-\mathcal{H} \otimes \mathcal{B}_{1}\right)\right) \equiv \frac{(2 k-2)!}{k!(k-1)!}\left(\frac{1}{2} \lambda-\frac{1}{8} \alpha_{0}-0 \cdot \beta_{0}\right) \equiv \frac{2(2 k-2)!}{k!(k-1)!} \bar{\Theta}_{\text {null } \mid \overline{\mathcal{S}}_{g}^{+}} \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$.
Proof. The first part follows directly from Theorem 3.1. To determine the push-forward of codimension 1 tautological classes to $\left(\overline{\mathcal{S}}_{g}^{0}\right)^{+}$, we use again [F1], [Kh]: One writes the following relations in $A^{1}\left(\left(\overline{\mathbf{S}}_{g}^{0}\right)^{+}\right)=A^{1}\left(\left(\overline{\mathcal{S}}_{g}^{0}\right)^{+}\right)$:

$$
\begin{gathered}
\sigma_{*}(\mathfrak{a})=\operatorname{deg}\left(\mathfrak{G}_{k}^{1} / \overline{\mathbf{M}}_{g}^{0}\right)\left(-\frac{3 k(k+1)}{2 k-3} \lambda+\frac{k^{2}}{2(2 k-3)}\left(\alpha_{0}+2 \beta_{0}\right)\right), \\
\sigma_{*}(\mathfrak{b})=\operatorname{deg}\left(\mathfrak{G}_{k}^{1} / \overline{\mathbf{M}}_{g}^{0}\right)\left(\frac{6 k}{2 k-3} \lambda-\frac{k}{2(2 k-3)}\left(\alpha_{0}+2 \beta_{0}\right)\right),
\end{gathered}
$$

and

$$
\sigma_{*}\left(c_{1}(\mathcal{H})\right)=\operatorname{deg}\left(\mathfrak{G}_{k}^{1} / \overline{\mathbf{M}}_{g}^{0}\right)\left(-3 \frac{k+1}{2 k-3} \lambda+\frac{k}{2(2 k-3)}\left(\alpha_{0}+2 \beta_{0}\right)\right)
$$

where

$$
N:=\operatorname{deg}\left(\mathfrak{G}_{k}^{1} / \overline{\mathbf{M}}_{g}^{0}\right)=\frac{(2 k-2)!}{k!(k-1)!}
$$

denotes the Catalan number of linear series \mathfrak{g}_{k}^{1} on a general curve of genus $2 k-2$. This yields yet another proof of the main result from [F2], in the sense that we compute the class of the divisor $\bar{\Theta}_{\text {null }}$ of vanishing theta-nulls:

$$
\sigma_{*}\left(Z_{1}\left(\chi_{1}\right)\right)=\operatorname{deg}\left(\mathfrak{G}_{k}^{1} / \overline{\mathbf{M}}_{g}^{0}\right)\left(\frac{1}{2} \lambda-\frac{1}{8} \alpha_{0}\right) \equiv 2 \operatorname{deg}\left(\mathfrak{G}_{k}^{1} / \overline{\mathbf{M}}_{g}^{0}\right)\left[\bar{\Theta}_{\text {null } \mid\left(\overline{\mathcal{S}}_{g}^{0}\right)^{+}}\right] .
$$

Remark 3.3. The multiplicity 2 appearing in the expression of $\sigma_{*}\left(Z_{1}\left(\chi_{1}\right)\right)$ is justified by the fact that $\operatorname{dim} \operatorname{Ker}\left(\chi_{1}(t)\right)=h^{0}(C, \eta)$ for every $[C, \eta, L] \in \sigma^{-1}\left(\left(\mathcal{S}_{g}^{0}\right)^{+}\right)$. This of course is always an even number. Thus we have the equality cycles

$$
Z_{1}\left(\chi_{1}\right)=Z_{2}\left(\chi_{1}\right)=\left\{t \in \mathfrak{G}_{k}^{1}\left(\overline{\mathbf{S}}_{g}^{0} / \overline{\mathbf{M}}_{g}^{0}\right): \operatorname{co-rank}\left(\phi_{1}(t)\right) \geq 2\right\},
$$

that is χ_{1} degenerates in codimension 1 with corank 2, and $Z_{1}\left(\chi_{1}\right)$ is an everywhere non-reduced scheme.

4. THE DIVISOR OF POINTS OF ODD THETA-CHARACTERISTICS

In this section we compute the class of the divisor $\bar{\Theta}_{g, 1}$. The study of geometric divisors on $\overline{\mathcal{M}}_{g, 1}$ begins with [$\overline{\mathrm{Cu}}$, where the locus of Weierstrass points is determined:

$$
\overline{\mathcal{W}_{g}} \equiv-\lambda+\binom{g+1}{2} \psi-\sum_{i=1}^{g-1}\binom{g-i+1}{2} \delta_{i: 1} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right) .
$$

More generally, if $\bar{\alpha}: 0 \leq \alpha_{0} \leq \ldots \leq \alpha_{r} \leq d-r$ is a Schubert index of type (r, d) such that $\rho(g, r, d)-\sum_{i=0}^{r} \alpha_{i}=-1$, one defines the pointed Brill-Noether divisor $\mathcal{M}_{g, d}^{r}(\bar{\alpha})$ as being the locus of pointed curves $[C, q] \in \mathcal{M}_{g, 1}$ possessing a linear series $l \in G_{d}^{r}(C)$ with ramification sequence $\alpha^{l}(q) \geq \bar{\alpha}$. It follows from [EH3] that the cone spanned by the pointed Brill-Noether divisors on $\overline{\mathcal{M}}_{g, 1}$ is 2-dimensional, with generators $\left[\overline{\mathcal{W}}_{g}\right]$ and the pull-back of the Brill-Noether class from $\overline{\mathcal{M}}_{g}$. Our aim is to analyze the divisor $\bar{\Theta}_{g, 1}$, whose definition is arguably simpler than that of the divisors $\overline{\mathcal{M}}_{g, d}^{r}(\bar{\alpha})$, and which seems to have been overlooked until now. A consequence of the calculation is that (as expected) $\left[\bar{\Theta}_{g, 1}\right]$ lies outside the Brill-Noether cone of $\overline{\mathcal{M}}_{g, 1}$.

We begin by recalling basic facts about divisors on $\overline{\mathcal{M}}_{g, 1}$. For $i=1, \ldots, g-1$, the divisor Δ_{i} on $\overline{\mathcal{M}}_{g, 1}$ is the closure of the locus of pointed curves $[C \cup D, q]$, where C and D are smooth curves of genus i and $g-i$ respectively, and $q \in C$. Similarly, Δ_{irr} denotes the closure in $\overline{\mathcal{M}}_{g, 1}$ of the locus of irreducible 1-pointed stable curves. We set $\delta_{i}:=$ $\left[\Delta_{i}\right], \delta_{\text {irr }}:=\left[\Delta_{\text {irr }}\right] \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right)$, and recall that $\psi \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right)$ is the universal cotangent class. Clearly, $p^{*}\left(\delta_{\text {irr }}\right)=\delta_{\text {irr }}$ and $p^{*}\left(\delta_{i}\right)=\delta_{i}+\delta_{g-i} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right)$ for $1 \leq i \leq[g / 2]$. For $g \geq 3$, the group $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right)$ is freely generated by the classes $\lambda, \psi, \delta_{\text {irr }}, \delta_{1}, \ldots, \delta_{g-1}$, cf. [AC1]. When $g=2$, the same classes generate $\operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)$ subject to the Mumford relation

$$
\lambda=\frac{1}{10} \delta_{\mathrm{irr}}+\frac{1}{5} \delta_{1},
$$

expressing that λ is a boundary class. We expand the class $\left[\bar{\Theta}_{g, 1}\right]$ in this basis of $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right)$,

$$
\bar{\Theta}_{g, 1} \equiv a \lambda+b \psi-b_{\mathrm{irr}} \delta_{\mathrm{irr}}-\sum_{i=1}^{g-1} b_{i} \delta_{i} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right),
$$

and determine the coefficients in a classical way, by understanding the restriction of $\bar{\Theta}_{g, 1}$ to sufficiently many geometric subvarieties of $\overline{\mathcal{M}}_{g, 1}$. To ease calculations, we set

$$
N_{g}^{-}:=2^{g-1}\left(2^{g}-1\right) \text { and } N_{g}^{+}:=2^{g-1}\left(2^{g}+1\right),
$$

to be the number of odd (respectively even) theta-characteristic on a curve of genus g.
We define some test-curves in the boundary of $\overline{\mathcal{M}}_{g, 1}$. For an integer $2 \leq i \leq g-1$, we choose general (pointed) curves $[C] \in \mathcal{M}_{i}$ and $[D, x, q] \in \mathcal{M}_{g-i, 2}$. In particular, we may assume that $x, q \in D$ do not appear in the support of any odd theta-characteristic η_{D}^{-}on D, and that $h^{0}\left(D, \eta_{D}^{+}\right)=0$, for any even theta-characteristic η_{D}^{+}. By joining C and D at a variable point $x \in C$, we obtain a family of 1-pointed stable curves

$$
F_{g-i}:=\left\{\left[C \cup_{x} D, q\right]: x \in C\right\} \subset \Delta_{g-i} \subset \overline{\mathcal{M}}_{g, 1},
$$

where the marked point $q \in D$ is fixed. It is clear that $F_{g-i} \cdot \delta_{g-i}=2-2 i, F_{g-i} \cdot \lambda=$ $F_{g-i} \cdot \psi=0$. Moreover, F_{g-i} is disjoint from all the other boundary divisors of $\overline{\mathcal{M}}_{g, 1}$.
Proposition 4.1. For each $2 \leq i \leq g-1$, one has that $b_{g-i}=N_{i}^{-} \cdot N_{g-i}^{+} / 2$.
Proof. We observe that the curve $F_{g-i} \times \overline{\mathcal{M}}_{g, 1} \overline{\mathcal{S}}_{g}^{-}$splits into $N_{i}^{+} \cdot N_{g-i}^{-}+N_{i}^{-} \cdot N_{g-i}^{+}$irreducible components, each isomorphic to C, corresponding to a choice of a pair of theta-characteristics of opposite parities on C and D respectively. Let $t \in F_{g-i} \cdot \bar{\Theta}_{g, 1}$ be an arbitrary point in the intersection, with underlying stable curve $C \cup_{x} D$, and spin curves $\left(\left[C, \eta_{C}\right],\left[D, \eta_{D}\right]\right) \in \mathcal{S}_{i} \times \mathcal{S}_{g-i}$ on the two components.

Suppose first that $\eta_{C}=\eta_{C}^{+}$and $\eta_{D}=\eta_{D}^{-}$, that is, t corresponds to an even thetacharacteristic on C and an odd theta-characteristic on D. Then there exist non-zero sections $\sigma_{C} \in H^{0}\left(C, \eta_{C}^{+} \otimes \mathcal{O}_{C}((g-i) x)\right)$ and $\sigma_{D} \in H^{0}\left(D, \eta_{D}^{-} \otimes \mathcal{O}_{D}(i x)\right)$ such that

$$
\begin{equation*}
\operatorname{ord}_{x}\left(\sigma_{C}\right)+\operatorname{ord}_{x}\left(\sigma_{D}\right) \geq g-1, \text { and } \sigma_{D}(q)=0 \tag{7}
\end{equation*}
$$

In other words, σ_{C} and σ_{D} are the aspects of a limit \mathfrak{g}_{g-1}^{0} on $C \cup_{x} D$ which vanishes at $q \in D$. Clearly, $\operatorname{ord}_{x}\left(\sigma_{C}\right) \leq g-i-1$, hence $\operatorname{div}\left(\sigma_{D}\right) \geq i x+q$, that is, $q \in \operatorname{supp}\left(\eta_{D}^{-}\right)$. This contradicts the generality assumption on $q \in D$, so this situation does not occur.

Thus, we are left to consider the case $\eta_{C}=\eta_{C}^{-}$and $\eta_{D}=\eta_{D}^{+}$. We denote again by $\sigma_{C} \in H^{0}\left(C, \eta_{C}^{-} \otimes \mathcal{O}_{C}((g-i) x)\right)$ and $\sigma_{D} \in H^{0}\left(D, \eta_{D}^{+} \otimes \mathcal{O}_{D}(i x)\right)$ the sections satisfying the compatibility relations (7). The condition $h^{0}\left(D, \eta_{D}^{+} \otimes \mathcal{O}_{D}(x-q)\right) \geq 1$ defines a correspondence on $D \times D$, cf. [DK], in particular, we can choose the points $x, q \in D$ general enough such that $H^{0}\left(D, \eta_{D}^{+} \otimes \mathcal{O}_{D}(x-q)\right)=0$. Then $\operatorname{ord}_{x}\left(\sigma_{D}\right) \leq i-2$, thus $\operatorname{ord}_{x}\left(\sigma_{C}\right) \geq g-i+1$. It follows that we must have equality $\operatorname{ord}_{x}\left(\sigma_{C}\right)=g-i+1$, and then, $x \in \operatorname{supp}\left(\eta_{C}^{-}\right)$. An argument along the lines of [EH3] Lemma 3.4, shows that each of these intersection points has to be counted with multiplicity 1 , thus $F_{g-i} \cdot \bar{\Theta}_{g, 1}=$ $\# \operatorname{supp}\left(\eta_{C}^{-}\right) \cdot N_{i}^{-} \cdot N_{g-i}^{+}$. We conclude by noting that $(2 i-2) b_{g-i}=F_{g-i} \cdot \bar{\Theta}_{g, 1}$.
Proposition 4.2. The relation $b=N_{g}^{-} / 2$ holds.
Proof. Having fixed a general curve $[C] \in \overline{\mathcal{M}}_{g}$, by considering the fibre $p^{*}([C])$ inside the universal curve, one writes the identity $(2 g-2) b=p^{*}([C]) \cdot \bar{\Theta}_{g, 1}=(g-1) N_{g}^{-}$.

We compute the class of the restriction of the divisor $\Theta_{g, 1}$ over $\mathcal{M}_{g, 1}$:
Proposition 4.3. One has the equivalence $\Theta_{g, 1} \equiv N_{g}^{-}(\psi / 2+\lambda / 4) \in \operatorname{Pic}\left(\mathcal{M}_{g, 1}\right)$.

Proof. We consider the universal pointed spin curve pr : $\mathbf{S}_{g, 1}^{-}:=\mathbf{S}_{g}^{-} \times_{\mathbf{M}_{g}} \mathbf{M}_{g, 1} \rightarrow \mathbf{M}_{g, 1}$. As usual, $\mathcal{P} \in \operatorname{Pic}\left(\mathbf{S}_{g, 1}^{-}\right)$denotes the universal spin bundle, which over the stack $\mathbf{S}_{g, 1}^{-}$, is a root of the dualizing sheaf ω_{pr}, that is, $2 c_{1}(\mathcal{P})=\operatorname{pr}^{*}(\psi)$. We introduce the divisor

$$
\mathcal{Z}:=\left\{[C, \eta, q] \in \mathcal{S}_{g, 1}^{-}: q \in \operatorname{supp}(\eta)\right\} \subset \mathcal{S}_{g, 1}^{-},
$$

and clearly $\Theta_{g, 1}:=\operatorname{pr}_{*}(\mathcal{Z})$. We write $[\mathcal{Z}]=c_{1}(\mathcal{P})-c_{1}\left(\operatorname{pr}^{*}\left(\operatorname{pr}_{*}(\mathcal{P})\right)\right.$), and take into account that $c_{1}\left(\operatorname{pr}_{!}(\mathcal{P})\right)=2 c_{1}\left(\operatorname{pr}_{*}(\mathcal{P})\right)=-\lambda / 2$. The rest follows by applying the projection formula.

In order to determine the remaining coefficients b_{0}, b_{1}, we study the pull-back of $\bar{\Theta}_{g, 1}$ under the map $\nu: \overline{\mathcal{M}}_{1,2} \rightarrow \overline{\mathcal{M}}_{g, 1}$, given by $\nu([E, x, q]):=\left[C \cup_{x} E, q\right] \in \overline{\mathcal{M}}_{g, 1}$, where $[C, x] \in \mathcal{M}_{g-1,1}$ is a fixed general pointed curve.

On the surface $\overline{\mathcal{M}}_{1,2}$, if we denote a general element by $[E, x, q]$, one has the following relations between divisors classes, see [AC2]:

$$
\psi_{x}=\psi_{q}, \lambda=\psi_{x}-\delta_{0: x q}, \delta_{\mathrm{irr}}=12\left(\psi_{x}-\delta_{0: x q}\right) .
$$

We describe the pull-back map $\nu^{*}: \operatorname{Pic}\left(\overline{\mathcal{M}}_{g, 1}\right) \rightarrow \operatorname{Pic}\left(\overline{\mathcal{M}}_{1,2}\right)$ at the level of divisors:

$$
\nu^{*}(\lambda)=\lambda, \quad \nu^{*}(\psi)=\psi_{q}, \quad \nu^{*}\left(\delta_{\text {irr }}\right)=\delta_{\text {irr }}, \nu^{*}\left(\delta_{1}\right)=-\psi_{x}, \quad \nu^{*}\left(\delta_{g-1}\right)=\delta_{0: x q} .
$$

By direct calculation, we write $\nu^{*}\left(\bar{\Theta}_{g, 1}\right) \equiv\left(a+b-12 b_{0}+b_{1}\right) \psi_{x}-\left(a+b_{g-1}-12 b_{0}\right) \delta_{0: x q}$.
We compute b_{0} and b_{1} by describing $\nu^{*}\left(\bar{\Theta}_{g, 1}\right)$ viewed as an explicit divisor on $\overline{\mathcal{M}}_{1,2}$:
Proposition 4.4. One has the relation $\nu^{*}\left(\bar{\Theta}_{g, 1}\right) \equiv N_{g-1}^{-} \cdot \overline{\mathfrak{T}}_{2} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{2,1}\right)$, where

$$
\mathfrak{T}_{2}:=\left\{[E, x, q] \in \mathcal{M}_{1,2}: 2 x \equiv 2 q\right\} .
$$

Proof. We fix an arbitrary point $t:=\left[C \cup_{x} E, q\right] \in \nu^{*}\left(\bar{\Theta}_{g, 1}\right)$. Suppose first that E is a smooth elliptic curve, that is, $j(E) \neq \infty$ and $x \neq q$. Then there exist theta-characteristics of opposite parities η_{C}, η_{E} on C and E respectively, together with non-zero sections

$$
\sigma_{C} \in H^{0}\left(C, \eta_{C} \otimes \mathcal{O}_{C}(x)\right) \text { and } \sigma_{E} \in H^{0}\left(E, \eta_{E} \otimes \mathcal{O}_{E}((g-1) x)\right),
$$

such that $\sigma_{E}(q)=0$ and $\operatorname{ord}_{x}\left(\sigma_{C}\right)+\operatorname{ord}_{x}\left(\sigma_{E}\right) \geq g-1$.
First we assume that $\eta_{C}=\eta_{C}^{+}$and $\eta_{E}=\eta_{E}^{-}$, thus, $\eta_{E}=\mathcal{O}_{E}$. Since $H^{0}\left(C, \eta_{C}^{+}\right)=0$, one obtains that $\operatorname{ord}_{x}\left(\sigma_{C}\right)=0$, that is $\operatorname{ord}_{x}\left(\sigma_{E}\right)=g-1$, which is impossible, because σ_{E} must vanish at q as well. Thus, one is lead to study the remaining case, when $\eta_{C}=\eta_{C}^{-}$ and $\eta_{E}=\eta_{E}^{+}$. Since $x \notin \operatorname{supp}\left(\eta_{C}^{-}\right)$, we obtain $\operatorname{ord}_{x}\left(\sigma_{C}\right) \leq 1$, and then by compatibility, the last inequality becomes equality, while $\operatorname{ord}_{x}\left(\sigma_{E}\right)=g-2$, hence $\eta_{E}^{+}=\mathcal{O}_{E}(x-q)$, or equivalently, $[E, x, q] \in \mathfrak{T}_{2}$. The multiplicity N_{g-1}^{-}in the expression of $\nu^{*}\left(\bar{\Theta}_{g, 1}\right)$ comes from the choices for the theta-characteristics η_{C}^{-}, responsible for the C-aspect of a limit \mathfrak{g}_{g-1}^{0} on $C \cup_{x} E$. It is an easy moduli count to show that the cases when $j(E)=\infty$, or $[E, x, q] \in \delta_{0: x q}$ (corresponding to the situation when x and q coalesce on E), do not occur generically on a component of $\nu^{*}\left(\bar{\Theta}_{g, 1}\right)$.

Proposition 4.5. $\overline{\mathfrak{T}}_{2}$ is an irreducible divisor on $\overline{\mathcal{M}}_{1,2}$ of class $\overline{\mathfrak{T}}_{2} \equiv 3 \psi_{x} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{1,2}\right)$.
Proof. We write $\bar{T}_{2} \equiv \alpha \psi_{x}-\beta \delta_{0: x q} \in \operatorname{Pic}\left(\overline{\mathcal{M}}_{1,2}\right)$, and we need to understand the intersection of $\overline{\mathfrak{T}}_{2}$ with two test curves in $\overline{\mathcal{M}}_{1,2}$. First, we fix a general point $[E, q] \in \overline{\mathcal{M}}_{1,1}$ and consider the family $E_{1}:=\{[E, x, q]: x \in E\} \subset \overline{\mathcal{M}}_{1,2}$. Clearly, $E_{1} \cdot \delta_{0: x q}=E_{1} \cdot \psi_{x}=1$. On the other hand $E_{1} \cdot \overline{\mathfrak{T}}_{2}$ is a 0 -cycle simply supported at the points $x \in E-\{q\}$ such that $x-q \in \operatorname{Pic}^{0}(E)[2]$, that is, $E_{1} \cdot \overline{\mathfrak{T}}_{2}=3$. This yields the relation $\alpha-\beta=3$.

As a second test curve, we denote by $[L, u, x, q] \in \overline{\mathcal{M}}_{0,3}$ the rational 3-pointed rational curve, and define the pencil $R:=\left\{\left[L \cup_{u} E_{\lambda}, x, q\right]: \lambda \in \mathbf{P}^{1}\right\} \subset \overline{\mathcal{M}}_{1,2}$, where $\left\{E_{\lambda}\right\}_{\lambda \in \mathbf{P}^{1}}$ is a pencil of plane cubic curves. Then $R \cap \overline{\mathfrak{T}}_{2}=\emptyset$. Since $R \cdot \lambda=1$ and $R \cdot \delta_{\text {irr }}=12$, we obtain the additional relation $\beta=0$, which completes the proof.

Putting together Propositions 4.1, 4.3 and 4.5, we obtain the system of equations

$$
a+b_{g-1}-12 b_{\mathrm{irr}}=0, a-12 b_{\mathrm{irr}}+b+b_{1}=3 N_{g-1}^{-}, a=\frac{1}{4} N_{g}^{-}, b=\frac{1}{2} N_{g}^{-}, b_{1}=\frac{3}{2} N_{g-1}^{-} .
$$

Thus $b_{\text {irr }}=2^{2 g-6}$ and $b_{g-1}=2^{g-3}\left(2^{g-1}+1\right)$. This completes the proof of Theorem 0.3,

References

[AC1] E. Arbarello and M. Cornalba, The Picard groups of the moduli space of curves, Topology 26 (1987), 153-171.
[AC2] E. Arbarello and M. Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Etudes Sci. Publ. Math. 88 (1998), 97-127.
[BV] I. Bauer and A. Verra, The rationality of the moduli space of genus four curves endowed with an order three subgroup of their Jacobian, arXiv:0808.1318, Michigan Math. Journal (2010), to appear.
[C] M. Cornalba, Moduli of curves and theta-characteristics, in: Lectures on Riemann surfaces (Trieste, 1987), 560-589.
[Cu] F. Cukierman, Families of Weierstrass points, Duke Mathematical Journal 58 (1989), 317-346.
[DK] I. Dolgachev and V. Kanev, Polar covariants of plane cubics and quartics, Advances in Mathematics 98 (1993), 216-301.
[EH1] D. Eisenbud and J. Harris, Limit linear series: Basic theory, Inventiones Math. 85 (1986), 337-371.
[EH2] D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus 23 Inventiones Math. 90 (1987), 359-387.
[EH3] D. Eisenbud and J. Harris, Irreducibility of some families of linear series with Brill-Noether number -1 , Annales Scientifique École Normale Supérieure 22 (1989), 33-53.
[F1] G. Farkas, Koszul divisors on moduli spaces of curves, American Journal of Math. 131 (2009), 819-869.
[F2] G. Farkas, The birational type of the moduli space of even spin curves, Advances in Mathematics 223 (2010), 433-443.
[FV] G. Farkas and A. Verra, The intermediate type of certain moduli spaces of curves, arXiv:0910.3905.
[FL] G. Farkas and K. Ludwig, The Kodaira dimension of the moduli space of Prym varieties, Journal of the European Mathematical Society 12 (2010), 755-795.
[FMP] G. Farkas, M. Mustaţă and M. Popa, Divisors on $\mathcal{M}_{g, g+1}$ and the Minimal Resolution Conjecture for points on canonical curves, Annales Scientifique École Normale Supérieure 36 (2003), 553-581.
[HM] J. Harris and D. Mumford, On the Kodaira dimension of $\overline{\mathcal{M}}_{g}$, Inventiones Math. 67 (1982), 23-88.
[Kh] D. Khosla, Tautological classes on moduli spaces of curves with linear series and a push-forward formula when $\rho=0$, arXiv:0704.1340.
[L] R. Lazarsfeld, A sampling of vector bundle techniques in the study of linear systems, in Lectures on Riemann Surfaces (Trieste 1987), World Scientific Press 1989, 500-559.
[Log] A. Logan, The Kodaira dimension of moduli spaces of curves with marked points, American Journal of Math. 125 (2003), 105-138.
[Lud] K. Ludwig, On the geometry of the moduli space of spin curves, Journal of Algebraic Geometry 19 (2010), 133-171.
[R] M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), 103-125.
Humboldt-Universität zu Berlin, Institut Für Mathematik, Unter den Linden 6 10099 Berlin, Germany
E-mail address: farkas@math.hu-berlin.de

[^0]: Research partially supported by Sonderforschungsbereich "Raum-Zeit-Materie".

