
BRILL-NOETHER GEOMETRY ON MODULI SPACES OF SPIN CURVES

GAVRIL FARKAS

The aim of this paper is to initiate a study of geometric divisors of Brill-Noether
type on the moduli space Sg of spin curves of genus g. The moduli space Sg is a com-
pactification the parameter space Sg of pairs [C, η], consisting of a smooth genus g curve
C and a theta-characteristic η ∈ Picg−1(C), see [C]. The study of the birational proper-
ties of Sg as well as other moduli spaces of curves with level structure has received an
impetus in recent years, see [BV] [FL], [F2], [Lud], to mention only a few results. Using
syzygy divisors, it has been proved in [FL] that the Prym moduli space Rg := Mg(BZ2)
classifying curves of genus g together with a point of order 2 in the Jacobian variety, is a

variety of general type for g ≥ 13 and g 6= 15. The moduli space S
+
g of even spin curves

of genus g is known to be of general type for g > 8, uniruled for g < 8, see [F2], whereas

the Kodaira dimension of S
+
8 is equal to zero, [FV]. This was the first example of a

naturally defined moduli space of curves of genus g ≥ 2, having intermediate Kodaira
dimension. An application of the main construction of this paper, gives a new way of

computing the class of the divisor Θnull of vanishing theta-nulls on S
+
g , reproving thus

the main result of [F2].
Virtually all attempts to show that a certain moduli space Mg,n is of general type,

rely on the calculation of certain effective divisors D ⊂ Mg,n enjoying extremality prop-

erties in their effective cones Eff(Mg,n), so that the canonical class KMg,n
lies in the cone

spanned by [D], boundary classes δi:S , tautological classes λ, ψ1, . . . , ψn, and possible
other effective geometric classes. Examples of such a program being carried out, can be
found in [EH2], [HM]-for the case of Brill-Noether divisors on Mg consisting of curves

with a gr
d when ρ(g, r, d) = −1, [Log]-where pointed Brill-Noether divisors on Mg,n are

studied, and [F1]-for the case of Koszul divisors on Mg, which provide counterexamples

to the Slope Conjecture on Mg. A natural question is what the analogous geometric

divisors on the spin moduli space of curves Sg should be?

In this paper we propose a construction for spin Brill-Noether divisors on both

spaces S
+
g and S

−
g , defined in terms of the relative position of theta-characteristics with

respect to difference varieties on Jacobians. Precisely, we fix integers r, s ≥ 1 such that
d := rs + r ≡ 0 mod 2, and then set g := rs + s. One can write d = 2i. By standard
Brill-Noether theory, a general curve [C] ∈ Mg carries a finite number of (necessarily
complete and base point free) linear series gr

d. One considers the following loci of spin
curves (both odd and even)

Ur
g,d := {[C, η] ∈ S∓

g : ∃L ∈ W r
d (C) such that η ⊗ L∨ ∈ Cg−i−1 − Ci}.

Thus Ur
g,d consists of spin curves such that the embedded curve C

|η⊗L|
−→ Pd−1 admits an

i-secant (i− 2)-plane. We shall prove that for s ≥ 2, the locus Ur
g,d is always a divisor on
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S∓
g , and we find a formula for the class of its compactification in S

∓
g . For simplicity, we

display this formula in the introduction only in the case r = 1, when g ≡ 2 mod 4:

Theorem 0.1. We fix an integer a ≥ 1 and set g := 4a + 2. The locus

U1
4a+2,2a+2 := {[C, η] ∈ S∓

4a+2 : ∃L ∈ W 1
2a+2(C) such that η ⊗ L∨ ∈ C3a − Ca+1}

is an effective divisor and the class of its compactification in S
∓
g is given by

U
1
4a+2,2a+2 ≡

(
4a

a

)(
4a + 2

2a

)
a + 2

8(2a + 1)(4a + 1)

((
192a3 + 736a2 + 692a + 184

)
λ−

−
(
32a3 + 104a2 + 82a + 19

)
α0 −

(
64a3 + 176a2 + 148a + 36

)
β0 − · · ·

)
∈ Pic(S

∓
g ).

To specialize further, in Theorem 0.1 we set a = 1, and find the class of (the closure
of) the locus of spin curves [C, η] ∈ S∓

6 , such that there exists a pencil L ∈ W 1
4 (C) for

which the linear series C
|η⊗L|
−→ P3 is not very ample:

U
1
6,4 ≡ 451λ −

237

4
α0 − 106β0 − · · · ∈ Pic(S

∓
6

)
.

The case s = 1, when necessarily L = KC ∈ W g−1
2g−2(C), produces a divisor only

on S
+
g , and we recover in this way the main calculation from [F2], used to prove that S

+
g

is a variety of general type for g > 8. We recall that Θnull := {[C, η] ∈ S+
g : H0(C, η) 6= 0}

denotes the divisor of vanishing theta-nulls.

Theorem 0.2. Let π : S
+
g → Mg be the ramified covering which forgets the spin structure. For

g ≥ 3, one has the following equality U
g−1
g,2g−2 = 2 · Θnull of codimension 1-cycles on the open

subvariety π−1(Mg ∪ ∆0) of S
+
g . Moreover, there is an equality of classes

U
g−1
g,2g−2 ≡ 2 · Θnull ≡

1

2
λ −

1

8
α0 − 0 · β0 − · · · ∈ Pic(S

+
g ).

We remark once more, the low slope of the divisor Θnull. No similar divisor with
such remarkable class is known to exist on Rg. In Section 4, we present a third way of

calculating the class [Θnull], by rephrasing the condition that a curve C have a vanishing
theta-null η, if and only if, for a pencil A on C of minimal degree, the multiplication map
of sections

H0(C, A) ⊗ H0(C, A ⊗ η) → H0(C, A⊗2 ⊗ η)

is not an isomorphism. For [C] ∈ Mg sufficiently general, we note that

dim H0(C, A) ⊗ H0(C, A ⊗ η) = dim H0(C, A⊗2 ⊗ η).

In this way, Θnull appears as the push-forward of a degeneracy locus of a morphism
between vector bundles of the same rank defined over a Hurwitz stack of coverings.
To compute the push-forward of tautological classes from a Hurwitz stack, we use the
techniques developed in [F1] and [Kh].

In the last section of the paper, we study the divisor Θg,1 on the universal curve

Mg,1, which consists of points in the support of odd theta-characteristics. This divisor,

somewhat similar to the divisor Wg of Weierstrass points on Mg,1, cf. [Cu], should be

of some importance in the study of the birational geometry of Mg,1:
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Theorem 0.3. The class of the compactification in Mg,1 of the effective divisor

Θg,1 := {[C, q] ∈ Mg,1 : q ∈ supp(η) for some [C, η] ∈ S−
g }

is given by the following formula:

Θg,1 ≡ 2g−3
(
(2g−1)

(
λ+2ψ

)
−2g−3δirr−(2g−2)δ1−

g−1∑

i=1

(2i+1)(2g−i−1)δi

)
∈ Pic(Mg,1).

When g = 2, the divisor Θ2 specializes to the divisor of Weierstrass points:

Θ2,1 = W2 := {[C, q] ∈ M2,1 : q ∈ C is a Weierstrass point}.

If we use Mumford’s formula λ = δ0/10 + δ1/5 ∈ Pic(M2), Theorem 0.3 reads

Θ2,1 ≡
3

2
λ + 3ψ −

1

4
δirr −

3

2
δ1 = −λ + 3ψ − δ1 ∈ Pic(M2,1),

that is, we recover the formula for the class of the Weierstrass divisor on M2,1, cf. [EH2].
When g = 3, the condition [C, q] ∈ Θ3,1, states that the point q ∈ C lies on one of the 28

bitangent lines of the canonically embedded curve C
|KC |
−→ P2.

Corollary 0.4. The class of the compactification in M3,1 of the bitangent locus

Θ3,1 := {[C, q] ∈ M3,1 : q lies on a bitangent of C}

is equal to Θ3,1 ≡ 7λ + 14ψ − δirr − 9δ1 − 5δ2 ∈ Pic(M3,1).

If p : Mg,1 → Mg is the map forgetting the marked point, we note the equality

D3 ≡ p∗(M
1
3,2) + 2 · W3 + 2ψ ∈ Pic(M3,1),

where W3 ≡ −λ + 6ψ − 3δ1 − δ2 is the divisor of Weierstrass points on M3,1. Since

the class ψ ∈ Pic(M3,1) is big and nef, it follows that Θ3,1 (unlike the divisor Θ2,1 ∈
Pic(M2,1)), lies in the interior of the cone of effective divisors Eff(M3,1), or it other

words, it is big. In particular, it cannot be contracted by a rational map M3,1 99K X to
any projective variety X . This phenomenon extends to all higher genera:

Corollary 0.5. For every g ≥ 3, the divisor Θg,1 ∈ Eff(Mg,1) is big.

It is not known whether the Weierstrass divisor Wg lies on the boundary of the

effective cone Eff(Mg,1) for g sufficiently large.

1. GENERALITIES ABOUT Sg

As usual, we follow that the convention that if M is a Deligne-Mumford stack,
then M denotes its associated coarse moduli space. We first recall basic facts about

Cornalba’s stack of stable spin curves π : Sg → Mg, see [C], [F2], [Lud] for details and
other basic properties. If X is a nodal curve, a smooth rational component R ⊂ X is
said to be exceptional if #(R ∩ X − R) = 2. The curve X is said to be quasi-stable if
#(R ∩ X − R) ≥ 2 for any smooth rational component R ⊂ X , and moreover, any
two exceptional components of X are disjoint. A quasi-stable curve is obtained from a
stable curve by possibly inserting a rational curve at each of its nodes. We denote by
[st(X)] ∈ Mg the stable model of the quasi-stable curve X .
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Definition 1.1. A spin curve of genus g consists of a triple (X, η, β), where X is a genus g
quasi-stable curve, η ∈ Picg−1(X) is a line bundle of degree g − 1 such that ηR = OR(1)
for every exceptional component R ⊂ X , and β : η⊗2 → ωX is a sheaf homomorphism
which is generically non-zero along each non-exceptional component of X .

Stable spin curves of genus g form a smooth Deligne-Mumford stack Sg which

splits into two connected components S
+
g and S

−
g , according to the parity of h0(X, η).

Let f : C → Sg be the universal family of spin curves of genus g. In particular, for

every point [X, η, β] ∈ Sg, there is an isomorphism between f−1([X, η, β]) and the quasi-
stable curve X . There exists a (universal) spin line bundle P ∈ Pic(C) of relative degree
g − 1, as well as a morphism of OC-modules B : P⊗2 → ωf having the property that

P|f−1([X,η,β]) = η and B|f−1([X,η,β]) = β : η⊗2 → ωX , for all spin curves [X, η, β] ∈ Sg.

Throughout we use the canonical isomorphism Pic(Sg)Q
∼= Pic(Sg)Q and we make little

distinction between line bundles on the stack and the corresponding moduli space.

1.1. The boundary divisors of Sg.

We discuss the structure of the boundary divisors of Sg and concentrate on the

case of S
+
g , the differences compared to the situation on S

−
g being minor. We de-

scribe the pull-backs of the boundary divisors ∆i ⊂ Mg under the map π. First we
fix an integer 1 ≤ i ≤ [g/2] and let [X, η, β] ∈ π−1([C ∪y D]), where [C, y] ∈ Mi,1

and [D, y] ∈ Mg−i,1. For degree reasons, then X = C ∪y1
R ∪y2

D, where R is an
exceptional component such that C ∩ R = {y1} and D ∩ R = {y2}. Furthermore

η =
(
ηC , ηD, ηR = OR(1)

)
∈ Picg−1(X), where η⊗2

C = KC and η⊗2
D = KD. The theta-

characteristics ηC and ηD have the same parity in the case of S
+
g (and opposite parities

for S
−
g ). One denotes by Ai ⊂ S

+
g the closure of the locus corresponding to pairs of

pointed spin curves
(
[C, y, ηC ], [D, y, ηD]

)
∈ S+

i,1 × S+
g−i,1

and by Bi ⊂ S
+
g the closure of the locus corresponding to pairs

(
[C, y, ηC ], [D, y, ηD]

)
∈ S−

i,1 × S−
g−i,1.

If α := [Ai], βi := [Bi] ∈ Pic(S
+
g ), we have the relation π∗(δi) = αi + βi.

Next, we describe π∗(δ0) and pick a stable spin curve [X, η, β] such that st(X) =
Cyq := C/y ∼ q, with [C, y, q] ∈ Mg−1,2. There are two possibilities depending on
whether X possesses an exceptional component or not. If X = Cyq and ηC := ν∗(η)

where ν : C → X denotes the normalization map, then η⊗2
C = KC(y + q). For each

choice of ηC ∈ Picg−1(C) as above, there is precisely one choice of gluing the fibres

ηC(y) and ηC(q) such that h0(X, η) ≡ 0 mod 2. We denote by A0 the closure in S
+
g of the

locus of points [Cyq, ηC ∈ Picg−1(C), η⊗2
C = KC(y + q)] as above.

If X = C ∪{y,q} R, where R is an exceptional component, then ηC := η ⊗ OC is

a theta-characteristic on C. Since H0(X, ω) ∼= H0(C, ωC), it follows that [C, ηC ] ∈ S+
g−1.

We denote by B0 ⊂ S
+
g the closure of the locus of points

[
C ∪{y,q} R, ηC ∈

√
KC , ηR = OR(1)

]
∈ S

+
g .
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A local analysis carried out in [C], shows that B0 is the branch locus of π and the rami-

fication is simple. If α0 = [A0] ∈ Pic(S
+
g ) and β0 = [B0] ∈ Pic(S

+
g ), we have the relation

(1) π∗(δ0) = α0 + 2β0.

2. DIFFERENCE VARIETIES AND THETA-CHARACTERISTICS

We describe a way of calculating the class of a series of effective divisors on

both moduli spaces S
−
g and S

+
g , defined in terms of the relative position of a theta-

characteristic with respect to the divisorial difference varieties in the Jacobian of a curve.
These loci, which should be thought of as divisors of Brill-Noether type on Sg, inherit
a determinantal description over the entire moduli stack of spin curves, via the inter-

pretation of difference varieties in Picg−2i−1(C) as Raynaud theta-divisors for exterior
powers of Lazarsfeld bundles provided in [FMP]. The determinantal description is then

extended over a partial compactification S̃g of Sg, using the explicit description of sta-
ble spin curves. The formulas we obtain for the class of these divisors are identical over

both S
−
g and S

+
g , therefore we sometimes use the symbol S

∓
g (or even Sg), to denote one

of the two spin moduli spaces.
We start with a curve [C] ∈ Mg and denote as usual by QC := M∨

KC
the associated

Lazarsfeld bundle [L] defined via the exact sequence on C

0 → MKC
→ H0(C, KC) ⊗OC

ev
→ KC → 0.

Note that QC is a semistable vector bundle on C (even stable, when the curve C is non-
hyperelliptic), and µ(QC) = 2. For integers 0 ≤ i ≤ g − 1, one defines the divisorial
difference variety Cg−i−1 − Ci ⊂ Picg−2i−1(C) as being the image of the difference map

φ : Cg−i−1 × Ci → Picg−2i−1(C), φ(D, E) := OC(D − E).

The main result from [FMP] provides a scheme-theoretic identification of divisors on
the Jacobian variety

(2) Cg−i−1 − Ci = Θ∧iQC
⊂ Picg−2i−1(C),

where the right-hand-side denotes the Raynaud locus [R]

Θ∧iQC
:= {η ∈ Picg−2i−1(C) : H0(C,∧iQC ⊗ η) 6= 0}.

The non-vanishing H0(C,∧iQC ⊗ ξ) 6= 0 for all line bundles ξ = OC(D − E), where
D ∈ Cg−i−1 and E ∈ Ci, follows from [L]. The thrust of [FMP] is that the reverse
inclusion Θ∧iQC

⊂ Cg−i−1 − Ci also holds. Moreover, identification (2) shows that,
somewhat similarly to Riemann’s Singularity Theorem, the product Cg−i−1 ×Ci can be
thought of as a canonical desingularization of the generalized theta-divisor Θ∧iQC

.

We fix integers r, s > 0 and set d := rs + r, g := rs + s, therefore the Brill-Noether
number ρ(g, r, d) = 0. We assume moreover that d ≡ 0 mod 2, that is, either r is even or
s is odd, and write d = 2i. We define the following locus in the spin moduli space S∓

g :

Ur
g,d := {[C, η] ∈ S∓

g : ∃L ∈ W r
d (C) such that η ⊗ L∨ ∈ Cg−i−1 − Ci}.

Using (2), the condition [C, η] ∈ Ur
g,d can be rewritten in a determinantal way as,

H0(C,∧iMKC
⊗ η ⊗ L) 6= 0.
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Tensoring by η ⊗ L the exact sequence coming from the definition of MKC
, namely

0 −→ ∧iMKC
−→ ∧iH0(C, KC) ⊗OC −→ ∧i−1MKC

⊗ KC −→ 0,

then taking global sections and finally using that MKC
(hence all of its exterior powers)

are semi-stable vector bundles, we find that [C, η] ∈ Ur
g,d if and only if the map

(3) φ(C, η, L) : ∧iH0(C, KC) ⊗ H0
(
C, η ⊗ L) → H0(C,∧i−1MKC

⊗ KC ⊗ η ⊗ L
)

is not an isomorphism for a certain L ∈ W r
d (C). Since µ(∧i−1MKC

⊗KC⊗η⊗L) ≥ 2g−1
and ∧i−1MKC

is a semi-stable vector bundle on C, it follows that

h0(C,∧i−1MKC
⊗ KC ⊗ η ⊗ L) = χ(C,∧i−1MKC

⊗ KC ⊗ η ⊗ L) =

(
g

i

)
d.

We assume that h1(C, η ⊗ L) = 0. This condition is satisfied outside a locus of S∓
g of

codimension at least 2; if H1(C, η ⊗ L) 6= 0, then H1(C, KC ⊗ L⊗(−2)) 6= 0, in particular
the Petri map

µ0(C, L) : H0(C, L) ⊗ H0(C, KC ⊗ L∨) → H0(C, KC)

is not injective. Then h0(C, L ⊗ η) = d and we note that φ(C, η, L) is a map between
vector spaces of the same rank. This obviously suggests a determinantal presentation
of Ur

g,d as the (push-forward of) a degeneracy locus between vector bundles of the same

rank. In what follows we extend this presentation over a partial compactification of S
∓
g .

We refer to [FL] Section 2 for a similar calculation over the Prym moduli stack Rg.

We denote by M0
g ⊂ Mg the open substack classifying curves [C] ∈ Mg such that

W r
d−1(C) = ∅, W r+1

d (C) = ∅ and moreover H1(C, L ⊗ η) = 0, for every L ∈ W r
d (C)

and each odd-theta characteristic η ∈ Picg−1(C). From general Brill-Noether theory

one knows that codim(Mg − M0
g,Mg) ≥ 2. Then we define ∆̃0 ⊂ ∆0 to be the open

substack consisting of 1-nodal stable curves [Cyq := C/y ∼ q], where [C] ∈ Mg−1 is a

curve satisfying the Brill-Noether theorem and y, q ∈ C. We then set M
0
g := M0

g ∪ ∆̃0,

hence M
0
g ⊂ M̃g and then S

0
g := π−1(M

0
g) = (S

0
g)

+ ∪ (S
0
g)

−. Following [EH1], [F1], we
consider the proper Deligne-Mumford stack

σ0 : Gr
d → M

0
g

classifying pairs [C, L] with [C] ∈ M
0
g and L ∈ W r

d (C). For any curve [C] ∈ M
0
g and

L ∈ W r
d (C), we have that h0(C, L) = r + 1, that is, Gr

d parameterizes only complete

linear series. For a point [Cyq := C/y ∼ q] ∈ ∆̃0, we have the identification

σ−1
0

[
Cyq

]
= {L ∈ W r

d (C) : h0(C, L ⊗OC(−y − q)) = r},

that is, we view linear series on singular curves as linear series on the normalization
such that the divisor of the nodes imposes only one condition. We denote by f r

d : Cr
g,d :=

M
0
g,1 ×

M
0

g

Gr
d → Gr

d the pull-back of the universal curve p : M
0
g,1 → M

0
g to Gr

d. Once

we have chosen a Poincaré bundle L on Cr
g,d, we can form the three codimension 1

tautological classes in A1(Gr
d):

(4)
a := (f r

d )∗
(
c1(L)2

)
, b := (f r

d )∗
(
c1(L) · c1(ωfr

d
)
)
, c := (f r

d )∗
(
c1(ωfr

d
)2

)
= (σ0)

∗
(
(κ1)M

0

g

)
.
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The dependence on a, b, c on the choice of L is discussed in both [F2] and [FL]. We
introduce the stack of gr

d’s on spin curves

σ : Gr
d(S

0
g/M

0
g) := S

0
g ×M

0

g

Gr
d → S

0
g

and then the corresponding universal spin curve over the gr
d parameter space

f ′ : Cr
d := C ×

S
0

g

Gr
d(S

0
g/M

0
g) → Gr

d(S
0
g/M

0
g).

We note that f ′ is a family of quasi-stable curves carrying at the same time a spin struc-

ture as well as a gr
d. Just like in [FL], the boundary divisors of Gr

d(S
0
g/M

0
g) are denoted

by the same symbols, that is, one sets A′
0 := σ∗(A′

0) and B′
0 := σ∗(B′

0) and then

α0 := [A′
0], β0 := [B′

0] ∈ A1(Gr
d(S

0
g/M

0
g)).

We observe that two tautological line bundles live on Cr
d , namely the pull-back of the

universal spin bundle Pr
d ∈ Pic(Cr

d) and a Poincaré bundle L ∈ Pic(Cr
d) singling out

the gr
d’s, that is, L|f ′−1[X,η,β,L] = L ∈ W r

d (C), for each point [X, η, β, L] ∈ Gr
d(S

0
g/M

0
g).

Naturally, one also has the classes a, b, c ∈ A1(Gr
d(S

0
g/M

0
g)) defined by the formulas (4).

The following result is easy to prove and we skip details:

Proposition 2.1. We denote by f ′ : Cr
d → Gr

d(S
0
g/M

0
g) the universal quasi-stable spin curve

and by Pr
d ∈ Pic(Cr

d) the universal spin bundle of relative degree g − 1. One has the following

formulas in A1(Gr
d(S

0
g/M

0
g)):

(i) f ′
∗(c1(ωf ′) · c1(P

r
d)) = 1

2c.

(ii) f ′
∗(c1(P

r
d)2) = 1

4c − 1
2β0.

(iii) f ′
∗(c1(L) · c1(P

r
d)) = 1

2b.

We determine the class of a compactification of Ur
g,d by pushing-forward a codi-

mension 1 degeneracy locus via the map σ : Gr
d(S

0
g/M

0
g) → S

0
g. To that end, we define a

sequence of tautological vector bundles on Gr
d(S

0
g/M

0
g): First, for l ≥ 0 we set

A0,l := f ′
∗(L ⊗ ω⊗l

f ′ ⊗ Pr
d).

It is easy to verify that R1f ′
∗(L⊗ω⊗l

f ′ ⊗Pr
d) = 0, hence A0,l is locally free over Gr

d(S
0
g/M

0
g)

of rank equal to h0(X, L ⊗ ω⊗l
X ⊗ η) = l(2g − 2) + d. Next we introduce the global

Lazarsfeld vector bundle M over Cr
d by the exact sequence

0 −→ M −→ (f ′)∗
(
f ′
∗ωf ′

)
−→ ωf ′ −→ 0,

and then for all integers a, j ≥ 1 we define the sheaf over Gr
d(S

0
g/M

0
g)

Aa,j := f ′
∗(∧

aM⊗ ω⊗j
f ′ ⊗ L⊗ Pr

d).

In a way similar to [FL] Proposition 2.5 one shows that R1f ′
∗

(
∧aM⊗ω

⊗(i−a)
f ′ ⊗L⊗Pr

d

)
=

0, therefore by Grauert’s theorem Aa,i−a is a vector bundle over Gr
d(S

0
g/M

0
g) of rank

rk(Aa,i−a) = χ
(
X,∧aMωX

⊗ ω
⊗(i−a)
X ⊗ L ⊗ η

)
= 2(i − a)g

(
g − 1

a

)
.
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Furthermore, for all 1 ≤ a ≤ i − 1, the vector bundles Aa,i−a sit in exact sequences

(5) 0 −→ Aa,i−a −→ ∧af ′
∗(ωf ′) ⊗A0,i−a −→ Aa−1,i−a+1 −→ 0,

where the right exactness boils down to showing that H1(X,∧aMωX
⊗ω

⊗(i−a)
X ⊗η⊗L) =

0 for all [X, η, β, L] ∈ Gr
d(S

0
g/M

0
g).

We denote as usual E := f ′
∗(ωf ′) the Hodge bundle over Gr

d(S
0
g/M

0
g) and then

note that there exists a vector bundle map

(6) φ : ∧iE ⊗A0,0 → Ai−1,1

between vector bundles of the same rank over Gr
d(S

0
g/M

0
g). For [C, η, L] ∈ σ−1(M0

g) the
fibre of this morphism is precisely the map φ(C, η, L) defined by (3).

Theorem 2.2. The vector bundle morphism φ : ∧iE ⊗ A0,0 → Ai−1,1 is generically non-

degenerate over Gr
d(S

0
g/M

0
g). It follows that Ur

g,d is an effective divisor over S+
g for all s ≥ 1,

and over S−
g as well for s ≥ 2.

Proof. We specialize C to a hyperelliptic curve, and denote by A ∈ W 1
2 (C) the hyperel-

liptic involution. The Lazarsfeld bundle splits into a sum of line bundles QC
∼= A⊕(g−1),

therefore the condition H0(C,∧iMKC
⊗η⊗L) = 0 translates into H0(C, η⊗A⊗i⊗L∨) = 0.

Suppose that h0(C, η ⊗ A⊗i ⊗ L∨) ≥ 1 for any L = A⊗r ⊗ OC(x1 + · · · + xd−2r) ∈
W r

d (C), where the x1, . . . , xd−2r ∈ C are arbitrarily chosen points. This implies that

h0(C, η ⊗ A⊗(i−r)) ≥ d − 2r + 1. Any theta-characteristic on C is of the form

η = A⊗m ⊗OC(p1 + · · · + pg−2m−1),

where 1 ≤ m ≤ (g − 1)/2 and p1, . . . , pg−2m−1 ∈ C are Weierstrass points. Choosing a
theta-characteristic on C for which m ≤ i− r − 1 (which can be done in all cases except

on S−
g when i = r), we obtain that h0(C, η ⊗ A⊗(i−r)) ≤ d − 2r, a contradiction. ¤

Proof of Theorem 0.1. To compute the class of the degeneracy locus of φ we use repeatedly

the exact sequence (5). We write the following identities in A1(Gr
d(S

0
g/M

0
g)):

c1

(
Ai−1,1 − ∧iE ⊗A0,0

)
=

i∑

l=0

(−1)l−1c1(∧
i−lE ⊗A0,l) =

=
i∑

l=0

(−1)l+1
(
(2l(g − 1) + d)

(
g − 1

i − l − 1

)
c1(E) +

(
g

i − l

)
c1(A0,l)

)
.

Using Proposition 2.1 one can show via the Grothendieck-Riemann-Roch formula ap-

plied to f ′ : Cr
d → Gr

d(S
0
g/M

0
g) that one has that

c1(A0,l) = λ +
( l2

2
−

1

8

)
c +

1

2
a + lb −

1

4
β0 ∈ A1(Gr

d(S
0
g/M

0
g)).

To determine σ∗

(
c1(Ai−1,1 − ∧iE)

)
∈ A1(Sg) we use [F1], [Kh]: If

N := deg(σ) = #(W r
d (C))

8



denotes the number of gr
d’s on a general curve [C] ∈ Mg, then there exists a precisely

described choice of a Poincaré bundle on Cr
g,d such that the push-forwards of the tau-

tological classes on Gr
d(S

0
g/M

0
g) are given as follows (cf. [F1], [Kh] and especially [FL]

Section 2, for the similar argument in the Prym case):

σ∗(a) =
dN

(g − 1)(g − 2)

(
(gd− 2g2 +8d− 8g +4)λ+

1

6
(2g2 − gd+3g− 4d− 2)(α0 +2β0)

)

and

σ∗(b) =
dN

2g − 2

(
12λ − α0 − 2β0

)
∈ A1(Gr

d(S
0
g/M

0
g)).

One notes that c1(Ai−1,1−∧iE⊗A0,0) ∈ A1(Gr
d(S

0
g/M

0
g)) does not depend of the Poincaré

bundle. Using the previous formulas, after some arithmetic, one computes the class of
the partial compactification of Ur

g,d and finishes the proof. ¤

When s = 2a + 1, hence g = (2a + 1)(r + 1) and d = 2r(a + 1), our calculation
shows that

U
r

g,d ≡ ca,r

(
λ̄ λ − ᾱ0 α0 − β̄0 β0 − · · · ) ∈ Pic(S

∓
g ),

where ca,r ∈ Q>0 is explicitly known and

λ̄ = 12r3−12r2−48a2+96a3+48r4a+2208r3a3+1968r3a2+3936r2a3+2208ra3+552r3a+3984r2a2+

1080r2a + 2160ra2 + 528ra + 192r4a4 + 384r4a3 + 768r3a4 + 960r2a4 + 240r4a2 + 384ra4,

ᾱ0 = 220ra2+536r2a3+32r4a4+36ra+24a3+328r3a3+296ra3+8r4a+64r4a3+3r3+468r2a2+

128r3a4 + 74r3a + 40r4a2 + 160r2a4 + 64ra4 + 268r3a2 + 110r2a − 3r2 − 12a2

and

β̄0 = 96ra+64r4a4 +16r4a+416ra2 +928r2a3 +448ra3 +208r2a+608r3a3 +256r3a4 +112r3a+

80r4a2 + 320r2a4 + 128ra4 + 464r3a2 + 128r4a3 + 816r2a2.

These formulas, though unwieldy, carry a great deal of information about Sg. In
the simplest case, s = 1 (that is, a = 0) and r = g − 1, then necessarily L = KC ∈

W g−1
2g−2(C) and the condition η −KC ∈ −Cg−1 is equivalent to H0(C, η) 6= 0. In this way

we recover the theta-null divisor Θnull on S
+
g , or more precisely also taking into account

multiplicities [F2],

Ug−1
g,2g−2 = 2 · Θnull.

At the same time, on S+
g one does not get a divisor at all. In particular, we find that

U
g−1
g,2g−2 ≡ 2 · Θnull ≡

1

2
λ −

1

8
α0 − 0 · β0 − · · · ∈ Pic(S

+
g ).

Another interesting case is when r = 2, hence g = 3s, L ∈ W 2
2s+2(C) and the condition

η⊗L∨ ∈ C2s−2 −Cs+1 is equivalent to requiring that the embedded curve C
|η⊗L|
−→ P2s+1

has an (s + 1)-secant (s − 1)-plane:

9



Theorem 2.3. For g = 3s, d = 2s + 2, the class of the closure in S
∓
g of the effective divisor

U2
g,d := {[C, η] ∈ S∓

3s : ∃L ∈ W 2
2s+2(C) such that η ⊗ L∨ ∈ C2s−2 − Cs+1}

is given by the formula in Pic(S
∓
g ):

U
2
g,d ≡

(
g

s + 2

)(
g

s, s, s

)
1

24g(g − 1)2(g − 2)(s + 1)2

(
4(216s4+513s3−348s2−387s+18

)
λ−

−
(
144s4 + 225s3 − 268s2 − 99s + 10

)
α0 −

(
288s4 + 288s3 + 320s2 + 32

)
β0 − · · ·

)
.

For instance, for g = 9, we obtain the class of the closure of the locus spin curves
[C, η] ∈ S∓

9 , for which there exists a net L ∈ W 2
8 (C) such that η ⊗ L∨ ∈ C4 − C4:

U
2
9,8 ≡ 235 · 35

(36

5
λ − α0 −

428

235
β0 − · · ·

)
∈ Pic(S

∓
9 ).

3. THE CLASS OF Θnull ON S
+
g : AN ALTERNATIVE PROOF USING THE HURWITZ STACK

We present an alternative way of computing the class of the divisor [Θnull] (in
even genus), as the push-forward of a determinantal cycle on a Hurwitz scheme of
degree k coverings of genus g curves. We set

g = 2k − 2, r = 1, d = k,

hence ρ(g, 1, k) = 0, and use the notation from the previous section. In particular, we

have the proper morphism σ0 : G1
k → M

0
g from the Hurwitz stack of g1

k’s, and the
universal spin curve over the Hurwitz stack

f ′ : Ck
1 := C ×

S
0

g

G1
k(S

0
g/M

0
g) → G1

k(S
0
g/M

0
g).

Once more, we introduce a number of vector bundles over G1
k(S

0
g/M

0
g): First, we set

H := f ′
∗(L). By Grauert’s theorem, H is a vector bundle of rank 2 over G1

k(S
0
g/M

0
g),

having fibre H[X, η, β, L] = H0(X, L), where L ∈ W 1
k (X). Then for j ≥ 1 we define

Bj := f ′
∗(L

⊗j ⊗ P1
k).

Since R1f ′
∗(L

⊗j ⊗ P1
k) = 0, we find that Bj is a vector bundle over G1

k(S
0
g/M

0
g) of rank

equal to h0(X, L⊗j ⊗ η) = kj.

Proposition 3.1. If a, b, c are the codimension 1 tautological classes on G1
k(S

0
g/M

0
g) defined by

(4), then for all j ≥ 1 one has the following formula in A1(G1
k(S

0
g/M

0
g)):

c1(Bj) = λ −
1

8
c +

j2

2
a −

j

2
b −

1

4
β0.

Proof. We apply Grothendieck-Riemann-Roch to the morphism f ′ : C1
k → G1

k(S
0
g/M

0
g):

c1(Bj) = c1

(
f ′
! (L

⊗j ⊗ P1
k)

)
=

= f ′
∗

[(
1 + c1(L

⊗j ⊗ P1
k) +

c2
1(L

⊗j ⊗ P1
k)

2

)(
1 −

c1(ωf ′)

2
+

c2
1(ωf ′) + [Sing(f ′)]

12

)]

2
,

10



where Sing(f ′) ⊂ X 1
k denotes the codimension 2 singular locus of the morphism f ′,

therefore f ′
∗[Sing(f ′)] = α0 + 2β0. We then use Mumford’s formula [HM] pulled back

from M
0
g to G1

k(S
0
g/M

0
g), to write that

κ1 = f ′
∗(c

2
1(ωf ′)) = 12λ − (α0 + 2β0)

and then note that f ′
∗(c1(L) · c1(P

1
k)) = 0 (the restriction of L to the exceptional divisor

of f ′ : C1
k → G1

k(S
0
g/M

0
g) is trivial). Similarly, we note that f ′

∗(c1(ωf ′) · c1(P
1
k)) = c/2.

Finally, we write that f ′
∗(c

2
1(P

1
k)) = c/4 − β0/2. ¤

For j ≥ 1 there are natural vector bundle morphisms over G1
k(S

0
g/M

0
g)

χj : H⊗ Bj → Bj+1.

Over a point [C, ηC , L] ∈ S+
g ×Mg G1

k corresponding to an even theta-characteristic ηC

and a pencil L ∈ W 1
k (C), the morphism χj is given by multiplications of global sections

χj [C, η, L] : H0(C, L) ⊗ H0(C, L⊗j ⊗ ηC) → H0(C, L⊗(j+1) ⊗ ηC).

In particular, χ1 : H⊗B1 → B2 is a morphism between vector bundles of the same rank.
From the base point free pencil trick, the degeneration locus Z1(χ1) is (set-theoretically)

equal to the inverse image σ−1
(
Θnull ∩ (S

0
g)

+
)
.

Theorem 3.2. We fix g = 2k − 2. The vector bundle morphism χ1 : H ⊗ B1 → B2 defined

over G1
k(S

0
g/M

0
g) is generically non-degenerate and we have the following formula for the class

of its degeneracy locus:

[Z1(χ1)] = c1(B2 −H⊗ B1) =
1

2
λ −

1

8
α0 + a − kc1(H) ∈ A1(G1

k(S
0
g/M

0
g)).

The class of the push-forward σ∗[Z1(χ1)] to S
+
g is given by the formula:

σ∗

(
c1(B2 −H⊗B1)

)
≡

(2k − 2)!

k!(k − 1)!

(1

2
λ−

1

8
α0 − 0 · β0

)
≡

2(2k − 2)!

k!(k − 1)!
Θ

null |S
+

g

∈ Pic(S
+
g ).

Proof. The first part follows directly from Theorem 3.1. To determine the push-forward

of codimension 1 tautological classes to (S
0
g)

+, we use again [F1], [Kh]: One writes the

following relations in A1((S
0
g)

+) = A1((S
0
g)

+):

σ∗(a) = deg(G1
k/M

0
g)

(
−

3k(k + 1)

2k − 3
λ +

k2

2(2k − 3)
(α0 + 2β0)

)
,

σ∗(b) = deg(G1
k/M

0
g)

( 6k

2k − 3
λ −

k

2(2k − 3)
(α0 + 2β0)

)
,

and

σ∗

(
c1(H)) = deg(G1

k/M
0
g)

(
−3

k + 1

2k − 3
λ +

k

2(2k − 3)
(α0 + 2β0)

)
,

where

N := deg(G1
k/M

0
g) =

(2k − 2)!

k!(k − 1)!
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denotes the Catalan number of linear series g1
k on a general curve of genus 2k − 2. This

yields yet another proof of the main result from [F2], in the sense that we compute the
class of the divisor Θnull of vanishing theta-nulls:

σ∗(Z1(χ1)) = deg(G1
k/M

0
g)

(1

2
λ −

1

8
α0

)
≡ 2deg(G1

k/M
0
g) [Θ

null |(S
0

g)+
].

¤

Remark 3.3. The multiplicity 2 appearing in the expression of σ∗(Z1(χ1)) is justified by
the fact that dim Ker(χ1(t)) = h0(C, η) for every [C, η, L] ∈ σ−1((S0

g )+). This of course
is always an even number. Thus we have the equality cycles

Z1(χ1) = Z2(χ1) = {t ∈ G1
k(S

0
g/M

0
g) : co-rank(φ1(t)) ≥ 2},

that is χ1 degenerates in codimension 1 with corank 2, and Z1(χ1) is an everywhere
non-reduced scheme.

4. THE DIVISOR OF POINTS OF ODD THETA-CHARACTERISTICS

In this section we compute the class of the divisor Θg,1. The study of geometric

divisors on Mg,1 begins with [Cu], where the locus of Weierstrass points is determined:

Wg ≡ −λ +

(
g + 1

2

)
ψ −

g−1∑

i=1

(
g − i + 1

2

)
δi:1 ∈ Pic(Mg,1).

More generally, if ᾱ : 0 ≤ α0 ≤ . . . ≤ αr ≤ d − r is a Schubert index of type (r, d) such
that ρ(g, r, d) −

∑r
i=0 αi = −1, one defines the pointed Brill-Noether divisor Mr

g,d(ᾱ) as

being the locus of pointed curves [C, q] ∈ Mg,1 possessing a linear series l ∈ Gr
d(C)

with ramification sequence αl(q) ≥ ᾱ. It follows from [EH3] that the cone spanned
by the pointed Brill-Noether divisors on Mg,1 is 2-dimensional, with generators [Wg]

and the pull-back of the Brill-Noether class from Mg. Our aim is to analyze the divisor

Θg,1, whose definition is arguably simpler than that of the divisors M
r

g,d(ᾱ), and which
seems to have been overlooked until now. A consequence of the calculation is that (as
expected) [Θg,1] lies outside the Brill-Noether cone of Mg,1.

We begin by recalling basic facts about divisors on Mg,1. For i = 1, . . . , g − 1, the

divisor ∆i on Mg,1 is the closure of the locus of pointed curves [C ∪D, q], where C and
D are smooth curves of genus i and g− i respectively, and q ∈ C. Similarly, ∆irr denotes
the closure in Mg,1 of the locus of irreducible 1-pointed stable curves. We set δi :=

[∆i], δirr := [∆irr] ∈ Pic(Mg,1), and recall that ψ ∈ Pic(Mg,1) is the universal cotangent

class. Clearly, p∗(δirr) = δirr and p∗(δi) = δi + δg−i ∈ Pic(Mg,1) for 1 ≤ i ≤ [g/2]. For

g ≥ 3, the group Pic(Mg,1) is freely generated by the classes λ, ψ, δirr, δ1, . . . , δg−1, cf.

[AC1]. When g = 2, the same classes generate Pic(M2,1) subject to the Mumford relation

λ =
1

10
δirr +

1

5
δ1,

expressing that λ is a boundary class. We expand the class [Θg,1] in this basis of Pic(Mg,1),

Θg,1 ≡ aλ + bψ − birrδirr −

g−1∑

i=1

biδi ∈ Pic(Mg,1),
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and determine the coefficients in a classical way, by understanding the restriction of
Θg,1 to sufficiently many geometric subvarieties of Mg,1. To ease calculations, we set

N−
g := 2g−1(2g − 1) and N+

g := 2g−1(2g + 1),

to be the number of odd (respectively even) theta-characteristic on a curve of genus g.
We define some test-curves in the boundary of Mg,1. For an integer 2 ≤ i ≤ g− 1,

we choose general (pointed) curves [C] ∈ Mi and [D, x, q] ∈ Mg−i,2. In particular, we
may assume that x, q ∈ D do not appear in the support of any odd theta-characteristic
η−D on D, and that h0(D, η+

D) = 0, for any even theta-characteristic η+
D. By joining C and

D at a variable point x ∈ C, we obtain a family of 1-pointed stable curves

Fg−i := {[C ∪x D, q] : x ∈ C} ⊂ ∆g−i ⊂ Mg,1,

where the marked point q ∈ D is fixed. It is clear that Fg−i · δg−i = 2 − 2i, Fg−i · λ =

Fg−i · ψ = 0. Moreover, Fg−i is disjoint from all the other boundary divisors of Mg,1.

Proposition 4.1. For each 2 ≤ i ≤ g − 1, one has that bg−i = N−
i · N+

g−i/2.

Proof. We observe that the curve Fg−i ×Mg,1
S
−
g splits into N+

i · N−
g−i + N−

i · N+
g−i ir-

reducible components, each isomorphic to C, corresponding to a choice of a pair of
theta-characteristics of opposite parities on C and D respectively. Let t ∈ Fg−i · Θg,1 be
an arbitrary point in the intersection, with underlying stable curve C ∪x D, and spin
curves

(
[C, ηC ], [D, ηD]

)
∈ Si × Sg−i on the two components.

Suppose first that ηC = η+
C and ηD = η−D, that is, t corresponds to an even theta-

characteristic on C and an odd theta-characteristic on D. Then there exist non-zero
sections σC ∈ H0

(
C, η+

C ⊗OC((g − i)x)
)

and σD ∈ H0
(
D, η−D ⊗OD(ix)

)
such that

(7) ordx(σC) + ordx(σD) ≥ g − 1, and σD(q) = 0.

In other words, σC and σD are the aspects of a limit g0
g−1 on C ∪x D which vanishes at

q ∈ D. Clearly, ordx(σC) ≤ g− i− 1, hence div(σD) ≥ ix+ q, that is, q ∈ supp(η−D). This
contradicts the generality assumption on q ∈ D, so this situation does not occur.

Thus, we are left to consider the case ηC = η−C and ηD = η+
D. We denote again by

σC ∈ H0(C, η−C ⊗ OC((g − i)x)) and σD ∈ H0(D, η+
D ⊗ OD(ix)) the sections satisfying

the compatibility relations (7). The condition h0(D, η+
D ⊗ OD(x − q)) ≥ 1 defines a

correspondence on D × D, cf. [DK], in particular, we can choose the points x, q ∈ D
general enough such that H0(D, η+

D ⊗ OD(x − q)) = 0. Then ordx(σD) ≤ i − 2, thus
ordx(σC) ≥ g − i + 1. It follows that we must have equality ordx(σC) = g − i + 1,
and then, x ∈ supp(η−C ). An argument along the lines of [EH3] Lemma 3.4, shows that

each of these intersection points has to be counted with multiplicity 1, thus Fg−i ·Θg,1 =

#supp(η−C ) · N−
i · N+

g−i. We conclude by noting that (2i − 2)bg−i = Fg−i · Θg,1. ¤

Proposition 4.2. The relation b = N−
g /2 holds.

Proof. Having fixed a general curve [C] ∈ Mg, by considering the fibre p∗([C]) inside

the universal curve, one writes the identity (2g − 2)b = p∗([C]) · Θg,1 = (g − 1)N−
g . ¤

We compute the class of the restriction of the divisor Θg,1 over Mg,1:

Proposition 4.3. One has the equivalence Θg,1 ≡ N−
g (ψ/2 + λ/4) ∈ Pic(Mg,1).
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Proof. We consider the universal pointed spin curve pr : S−
g,1 := S−

g ×Mg Mg,1 → Mg,1.

As usual, P ∈ Pic(S−
g,1) denotes the universal spin bundle, which over the stack S−

g,1, is

a root of the dualizing sheaf ωpr, that is, 2c1(P) = pr∗(ψ). We introduce the divisor

Z := {[C, η, q] ∈ S−
g,1 : q ∈ supp(η)} ⊂ S−

g,1,

and clearly Θg,1 := pr∗(Z). We write [Z] = c1(P) − c1

(
pr∗(pr∗(P))

)
, and take into ac-

count that c1(pr!(P)) = 2c1(pr∗(P)) = −λ/2. The rest follows by applying the projection
formula. ¤

In order to determine the remaining coefficients b0, b1, we study the pull-back of
Θg,1 under the map ν : M1,2 → Mg,1, given by ν([E, x, q]) := [C ∪x E, q] ∈ Mg,1, where
[C, x] ∈ Mg−1,1 is a fixed general pointed curve.

On the surface M1,2, if we denote a general element by [E, x, q], one has the fol-
lowing relations between divisors classes, see [AC2]:

ψx = ψq, λ = ψx − δ0:xq, δirr = 12(ψx − δ0:xq).

We describe the pull-back map ν∗ : Pic(Mg,1) → Pic(M1,2) at the level of divisors:

ν∗(λ) = λ, ν∗(ψ) = ψq, ν∗(δirr) = δirr, ν∗(δ1) = −ψx, ν∗(δg−1) = δ0:xq.

By direct calculation, we write ν∗(Θg,1) ≡ (a + b− 12b0 + b1)ψx − (a + bg−1 − 12b0)δ0:xq.

We compute b0 and b1 by describing ν∗(Θg,1) viewed as an explicit divisor on M1,2:

Proposition 4.4. One has the relation ν∗(Θg,1) ≡ N−
g−1 · T2 ∈ Pic(M2,1), where

T2 := {[E, x, q] ∈ M1,2 : 2x ≡ 2q}.

Proof. We fix an arbitrary point t := [C ∪x E, q] ∈ ν∗(Θg,1). Suppose first that E is a
smooth elliptic curve, that is, j(E) 6= ∞ and x 6= q. Then there exist theta-characteristics
of opposite parities ηC , ηE on C and E respectively, together with non-zero sections

σC ∈ H0
(
C, ηC ⊗OC(x)

)
and σE ∈ H0

(
E, ηE ⊗OE((g − 1)x)

)
,

such that σE(q) = 0 and ordx(σC) + ordx(σE) ≥ g − 1.
First we assume that ηC = η+

C and ηE = η−E , thus, ηE = OE . Since H0(C, η+
C ) = 0,

one obtains that ordx(σC) = 0, that is ordx(σE) = g−1, which is impossible, because σE

must vanish at q as well. Thus, one is lead to study the remaining case, when ηC = η−C
and ηE = η+

E . Since x /∈ supp(η−C ), we obtain ordx(σC) ≤ 1, and then by compatibility,

the last inequality becomes equality, while ordx(σE) = g − 2, hence η+
E = OE(x − q), or

equivalently, [E, x, q] ∈ T2. The multiplicity N−
g−1 in the expression of ν∗(Θg,1) comes

from the choices for the theta-characteristics η−C , responsible for the C-aspect of a limit
g0

g−1 on C ∪x E. It is an easy moduli count to show that the cases when j(E) = ∞,
or [E, x, q] ∈ δ0:xq (corresponding to the situation when x and q coalesce on E), do not

occur generically on a component of ν∗(Θg,1). ¤

Proposition 4.5. T2 is an irreducible divisor on M1,2 of class T2 ≡ 3ψx ∈ Pic(M1,2).

Proof. We write T2 ≡ αψx−βδ0:xq ∈ Pic(M1,2), and we need to understand the intersec-

tion of T2 with two test curves in M1,2. First, we fix a general point [E, q] ∈ M1,1 and

consider the family E1 := {[E, x, q] : x ∈ E} ⊂ M1,2. Clearly, E1 · δ0:xq = E1 · ψx = 1.

On the other hand E1 · T2 is a 0-cycle simply supported at the points x ∈ E − {q} such

that x − q ∈ Pic0(E)[2], that is, E1 · T2 = 3. This yields the relation α − β = 3.
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As a second test curve, we denote by [L, u, x, q] ∈ M0,3 the rational 3-pointed

rational curve, and define the pencil R := {[L ∪u Eλ, x, q] : λ ∈ P1} ⊂ M1,2, where

{Eλ}λ∈P1 is a pencil of plane cubic curves. Then R ∩ T2 = ∅. Since R · λ = 1 and
R · δirr = 12, we obtain the additional relation β = 0, which completes the proof. ¤

Putting together Propositions 4.1, 4.3 and 4.5, we obtain the system of equations

a + bg−1 − 12birr = 0, a − 12birr + b + b1 = 3N−
g−1, a =

1

4
N−

g , b =
1

2
N−

g , b1 =
3

2
N−

g−1.

Thus birr = 22g−6 and bg−1 = 2g−3(2g−1 + 1). This completes the proof of Theorem 0.3.

REFERENCES

[AC1] E. Arbarello and M. Cornalba, The Picard groups of the moduli space of curves, Topology 26 (1987),
153-171.

[AC2] E. Arbarello and M. Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic
geometry, Inst. Hautes Etudes Sci. Publ. Math. 88 (1998), 97-127.

[BV] I. Bauer and A. Verra, The rationality of the moduli space of genus four curves endowed with an order three
subgroup of their Jacobian, arXiv:0808.1318, Michigan Math. Journal (2010), to appear.

[C] M. Cornalba, Moduli of curves and theta-characteristics, in: Lectures on Riemann surfaces (Trieste,
1987), 560-589.

[Cu] F. Cukierman, Families of Weierstrass points, Duke Mathematical Journal 58 (1989), 317-346.
[DK] I. Dolgachev and V. Kanev, Polar covariants of plane cubics and quartics, Advances in Mathematics 98

(1993), 216-301.
[EH1] D. Eisenbud and J. Harris, Limit linear series: Basic theory, Inventiones Math. 85 (1986), 337-371.
[EH2] D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus 23 Inventiones

Math. 90 (1987), 359–387.
[EH3] D. Eisenbud and J. Harris, Irreducibility of some families of linear series with Brill-Noether number −1,
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