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Abstract. We study the codimension two locus H in Ag consisting
of principally polarized abelian varieties whose theta divisor has a sin-
gularity that is not an ordinary double point. We compute the class
[H] ∈ CH2(Ag) for every g. For g = 4, this turns out to be the locus
of Jacobians with a vanishing theta-null. For g = 5, via the Prym map
we show that H ⊂ A5 has two components, both unirational, which we
describe completely. We then determine the slope of the effective cone
of A5 and show that the component N ′

0 of the Andreotti-Mayer divisor
has minimal slope.

Introduction

The theta divisor Θ of a generic principally polarized abelian variety
(ppav) is smooth. The ppav (A,Θ) with a singular theta divisor form the
Andreotti-Mayer divisor N0 in the moduli space Ag, see [AM67] and [Bea77].
The divisor N0 has two irreducible components, see [Mum83] and [Deb92],
which are denoted θnull and N ′

0: here θnull denotes the locus of ppav for
which the theta divisor has a singularity at a two-torsion point, and N ′

0 is the
closure of the locus of ppav for which the theta divisor has a singularity not at
a two-torsion point. The theta divisor Θ of a generic ppav (A,Θ) ∈ θnull has
a unique singular point, which is a double point. Similarly, the theta divisor
of a generic element of N ′

0 has two distinct double singular points x and −x.
Using this fact, one can naturally assign multiplicities to both components
of N0 such the following equality of cycles holds, see [Mum83],[Deb92]

(1) N0 = θnull + 2N ′
0.

As it could be expected, generically for both components the double point
is an ordinary double point (that is, the quadratic tangent cone to the theta
divisor at such a point has maximal rank g — equivalently, the Hessian
matrix of the theta function at such a point is non-degenerate). Motivated by
a conjecture of H. Farkas [HF06], in [GSM08] two of the authors considered
the locus in θnull in genus 4 where the double point is not ordinary. In
[GSM07] this study was extended to arbitrary g, considering the sublocus

θg−1
null ⊂ θnull parameterizing ppav (A,Θ) with a singularity at a two-torsion
point, that is not an ordinary double point of Θ. In particular it has been
proved that

(2) θg−1
null ⊂ θnull ∩N ′

0.
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In fact the approach yielded a more precise statement: Let φ : Xg → Ag

be the universal family of ppav over the orbifold Ag and S ⊂ Xg be the
locus of singular points of theta divisors. Note that S can be viewed as a
subscheme of Xg given by the vanishing of the theta functions and all its
partial derivatives, see Section 1. Then S decomposes into three equidimen-
sional components [Deb92]: Snull, projecting to θnull, S ′, projecting to N ′

0,
and Sdec, projecting (with (g − 2)-dimensional fibers) onto A1 × Ag−1. It

is proved in [GSM07] that set-theoretically, θg−1
null is the image in Ag of the

intersection Snull ∩ S ′. An alternative proof of these results has been found
by Smith and Varley [SV12a],[SV12b].

It is natural to investigate the non-ordinary double points on the other
component N ′

0 of the Andreotti-Mayer divisor. Similarly to θg−1
null , we define

N ′g−1
0 , or, to simplify notation, H, to be the closure in N ′

0 of the locus of
ppav whose theta divisor has a non-ordinary double point singularity. Note
that H is the pushforward under φ of a subscheme H of Xg given by a
Hessian condition on theta functions. In particular H can be viewed as a
codimension 2 cycle (with multiplicities) on Ag. Since an explicit modular
form defining N ′

0 and the singular point is not known, we consider the cycle

(3) Ng−1
0 := θg−1

null + 2N ′g−1
0 = θg−1

null + 2H.

We first note that θg−1
null is a subset of H. Then, after recalling that the

Andreotti-Mayer loci Ni are defined as consisting of ppav (A,Θ) ∈ Ag with
dim Sing(Θ) ≥ i, we establish the set-theoretical inclusion Ni ⊂ H, for
i ≥ 1. From this we deduce:

Proposition 0.1. For g ≥ 5 we have θg−1
null ( H.

To further understand the situation, especially in low genus, we compute
the class:

Theorem 0.2. The class of the cycle H inside Ag is equal to

[H] =

(
g!

16
(g3 + 7g2 + 18g + 24)− (g + 4)2g−4(2g + 1)

)
λ21 ∈ CH2(Ag).

As usual, λ1 := c1(E) denotes the first Chern class of the Hodge bun-
dle and CH i denotes the Q-vector space parameterizing algebraic cycles of
codimension i with rational coefficients modulo rational equivalence. Com-
paring classes and considering the cycle-theoretic inclusion 3θ3null ⊂ H, we
get the following result, see Section 4 for details:

Theorem 0.3. In genus 4 we have the set-theoretic equality θ3null = H.

We then turn to genus 5 with the aim of obtaining a geometric description
of H ⊂ A5 via the dominant Prym map P : R6 → A5. A key role in the
study of the Prym map is played by its branch divisor, which in this case
equals N ′

0 ⊂ A5, and its ramification divisor Q ⊂ R6. We introduce the
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antiramification divisor U ⊂ R6 defined cycle-theoretically by the equality

P ∗(N ′
0) = 2Q+ U .

Using the geometry of the Prym map, we describe both Q and U explicitly in
terms of Prym-Brill-Noether theory. For a Prym curve (C, η) ∈ Rg and an
integer r ≥ −1, we recall that Vr(C, η) denotes the Prym-Brill-Noether locus
(see Section 5 for a precise definition). It is known [Wel85] that Vr(C, η) is a

Lagrangian determinantal variety of expected dimension g − 1−
(
r+1
2

)
. We

denote π : Rg → Mg the forgetful map. Our result is the following:

Theorem 0.4. The ramification divisor Q of the Prym map P : R6 → A5

equals the Prym-Brill-Noether divisor in R6, that is,

Q = {(C, η) ∈ R6 : V3(C, η) 6= 0} .
The antiramification divisor is the pull-back of the Gieseker-Petri divisor
from M6, that is, U = π∗(GP1

6,4). The divisor Q is irreducible and reduced.

As the referee pointed out to us, the irreducibility of Q (as well as that
of U) also follows from Donagi’s results [Don92] on the monodromy of the
Prym map P : R6 → A5. Apart from the Brill-Noether characterization pro-
vided by Theorem 0.4, the divisor Q has yet a third (respectively a fourth!)
geometric incarnation as the closure of the locus of points (C, η) ∈ R6 with
a linear series L ∈ W 2

6 (C), such that the sextic model ϕL(C) ⊂ P2 has a
totally tangent conic, see Theorem 8.1 (respectively as the locus of section
(C, η) ∈ R6 of Nikulin surfaces [FV11]). The rich geometry of Q enables
us to (i) compute the classes of the closures Q and U inside the Deligne-
Mumford compactification R6, then (ii) determine explicit codimension two
cycles in R6 that dominate the irreducible components of H. In this way
we find a complete geometric characterization of 5-dimensional ppav whose
theta divisor has a non-ordinary double point. First we characterize θ4null as
the image under P of a certain component of the intersection Q∩P ∗(θnull):

Theorem 0.5. A ppav (A,Θ) ∈ A5 belongs to θ4null if an only if it is lies in
the closure of the locus of Prym varieties P (C, η), where (C, η) ∈ R6 is a
curve with two vanishing theta characteristics θ1 and θ2, such that

η = θ1 ⊗ θ∨2 .

Furthermore, θ4null is unirational and [θ4null] = 27 · 44λ21 ∈ CH2(A5).

Denoting by Q5 ⊂ R6 the locus of Prym curves (C, η = θ1⊗θ∨2 ) as above,
we prove that Q5 (and hence θ4null which is the closure of P (Q5) in A5) is
unirational, by realizing its general element as a nodal curve

C ∈
∣∣∣I2

R1·R2/P
1×P

1(5, 5)
∣∣∣ ,

where R1 ∈ |O
P

1×P
1(3, 1)| and R2 ∈ |O

P
1×P

1(1, 3)|, with the vanishing
theta-nulls θ1 and θ2 being induced by the projections on the two factors.
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Observing that [H] 6= [θ4null] in CH
2(A5), the locus H must have extra ir-

reducible components corresponding to ppav with a non-ordinary singularity
that occurs generically not at a two-torsion point. We denote by H1 ⊂ A5

the union of these components, so that at the level of cycles

H = θ4null +H1,

where [H1] = 27 · 49λ21. We have the following characterization of H1:

Theorem 0.6. The locus H1 is unirational and its general point corresponds
to a Prym variety P (C, η), where (C, η) ∈ R6 is a Prym curve such that
η ∈W4(C)−W 1

4 (C) and KC ⊗ η is very ample.

As an application of this circle of ideas, we determine the slope of A5. Let
Ag be the perfect cone (first Voronoi) compactification of Ag — this is the
toroidal compactification of Ag constructed using the first Voronoi (perfect)
fan decomposition of the cone of semi-positive definite quadratic forms with
rational nullspace (see e.g. [Vor1908] for the origins, and [SB06] for recent
progress). The Picard group of Ag with rational coefficients has rank 2 (for
g ≥ 2), and it is generated by the first Chern class λ1 of the Hodge bundle
and the class of the irreducible boundary divisor D := Ag −Ag. The slope

of an effective divisor E ∈ Eff(Ag) is defined as the quantity

s(E) := inf
{a
b
: a, b > 0, aλ1 − b[D]− [E] = c[D], c > 0

}
.

If E is an effective divisor onAg with no component supported on the bound-
ary and [E] = aλ1− bD, then s(E) := a

b ≥ 0. One then defines the slope (of

the effective cone) of the moduli space as s(Ag) := infE∈Eff(Ag)
s(E). This

important invariant governs to a large extent the birational geometry of Ag;

for instance Ag is of general type if s(Ag) < g+1, and Ag is uniruled when

s(Ag) > g+1. Any effective divisor class calculation on Ag provides an up-

per bound for s(Ag). It is known [SM92] that s(A4) = 8 (and the minimal

slope is computed by the divisor J 4 of Jacobians). In the next case g = 5,

the class of the closure of the Andreotti-Mayer divisor is [N ′
0] = 108λ1−14D,

giving the upper bound s(A5) ≤ 54
7 .

Theorem 0.7. 1 The slope of A5 is computed by N ′
0, that is, s(A5) =

54
7 .

Furthermore, the Kodaira-Iitaka dimension of N ′
0 is submaximal, that is,

κ(A5, N ′
0) < dim(A5).

To prove this result, we define a partial compactification R̃6 of R6 and

via the (rational) Prym map P : R̃6 99K A5 we investigate the pull-back

P ∗(N ′
0) = 2Q̃+ Ũ + 20δ

′′

0 ,

1Added in April 2022: The published version of the paper asserts a slightly stronger
version of this result, which however does not follow from the arguments presented in this
paper. This is the corrected result.
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where Q̃ and Ũ denote the closure of Q and U respectively in R̃6, and δ
′′

0 is
the divisor of degenerate Wirtinger double covers (see Section 6 for precise
definitions). Since each of the divisors appearing in this linear system admits
a uniruled parametrization in terms of plane sextics having a totally tangent
conic, we are ultimately able to establish that N ′

0 is an extremal effective

divisor on A5.

A final application concerns the divisor in A5 of Pryms obtained from
branched covers. The Prym variety associated to a double cover f : C̃ → C
branched over two points is still a ppav. When g(C) = 5 (and only in this
case), the Prym varieties constructed in this way form an irreducible divisor
Dram := P∗(∆

ram
0 ) inside the moduli space. We have the following formula

for the class of the closure of Dram in A5:

Theorem 0.8. [Dram] = 12 (153λ1 − 19D) ∈ CH1(A5).

Since the classes [P ∗(Dram)] and δram0 are not proportional, one obtains
that the general Prym variety (A,Θ) ∈ Dram obtained from a ramified cover

C̃ → C (with g(C) = 5 and g(C̃) = 10), is also the Prym variety induced

by an étale cover C̃1 → C1 (with g(C1) = 6 and g(C̃1) = 11).

We summarize the structure of the paper. The cycle structure of H and
θg−1
null is described in Section 2, whereas the classes [θg−1

null ], [H] ∈ CH2(Ag)
are computed in Section 3. The particular case g = 4 is treated in Section 4.
After some background on singularities of Prym theta divisors (Section 5),
the different geometric realizations of the ramification and antiramification
divisors of the Prym map P : R6 → A5, as well as the corresponding class

calculations on R̃6 are presented in Sections 6 and 7. A proof of Theorem 0.7,
thus determining the slope of A5 is given in Section 8. The final sections
of the paper are devoted to a complete geometric description in terms of
Pryms of the two components of the cycle H in genus 5, see Theorems 0.5
and 0.6. We close by expressing our thanks to the referee for the many
pertinent comments which clearly improved the presentation of the paper.

1. Theta divisors and their singularities

In this section we recall notation, definitions, as well as some results from
[GSM08]. We denote Hg the Siegel upper half-space, i.e. the set of symmetric
complex g × g matrices τ with positive definite imaginary part. If σ =(
a b
c d

)
∈ Sp(2g,Z) is a symplectic matrix in g×g block form, then its action

on τ ∈ Hg is defined by σ · τ := (aτ + b)(cτ + d)−1, and the moduli space of
complex principally polarized abelian variety (ppav for short) is the quotient
Ag = Hg/ Sp(2g,Z), parameterizing pairs (Aτ , Θτ ) with Aτ = Cg/Zgτ+Zg,
an abelian variety and Θτ the (symmetric) polarization bundle. We denote
by Aτ [2] the group of two-torsion points of Aτ . Let ε, δ ∈ (Z/2Z)g, thought
of as vectors of zeros and ones; then x = τε/2+ δ/2 ∈ Aτ [2], and the shifted
bundle t∗xΘ is still a symmetric line bundle. Up to a multiplicative constant
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the unique section of the above bundle is given by the theta function with
characteristic [ε, δ] defined by

θ

[
ε
δ

]
(τ, z) :=

∑

m∈Zg

expπi

[
t(m+

ε

2
)τ(m+

ε

2
) + 2 t(m+

ε

2
)(z +

δ

2
)

]
.

We shall write θ(τ, z) for the theta function with characteristic [0, 0]. The
zero scheme of θ(τ, z), as a function of z ∈ Aτ , defines the principal polar-
ization Θτ on Aτ .

Theta functions satisfy the heat equation

∂2θ

[
ε
δ

]
(τ, z)

∂zj∂zk
= 2πi(1 + δj,k)

∂θ

[
ε
δ

]
(τ, z)

∂τjk
,

(where δj,k is Kronecker’s symbol).
The characteristic [ε, δ] is called even or odd corresponding to whether the

scalar product tεδ ∈ Z/2Z is zero or one. Consequently, depending on the

characteristic, θ

[
ε
δ

]
(τ, z) is even or odd as a function of z. A theta constant

is the evaluation at z = 0 of a theta function. All odd theta constants of
course vanish identically in τ .

A holomorphic function f : Hg → C is called a modular form of weight k
with respect to a finite index subgroup Γ ⊂ Sp(2g,Z) if

f(σ · τ) = det(cτ + d)kf(τ) ∀τ ∈ Hg, ∀σ ∈ Γ,

and if additionally f is holomorphic at all cusps of Hg/Γ. Theta constants
with characteristics are modular forms of weight 1

2 with respect to a finite
index subgroup Γg(4, 8) ⊂ Sp(2g,Z). We refer to [Igu72] for a detailed study
of theta functions.

We denote by

φ : Xg = Hg ×Cg/(Sp(2g,Z)⋊ Z)2g) → Ag = Hg/ Sp(2g,Z)

the universal family of ppav, and let Θg ⊂ Xg be the universal theta divisor
— the zero locus of θ(τ, z). Following Mumford [Mum83], we denote by
S := SingvertΘg the locus of singular points of theta divisors of ppav:
(4)

S =
⋃

τ∈Ag

SingΘτ =

{
(τ, z) ∈ Hg ×Cg : θ(τ, z) =

∂θ

∂zi
(τ, z) = 0, i = 1, . . . , g

}

(computationally, by an abuse of notation, we will often work locally on
S, thinking of it as a locus inside the cover Hg × Cg of Xg). It is known
that S ⊂ Xg is of pure codimension g + 1, and has three irreducible compo-
nents [CvdG00], denoted Snull, Sdec, and S ′. Here Snull denotes the locus of
even two-torsion points that lie on the theta divisor, given locally by g + 1
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equations
(5)
Snull :=

{
(τ, z) ∈ Xg : θ(τ, z) = 0, z = (τε+ δ)/2 for some [ε, δ] ∈ (Z/2Z)2geven

}
.

To define Sdec, recall that a ppav is called decomposable if it is isomorphic
to a product of lower-dimensional ppav. We denote then

(6) Sdec := S ∩ φ−1(A1 ×Ag−1).

Since the theta divisor of a product (A1,Θ1) × (A2,Θ2) is given by the
union (Θ1 × A2) ∪ (A1 ×Θ2), its singular locus contains Θ1 ×Θ2 and is of
codimension 2 (see the work [EL97] of Ein and Lazarsfeld for a proof of a
conjecture [ADC84] of Arbarello and De Concini that Ng−2 is in fact equal
to the decomposable locus). Thus the fibers of Sdec → A1,g−1 are all of
dimension g − 2, and the codimension of Sdec ⊂ Xg is equal to g + 1. (We
note that any other locus of products Ah ×Ag−h has codimension h(g− h),
and contributes no irreducible component of S).

Finally, S ′ is the closure of the locus of singular points of theta divisors of
indecomposable ppav that are not two-torsion points. Observe that Snull,S ′,
and Sdec all come equipped with an induced structure as determinantal
subschemes of Hg ×Cg.

The Andreotti-Mayer divisor is then defined (as a cycle) by

N0 := φ∗(S) = {τ ∈ Ag : SingΘτ 6= ∅}.

It can be shown that N0 is a divisor in Ag, which has at most two irreducible
components, see [Deb92],[Mum83].

The theta-null divisor θnull ⊂ Ag is the zero locus of the modular form

Fg(τ) :=
∏

m even

θ

[
ε
δ

]
(τ, 0).

Geometrically, it is the locus of ppav for which an even two-torsion point lies
on the theta divisor, and it can be shown that θnull = φ∗(Snull), viewed as an
equality of cycles. Similarly for the other component we have N ′

0 =
1
2φ∗(S ′)

(the one half appears because a generic ppav in N ′
0 has two singular points

±x on the theta divisor).

Remark 1.1. The two components of N0 are zero loci of modular forms
(with some character χ in genus 1 and 2): θnull is the zero locus of the
modular form Fg of weight 2g−2(2g +1), while N ′

0 must be the zero locus of
some modular form Ig of weight g!(g + 3)/4 − 2g−3(2g + 1) (the class, and
thus the weight, was computed by Mumford [Mum83]). Unlike the explicit
formula for Fg, the modular form Ig is only known explicitly for g = 4,
in which case it is the so called Schottky form [Igu81a],[Igu81b]. Various
approaches to constructing Ig explicitly were developed in [Yos99],[KSM02].
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2. Double points on theta divisors that are not ordinary

double points

We shall now concentrate on studying the local structure of a theta divisor
near its singular point. For this, we look at the tangent space to S and the
map between the tangent spaces.

Proposition 2.1. Let x0 = (τ0, z0) be a smooth point of S. Then the map
(dφ)x0

: Tx0
(S) → Tτ0(N0) is injective if and only if the Hessian matrix

H(x0) :=




∂2θ
∂z1∂z1

(x0) . . . ∂2θ
∂z1∂zg

(x0)
...

. . .
...

∂2θ
∂zg∂z1

(x0) . . . ∂2θ
∂zg∂zg

(x0)




has rank g.

Proof. Since the subvariety S ⊂ Xg is defined by the g + 1 equations (4),

the point x0 is smooth if and only if the (g(g+1)
2 + g)× (g + 1) matrix

M(τ0, z0) :=




∂θ
∂τ11

. . . ∂θ
∂τgg

∂θ
∂z1

. . . ∂θ
∂zg

∂2θ
∂z1∂τ11

. . . ∂2θ
∂z1∂τgg

∂2θ
∂z1∂z1

. . . ∂2θ
∂z1∂zg

...
. . .

...
...

. . .
...

∂2θ
∂z1∂τ11

. . . ∂2θ
∂z1∂τgg

∂2θ
∂zg∂z1

. . . ∂2θ
∂zg∂zg




evaluated at x0 = (τ0, z0) has rank g + 1. We compute

M(τ0, z0) =




∂θ
∂τ11

(x0) . . . ∂θ
∂τgg

(x0) 0 . . . 0
∂2θ

∂z1∂τ11
(x0) . . . ∂2θ

∂z1∂τgg
(x0)

∂2θ
∂z1∂z1

(x0) . . . ∂2θ
∂z1∂zg

(x0)
...

. . .
...

...
. . .

...
∂2θ

∂z1∂τ11
(x0) . . . ∂2θ

∂z1∂τgg
(x0)

∂2θ
∂zg∂z1

(x0) . . . ∂2θ
∂zg∂zg

(x0)




Since the map φ is the projection on the first g(g+1)
2 coordinates, the propo-

sition follows. �

Remark 2.2. From the heat equation for the theta function it follows that
if the Hessian matrix H(x0) has rank g, then x0 is a smooth point of S.

We also note that from the product rule for differentiation and the heat
equation it follows that the second derivative

∂2θ

[
ε
δ

]
(τ, z)

∂zj∂zk
|z=0

restricted to the locus θ

[
ε
δ

]
(τ, 0) = 0 is also a modular form for Γg(4, 8).

Since we have different, easier to handle, local defining equations (5) for
Snull, we can obtain better results in this case.
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Proposition 2.3. A point x0 ∈ Snull is a smooth point of Snull unless
∂θ
∂τij

(x0) = 0 for all 1 ≤ i, j ≤ g. The map (dφ)x0
is injective if and only if

the Hessian matrix H(x0) has rank g.

Remark 2.4. If x0 = (τ0, z0) is a smooth point of Snull, while τ0 is singular
in θnull, this implies that at least two different theta constants vanish at τ0.

Using the above framework, we get a complete description of the inter-
section Snull ∩ S ′, obtaining thus an easier proof of one of the main results
of [GSM07].

Proposition 2.5. For x0 ∈ Snull, the point x0 lies in S ′ if and only if the
rank of H(x0) is less than g.

Proof. If x0 ∈ S ′ ∩ Snull, then it is a singular point in S, hence the rank of
H(x0) is less than g by the above proposition. To obtain a proof in the other
direction, since z0 is a two-torsion point, the matrix M(τ0, z0) appearing in
the proof of the proposition above has the form

M(x0) =




∂θ
∂τ11

(x0) . . . ∂θ
∂τgg

(x0) 0 . . . 0

0 . . . 0 ∂2θ
∂z1∂z1

(x0) . . . ∂2θ
∂z1∂zg

(x0)
...

. . .
...

...
. . .

...

0 . . . 0 ∂2θ
∂zg∂z1

(x0) . . . ∂2θ
∂zg∂zg

(x0)




Hence if the rank of H(x0) is less than g, x0 is a singular point of S; thus
either it is a singular point of Snull, or it lies in the intersection Snull ∩ S ′.
The first case cannot happen for dimensional reasons (the singular locus of
Snull is codimension at least 2 within Snull, see also [CvdG00]), and thus we
must have x0 ∈ Snull ∩ S ′. �

Corollary 2.6. Set theoretically we have

φ(Snull ∩ S ′) = θg−1
null .

Remark 2.7. From the previous proof it also follows that SingSnull ⊂
Snull ∩ S ′.

Our further investigation will consider the subvariety

H := S ′g−1 := {x0 = (τ0, z0) ∈ S ′ : rkH(x0) < g} ⊂ Xg

(notice that since the derivative of a section of a line bundle is a section
of the same bundle when restricted to the zero locus of the section, this
is an algebraic subvariety of Xg). Note that H, being defined by explicit
equations in the (derivatives of) theta functions, comes equipped with a
scheme structure. Then we define the pushforward cycle

2H := 2N ′g−1
0 := φ∗(H) ⊂ Ag

Unlike in the case of the theta-null, H 6⊂ SingS. Indeed, if z0 is not a two-
torsion point, the condition rkH(x0) < g does not imply that rkM(τ0, z0) <
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g + 1, as the matrix M at z0 does not have as many zero entries as in the
theta-null case. Still, we have the set-theoretic inclusions

Snull ∩ S ′ ⊂ H and θg−1
null ⊂ H.

The locus H is given locally by (g+2) equations (the g+1 equations for
S ′ together with the vanishing of the Hessian determinant), and thus each
irreducible component of H has codimension at most g+2 in Xg. However,
we note that Sdec ⊂ H ⊂ S is an irreducible component of codimension
g + 1. We now check that all other irreducible components of H are indeed
of expected codimension g + 2. Indeed, we first note that by the results of
Ciliberto and van der Geer [CvdG08] the Andreotti-Mayer locus Nk (pa-
rameterizing ppav whose theta divisor has singular locus of dimension at
least k) with 1 ≤ k ≤ g − 3 has codimension at least k + 2 in Ag, and thus
its preimage in S cannot be an irreducible component of S for dimension
reasons. Now for both S ′ and Snull it is known that generically the singular
points of the theta divisors are ordinary double points, and thus H cannot
be equal to either of these loci. Finally, by the results of Ein and Lazars-
feld [EL97] the locus Ng−2 is equal to the locus of indecomposable ppav,
and each component Ah ×Ag−h of it has codimension too high, except for
h = 1.

The above discussion leads to the following result:

Proposition 2.8. The Andreotti-Mayer locus N1 is contained in H.

Proof. Indeed, for τ0 ∈ N1 we let z(t) ⊂ SingΘτ be a curve of singular
points such that z(0) = z0 is a smooth point of the curve. Differentiating
(4) with respect to t, we get g non-zero equations (the derivative of the first
one will vanish):

g∑

j=1

∂2θ(τ0, z(t))

∂zi∂zj

∂zj(t)

∂t
= 0.

Denoting

v :=

(
∂z1
∂t

, . . . ,
∂zg
∂t

)
|t=0

this means that H(x0) · v = 0, and since by our assumption z0 is a smooth
point of the curve and thus v 6= 0, the matrix H(x0) has a kernel, and in
particular is not of maximal rank. �

Corollary 2.9. For g ≥ 5 the locus of Jacobians Jg is contained in H.

Hence for g ≥ 5 set-theoretically θg−1
null ( H.

Proof. Indeed, we have Jg ⊂ N1 ⊂ H for g ≥ 5. However, since for all g the

divisor θnull does not contain Jg, we must have Jg ⊂ H \ θg−1
null . �

10



3. Class computations in cohomology

In this section we compute the class of the components of the expected
dimension of the loci H and H in Chow and cohomology rings (our compu-
tation works in both, as we only use Chern classes of vector bundles) of Xg

and Ag, respectively.
Recall that Mumford [Mum83] computed the class of N ′

0 in the Picard
group of the partial toroidal compactification of the moduli space Ag (the
class of θnull is easier, and was computed previously by Freitag [Fre83]). We

shall compute the classes of the codimension 2 cycles H and θg−1
null on Ag.

As a consequence we will obtain a complete description of H in genus 4,
rederive some result of [GSM08], and reprove that for g ≥ 5 the locus H has

other components besides θg−1
null . Debarre [Deb92, Section 4] computed the

class of the intersection θnull∩N ′
0 and used this to show that this intersection

is not irreducible. In spirit our computation is similar, though much more
involved.

For the universal family φ : Xg → Ag we denote by ΩXg/Ag
the relative

cotangent bundle, by E := φ∗ΩXg/Ag
we denote its pushforward — the rank

g vector bundle that is called the Hodge bundle. Then the Hodge class
λ1 := c1(E) is the Chern class of the line bundle of modular forms of weight
one on Ag.

The basic tool for our computation of pushforwards is the following:

Lemma 3.1. The pushforward under φ of powers of the universal theta
divisor Θ ⊂ Xg can be computed as follows:

φ∗([Θ
k]) =





0 if k < g

g! if k = g
(g+1)!

2 λ1 if k = g + 1
(g+2)!

8 λ21 if k = g + 2

Proof. The first three cases are consequence of the computation in [Mum83,
page 373]. The last case is the next step of the same computation, recalling
that c2(E) = λ21/2. In full generality the pushforwards of the universal theta
divisor were computed and studied in [vdG99] (note that the universal theta
divisor trivialized along the zero section, that is, the class [Θ]−λ1/2, is used
there, and it is shown that φ∗

(
([Θ]− λ1/2)

k
)
= 0 unless k = g). �

Note that the locus S is given as the scheme of zeroes of theta function
and its derivatives, i.e. given by zeroes of a section of ΩXg/Ag

(Θ)⊗OXg(Θ)
(see [Mum83]). Hence

[N0] = φ∗

(
cg

(
ΩXg/Ag

(Θ)⊗OXg
OΘ

))
.

Recall now that Sg−1 ⊂ S is defined by the equation det H(x0) = 0. On
S, each second derivative of the theta function is a section of Θ, and the
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determinant of the Hessian matrix is known (see [GSM07],[dJ10]) to be a
section of

OXg(gΘ)⊗ φ∗(detE)⊗2 ⊗OS .

Using the above formula for the class of S, to get H we will need to compute
the pushforward

φ∗
(
cg

(
ΩXg/Ag

(Θ)|Θ
)
· (gΘ+ 2φ∗λ1)

)

The computation becomes rather delicate since Sg−1 is not equidimen-
sional. We set

Sindec := S \ Sdec = S ′ ∪ Snull,

which is then purely of codimension g + 2 in Xg, and thus we have

[Sg−1
indec] = [Sindec] · (g[Θ] + 2λ1) ∈ CHg+2(Xg).

However, for dimension reasons it turns out that we often do not need to
deal with the class of Sdec:

Proposition 3.2. For g ≥ 4 we have the equality of codimension 2 classes
on Ag:

[Ng−1
0 ] = [Ng−1

0, indec] := [φ∗(Sg−1
indec)]

Moreover this class can be computed as

[Ng−1
0 ] =

g!

8
(g3 + 7g2 + 18g + 24)λ21 ∈ CH2(Ag).

Proof. The first statement is a consequence of the fact that the map φ has
(g − 2)-dimensional fiber along Sdec, and generically 0-dimensional fibers
over Sindec. (Note that this is the place in the argument where we are

using the assumption g ≥ 4 to ensure that Sg−1
indec is in fact non-empty, and

that the codimension of its image under φ is lower than the codimension of
A1 ×Ag−1.) We now compute

[Ng−1
0 ] = φ∗

(
cg

(
ΩXg/Ag

(Θ) ·Θ
)
· (gΘ+ 2φ∗λ1)

)

= φ∗
(
(Θg +Θg−1φ∗λ1 +Θg−2φ∗λ2 + . . . ) · (gΘ2 + 2Θφ∗λ1)

)

= φ∗

(
g

(
Θg+2 +Θg+1φ∗λ1 +Θg φ

∗λ21
2

)
+ (2Θg+1φ∗λ1 + 2Θgφ∗λ21)

)

=

(
g(g + 2)!

8
+
g(g + 1)!

2
+
g(g)!

2
+ (g + 1)! + 2g!

)
λ21

=
g!

8
(g3 + 7g2 + 18g + 24)λ21.

�

We now compute the class of the locus θg−1
null : recall that a theta constant

is a modular form of weight 1
2 , and that the determinant of the Hessian
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matrix of θ

[
ε
δ

]
(τ, z) evaluated at z = 0 is a modular form of weight g+4

2

along the zero locus of θ

[
ε
δ

]
(τ) (see [GSM08],[dJ10]). We thus get:

Proposition 3.3. For g ≥ 2 we have

[θg−1
null ] = (g + 4)2g−3(2g + 1)λ21.

Proof. Indeed, we have

θg−1
null =




τ ∈ Hg : ∃[ε, δ] even , θ

[
ε
δ

]
(τ) = det



∂2θ

[
ε
δ

]
(τ, z)

∂zj∂zk


 |z=0 = 0




,

Since there are 2g−1(2g + 1) even characteristics, for each of them we get a
contribution of λ1/2 (for the zero locus of the corresponding theta constant)
times (g + 4)λ1/2 (for the Hessian). �

The proof of Theorem 0.2 comes by subtraction using the class formulas
established in Propositions 3.2 and 3.3, while taking into account the relation
given in formula (3).

4. The case g = 4

In this section we will work out the situation for genus 4 in detail, even-
tually proving Theorem 0.3. By the above formulas for g = 4 we have

[θ3null] = 272λ21; [N3
0 ] = 3 · 272λ21.

Moreover, going back from Ng−1
0 to H = N ′g−1

0 , we recall that for arbitrary

genus by definition we have Ng−1
0 = θg−1

null +2H, and since at the intersection
of the two components θnull and N

′
0 the singular points lie on both, we also

have that set-theoretically
θg−1
null ⊂ H

As an immediate consequence we obtain:

Proposition 4.1. The following identity holds at the level of codimension
two cycles on A4:

N3
0 = 3θ3null.

Proof. From the formulas above we see that the cycle 2θ3null appears inside
2N ′3

0 , and thus that 3θ3null is a subcycle of N3
0 . Since the Chern classes are

equal and θ3null is equidimensional, we need to rule out the possibility of
N3

0 having an extra lower dimensional component. However, for genus 4
we know geometrically that N ′

0 is the locus of Jacobians. Using Riemann’s
Singularity Theorem for genus 4 curves we then see that the period matrix
of a Jacobian is in N ′3

0 if and only if its theta divisor is singular at a two-
torsion point, i.e. if this Jacobian lies in θ3null (notice that this reproves a
result of [GSM08]). �
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The proof of Theorem 0.3 is an immediate consequence of the above facts.
We can prove something more: let I4 be the Schottky modular form of weight
8 defining the Jacobian locus. Let then

detD(I4) := det




∂I4
∂τ11

1
2

∂I4
∂τ12

. . . 1
2

∂I4
∂τ14

1
2

∂I4
∂τ21

∂I4
∂τ22

. . . 1
2

∂I4
∂τ24

. . . . . . . . . . . .
1
2

∂I4
∂τ41

. . . . . . ∂I4
∂τ44




The restriction of this determinant to the zero locus of I4 is a modular form
of weight 34 = 8 · 4 + 2. By Proposition 2.1 we know that for a point in
N ′

0 \H the matrix D(I4) is proportional to the Hessian matrix H(x0), hence
it vanishes exactly along θ3null. The class of the cycle

{I4 = detD(I4) = 0}
is 8 · 34λ21 = 272λ21. Thus we obtain

Proposition 4.2. The locus θ3null ⊂ A4 is a complete intersection given by

I4 = detD(I4) = 0.

We observe that, by Riemann’s Theta Singularity theorem, this is the
locus of Jacobians with theta divisor singular at a two-torsion point. More-
over, the form

√
F4 (recall that Fg is the product of all even theta constants)

is well-defined along the Jacobian locus and it has the same weight, hence
we get a different proof of the following result recently obtained by Matone
and Volpato [MV11]:

Corollary 4.3. On J4 we have the equality
√
F4 = c detD(I4) for some

constant c. The locus θ3null can also be given by equations

I4 =
√
F4 = 0.

Contrary to the situation in genus 4, for higher genera we know that we
have other components, see Corollary 2.9. This fact can also be deduced
from our class computation as follows.

Proof of Proposition 0.1. Recall that the statement we are proving is that
at the level of effective cycles θg−1

null ( H for any g ≥ 5. We first note that the
above discussion for the genus 4 case shows that the cycle-theoretic inclusion
holds. Secondly, since we have computed both classes, we see that for g ≥ 5
the class of Ng−1

0 is not equal to 3 times the class of θg−1
null . In fact the growth

orders of the degrees of these two classes are respectively

deg θg−1
null ∼ 4g−4 deg θ3null; degNg−1

0 ∼ g!

4!
degN3

0 ,

and one would thus expect many additional components. �

The rest of the paper is devoted to studying the geometry for g = 5 in
detail; in this case we will be able to describe all components explicitly, and
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will also obtain many results describing the classical Prym geometry of the
situation.

5. Prym theta divisors and their singularities

While for higher g the geometry of the locus H ⊂ Ag appears quite
intricate, for g = 5 one can use the Prym map P : R6 → A5. We begin by
setting the notation and reviewing the basic facts about Prym varieties and
their moduli, which will be used throughout the rest of the paper.

Let Rg be the moduli space of pairs (C, η) with [C] ∈ Mg, and η a non-

zero two-torsion point of the Jacobian Pic0(C). We denote by f : C̃ → C

the étale double cover induced by η (so the genus of C̃ is equal to 2g − 1),

by i : C̃ → C̃ the involution exchanging the sheets of f , and by ϕKC⊗η :
C → PH0(C,KC ⊗ η)∨ the Prym-canonical map. The map ϕKC⊗η is an

embedding if and only if η /∈ C2 − C2 (where we denote Ck := Symk(C)).
We recall the definition of the Prym map P : Rg → Ag−1. Consider the

norm map Nmf : Pic2g−2(C̃) → Pic2g−2(C) induced by the double cover f .
The even component of the preimage

Nm−1
f (KC)

+ :=
{
L ∈ Pic2g−2(C̃) : Nmf (L) = KC , h

0(C̃, L) ≡ 0 mod 2
}

is then an abelian variety of dimension g−1. Denoting by ΘC̃ ⊂ Pic2g−2(C̃)
the Riemann theta divisor, scheme-theoretically we have the following equal-
ity ΘC̃ |Nm−1

f
(KC)+ = 2Ξ, where Ξ is a principal polarization. The Prym

variety is defined to be the ppav

P (C, η) :=
(
Nm−1

f (KC)
+,Ξ

)
∈ Ag−1.

The polarization divisor can be described explicitly following [Mum74]:

Ξ(C, η) := {L ∈ Nm−1
f (KC)

+ : h0(C̃, L) > 0}.
A key role in what follows is played by the Prym-Petri map

µ−L : ∧2H0(C̃, L) → H0(C,KC ⊗ η), u ∧ v 7→ u · i∗(v)− v · i∗(u),
where one makes the usual identification H0(C,KC ⊗ η) = H0(C̃,KC̃)

−

with the (−1) eigenspace under the involution i. Following [Wel85], for
(C, η) ∈ Rg and r ≥ −1, we define the determinantal locus

Vr(C, η) := {L ∈ Nm−1
f (KC) : h

0(L) ≥ r + 1, h0(L) ≡ r + 1 mod 2}.

For a general Prym curve (C, η) ∈ Rg, the map µ−L is injective for every

L ∈ Nm−1
f (KC), and dimVr(C, η) = g − 1−

(
r+1
2

)
, see [Wel85].

For a point L ∈ Ξ, we recall the description of the tangent cone TCL(Ξ).

Suppose h0(C̃, L) = 2m ≥ 2 and we fix a basis {s1 . . . , s2m} of H0(C̃, L).
Consider the skew-symmetric matrix

ML :=
(
µ−L (sk ∧ sj)

)
1≤k,j≤2m
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and the pfaffian Pf(L) :=
√

det(ML) ∈ SymmH0(C,KC ⊗ η). Via the
identification TL(P (C, η)) = H0(C,KC ⊗η)∨ we have the following result of
[Mum74]:

Theorem 5.1. If h0(C̃, L) = 2 then Pf(L) = 0 is the equation of the pro-
jectivized tangent space PTL(Ξ). If m ≥ 2 then L ∈ Sing(Ξ) and either
Pf(L) ≡ 0, in which case multL(Ξ) ≥ m + 1, or else, Pf(L) = 0 is the
equation of the tangent cone PTCL(Ξ).

Note that one can have L ∈ Sing(Ξ) even when m = 1 and Pf(L) is
identically zero, so that the Prym theta divisor Ξ can have two types of
singularities, as follows:

Definition 5.2. For a point L ∈ Sing(Ξ), one says that

(1) L is a stable singularity if h0(C̃, L) = 2m ≥ 4,
(2) L is an exceptional singularity if L = f∗(M)⊗OC̃(B), whereM ∈ Pic(C)

is a line bundle with h0(C,M) ≥ 2 and B is an effective divisor on C.

Let Singstf (Ξ) = V3(C, η) be the locus of stable singularities and Singexf (Ξ)

the locus of exceptional singularities. Clearly Sing(Ξ) = Singstf (Ξ)∪Singexf (Ξ).

Both these notions depend on the étale double cover f : C̃ → C and are
not intrinsic to Ξ. Furthermore, there can be singularities that are simulta-
neously stable and exceptional. Every singularity of a 4-dimensional theta
divisor Ξ can in fact be realized as both a stable and an exceptional singu-
larity in different incarnations of (A,Ξ) ∈ A5 as a Prym variety.

For a decomposable vector 0 6= u ∧ v ∈ ∧2H0(C̃, L), we set

div(u) := Du +B, div(v) := Dv +B,

where Du, Dv have no common components and B ≥ 0 is an effective divisor
on C. The next lemma is well known, see [ACGH85, Appendix C]:

Lemma 5.3. For 0 6= u ∧ v ∈ ∧2H0(C̃, L) the following are equivalent.

(1) µ−L (u ∧ v) = 0.
(2) Du, Dv ∈ |f∗M | where M ∈ Pic(C) with h0(C,M) ≥ 2.

In such a case we write L = f∗(M)⊗OC̃(B), henceKC =M⊗2⊗OC(f∗(B)),

in particular h0(C,KC ⊗ M⊗(−2)) ≥ 1, and the Petri map µ0(M) is not
injective. In particular, Singexf (Ξ) = ∅ if C satisfied the Petri theorem.

Suppose L ∈ V3(C, η) is a quadratic stable singularity, hence h0(C̃, L) = 4
and Pf(L) 6= 0. Setting P5 := P(∧2H0(L)∨) and Pg−2 := P(H0(KC ⊗η)∨),
we consider the projectivized dual of the Prym-Petri map

δ := P
(
(µ−L )

∨
)
: Pg−2 → P5.

The Plücker embedding of the Grassmannian G∗ := G(2, H0(L)∨) ⊂ P5

is a rank 6 quadric whose preimage QL := δ−1(G∗) is defined precisely by
the Pfaffian Pf(L). Note also that rk(QL) ≤ rk(µ−L ). On the other hand let
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G := G(2, H0(L)) ⊂ P(∧2H0(L)) be the dual Grassmannian. It is again a
standard exercise in linear algebra to show the equivalence

rk(QL) ≤ 4 ⇐⇒ G ∩P
(
Ker(µ−L )

)
6= ∅.

For a point L ∈ Singstf (Ξ) one has multL(Ξ) = 2 if and only if h0(C,M) ≤ 2

for any line bundle M on C such that h0(C̃, L⊗f∗M∨) ≥ 1, see [SV04]. We
summarize this discussion as follows:

Proposition 5.4. For a quadratic singularity L ∈ Singstf (Ξ) the following
conditions are equivalent:

(1) rk(QL) ≤ 4.
(2) G ∩P

(
Ker(µ−L )

)
6= ∅.

(3) L ∈ Singstf (Ξ) ∩ Singexf (Ξ).

6. Petri divisors and the Prym map in genus 6

This section is devoted to the study of singularities of Prym theta divisors
of dimension 4 via the Prym map P : R6 → A5.

We review a few facts about the Deligne-Mumford compactification Rg

of Rg, and refer to [Don92] and [FL10] for details. The space Rg is the

coarse moduli space associated to the Deligne-Mumford stack Rg of stable

Prym curves of genus g. The geometric points of Rg correspond to triples
(X, η, β), where X is a quasi-stable curve with pa(X) = g, η ∈ Pic(X) is a
line bundle of total degree 0 on X such that ηE = OE(1) for each smooth
rational component E ⊂ X with |E ∩ X − E| = 2 (such a component is
called exceptional), and β : η⊗2 → OX is a sheaf homomorphism whose
restriction to any non-exceptional component is an isomorphism. Denoting
π : Rg → Mg the forgetful map, one has the formula [FL10, Example 1.4]

(7) π∗(δ0) = δ
′

0 + δ
′′

0 + 2δram0 ∈ CH1(Rg),

where δ
′

0 := [∆
′

0], δ
′′

0 := [∆
′′

0 ], and δram0 := [∆ram
0 ] are boundary divisor

classes on Rg whose meaning we recall. Let us fix a general point [Cxy] ∈ ∆0

corresponding to a smooth 2-pointed curve (C, x, y) of genus g − 1 and the

normalization map ν : C → Cxy, where ν(x) = ν(y). A general point of ∆
′

0

(respectively of ∆
′′

0) corresponds to a stable Prym curve [Cxy, η], where η ∈
Pic0(Cxy)[2] and ν

∗(η) ∈ Pic0(C) is non-trivial (respectively, ν∗(η) = OC).

A general point of ∆ram
0 is of the form (X, η), where X := C ∪{x,y} P

1 is

a quasi-stable curve with pa(X) = g, whereas η ∈ Pic0(X) is a line bundle
characterized by η

P
1 = O

P
1(1) and η⊗2

C = OC(−x− y).
For 1 ≤ i ≤ [ g2 ] we have a splitting of the pull-back of the boundary

(8) π∗(δi) = δi + δg−i + δi:g−i ∈ CH1(Rg),

where the boundary classes δi := [∆i], δg−i := [∆g−i] and δi:g−i := [∆i:g−i]
correspond to the possibilities of choosing a pair of two-torsion line bundles
on a smooth curve of genus i and one of genus g−i, such that the first one, the
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second one, or neither of the corresponding bundles is trivial, respectively,
see [FL10].

Often we content ourselves with working on the partial compactification

R̃g := π−1(Mg ∪∆0) of Rg. When there is no danger of confusion, we still

denote by δ
′′

0 , δ
′′

0 and δram0 the restrictions of the corresponding boundary

classes to R̃g. Note that CH1(R̃g) = Q〈λ, δ′0, δ
′′

0 , δ
ram
0 〉.

The extension of the (rational) Prym map P : Rg 99K Ag−1 over the

general point of each of the boundary divisors of Rg is well-understood,

see e.g. [Don92]. The Prym map contracts ∆
′′

0 and all boundary divisors
π∗(∆i) for 1 ≤ i ≤ ⌊g2⌋. The Prym variety corresponding to a general

point [Cxy, η] ∈ ∆
′′

0 as above is the Jacobian Jac(C) of the normalization.

Thus P (∆
′′

0) = Jg−1. The pullback map P ∗ on divisors has recently been
described in [GSM11]: one has

(9) P ∗(λ1) = λ− δram0

4
, P ∗(D) = δ

′

0.

Remark 6.1. We sketch an alternative way of deriving the first formula
in (9). For each (C, η) ∈ Rg, there is a canonical identification of vector
bundles T∨

P (C,η) = H0(C,KC ⊗ η) ⊗ OP (C,η). The pull-back P ∗(E) of the

Hodge bundle can be identified with the vector bundle N1 on Rg with fiber

N1(C, η) = H0(C, ωC ⊗ η), over each point (C, η) ∈ Rg (we skip details
showing that this description carries over the boundary as well). Therefore
P ∗(λ1) = c1(N1) = λ− 1

4δ
ram
0 , where we refer to [FL10] for the last formula.

We have seen that for [C̃
f→ C] ∈ Rg with Singexf (Ξ) 6= ∅, the curve C

fails the Petri theorem. Let GP1
g,k ⊂ Mg denote the Gieseker-Petri locus

whose general element is a curve C carrying a globally generated pencil
M ∈W 1

k (C) with h
0(C,M) = 2, such that the multiplication map

µ0(M) : H0(C,M)⊗H0(C,KC ⊗M∨) → H0(C,KC)

is not injective. It is proved in [Far05] that for g+2
2 ≤ k ≤ g − 1, the locus

GP1
g,k has a divisorial component. As usual, we denote by Mr

g,d the locus

of curves [C] ∈ Mg such that W r
d (C) 6= ∅.

In the case of M6 there are two Gieseker-Petri loci, both irreducible of
pure codimension 1, described as follows:
• The locus GP1

6,4 of curves [C] ∈ M6 having a pencil M ∈ W 1
4 (C) with

h0(C,KC ⊗M⊗(−2)) ≥ 1. We have the following formula for the class of its
closure in M6, see [EH87]:

[GP1
6,4] = 94λ− 12δ0 − 50δ1 − 78δ2 − 88δ3 ∈ CH1(M6).

• The locus GP1
6,5 of curves with a vanishing theta characteristic; then

[GP1
6,5] = 8 (65λ− 8δ0 − 31δ1 − 45δ2 − 49δ3) ∈ CH1(M6).
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The Prym map P : R6 → A5 is dominant of degree 27 and its Galois
group equals the Weyl group of E6, see [DS81],[Don92]. The differential of
the Prym map at the level of stacks

(dP )(C,η) : H
0(C,K⊗2

C )∨ →
(
Sym2H0(C,KC ⊗ η)

)∨

is the dual of the multiplication map at the level of global sections for the
Prym-canonical map ϕKC⊗η. Thus the ramification divisor of P is a Cartier
divisor on R6 supported on the locus

Q :=

{
(C, η) ∈ R6 : Sym

2H0(C,KC ⊗ η)
≇−→ H0(C,K⊗2

C )

}
.

The closure of P (Q) inside A5 is the branch divisor of P . At a general
point (A,Θ) ∈ P (Q) the fiber of P has the structure of the set of lines on
a one-nodal cubic surface, that is, P−1(A,Θ) ∩ Q consists of 6 ramification
points corresponding to the 6 lines through the node. The remaining 15
points of P−1(A,Θ) are in correspondence with the 15 lines on the one-
nodal cubic surface not passing through the node. Since deg(P ) = 27 it
follows that P has simple ramification and Q is reduced. Donagi [Don92,
p. 93] established that Q is irreducible by showing that the monodromy acts
transitively on a general fiber of P|Q. We sketch a different proof which
uses the irreducibility of the moduli space of polarized Nikulin surfaces. We
summarize these results as follows:

Proposition 6.2. Set-theoretically, the branch divisor of the map P is equal
to the closure N ′

0 of P (Q) in A5. At the level of cycles, P∗[Q] = 6[N ′
0].

We turn our attention to the geometry of Q. First we compute the class

of its closure in R̃6, then we link it to Prym-Brill-Noether theory:

Theorem 6.3. The ramification divisor Q ⊂ R6 is irreducible. The class

of its closure Q̃ in R̃6 equals

[Q̃] = 7λ− δ
′

0 −
3

2
δram0 − c

δ
′′

0

δ
′′

0 ∈ CH1(R̃6),

where we have the estimate c
δ
′′

0

≥ 4.

Proof. The irreducibility of Q follows from [FV11, Theorem 0.5], where it is
proved that Q can be realized as the image of a projective bundle over the
irreducible moduli space FN

6 of polarized Nikulin K3 surfaces of genus 6.

To estimate the class of the closure Q̃ of Q in R̃6, we set up two tautological

vector bundles N1 and N2 over R̃6 having fibers

N1(X, η) := H0(X,ωX ⊗ η) and N2(X, η) := H0(X,ω⊗2
X ⊗ η⊗2)

over a point (X, η) ∈ R̃6. There is a morphism φ : Sym2(N1) → N2 between
vector bundles of the same rank given by multiplication of Prym-canonical
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forms, and we denote by Z the degeneracy locus of φ. Using [FL10, Propo-

sition 1.7] we have the following formulas in CH1(R̃6)

c1(N1) = λ− 1

4
δram0 and c1(N2) = 13λ− δ

′

0 − δ
′′

0 − 3δram0 ,

thus [Z] = c1(N2)−6c1(N1) = 7λ−δ′0−δ
′′

0− 3
2δ

ram
0 . By definition, Q = Z∩R6.

Furthermore, φ is non-degenerate at a general point of ∆
′

0 and ∆ram
0 , hence

the difference Z − Q̃ is an effective divisor supported only on ∆
′′

0 .

Assume now that (X, η) ∈ ∆
′′

0 is a generic point corresponding to a nor-
malization map ν : C → X, where [C, x, y] ∈ M5,2 and x, y ∈ C are distinct
points such that ν(x) = ν(y). Since ν∗(η) = OC , we obtain an identification
H0(X,ωX ⊗ η) = H0(C,KC) whereas H0(X,ω⊗2

X ⊗ η⊗2) is a codimension

one subspace of H0(C,K⊗2
C (2x+ 2y)) described by a residue condition at x

and y. It is straightforward to check that the kernel

Kerφ(X, η) = Ker
{
Sym2H0(C,KC) → H0(C,K⊗2

C )
}

has dimension 3. Thus [Z]− [Q̃]− 3δ
′′

0 is effective supported on ∆
′′

0 , which
implies that c

δ
′′

0

≥ 4. �

Remark 6.4. We shall prove later that in fact c
δ
′′

0

= 4.

Even though the locus Q is defined in terms of syzygies of Prym-canonical
curves, its points have a characterization in terms of stable singularities of
Prym theta divisors.

Theorem 6.5. The theta divisor of a Prym variety P (C, η) ∈ A5 has a
stable singularity if and only if P ramifies at the point (C, η), that is,

Q =
{
(C, η) ∈ R6 : Sing

st
(C,η)(Ξ) 6= ∅

}
.

Proof. Let us denote by W := {(C, η) ∈ R6 : V3(C, η) 6= ∅} the Prym-Brill-
Noether locus corresponding to stable singularities of Prym theta divisors.
Our aim is to show that W = Q; we begin by establishing the inclusion
W ⊂ Q. First note that if [C] ∈ M6 is trigonal, for any two-torsion point
η ∈ Pic0(C)[2] − {OC} we can write KC ⊗ η = A ⊗ A′, where A ∈ W 1

3 (C)
and A′ ∈W 1

7 (C). This implies that (C, η) ∈ Q.

Fix now (C, η) ∈ R6 and a line bundle L ∈ V3(C, η). If h
0(C̃, L) ≥ 6, then

C̃ (and hence C as well) must be hyperelliptic, so (C, η) ∈ Q by the previous

remark. We may thus assume that h0(C̃, L) = 4 and consider the associated
Pfaffian quadric QL ∈ Sym2H0(C,KC ⊗ η). If QL 6= 0, then it contains the
Prym-canonical model ϕKC⊗η(C), in particular (C, η) ∈ Q. If QL ≡ 0, then
there exists M ∈ Pic(C) with h0(C,M) ≥ 3 and an effective divisor D on

C̃, such that L = f∗(M) ⊗ OC̃(B). If deg(M) ≤ 4 then C is hyperelliptic,
hence (C, η) ∈ Q. If deg(M) = 5, then B = 0 and C is a smooth plane
quintic such that h0(C,M ⊗ η) = 1. It is known, see [Don92, Section 4.3],
that in this case P (C, η) is the intermediate Jacobian of a cubic threefold
and the differential (dP )(C,η) has corank 2, thus once more (C, η) ∈ Q.
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Therefore W ⊂ Q. We claim that W has at least a divisorial component,
which follows by exhibiting a point (C, η) ∈ R6 and a line bundle L ∈
V3(C, η) such that µ−L is surjective. Assuming this for a moment, we conclude
that W = Q by invoking the irreducibility of Q.

To finish the proof we use a realization of Prym curves (C, η) ∈ R6 with
V3(C, η) 6= ∅ resembling [FV11, Section 2]. For a line bundle L ∈ V3(C, η)

with h0(C̃, L) = 4, if µ+L : Sym2H0(C̃, L) → H0(C,KC) denotes the i∗-
invariant part of the Petri map, one has the following commutative diagram:

C̃
(L,i∗L)

//

f

��

P3 ×P3

q

��

,,❨❨❨
❨❨

❨❨
❨❨

❨❨
❨❨

❨❨
❨

P15 = P
(
H0(L)∨ ⊗H0(L)∨

)

rr❡ ❡
❡

❡
❡

❡
❡

C
µ+

L
//P9 = P(Sym2H0(L)∨)

In this diagram q : P3 × P3 → P9 is the map a ⊗ b 7→ a ⊗ b + b ⊗ a
into the projective space of symmetric tensors. Reversing this construction,
if ι ∈ Aut(P3 × P3) denotes the involution interchanging the two factors,
the complete intersection of P3 × P3 with 4 general ι∗-invariant hyper-
planes in H0(I

P
3×P

3(1, 1))+ and one general ι∗-anti-invariant hyperplane

in H0(I
P

3×P
3(1, 1))− is a smooth curve C̃ ⊂ P3 × P3; the automorphism

ι|C induces a double cover f : C̃ → C such that Ker(µ−L ) has 1-dimensional

kernel corresponding to the unique element in H0(I
P

3×P
3(1, 1))−. For more

details on this type of argument, we refer to [FV11]. �

7. The antiramification divisor of the Prym map

In this section we describe geometrically the antiramification divisor U of
the map P : R6 → A5, defined via the equality of divisors

(10) P ∗(N ′
0) = 2Q+ U .

For a general curve [C] ∈ GP1
6,4, if M ∈ W 1

4 (C) denotes the pencil such
that µ0(M) is not injective, we let x+ y ∈ C2 be the support of the unique

section of KC ⊗M⊗(−2). We consider the four line bundles

Lu,v := f∗M ⊗OC̃(xu + yv) ∈ Nm−1
f (KC),

where 1 ≤ u, v ≤ 2 and f(xu) = x, f(yv) = y. Using the parity flipping

lemma of [Mum74], exactly two of the quantities h0(C̃, Lu,v) are equal to 2,
the other being equal to 3, that is, Singexf (Ξ) contains at least two points.

Hence π∗(GP1
6,4) ⊂ U . Using Theorem 6.3, equality (10), and the formula

for [GP1
6,4] ∈ CH1(M6), we compute

[U ] = P ∗([N ′
0])− 2[Q] = 108λ− 14λ = π∗([GP1

6,4]) ∈ CH1(R6).

Since the λ-coefficient of any non-trivial effective divisor class on R6 must
be strictly positive, we obtain the following result:
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Proposition 7.1. We have the following equality of divisors on R6:

U = π∗(GP1
6,4).

We now determine the pull-back of N ′
0 under the map P : R̃6 99K A5. As

usual, Ũ denotes the closure of U inside R̃6.

Theorem 7.2. We have the following equality of divisors on R̃6:

P ∗(N ′
0) = 2Q̃+ Ũ + 20∆

′′

0 .

Proof. We use the formula [N ′
0] = 108λ1 − 14D, as well as Theorem 6.3 and

formula (9) in order to note that the effective class P ∗(N ′
0)−2Q−π∗(GP1

6,4)

is supported only on the boundary divisor ∆
′′

0 .

We now prove that the multiplicity of ∆
′′

0 in P ∗(N ′
0) equals 20, or equiva-

lently mult
∆

′′

0

(P ∗(N0)) = 40, since P (∆
′′

0) = J5 * θnull. Let Ã5 := BlJ5
(A5)

be the blowup of A5 along the Jacobian locus and denote by E ⊂ Ã5 the ex-
ceptional divisor. Then E is a P2-bundle over J5 with the fiber over a point
(Jac(C),ΘC) ∈ J5 being identified with the space P(I2(KC)

∨) of pencils
of quadrics containing the canonical curve C ⊂ P4. One can lift the Prym

map to a map P̃ : R̃6 99K Ã5 by setting for a general point (Cxy, η) ∈ ∆
′′

0

P̃ (Cxy, η) := ((Jac(C),ΘC), qxy) ∈ Ã5,

where qxy ∈ P(I2(KC)
∨) is the pencil of quadrics containing the union

C ∪ 〈x, y〉 ⊂ P4. Furthermore, P̃ ∗(E) = ∆ram
0 , showing that

mult
∆

′′

0

P ∗(N0) = multJ5
(N0).

To estimate the latter multiplicity we consider a general one-parameter fam-
ily j : U → A5 from a disc U ∋ 0 such that j(0) = (Jac(C),ΘC), with
[C] ∈ M5 being a general curve. Let ΘU := U ×A5

Θ → U be the rela-
tive theta divisor over U . The image of the differential (dj)0(T0(U)) can be
viewed as a hyperplane h ⊂ P

(
Sym2H0(KC)

)
. The variety ΘU has ordinary

double points at those points (0, L) ∈ ΘU where L ∈ Sing(ΘC) = W 1
4 (C) is

a singularity such that its tangent cone QL ∈ PI2(KC) belongs to h. Since
the assignment W 1

4 (L) ∋ L 7→ QL ∈ PI2(KC) is an unramified double cover
over a smooth plane quintic, we find that ΘU has 10 nodes. Using the theory
of Milnor numbers for theta divisors as explained in [SV85] we obtain

multJ5
(N0) = χ(θgen)− χ(W4(C)) + 10,

where χ(θgen) = 5! = 120 is the topological Euler characteristic of a gen-
eral (smooth) theta divisor of genus 5. We finally determine χ(W4(C)),
using the resolution C4 → W4(C). From the Macdonald formula, see

[ACGH85], χ(C4) = (−1)g−1
(
2g−2
g−1

)
|g=5

= 70, whereas χ(W 1
4 (C)) = −20,

because g(W 1
4 (C)) = 11. Therefore χ(C1

4 ) = 2χ(W 1
4 (C)) = −40. We find

that χ(W4(C)) = χ(C4) − χ(C1
4 ) + χ(W 1

4 (C)) = 90, thus multJ5
(N0) =

120− 90 + 10 = 40. �
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Corollary 7.3. We have the following formula in CH1(R̃6):

[Q̃] = 7λ− δ
′

0 − 4δ
′′

0 − 3

2
δram0 .

We exploit the geometry of the ramification and antiramification divisors
of the Prym map and determine the pushforward of divisor classes on R6:

Theorem 7.4. The pushforwards of tautological divisor classes via the ra-
tional Prym map P : R6 99K A5 are as follows:

P∗(λ) = 18 · 27λ1 − 57D, P∗(δ
ram
0 ) = 4(17 · 27λ1 − 57D),

P∗(δ
′

0) = 27D, P∗(δ
′′

0 ) = P∗(δi) = P∗(δi:g−i) = 0 for 1 ≤ i ≤ g − 1.

We point out that even though P is not a regular map, it can be extended
in codimension 1 such that P is the morphism induced at the level of coarse
moduli spaces by a proper morphism of stacks, see e.g. [Don92] p.63-64.
Furthermore P−1 contracts no divisors, in particular, we can pushforward
divisors under P and use the push-pull formula. Perhaps the most novel
aspect of Theorem 7.4 is the calculation of the class of the divisor P∗(∆

ram
0 )

consisting of Prym varieties corresponding to ramified double covers C̃ → C
of genus 5 curves with two branch points.

Proof. We write the following formulas in CH1(A5):

27λ1 = P∗P
∗λ1 = P∗(λ)−

1

4
P∗(δ

ram
0 ),

6 · (108λ1 − 14D) = 6[N ′
0] = P∗([Q]) = 7P∗(λ)−

3

2
P∗(δ

ram
0 )− P∗(δ

′

0).

From [GSM11] it follows that P∗(δ
′

0) = 27D, whereas obviously P∗(δ
′′

0 ) = 0,
which suffices to solve the system of equations for coefficients. �

8. The slope of A5

Using the techniques developed in previous chapters, we determine the
slope of the perfect cone compactification A5 of A5 (note also that by the
appendix by K. Hulek to [GSM11] this slope is the same for all toroidal
compactification). We begin with some preliminaries. Let D be a Q-divisor
on a normal Q-factorial variety X. We say that D is rigid if |mD| = {mD}
for all sufficiently large and divisible integers m. Equivalently, the Kodaira-
Iitaka dimension κ(X,D) equals zero.

We denote by B(D) :=
⋂

m Bs(|mD|) the stable base locus of D. We say
that D is movable if codimB(D) ≥ 2.

Recall that one defines the slope of Ag as s(Ag) := infE∈Eff(Ag)
s(E). In

a similar fashion one defines the moving slope of Ag as the slope of the cone

of moving divisors on Ag, that is,

s′(Ag) := inf
{
s(E) : E ∈ Eff(Ag), E is movable

}
.
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Thus s′(Ag) measures the minimal slope of a divisor responsible for a non-

trivial map from Ag to a projective variety. It is known that s(A4) = 8
[SM92], and as an immediate consequence of the result about the slope of
M4 we have that s

′(A4) = s(θnull) =
17
2 . In the next case, that of dimension

g = 5, the formula [N ′
0] = 108λ1 − 14D yields the upper bound s(A5) ≤ 54

7 .

A lower bound for the slope s(A5) was recently obtained in [GSM11].

We shall now prove Theorem 0.7 and establish that

κ(A5, N ′
0) < dim(A5),

in particular showing that s(A5) =
54
7 . To prove Theorem 0.7 we translate

the problem into a question on the linear series |P ∗(N ′
0)| on R6. One can

show that each of the components of P ∗(N ′
0) is an extremal divisor on R6,

however their sum could well have positive Kodaira dimension. Of crucial
importance is a uniruled parametrization of Q using sextics with a totally
tangent conic.

We fix general points q1, . . . , q4 ∈ P2, then set S := Bl{qi}4i=1
(P2) → P2

and denote by {Eqi}4i=1 the corresponding exceptional divisors. We make

the identification P15 :=
∣∣∣OS(6)(−2

∑4
i=1Eqi)

∣∣∣, then consider the space of

4-nodal sextics having a totally tangent conic

X :=
{
(Γ, Q) ∈ P15 × |OS(2)| : Γ ·Q = 2d, where d ∈ (Γreg)6

}
.

A parameter count shows that X is pure of dimension 14. We define the
rational map v : X 99K R6

v(Γ, Q) :=
(
C, η := ν∗ (OΓ(1)(−d))

)
∈ R6,

where ν : C → Γ is the normalization map. The image v(X ) is expected
to be a divisor on R6, and we show that this is indeed the case — this
construction yields another geometric characterization of points in Q.

Theorem 8.1. The closure of v(X ) inside R6 is equal to Q, that is, a
general Prym curve (C, η) ∈ Q possesses a totally tangent conic.

Proof. We carry out a class calculation on R6 and the result will be a con-
sequence of the extremality properties of the class [Q] ∈ Eff(R6). We work

on a partial compactification R′
6 of R6 that is even smaller than R̃6.

Let R′
6 := R0

6∪π−1(∆∗
0) be the open subvariety of R6, where R0

6 consists
of smooth Prym curves (C, η) for which dimW 2

6 (C) = 0 and h0(C,L⊗η) = 1
for every L ∈ W 2

6 (C), whereas ∆
∗
0 ⊂ ∆0 is the locus of curves [Cxy], where

[C] ∈ M5 − M1
5,3 and x, y ∈ C. Observe that codim(R̃6 − R′

6, R̃6) = 2,

in particular we can identify CH1(R′
6) and CH1(R̃6). Over the Deligne-

Mumford stack R′
6 of Prym curves coarsely represented by the scheme R′

6

(observe that R′
6 is an open substack of R6), we consider the finite cover

σ : G2
6 → R′

6,
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where G2
6 is the Deligne-Mumford stack that classifies triples (C, η, L), with

(C, η) ∈ R′
6 and L ∈ W 2

6 (C). Note that a curve [Cxy] ∈ ∆′
0 carries no

non-locally free sheaves F ∈ Pic6(Cxy) with h0(Cxy, F ) ≥ 5, for F would
correspond to a g25 on the normalization C of Cxy, a contradiction. The
universal curve p : C → G2

6 is equipped both with a universal Prym bun-
dle P ∈ Pic(C) and a universal Poincaré line bundle L ∈ Pic(C) such that
L|p−1(C,η,L) = L, for any (C, η, L) ∈ G2

6. We form the codimension 1 tauto-
logical classes

(11) a := p∗
(
c1(L)2

)
, b := p∗ (c1(L) · c1(ωp)) ∈ CH1(G2

6),

and the sheaves Vi := p∗(L⊗i), where i = 1, 2. Both V1 and V2 are locally
free. The dependence of a and b on the choice of L is discussed in [FL10].
Using the isomorphism CH1(R′

6) = CH1(R′
6), one can write the following

formulas in CH1(R′
6), see [FL10, page 776]:

(12)
σ∗(a) = −48λ+7π∗(δ0), σ∗(b) = 36λ−3π∗(δ0), σ∗(c1(V)) = −22λ+3π∗(δ0).

We also introduce the sheaf E := p∗(P⊗L). Since R1p∗(P⊗L) = 0 (this is
the point where we use H1(C,L⊗ η) = 0 for each (C, η, L) ∈ R′

6), applying
Grauert’s theorem we obtain that E is locally free and via Grothendieck-
Riemann-Roch we compute its Chern classes. Taking into account that
p∗(c1(P)2) = δram0 /2 and p∗(c1(L) · c1(P)) = 0, see [FL10, Proposition 1.6],
one computes

(13) c1(E) = λ− δram0

4
+

a

2
− b

2
∈ CH1(G2

6).

Similarly, by GRR we find that c1(V2) = λ− b+ 2a.

After this preparation we return to the problem of describing the closure

ṽ(X ) of v(X ) in R′
6. For a point (C, η, L) ∈ G2

6, the two-torsion point η is

induced by a conic totally tangent to the image of ν : C
|L|→ Γ ⊂ P2, if and

only if the map given by multiplication followed by projection

χ(C, η, L) : H0(C,L⊗ η)⊗H0(C,L⊗ η) → H0(C,L⊗2)/Sym2H0(C,L)

is not an isomorphism. Working over the stack we obtain a morphism of
vector bundles over G2

6

χ : E⊗2 → V2/Sym
2(V1),

such that the class of ṽ(X ) is (up to multiplicity) equal to

σ∗c1

( V2

Sym2(V1)
− E⊗2

)
= 35λ− 5(δ

′

0 + δ
′′

0 )−
15

2
δram0 = 5[Z],

where we have used both (12) and (13). We recall that the cycle Z was

defined in the proof of Theorem 6.3 as a subvariety of the larger space R̃6

with the property that Z ∩R′
6 = Q∩R′

6. Thus the class [ṽ(X )] ∈ CH1(R′
6)

is proportional (up to the divisor class δ
′′

0 ) to the class [Q̃]. It is proved
25



in [FV11, Proposition 3.6] that if D is an effective divisor on R6 such that

[D] = α[Q] + β δ
′′

0 , then one has the set-theoretic equality D = Q. Thus we
conclude that the closure of v(X ) in R6 is precisely Q. �

Theorem 8.2. 2 Through a general point of the ramification divisor Q there
passes a rational curve R ⊂ R6 with the following numerical features:

R · λ = 6, R · δ′0 = 27, R · δ′′0 = 0, R · δram0 = 10, R · δi = R · δi:5−i = 0,

for i = 1, . . . , 4. In particular R · Q = 0 and R · U = 0.

Assuming for the moment Theorem 8.2, we explain how it implies Theo-
rem 0.7. Assume that E ∈ Eff(A5) with s(E) ≤ s(N ′

0). First note that one

can assume that N ′
0 * supp(E), for else, we can replace E by an effective

divisor of the form E′ := E − αN ′
0 with α > 0 and still s(E′) ≤ s(N ′

0).

After rescaling by a positive factor, we can write E ≡ N ′
0 − ǫλ1 ∈ Eff(A5),

where ǫ ≥ 0. Clearly we have P ∗(E) ∈ Eff(R6); observe that since N ′
0 is

not a component of E, the ramification divisor Q cannot be a component of
P ∗(E) either. Thus R · P ∗(E) ≥ 0, that is,

0 ≤ R · P ∗(E) = R · (2Q+ U + 20δ
′′

0 )− ǫR ·
(
λ− δram0

4

)
= −7ǫ

2
,

which implies ǫ = 0. Thus s(E) = s(N ′
0) and E cannot be a big divisor.

Proof of Theorem 8.2. We retain the notation from Theorem 8.1 and fix a
general element (C, η) ∈ Q corresponding to a sextic curve Γ ⊂ P2 having
nodes at q1, . . . , q4. From Theorem 8.1 we may assume that there exists a
conic Q ⊂ P2 such that Q · Γ = 2(p1 + · · · + p6), where p1, . . . , p6 ∈ Γreg.

Since the points q1, . . . , q4 ∈ P2 are distinct and no three are collinear, it

follows that [C] /∈ GP1
6,4, and this holds even when C has nodal singularities.

To construct the pencil R ⊂ R6, we reverse this construction and start
with a conic Q ⊂ P2 and six general points p1, . . . , p6 ∈ Q on it. On the
blowup S′ of P2 at the 10 points q1, . . . , q4, p1, . . . , p6, we denote by {Epi}6i=1

and by {Eqj}4j=1 the exceptional divisors. For 1 ≤ i ≤ 6, let li ∈ Epi be

the point corresponding to the tangent line Tpi(Q). If S̃ is the blowup of S′

at l1, . . . , l6, by slight abuse of notation we denote by Epi , Eli and Eqj the

exceptional divisors on S̃ (respectively the proper transforms of exceptional

divisors on S′). Then dim
∣∣∣OS̃(6)

(
−2

∑4
j=1Eqj −

∑6
i=1(Epi + Eli)

)∣∣∣ = 3,

and we choose a general pencil in this linear system. This pencil induces
a curve R ⊂ R6. Note that the pencil contains one distinguished element
t0, consisting of the union of Q and two conics Q1 and Q2 passing through
q1, . . . , q4.

2Added in April 2022: In the published version, the intersection numbers R · δram0 and

R · δ
′

0 are computed incorrectly. This is corrected here, with every detail provided. These
changed intersection numbers are what lead to a slightly weaker version of Theorem 0.7
than in the published version, as per the following discussion.
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Considering the pushforward π∗(R) ⊂ M6, after a routine calculation we
find:

R ·λ = 6, R ·(δ′0+δ
′′

0 +2δram0 ) = π∗(R) ·δ0 = 47, π∗(R) ·δi = 0 for i = 1, 2, 3.

In particular, as expected R · U = 0. The points in R ∩ ∆ram
0 correspond

to the case when the underlying Prym structure is not locally free, which
happens when one of the points pi becomes singular. For each 1 ≤ i ≤ 6,
there is one such curve in R.

We are left with the task of determining the multiplicity (R · δram0 )t0 . To
that end we describe in more detail the Prym structure of the curves in
the pencil R. We denote by ϕ : P1 × P1 → P2 the double cover branched
along the conic Q. For a sextic curve Γ ⊂ P2 nodal at q1, . . . , q4 and with
Γ ·Q = 2(p1+ · · ·+p6), we observe that Γ′ := ϕ−1(Γ) has nodes at the points
in ϕ−1(q1) ∪ . . . ∪ ϕ−1(q4), as well as at ϕ−1(pi), for i = 1, . . . , 6. To Γ we
associate the étale double cover C ′ → C, where C is the normalization of Γ
and C ′ is the normalization of Γ′. Assume now Γ0 := Q ∪ Q1 ∪ Q2 is the
curve corresponding to the point t0 ∈ R and set Q ∩Q1 = {z1, . . . , z4} and
Q ∩Q2 = {z′1, . . . , z′4}. We denote by C0 the partial normalization of Γ0 at
the 4 points of intersection Q1 ·Q2. Applying stable reduction, the associated
double cover C ′

0 → C0 has as source curve C ′
0 the union Q′∪Q′

1∪Q′
2, where

Q′
i is the double cover of Qi ramified over the 4 points in Q · Qi, whereas

Q′ is the hyperelliptic genus 3 cover of Q ramified over z1, z
′
1, . . . , z4, z

′
4.

Note that Q′
1 and Q′

2 are disjoint, hence pa(C
′
0) = g(Q′) + g(Q′

1) + g(Q′
2) +

2 · (4 − 1) = 11. Since C ′
0 → C0 is ramified over each of the eight nodes

z1, z
′
1, . . . , z4, z

′
4 of C0, using for instance [FL10, Remark 1.2], it follows that

the Prym curve associated to this cover is of the form [X, η, β], where X
is the quasi-stable curve obtained from C0 by inserting smooth rational
components E1, E

′
1, . . . , E4, E

′
4 at the points z1, z

′
1, . . . , z4, z

′
4 respectively,

the line bundle η ∈ Pic0(X) satisfies ηEi
= OEi

(1) and ηE′

i
= OE′

i
(1),

whereas if X ′ := X \⋃4
i=1(Ei ∪ E′

i), then

η⊗2 = OX′

(
−

4∑

i=1

(xi + yi + x′i + y′i)
)
,

where {xi, yi} = Ei ∩X \ Ei and {x′i, y′i} = E′
i ∩X \ E′

i for i = 1, . . . , 4.

We denote by C3g−3
τ the versal deformation space of [X, η, β] ∈ R6 and

choose local coordinates τ1, . . . , τ3g−3 such that for i = 1, . . . , 8, the hyper-
plane (τi = 0) corresponds to the locus where the exceptional component

Ei persists. Furthermore, if C3g−3
t is the versal deformation space of the

stable model C0 of X and C → C3g−3
t is the universal family, we consider

the map C3g−3
τ → C3g−3

t given by ti = τ2i for i = 1, . . . , 8 and ti = τi for

9 ≤ i ≤ 3g−3 = 15. Then the universal family X → C3g−3
τ of Prym curves of

genus 6 is obtained from the fibre product C′ := C ×C3g−3

t
C3g−3
τ by blowing-

up the codimension two loci corresponding to the sections (τi = 0) → C′.
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It follows that the intersection multiplicity of R ×R6
C3g−3
τ with the locus

(τ1 · · · τ8) = 0 is equal to 8 and accordingly

(R · δram0 )t0 =
1

2

(
R · π∗(δ0)

)
t0
=

1

2

(
π∗(R) · δ0

)
[C0]

=
8

2
= 4,

therefore R · δram0 = 6 + 4 = 10. Observing that t0 ∈ R is the only point in
the pencil corresponding to a reducible double cover, we also conclude that
R · δ′′0 = 0, thus R · δ′0 = 27. Using Corollary 7.3, we conclude that

R · Q = 7R · λ−R · δ′0 −
3

2
R · δram0 = 42− 27− 15 = 0.

�

Remark 8.3. Theorem 0.7 implies that the divisor N ′
0 can be contracted

via a birational map having A5 as its source. Especially from the point of
view of the Minimal Model Program for A5, it would be interesting to find a
new compactification of the moduli space of ppav A∗

5, and a birational map

f : A5 99K A∗
5 such that f contracts N ′

0.

9. The Prym realization of the components of H

For each irreducible component of H = N
′4
0 in A5, we describe an explicit

codimension 2 subvariety of R6 which dominates it via the Prym map. As
a consequence, we prove that H consists of two irreducible components,
both unirational and of dimension 13. We define two subvarieties of R6

corresponding to Prym curves (C, η) such that ϕKC⊗η lies on a quadric of
rank at most 4, cutting a (Petri special) pencil on C. Depending on the
degree of this pencil, we denote these loci by Q4 and Q5 respectively.

Definition 9.1. We denote by Q5 the closure in R6 of the locus of curves
(C, η) ∈ R6 such that C carries two vanishing theta characteristics θ1, θ2 ∈
W 1

5 (C) with η = θ1 ⊗ θ∨2 .

Equivalently, KC⊗η = θ1⊗θ2, which implies that the Prym-canonical model
of C lies on a quadric Q ⊂ P4 of rank 4, whose rulings induce θ1 and θ2
respectively.

Definition 9.2. We denote by Q4 the closure in R6 of the locus of curves
(C, η) ∈ R6 such that η ∈W 1

4 (C)−W4(C) and KC ⊗ η is very ample.

Equivalently, KC ⊗ η = A⊗A′, where A ∈W 1
4 (C) and A

′ ∈W 1
6 (C), and

then the image ϕKC⊗η(C) lies on a quadric Q ⊂ P4 of rank at most 4, whose
rulings cut out A and A′ respectively.

Remark 9.3. Along the same lines, one can consider the locus Q3 of curves
(C, η) ∈ R6 such that KC⊗η = A⊗A′, where A ∈W 1

3 (C) and A
′ ∈W 1

7 (C).
Observe that Q3 = π−1(M1

6,3), where M1
6,3 is the trigonal locus inside M6.

In particular, codim(Q3,R6) = 2. However from the trigonal construction
[Don92, Section 2.4], it follows that P (Q3) = J5, that is, P blows-down Q3

and thus Q3 plays no further role in describing the components of H in A5.
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First we show that Q4 lies both in the ramification and the antiramifica-
tion divisor of the Prym map:

Proposition 9.4. Q4 ⊆ Q ∩ U .
Proof. We choose a point (C, η) ∈ Q4 general in a component of Q4 and
write η = M ⊗ OC(−D), where M ∈ W 1

4 (C) and D ∈ C4 is an effective
divisor. Then we compute

h0(C,KC ⊗ η(−D)) = h0(KC ⊗M∨) = 3,

that is, ℓ := 〈D〉 is a 4-secant line to the Prym canonical model ϕKC⊗η(C).
Moreover ℓ is contained in the rank 4 quadric Q whose rulings cut out on C
the pencils M and KC ⊗ η⊗M∨ respectively. The line ℓ is not contained in
a plane of Q belonging to the ruling Λ that cuts out on C the pencil M , for
else it would follow that η = 0. Then ℓ is unisecant to the planes in Λ and if
dM ∈ |M | is a general element, then 〈D + dM 〉 is a hyperplane in P4. Thus

KC ⊗ η = OC(dM +D + x+ y),

where x, y ∈ C, that is, H0(C,KC ⊗M⊗(−2)) 6= 0, and [C] ∈ GP1
6,4. �

Proposition 9.5. The locus Q4 is unirational and of dimension 13.

Proof. Since Q4 ⊂ Q ∩ U , we use the fact that every curve [C] ∈ GP1
6,4 is

a quadratic section of a nodal quintic del Pezzo surface. In the course of
proving Theorem 8.2 we observed that a general Prym curve (C, η) ∈ U is
characterized by the existence of a totally tangent conic. We show that a
similar description carries over to the case of 1-nodal del Pezzo surfaces.

We fix collinear points q1, q2, q3 ∈ P2, a general point q4 ∈ P2, then denote
by ℓ := 〈q1, q2, q3〉 ⊂ P2, by S′ := Bl{qi}4i=1

(P2) → P2 the surface whose

image by the linear system
∣∣∣OS′(2)

(
−∑4

i=1Eqi

)∣∣∣ is a 1-nodal del Pezzo

quintic. Set P3
S′ :=

∣∣∣OS′(3)
(
−∑3

i=1Eqi − 2Eq4

)∣∣∣. Note that Aut(S′) = C∗.

We consider the 10-dimensional rational variety

V := {(Q, p1, . . . , p5) : Q ∈ |O
P

2(2)|, p1, . . . , p5 ∈ Q}
and the rational map p : V 99K P2 given by p((Q, p1, . . . , p5)) := p6, where p6
is the residual point of intersection of Q with the unique cubic E ∈ |O

P
2(3)|

passing through q1, . . . , q4, p1, . . . , p5. We consider the linear system

P(Q,p1,...,p5) :=
{
Γ ∈

∣∣∣OS′(6)
(
−2

4∑

i=1

Eqi

)∣∣∣ : Γ ·Q = 2(p1 + · · ·+ p6)
}
.

Claim: For a general (Q, p1, . . . , p5) ∈ V , we have dim P(Q,p1,...,p5) = 4, that
is, the points q1, . . . , q4, p1, . . . , p6 fail to impose one independent condition
on 4-nodal sextic curves.

Since ℓ+Q+P3
S′ ⊂ P(Q,p1,...,p5), to conclude that dimP(Q,p1,...,p5) ≥ 4, it

suffices to find one curve Γ ∈ P(Q,p1,...,p5) that does not have ℓ as a compo-
nent. We choose (Q, p1, . . . , p5) ∈ V general enough that the corresponding

29



cubic E is smooth. Then 2E ∈ P(Q,p1,...,p5) and obviously ℓ * 2E. To fin-
ish the proof of the claim, we exhibit a point (Q, p1, . . . , p5) ∈ V such that
dim(P(Q,p1,...,p5)) = 4. We specialize to the case p1 ∈ ℓ and let Q2 be the
conic determined by p2, . . . , p5 and q4. The cubic E must equal ℓ+Q2 and
p6 ∈ ℓ ∩Q, so that E ·Q = p1 + · · ·+ p6. Then P(Q,p1,...,p5) = ℓ+P′, where

P′ :=
{
Y ∈

∣∣∣∣∣OS′(5)
(
−

3∑

i=1

Eqi − 2Eq4

)
∣∣∣∣∣ : Y ·Q2 = p1+p6+2(p2+p3+p4+p5)

}
.

Because p2, . . . , p5 ∈ P2 are general, dim(P′) = 20−3−3−2−8 = 4, which
completes the proof of the claim.

We now consider theP4-bundle P :=
{
(Q, p1, . . . , p5,Γ) : Γ ∈ P(Q,p1,...,p5)

}
,

together with the map u : P 99K R6, given by

u((Q, p1, . . . , p5,Γ)) :=
(
C, η := OC(1)(−p1 − · · · − p6)

)
,

where C ⊂ S′ is the normalization of Γ. Then M := OC(2)(−
∑4

i=1Eqi) ∈
W 1

4 (C) is Petri special and |M ⊗ η| ∼= |OS′(3)(−∑4
i=1Eqi −

∑6
j=1 pj)| 6= ∅,

hence u(P) ⊂ Q4. Therefore there is an induced map ū : P//Aut(S′) 99K Q4

between 13-dimensional varieties. Since every curve (C, η) ∈ Q4 has a totally
tangent conic and can be embedded in S′, it follows that any M ∈ W 1

4 (C)
with h0(C,M ⊗ η) ≥ 1 appears in the way described above, which finishes
the proof. �

Another distinguished codimension 2 cycle in R6 is the locus

Q′
4 := {(C, η) ∈ R6 : η ∈W2(C)−W2(C)}

of Prym curves (C, η) for which ϕKC⊗η fails to be very ample. Writing
η = OC(a+ b− p− q), with a, b, p, q ∈ C, then M := OC(2a+ 2b) ∈W 1

4 (C)
and the 2-nodal image curve ϕKC⊗η(C) lies on a pencil of quadrics in P4,
thus also on a singular quadric of type (4, 6). We show however, that this
quadric is not the projectivized tangent cone of a quadratic singularity L ∈
Singst(C,η)(Ξ), hence points in Q′

4 do not constitute a component of P−1(H).

Proposition 9.6. We have Q′
4 * U . In particular, all singularities of

the Prym theta divisor corresponding to a general point of Q′
4 are ordinary

double points, that is, P (Q′
4) * H.

Proof. Note that Q′
4 is not contained in U , then use Proposition 5.4. �

Proposition 9.7. The locus Q4 dominates via the Prym map the locus H1,
that is, P (Q4) ⊃ H1.

Proof. We start with a point x0 = (τ0, z0) ∈ S ′, corresponding to a singular
point z0 ∈ Θτ0 such that rkH(x0) ≤ 4 and x0 is a general point of a
component of H − θnull. In particular (Aτ0 ,Θτ0) can be chosen outside any
subvariety of A5 having codimension at least 3. Since each component of S ′

maps generically finite onto N ′
0, we find a deformation {xt = (τt, zt)}t∈T ⊂

S ′, parameterized by an integral curve T ∋ 0, such that for all t ∈ T − {0},
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the corresponding theta divisor Θt has only a pair of singular points, that
is, Sing(Θt) = {±zt}. Since P (Q) is dense in N ′

0, after possibly shrinking
T , we can find a family of triples {(Ct, ηt, Lt)}t∈T , such that (Ct, ηt) ∈ Q
for all t ∈ T , while for t 6= 0 the line bundle Lt ∈ V3(Ct, ηt) corresponds
to the singularity zt ∈ Sing(Ξt). If we set (C,L, η) := (C0, L0, η0), by
semicontinuity we obtain that h0(C,L) ≥ 4. Since rkH(L) = rkQL ≤ 4,
it follows from Proposition 5.4 that L ∈ Singst(C,η)(Ξ) ∩ Singex(C,η)(Ξ), which

implies that the Prym-canonical line bundle can be expressed as a sum of two
pencils. Since L is not a theta characteristic and P (C, η) /∈ J5, we obtain
that the Prym-canonical bundle can be expressed as KC⊗η = A⊗A′, where
A ∈ W 1

4 (C). From Proposition 9.6 it follows that KC ⊗ η can be assumed
to be very ample, that is, (C, η) ∈ Q4. �

Corollary 9.8. P (Q4) is a unirational component of H, different from θ4null.

9.1. A parametrization of θ4null. Our aim is to find an explicit unirational
parametrization of θ4null.

Proposition 9.9. P (Q5) = θ4null, where the the closure is taken inside A5.

Proof. This proof resembles that of Proposition 9.7. If φ : X5 → A5 denotes
the universal abelian variety, recall that we have showed that φ∗(Snull∩S ′) =
θ4null. Thus a point (τ, z) ∈ Snull ∩ S ′ corresponding to a general point
(Aτ ,Θτ ) of a component of θ4null is a Prym variety P (C, η), where (C, η) ∈
Q ∩ U is a Prym curve such that z ∈ Sing(Θτ ) corresponds to a singularity
L ∈ Singst(C,η)(Ξ) ∩ Singex(C,η)(Ξ). Then L = f∗(θ1), where θ1 ∈ Pic5(C) is

a vanishing theta-null. Since h0(C̃, L) = h0(C, θ1) + h0(C, θ1 ⊗ η) ≥ 4, we
find that θ2 := θ1 ⊗ η is another theta characteristic, that is, (C, η) ∈ Q5.

Therefore θ4null ⊆ P (Q5). The reverse inclusion being obvious, we finish the
proof. �

We can now complete the proof of Theorem 0.5. We consider the smooth
quadric Q := P1 ×P1 and the linear systems of rational curves

P7
1 :=

∣∣O
P

1×P
1(3, 1)

∣∣ and P7
2 :=

∣∣O
P

1×P
1(1, 3)

∣∣ .

Over P7
1 ×P7

2 we define the P5-bundle

U :=
{
(R1, R2,Γ) : Ri ∈ P7

i for i = 1, 2, Γ ∈ |I2
R1·R2/Q

(5, 5)|
}
.

There is an induced rational map ψ : U 99K Q5 given by

ψ(R1, R2,Γ) := (C, p∗1O(1)⊗ p∗2O(−1)) ∈ R6,

where ν : C → Γ is the normalization map and p1, p2 : C → P1 are the
composition of ν with the two projections.

A general pair (R1, R2) ∈ P7
1×P7

2 corresponds to smooth rational curves
such that the intersection cycle R1 · R2 = o1 + · · ·+ o10 consists of distinct
points. For any curve Γ ∈ |I2

R1·R2
(5, 5)| we have R1 · Γ = R2 · Γ = 2(o1 +
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· · ·+o10). Since ν∗ : |IR1·R2
(3, 3)| → |KC | is an isomorphism, it follows that

both p∗1O(1) and p∗2O(1) are vanishing theta-nulls, hence ψ(U) ⊂ Q5.

Theorem 9.10. The rational map ψ : U 99K Q5 is generically finite and
dominant. In particular Q5 (and thus θ4null = P (Q5)) is unirational.

Proof. We start with a point (C, θ1, θ2) ∈ Q5 moving in a 13-dimensional
family. In particular, the image Γ of the induced map ϕ(θ1,θ2) : C → P1×P1

is nodal and we set Sing(Γ) = {o1, . . . , o10}.
We choose divisors D,D′ ∈ |θ1|, corresponding to lines ℓ, ℓ′ ∈ |OQ(1, 0)|

such that ν∗(Γ ·ℓ) = D and ν∗(Γ ·ℓ′) = D′ respectively. Then D+D′ ∈ |KC |,
and since the linear system |Io1+···+o10(3, 3)| cuts out the canonical system
on C, it follows that there exists a cubic curve E ∈ |OQ(3, 3)| such that

E · Γ = D +D′ + 2
10∑

i=1

oi.

By Bézout’s Theorem, both ℓ and ℓ′ must be components of E, that is, we
can write E = ℓ + ℓ′ + R1, where R1 ∈ |OQ(1, 3)| is such that R1 · Γ =

2
∑10

i=1 oi. Switching the roles of θ1 and θ2, there exists R2 ∈ |OQ(3, 1)| such
that R2 · Γ = 2

∑10
i=1 oi. It follows that (R1, R2,Γ) ∈ ψ−1 ((C, θ1 ⊗ θ∨2 )).

The variety U being a P5-bundle over P7
1 × P7

2 is unirational, hence Q5 is
unirational as well, thus finishing the proof. �
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