
THE BIRATIONAL TYPE OF THE MODULI SPACE OF EVEN SPIN CURVES

GAVRIL FARKAS

The moduli space Sg of smooth spin curves parameterizes pairs [C, η], where
[C] ∈ Mg is a curve of genus g and η ∈ Picg−1(C) is a theta-characteristic. The finite
forgetful map π : Sg → Mg has degree 22g and Sg is a disjoint union of two connected
components S+

g and S−
g of relative degrees 2g−1(2g +1) and 2g−1(2g − 1) corresponding

to even and odd theta-characteristics respectively. A compactification Sg of Sg over Mg

is obtained by considering the coarse moduli space of the stack of stable spin curves of
genus g (cf. [C], [CCC] and [AJ]). The projection Sg → Mg extends to a finite branched

covering π : Sg → Mg. In this paper we determine the Kodaira dimension of S+
g :

Theorem 0.1. The moduli space S+
g of even spin curves is a variety of general type for g > 8

and it is uniruled for g < 8. The Kodaira dimension of S+
8 is non-negative 1.

It was classically known that S+
2 is rational. The Scorza map establishes a bira-

tional isomorphism between S+
3 and M3, cf. [DK], hence S+

3 is rational. Very recently,

Takagi and Zucconi [TZ] showed that S+
4 is rational as well. Theorem 0.1 can be com-

pared to [FL] Theorem 0.3: The moduli space Rg of Prym varieties of dimension g − 1
(that is, non-trivial square roots of OC for each [C] ∈ Mg) is of general type when g > 13

and g 6= 15. On the other hand Rg is unirational for g < 8. Surprisingly, the problem

of determining the Kodaira dimension has a much shorter solution for S+
g than for Rg

and our results are complete.

We describe the strategy to prove that S+
g is of general type for a given g. We

denote by λ = π∗(λ) ∈ Pic(S+
g ) the pull-back of the Hodge class and by α0, β0 ∈ Pic(S+

g )

and αi, βi ∈ Pic(S+
g ) for 1 ≤ i ≤ [g/2] boundary divisor classes such that

π∗(δ0) = α0 + 2β0 and π∗(δi) = αi + βi for 1 ≤ i ≤ [g/2]

(see Section 2 for precise definitions). Using Riemann-Hurwitz and [HM] we find that

K
S

+

g

≡ π∗(KMg
) + β0 ≡ 13λ − 2α0 − 3β0 − 2

[g/2]∑

i=1

(αi + βi) − (α1 + β1).

We prove that K
S

+

g

is a big Q-divisor class by comparing it against the class of the

closure in S+
g of the divisor Θnull on S+

g of non-vanishing even theta characteristics:

Research partially supported by an Alfred P. Sloan Fellowship.
1Building on the results of this paper, we have proved quite recently in joint work with A. Verra, that

κ(S
+

8 ) = 0. Details will appear later.
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Theorem 0.2. The closure in S+
g of the divisor Θnull := {[C, η] ∈ S+

g : H0(C, η) 6= 0} of
non-vanishing even theta characteristics has class equal to

Θnull ≡
1

4
λ − 1

16
α0 −

1

2

[g/2]∑

i=1

βi ∈ Pic(S+
g ).

Note that the coefficients of β0 and αi for 1 ≤ i ≤ [g/2] in the expansion of [Θnull]

are equal to 0. To prove Theorem 0.2, one can use test curves on S+
g or alternatively,

realize Θnull as the push-forward of the degeneracy locus of a map of vector bundles

of the same rank defined over a certain Hurwitz scheme covering S+
g and use [F1] and

[F2] to compute the class of this locus. Then we use [FP] Theorem 1.1, to construct for

each genus 3 ≤ g ≤ 22 an effective divisor class D ≡ aλ − ∑[g/2]
i=0 biδi ∈ Eff(Mg) with

coefficients satisfying the inequalities

a

b0
≤





6 + 12
g+1 , if g + 1 is composite

7, if g = 10
6k2+k−6
k(k−1) , if g = 2k − 2 ≥ 4

and bi/b0 ≥ 4/3 for 1 ≤ i ≤ [g/2]. When g + 1 is composite we choose for D the closure
of the Brill-Noether divisor of curves with a gr

d, that is, Mr
g,d := {[C] ∈ Mg : Gr

d(C) 6= ∅}
in case when the Brill-Noether number ρ(g, r, d) = −1, and then cf. [EH2]

Mr
g,d ≡ cg,d,r

(
(g + 3)λ − g + 1

6
δ0 −

[g/2]∑

i=1

i(g − i)δi

)
∈ Pic(Mg).

For g = 10 we take the closure of the divisor K10 := {[C] ∈ M10 : C lies on a K3 surface}
(cf. [FP] Theorem 1.6). In the remaining cases, when necessarily g = 2k − 2, we choose

for D the Gieseker-Petri divisor GP1
g,k consisting of those curves [C] ∈ Mg such that

there exists a pencil A ∈ W 1
k (C) such that the multiplication map

µ0(A) : H0(C,A) ⊗ H0(C,KC ⊗ A∨) → H0(C,KC )

is not an isomorphism, see [EH2], [F2]. Having chosen D, we form the Q-linear combi-
nation of divisor classes

8 ·Θnull +
3

2b0
·π∗(D) =

(
2+

3a

2b0

)
λ− 2α0 − 3β0 −

[g/2]∑

i=1

3bi

2b0
αi −

[g/2]∑

i=1

(
4+

3bi

2

)
βi ∈ Pic(S+

g ),

from which we can write

K
S

+

g

= νg · λ + 8Θnull +
3

2b0
π∗(D) +

[g/2]∑

i=1

(
ci · αi + c′i · βi),

where ci, c
′
i ≥ 0. Moreover νg > 0 precisely when g ≥ 9, while ν8 = 0. Since the class

λ ∈ Pic(S+
g ) is big and nef, we obtain that K

S
+

g

is a big Q-divisor class on the normal

variety S+
g as soon as g > 8. It is proved in [Lud] that for g ≥ 4 pluricanonical forms

defined on S+
g,reg extend to any resolution of singularities Ŝ+

g → S+
g , which shows that

S+
g is of general type whenever νg > 0 and completes the proof of Theorem 0.1 for g ≥ 8.
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When g ≤ 7 we show that K
S

+

g

/∈ Eff(S+
g ) by constructing a covering curve R ⊂ S+

g

such that R · K
S

+

g

< 0, cf. Theorem 1.2. We then use [BDPP] to conclude that S+
g is

uniruled.
I would like to thank the referee for pertinent comments which led to a clearly

improved version of this paper.

1. THE STACK OF SPIN CURVES

We review a few facts about Cornalba’s compactification π : Sg → Mg, see [C].
If X is a nodal curve, a smooth rational component E ⊂ X is said to be exceptional if

#(E ∩ X − E) = 2. The curve X is said to be quasi-stable if #(E ∩ X − E) ≥ 2 for any
smooth rational component E ⊂ X, and moreover any two exceptional components of
X are disjoint. A quasi-stable curve is obtained from a stable curve by blowing-up each
node at most once. We denote by [st(X)] ∈ Mg the stable model of X.

Definition 1.1. A spin curve of genus g consists of a triple (X, η, β), where X is a genus g
quasi-stable curve, η ∈ Picg−1(X) is a line bundle of degree g − 1 such that ηE = OE(1)
for every exceptional component E ⊂ X, and β : η⊗2 → ωX is a sheaf homomorphism
which is generically non-zero along each non-exceptional component of X.

A family of spin curves over a base scheme S consists of a triple (X f→ S, η, β), where
f : X → S is a flat family of quasi-stable curves, η ∈ Pic(X ) is a line bundle and
β : η⊗2 → ωX is a sheaf homomorphism, such that for every point s ∈ S the restriction

(Xs, ηXs , βXs : η⊗2
Xs

→ ωXs) is a spin curve.

To describe locally the map π : Sg → Mg we follow [C] Section 5. We fix

[X, η, β] ∈ Sg and set C := st(X). We denote by E1, . . . , Er the exceptional components
of X and by p1, . . . , pr ∈ Csing the nodes which are images of exceptional components.
The automorphism group of (X, η, β) fits in the exact sequence of groups

1 −→ Aut0(X, η, β) −→ Aut(X, η, β)
resC−→ Aut(C).

We denote by C
3g−3
τ the versal deformation space of (X, η, β) where for 1 ≤ i ≤ r the

locus (τi = 0) ⊂ C
3g−3
τ corresponds to spin curves in which the component Ei ⊂ X

persists. Similarly, we denote by C
3g−3
t = Ext1(ΩC ,OC) the versal deformation space

of C and denote by (ti = 0) ⊂ C
3g−3
t the locus where the node pi ∈ C is not smoothed.

Then around the point [X, η, β], the morphism π : Sg → Mg is locally given by the map

(1)
C

3g−3
τ

Aut(X, η, β)
→ C

3g−3
t

Aut(C)
, ti = τ2

i (1 ≤ i ≤ r) and ti = τi (r + 1 ≤ i ≤ 3g − 3).

From now on we specialize to the case of even spin curves and describe the boundary

of S+
g . In the process we determine the ramification of the finite covering π : S+

g → Mg.

1.1. The boundary divisors of S+
g .

If [X, η, β] ∈ π−1([C ∪y D]) where [C, y] ∈ Mi,1 and [D, y] ∈ Mg−i,1, then neces-
sarily X := C∪y1

E∪y2
D, where E is an exceptional component such that C∩E = {y1}

and D ∩ E = {y2}. Moreover

η =
(
ηC , ηD, ηE = OE(1)

)
∈ Picg−1(X),
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where η⊗2
C = KC , η⊗2

D = KD. The condition h0(X, η) ≡ 0 mod 2, implies that the theta-

characteristics ηC and ηD have the same parity. We denote by Ai ⊂ S+
g the closure of

the locus corresponding to pairs ([C, y, ηC ], [D, y, ηD ]) ∈ S+
i,1 × S+

g−i,1 and by Bi ⊂ S+
g

the closure of the locus corresponding to pairs ([C, y, ηC ], [D, y, ηD ]) ∈ S−
i,1 × S−

g−i,1.

For a general point [X, η, β] ∈ Ai∪Bi we have that Aut0(X, η, β) = Aut(X, η, β) =

Z2. Using (1), the map C
3g−3
τ → C

3g−3
t is given by t1 = τ2

1 and ti = τi for i ≥ 2.

Furthermore, Aut0(X, η, β) acts on C
3g−3
τ via (τ1, τ2, . . . , τ3g−3) 7→ (−τ1, τ2, . . . , τ3g−3).

It follows that ∆i ⊂ Mg is not a branch divisor for π : S+
g → Mg and if αi = [Ai] ∈

Pic(S+
g ) and βi = [Bi] ∈ Pic(S+

g ), then for 1 ≤ i ≤ [g/2] we have the relation

(2) π∗(δi) = αi + βi.

Moreover, π∗(αi) = 2g−2(2i + 1)(2g−i + 1)δi and π∗(βi) = 2g−2(2i − 1)(2g−i − 1)δi.
For a point [X, η, β] such that st(X) = Cyq := C/y ∼ q, with [C, y, q] ∈ Mg−1,2,

there are two possibilities depending on whether X possesses an exceptional compo-
nent or not. If X = Cyq and ηC := ν∗(η) where ν : C → X denotes the normalization

map, then η⊗2
C = KC(y + q). For each choice of ηC ∈ Picg−1(C) as above, there is pre-

cisely one choice of gluing the fibres ηC(y) and ηC(q) such that h0(X, η) ≡ 0 mod 2. We

denote by A0 the closure in S+
g of the locus of points [Cyq, ηC ∈

√
KC(y + q)] as above

and clearly deg(A0/∆0) = 22g−2.
If X = C ∪{y,q} E where E is an exceptional component, then ηC := η ⊗ OC is a

theta-characteristic on C . Since H0(X,ω) ∼= H0(C,ωC), it follows that [C, ηC ] ∈ S+
g−1.

For [C, y, q] ∈ Mg−1,2 sufficiently generic we have that Aut(X, η, β) = Aut(C) = {IdC},
and then from (1) it follows that π is simply branched over such points. We denote by

B0 ⊂ S+
g the closure of the locus of points [C ∪{y,q} E, ηC ∈ √

KC , ηE = OE(1)]. If

α0 = [A0] ∈ Pic(S+
g ) and β0 = [B0] ∈ Pic(S+

g ), we then have the relation

(3) π∗(δ0) = α0 + 2β0.

Note that π∗(α0) = 22g−2δ0 and π∗(β0) = 2g−2(2g−1 + 1)δ0.

1.2. The uniruledness of S+
g for small g.

We employ a simple negativity argument to determine κ(S+
g ) for small genus.

Using an analogous idea we showed that similarly, for the moduli space of Prym curves,
one has that κ(Rg) = −∞ for g < 8, cf. [FL] Theorem 0.7.

Theorem 1.2. For g < 8, the space S+
g is uniruled.

Proof. We start with a fixed K3 surface S carrying a Lefschetz pencil of curves of genus

g. This induces a fibration f : Blg2(S) → P1 and then we set B :=
(
mf

)
∗
(P1) ⊂ Mg,

where mf : P1 → Mg is the moduli map mf (t) := [f−1(t)]. We have the following

well-known formulas on Mg (cf. [FP] Lemma 2.4):

B · λ = g + 1, B · δ0 = 6g + 18, and B · δi = 0 for i ≥ 1.

We lift B to a pencil R ⊂ S+
g of spin curves by taking

R := B ×Mg
S+

g = {[Ct, ηCt ] ∈ S+
g : [Ct] ∈ B, ηCt ∈ Pic

g−1
(Ct), t ∈ P1} ⊂ S+

g .
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Using (3) one computes the intersection numbers with the generators of Pic(S+
g ):

R ·λ = (g +1)2g−1(2g +1), R ·α0 = (6g +18)22g−2 and R ·β0 = (6g +18)2g−2(2g−1 +1).

Furthermore, R is disjoint from all the remaining boundary classes of S+
g , that is, R·αi =

R · βi = 0 for 1 ≤ i ≤ [g/2]. One verifies that R ·K
S

+

g

< 0 precisely when g ≤ 7. Since R

is a covering curve for S+
g in the range g ≤ 7, we find that K

S
+

g

is not pseudo-effective,

that is, K
S

+

g

∈ Eff(S+
g )c. Pseudo-effectiveness of the canonical bundle is a birational

property for normal varieties, therefore the canonical bundle of any smooth model of

S+
g lies outside the pseudo-effective cone as well. One can apply [BDPP] Corollary 0.3,

to conclude that S+
g is uniruled for g ≤ 7. �

2. THE GEOMETRY OF THE DIVISOR Θnull

We compute the class of the divisor Θnull using test curves. The same calculation
can be carried out using techniques developed in [F1], [F2] to calculate push-forwards
of tautological classes from stacks of limit linear series gr

d (see also Remark 2.1).
For g ≥ 9, Harer [H] has showed that H2(S+

g , Q) ∼= Q. The range for which this
result holds has been recently improved to g ≥ 5 in [P]. In particular, it follows that

Pic(S+
g )Q is generated by the classes λ, αi, βi for i = 0, . . . , [g/2]. Thus we can expand

the divisor class Θnull in terms of the generators of the Picard group

(4) Θnull ≡ λ̄ · λ − ᾱ0 · α0 − β̄0 · β0 −
[g/2]∑

i=1

(
ᾱi · αi + β̄i · βi

)
∈ Pic(S+

g )Q,

and determine the coefficients λ̄, ᾱ0, β̄0, ᾱi and β̄i ∈ Q for 1 ≤ i ≤ [g/2].

Remark 2.1. To show that the class [Θnull] ∈ Pic(S+
g )Q is a multiple of λ and thus, the

expansion (4) makes sense for all g ≥ 3, one does not need to know that Pic(S+
g )Q is

infinite cyclic. For instance, for even g = 2k − 2 ≥ 4, we note that, via the base point
free pencil trick, [C, η] ∈ Θnull if and only if the multiplication map

µC(A, η) : H0(C,A) ⊗ H0(C,A ⊗ η) → H0(C,A⊗2 ⊗ η)

is not an isomorphism for a base point free pencil A ∈ W 1
k (C). We set M̃g to be the

open subvariety consisting of curves [C] ∈ Mg such that W 1
k−1(C) = ∅ and denote by

σ : G1
k → M̃g the Hurwitz scheme of pencils g1

k and by

τ : G1
k × fMg

S+
g → S+

g , u : G1
k × fMg

S+
g → G1

k

the (generically finite) projections. Then Θnull = τ∗(Z), where

Z = {[A,C, η] ∈ G1
k × fMg

S+
g : µC(A, η) is not injective}.

Via this determinantal presentation, the class of the divisor Z is expressible as a combi-
nation of τ∗(λ), u∗(a), u∗(b), where a, b ∈ Pic(G1

k)Q are the tautological classes defined
in e.g. [FL] p.15. Since τ∗(u

∗(a)) = π∗(σ∗(a)) (and similarly for the class b), the conclu-
sion follows. For odd genus g = 2k − 1, one uses a similar argument replacing G1

k with
any generically finite covering of Mg given by a Hurwitz scheme (for instance, we take
the space of pencils g1

k+1 with a triple ramification point).
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We start the proof of Theorem 0.2 by determining the coefficients of αi and βi

(i ≥ 1) in the expansion of [Θnull].

Theorem 2.2. We fix integers g ≥ 3 and 1 ≤ i ≤ [g/2]. The coefficient of αi in the expansion
of [Θnull] equals 0, while the coefficient of βi equals −1/2. That is, ᾱi = 0 and β̄i = 1/2.

Proof. For each integer 2 ≤ i ≤ g−1, we fix general curves [C] ∈ Mi and [D, q] ∈ Mg−i,1

and consider the test curve Ci := {C ∪y∼q D}y∈C ⊂ ∆i ⊂ Mg. We lift Ci to test

curves Fi ⊂ Ai and Gi ⊂ Bi inside S+
g constructed as follows. We fix even (resp. odd)

theta-characteristics η+
C ∈ Pici−1(C) and η+

D ∈ Picg−i−1(D) (resp. η−C ∈ Pici−1(C) and

η−D ∈ Picg−i−1(D)).

If E ∼= P1 is an exceptional component, we define the family Fi (resp. Gi) as
consisting of spin curves

Fi :=
{
t := [C ∪y E ∪q D, ηC = η+

C , ηE = OE(1), ηD = η+
D] ∈ S+

g : y ∈ C
}

and

Gi :=
{
t := [C ∪y E ∪q D, ηC = η−C , ηE = OE(1), ηD = η−D] ∈ S+

g : y ∈ C
}
.

Since π∗(Fi) = π∗(Gi) = Ci, clearly Fi · αi = Ci · δi = 2 − 2i, Fi · βi = 0 and Fi has

intersection number 0 with all other generators of Pic(S+
g ). Similarly

Gi · βi = 2 − 2i, Gi · αi = 0, Gi · λ = 0,

and Gi does not intersect the remaining boundary classes in S+
g .

Next we determine Fi ∩ Θnull. Assume that a point t ∈ Fi lies in Θnull. Then there
exists a family of even spin curves (f : X → S, η, β), where S = Spec(R), with R being
a discrete valuation ring and X is a smooth surface, such that, if 0, ξ ∈ S denote the
special and the generic point of S respectively and Xξ is the generic fibre of f , then

h0(Xξ, ηξ) ≥ 2, h0(Xξ , ηξ) ≡ 0 mod 2, η⊗2
ξ

∼= ωXξ
and

(
f−1(0), ηf−1(0)

)
= t ∈ S+

g .

Following the procedure described in [EH1] p. 347-351, this data produces a limit linear
series g1

g−1 on C ∪ D, say

l :=
(
lC = (LC , VC), lD = (LD, VD)

)
∈ G1

g−1(C) × G1
g−1(D),

such that the underlying line bundles LC and LD respectively, are obtained from the
line bundle (η+

C , ηE , η+
D) by dropping the E-aspect and then tensoring the line bundles

η+
C and η+

D by line bundles supported at the points y ∈ C and q ∈ D respectively. For

degree reasons, it follows that LC = η+
C ⊗ OC((g − i)y) and LD = η+

D ⊗ OD(iq). Since

both C and D are general in their respective moduli spaces, we have that H0(C, η+
C ) = 0

and H0(D, η+
D) = 0. In particular alC

1 (y) ≤ g − i − 1 and alD
0 (q) < alD

1 (q) ≤ i − 1,

hence alC
1 (y) + alD

0 (q) ≤ g − 2, which contradicts the definition of a limit g1
g−1. Thus

Fi ∩ Θnull = ∅. This implies that ᾱi = 0, for all 1 ≤ i ≤ [g/2] (for i = 1, one uses instead
the curve Fg−1 ⊂ A1 to reach the same conclusion).

Assume that t ∈ Gi ∩ Θnull. By the same argument as above, retaining also the
notation, there is an induced limit linear series on C ∪ D,

(lC , lD) ∈ G1
g−1(C) × G1

g−1(D),
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where LC = η−C ⊗ OC((g − i)y) and LD = η−D ⊗ OD(iq). Since [C] ∈ Mi and [D, q] ∈
Mg−i,1 are both general, we may assume that h0(D, η−D) = h0(C, η−C ) = 1, q /∈ supp(η−D)

and that supp(η−C ) consists of i − 1 distinct points. In particular alD
1 (q) ≤ i, hence

alC
0 (y) ≥ g − 1 − alD

1 (q) ≥ g − i − 1. Since h0(C, η−C ) = 1, it follows that one has in fact

equality, that is, alC
0 (y) = g − i − 1 and then necessarily alD

1 (q) = i.

Similarly, alC
1 (y) ≤ g − i + 1 (otherwise div(η−C ) ≥ 2y, that is, supp(η−C ) would be

non-reduced, a contradiction), thus alD
0 (q) ≥ i− 2, and the last two inequalities must be

equalities as well (one uses that h0
(
D,LD ⊗OD(−(i − 1)q)

)
= h0(D, η−D ⊗OD(q)) = 1,

that is, alD
0 (q) < i − 1). Since alC

1 (y) = g − i + 1, we find that y ∈ supp(η−C ).
To sum up, we have showed that (lC , lD) is a refined limit g1

g−1 and in fact

(5) lD = |η−D⊗OD(2q)|+(i−2)·q ∈ G1
g−1(D), lC = |η−C⊗OC(y)|+(g−i−1)·y ∈ G1

g−1(C),

hence alD(q) = (i − 2, i) and alC (y) = (g − i − 1, g − i + 1).
To prove that the intersection between Gi and Θnull is transversal, we follow

closely [EH3] Lemma 3.4 (see especially the Remark on p. 45): The restriction Θnull |Gi
is

isomorphic, as a scheme, to the variety τ : T1
g−1(Gi) → Gi of limit linear series g1

g−1 on
the curves of compact type {C ∪y∼q D : y ∈ C}, whose C and D-aspects are obtained by
twisting suitably at y ∈ C and q ∈ D the fixed theta-characteristics η−C and η−D respec-
tively. Following the description of the scheme structure of this moduli space given in
[EH1] Theorem 3.3 over an arbitrary base, we find that because Gi consists entirely of
singular spin curves of compact type, the scheme T1

g−1(Gi) splits as a product of the

corresponding moduli spaces of C and D-aspects respectively of the limits g1
g−1. By

direct calculation we have showed that T1
g−1(Gi) ∼= supp(η−C ) × {lD}. Since supp(η−C )

is a reduced 0-dimensional scheme, we obtain that Θnull |Gi
is everywhere reduced. It

follows that Gi · Θnull = #supp(η−C ) = i − 1 and then β̄i = (Gi · Θnull)/(2i − 2). This

argument does not work for i = 1, when one uses instead the intersection of Θnull with
Gg−1, and this finishes the proof. �

Next we construct two pencils in S+
g which are lifts of the standard degree 12

pencil of elliptic tails in Mg. We fix a general pointed curve [C, q] ∈ Mg−1,1 and a pencil
f : Bl9(P

2) → P1 of plane cubics together with a section σ : P1 → Bl9(P
2) induced by

one of the base points. We then consider the pencil R := {[C∪q∼σ(λ)f
−1(λ)]}λ∈P1 ⊂ Mg.

We fix an odd theta-characteristic η−C ∈ Picg−2(C) such that q /∈ supp(η−C ) and

E ∼= P1 will again denote an exceptional component. We define the family

F0 := {[C ∪q E ∪σ(λ) f−1(λ), ηC = η−C , ηE = OE(1), ηf−1(λ) = Of−1(λ)] : λ ∈ P1} ⊂ S+
g .

Since F0∩A1 = ∅, we find that F0 ·β1 = π∗(F0) ·δ1 = −1. Similarly, F0 ·λ = π∗(F0) ·λ = 1
and obviously F0 · αi = F0 · βi = 0 for 2 ≤ i ≤ [g/2]. For each of the 12 points λ∞ ∈ P1

corresponding to singular fibres of R, the associated ηλ∞
∈ Pic

g−1
(C ∪ E ∪ f−1(λ∞))

are actual line bundles on C∪E∪f−1(λ∞) (that is, we do not have to blow-up the extra
node). Thus we obtain that F0 · β0 = 0, therefore F0 · α0 = π∗(F0) · δ0 = 12.
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We also fix an even theta-characteristic η+
C ∈ Picg−2(C) and consider the degree 3

branched covering γ : S+
1,1 → M1,1 forgetting the spin structure. We define the pencil

G0 := {
[
C∪qE∪σ(λ)f

−1(λ), ηC = η+
C , ηE = OE(1), ηf−1(λ) ∈ γ−1[f−1(λ)]

]
: λ ∈ P1} ⊂ S+

g .

Since π∗(G0) = 3R, we have that G0 · λ = 3. Obviously G0 · β0 = G0 · β1 = 0, hence

G0 · α1 = π∗(G0) · δ1 = −3. The map γ : S+
1,1 → M1,1 is simply ramified over the

point corresponding to j-invariant ∞. Hence, G0 · α0 = 12 and G0 · β0 = 12, which is
consistent with formula (3).

The last pencil we construct lies in the boundary divisor B0 ⊂ S+
g : Setting E ∼= P1

for an exceptional component, we define

H0 := {[C ∪{y,q} E, ηC = η+
C , ηE = OE(1)] : y ∈ C} ⊂ S+

g .

The fibre of H0 over the point y = q ∈ C is the even spin curve
[
C ∪q E′ ∪q′ E′′ ∪{q′′,y′′} E, ηC = η+

C , ηE′ = OE′(1), ηE = OE(1), ηE′′ = OE′′(−1)
]
,

having as stable model [C ∪q E∞], where E∞ := E′′/y′′ ∼ q′′ is the rational nodal curve
corresponding to j = ∞. Here E′, E′′ are rational curves, E′ ∩ E′′ = {q′}, E ∩ E′′ =
{q′′, y′′} and the stabilization map for C ∪E ∪E′ ∪E′′ contracts the components E′ and
E, while identifying q′′ and y′′.

We find that H0 ·λ = 0,H0 ·αi = H0 ·βi = 0 for 2 ≤ i ≤ [g/2]. Moreover H0 ·α0 = 0,
hence H0 · β0 = 1

2π∗(H0) · δ0 = 1 − g. Finally, H0 · α1 = 1 and H0 · β1 = 0.

Theorem 2.3. If F0, G0,H0 ⊂ S+
g are the families of spin curves defined above, then

F0 · Θnull = G0 · Θnull = H0 · Θnull = 0.

Proof. From the limit linear series argument in the proof of Theorem 2.2 we get that

the assumption F0 ∩ Θnull 6= ∅ implies that q ∈ supp(η−C ), a contradiction. Similarly,

we have that G0 ∩ Θnull = ∅ because [C] ∈ Mg−1 can be assumed to have no even

theta-characteristics η+
C ∈ Picg−2(C) with h0(C, η+

C ) ≥ 2, that is [C, η+
C ] /∈ Θnull ⊂ S+

g−1.

Finally, we assume that there exists a point [X := C ∪{y,q} E, ηC = η+
C , ηE = OE(1)] ∈

H0 ∩ Θnull. Then certainly h0(X, ηX ) ≥ 2 and from the Mayer-Vietoris sequence on X
we find that

H0(X, ηX) = Ker{H0(C, ηC ) ⊕ H0(E,OE(1)) → C2
y,q},

hence h0(C, ηC) = h0(X, ηX ) ≥ 2. This contradicts the assumption that [C] ∈ Mg−1

is general. A similar argument works for the special point in H0 ∩ π−1(∆1), hence
H0 · Θnull = 0. �

Proof of Theorem 0.2. Looking at the expansion of [Θnull], Theorem 2.3 gives the relations

F0 · Θnull = λ̄ − 12ᾱ0 + β̄1 = 0, G0 · Θnull = 3λ̄ − 12ᾱ0 − 12β̄0 + 3ᾱ1 = 0

and H0 · Θnull = (g − 1)β̄0 − ᾱ1 = 0.

Since we have already computed ᾱi = 0 and β̄i = 1/2 for 1 ≤ i ≤ [g/2], (cf. Theorem
2.2), we obtain that λ̄ = 1/4, ᾱ0 = 1/16 and β̄0 = 0. This completes the proof. �

A consequence of Theorem 0.2 is a new proof of the main result from [T]:
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Theorem 2.4. If M1
g is the locus of curves [C] ∈ Mg with a vanishing theta-null then its

closure has class equal to

M1
g ≡ 2g−3

(
(2g + 1)λ − 2g−3δ0 −

[g/2]∑

i=1

(2g−i − 1)(2i − 1)δi

)
∈ Pic(Mg).

Proof. We use the scheme-theoretic equality π∗(Θnull) = M1
g as well as the formulas

π∗(λ) = 2g−1(2g +1)λ, π∗(α0) = 22g−2δ0, π∗(β0) = 2g−2(2g−1 +1)δ0, π∗(αi) = 2g−2(2i +
1)(2g−i + 1)δi and π∗(βi) = 2g−2(2i − 1)(2g−i − 1)δi valid for 1 ≤ i ≤ [g/2]. �
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