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Introduction n 

0.11 Algebraic curves and their moduli 

Thee subject of this thesis is the geometry of the moduli space My of algebraic curves of 
genuss g. This is the universal parameter space for curves (Riemann surfaces) of genus g. 
inn the sense that its points correspond one to one to isomorphism classes of curves. 

Algebraicc curves, tlie objects classified by My. started to appear systematically in 
mathematicss around the middle of the 19th century, although interest in algebraic curves 
cann be traced back to Euler's study of abolian integrals in the 18th century. For most of 
thee 19th century, the curve's people were looking at were plane curves, that is. subsets of 
P22 satisfying an equation F{jc.y,z) — 0. where F is a homogeneous polynomial in three 
variables.. Two plane curves were said to belong to the same class, if there was a birational 
transformationn of P2 carrying one curve into another. The advantage of such an approach 
(whichh surely appears quite cumbersome and ineffective nowadays) is that given a plane 
curvee of degree d. by varying the coefficients of the polynomial equation one immediately 
obtainss the family of all plane curves of degree d, which is itself an algebraic variety, the 
projectivee space prf(d+3)/'2. 

Itt was Riemann in his famous papers on function theory from 1857 who started the 
processs of liftin g the curves from P2 and began to view them as abstract objects. By 
realizingg curves as branched covers of P1. he even managed to show that for y > 2 curves 
off  genus y depend on 3y — 3 minimal parameters, which he called moduli. 

Ass Bril l and Noether pointed out. Riemann himself did not think of a space whose 
pointss would correspond to classes of curves. However, in the late 19th century, the 
conceptt of a moduli space of curves was floating around and the existence of a variety 
parametrizingg genus y curves was widely assumed. At that time people were already 
activelyy studying properties of My. For instance, in 1882, Klein using topological argu-
mentss due to Clebsch showed that the space of n-sheeted coverings of the Riemann sphere 
withh b = 'hj -+- '2n — 2 branch points is irreducible, implicitl y proving the irreducibility of 
MM99.. Although Severi and B. Segre among others continued the investigation of Mg in 
thee first decades of the 20th century, the first rigorous construction of Mg (as an analytic 
varietv)) was flue to Teichnniller in 1940. Work by Baily in 1962 showed that My was an 
algebraicc (quasi-projective) variety and the first purely algebraic construction of My was 
carriedd out by Mumford in 1965 using "Geometric Invariant Theory" (cf. [Mu2]). 

Att this point we want to make more precise what we understand by My. The moduli 
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spacee of curves .\4g is an algebraic variety satisfying the following properties: 

 For an algebraically closed field k\ the points in Mg(k) correspond 1:1 to isomor-
phismm classes of curves of genus g over k. If C is a complex smooth curve of genus 
g.g. we denote by 'C\ G Mg its moduli point. 

 For any fiat family ~ : C —> B of smooth curves of genus g. the moduli map 
tntn : B -  ̂ Mg given by m(b) := [C\\ for 6 G £?. is holomorphic. Moreover. Mg is in 
somee sense minimal with respect to this universal property. 

Itt turns out that there exists a unique variety Mg satisfying these properties and one says 
thatt Mg coarsely represents the moduli functor of curves (we refer to i.Mu2] for precise 
definitionss of these terms). 

Thee space Mg is an irreducible quasi-projective variety of dimension 3g - 3 for g > 2. 
Wee have that „Vf0 is a point and ,\A, is the affine line A1. Since smooth curves can 
degeneralee to singular ones. My is not a compact variety. One can compactifv Mg 

byy enlarging the class of curves we parametrize and allowing certain singular curves, 
calledd stfible curves. These arc1 connected, nodal curves, such that any smooth rational 
componentt meets the curve in at least 3 points. We get in this way the Deligne-Mumford 
modulii  space Mg of stable curves (cf. [DM]) , which is an irreducible projective variety 
withh only mild singularities (Q-factorial). 

Thee boundary Mg — Mg corresponding to singular curves is a union of irreducible 
divisorss A, for 0 < /' < [g/2]. The general point of A0 corresponds to an irreducible curve 
withh one node, whereas for 1 < i < [g/'2]  the general point of A, corresponds to a curve 
C\C\ Uq C->. when1 C\ and C> are smooth curves of genus / and g - / meeting transversally 
att q. 

0.22 How rational is Mgl 

Forr low genus there are explicit descriptions of the variety M,r Any smooth curve of 
genuss 2 can he realized through the equation 

yy11 =  - O])  (,r - rifi). where ax o(i G C 

Iff  we consider the quotient of Syn/'l'P1 ) under the action of PGH2). we realize M> as a 
quotientt of an open subset of CJ by the symmetric group 5<;. 

Inn tht1 case of .Vf:i. a non-hyperelliptic <'urve of genus 3 can be uniquely embedded as 
aa smooth plane quartic. We thus have a dominant rational map from the P1 ' of plane 
quarticss to .VJ3. Almost every curve of genus 3 can be realized by varying the coefficients 
inn the equation 

^^ ntjkSyj:k = 0. 
i,j.k>0.i~j~k--i i,j.k>0.i~j~k--i 

Whatt is essential here, is that the coefficients u,  ̂ G C can \-ary freely, they do not have to 
satisfyy any equations, only a few polynomial inequalities, so that we have a way of getting 
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ourr hands on f almost) every curve of genus 3. We say that the variety .Vf.3 is unirational. 
Moree generally, a variety A" is called unirational if there exists a rational dominant 

mapp from a projective space P" to A". Unirationality is a very desirable property as 
itt gives a parametrization of the variety. One says that A' is unirulod if there exists a 
rationall  dominant map from a product variety 1 ' x P1 to A' and which is not constant 
onn fibres {,(/}  x P1. where y 6 V. Equivalently. A" is uniruled if through a general point 
11 G A' there passes a rational curve. Clearly unirationality implies uniruledness. 

Ann important birational invariant of an algebraic variety is its Kodaira dimension. For 
aa smooth, projective variety X. the Kodaira dimension K(X) is defined as follows: let us 
considerr ^jx = 0{KX) the canonical sheaf on A' and for m > 1 such that \m.Kx\ 7̂  -̂ w r 

takee the rational map omKx : X ^f01"1^1"1. We define 

K(X)K(X) :— max{dim omKx (A') : m G Z>i such that \mKx 7̂  0} . 

Clearlyy s[X) G {-oc.0 dim(A')} . If K(X) = dim(A'). we say that A* is of general 
type.type. If X is uniruled. then mh'x = 0 for all m > 1. hence H(X) = — oc. For an 
arbitraryy projective variety A", we define K(A' ) := K(X). where X is a desingularization 
off  A". 

AA famous conjecture in the classification theory of higher dimensional algebraic vari-
etiess predicts that A' is uniruled if and only if K(X) = —oc. This is known to be true 
whenn dim (A') < 3. 

Sevenn was the first to study the rationality of MQ. The existence of a rational 
parametrizationn of M9 would mean that we can describe most curves of genus g by 
equationss depending on free parameters. In other words, we can write down more or less 
explicitlyy the general curve of genus g and to paraphrase Mumford (see [Mu]) we would 
bee able to boast: "We have seen every curve once". 

Onn the other hand, the non-uniruledness of .\Ag would have pretty spectacular conse-
quencess for the geometry of curves of genus g. For instance, it would imply that if C is 
aa general curve of genus g and S is a surface containing C such that dim C > 1. then 
SS must be birational to C x P1. To rephrase it. the general curve of genus g does not 
appearr in a non-trivial linear system on any non-ruled surface (cf. [HM]) . We refer to 
thee beginning of Chapter 1 for a more detailed history of the problem of unirationality of 

0.33 The Brill-Noether Theorem 

Wee view curves as (abstract) 1-dimensional smooth, complete, algebraic varieties. Un-
derstandingg the various embeddings of curves in projective spaces will add a great deal 
too our knowledge of the geometry of algebraic curves. 

Lett C be an algebraic curve. A nondegenerate map ƒ : C —> P7" is given by a linear 
seriess of dimension r on C. that is. a pair / = ( £ . ! ' ) . where C is a line bundle on C and 
VV C H°(C.C) is a subspace of dimension r + 1. Assuming that / is base-point-free (i.e. 
forr every p G C there is s  € \' such that sip) ̂  0). by choosing a base (.s0 s>) in \ '. 
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wee obtain a map ƒ : C -> P''. given by ƒ(/;) := [s0(p) Mp,)]- To / = (C. \') we also 
associatee the r-dimensional system of divisors 

VV = {(liv(s-) : .s e \\ c P(//°(r. £)). 

Iff  deg(£) = e/, following classical terminology, we say that / = (£.\~) is a gjj. which 
meanss ""a group off/ points moving with r degrees of freedom". We can ask the following 
question:: What kind of linear series does a curve of genus g have? The answer is the 
followingg famous result (cf. [BX]) : 

Theoremm 0.1 (Br i l l -Noether , 1874) A general curve of genus g has a gr
d if and only 

ifif  pig. r. (I) = g-(r-tl) (g > 0. 

Too mention a few things about the history of this theorem, we note that in the 1920's after 
thee result had been taken for granted for 40 years. Severi realized that Bril l and Xoether 
hadd only proved that any component of'the variety of 0('/s on C has dimension > p(g. r.d) 
butt they failed to prove the existence of such a component (or the nonexistence when 
pig.pig. r.d) < 0). The Brill-Xoether Theorem was finally proved in 1980 by Griffiths and 
Harriss (cf. [GH]j using an old idea of Castelnuovo of specializing to a general curve of 
arithmeticc genus g with g nodes. 

Itt is worth to outline the parameter count that prompted Bril l and Xoether to claim 
theirr theorem and which brings into the picture the Brill-Xoether number p(g.r.d) (see 
alsoo [GriffHa] for this count). 

Lett C be a general curve of genus g > 3. in particular. C is non-hyperelliptic. Consider 
CC "-^ P ^1 canonically embedded and let D = YlUi Pi ^° a divisor of degree d on C. 
Assume11 D is part of a gj,. i.e. dim D > r. Then by Riemann-Roch it follows that D 
spanss a (d - r - 1 )-plane in Pr/'""' . Since D moves in an r-<limensional family, we get that 
CC has a gr

d if and only if C has an /--dimensional family of r/-secant (// - r — lj-planes. 
Sincee the variety of (d - r - 1 )-planes meeting C at least once lias codimension g -

c/-i-- /  - 1 in G(d - r - 1. g - 1). it is natural to expect that the variety of (d - r - 1 )-planes 
thatt an> f/-seeant to C has codimension d{g -  r - 1). Therefore we expect this variety 
too be of dimension > r if and only if dim G{d - r - 1. g - 1 ) - d(g - d -r /' - 1) > /-. and 
thiss is equivalent with p{g. r.d) > 0. 

0.44 Outline of the results 

Chapterr 1 deals with the geometry of the moduli space of curves of genus 23. It is known 
thatt Mg is of general type for g > 24 and that for low values of g (conjecturally for all 
yy < 22). the moduli space Mu is uniruled. This leaves M->-.i  as an interesting transition 
casee between two extremes: uniruledness and being of general type. The main result is 
thee following: 

Theoremm T/JC Kodmra dimension of the moduli space of curves of genus 23 is > 2. 
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Tin11 proof is based on the study of three explicit divisors on .Vt2,3 which turn out to 
bee multicanonical. Evidence is presented which suggests that the Kodaira dimension of 
.Vl-i.'ii  i*  actually equal to 2. Degeneration to singular curves and the theory of limit linear 
seriess (reviewed in Section 1.3) as well as deformation theory are the tools we use. 

Chapterr 2 deals with the geography (relative position) of the Brill-Xoether loci 

-Wg-WgMM  [\C]  <E Ms : C carries a 0 ^ } . 

Wee compare different Brill-Xoether loci and show that they are in general relative' position 
(transversal)) inside A4g. unless there are some obvious containment relations between 
them.. In Section 2.4 we prove under certain numerical conditions the existence of regular 
(genericallyy smooth, of the expected dimension) components of the Hubert scheme of 
curvess C C P1 x Pr . where r > 3. The main result of Section 2.5 is the following theorem 
concerningg the gonality of space curves: 

Theoremm Let g > 5 and d > 8 be integers with g odd and d even, such that d2 > Sg. 
AdAd < 3g + 12. d2 — 89 + 8 is not a square and either d < 18 or g < -id — 31. Assume that 

{d'.g')e{(d.g).(d+l.g+l).(d+l.g{d'.g')e{(d.g).(d+l.g+l).(d+l.g + 2).(d+2.g + 3)}. 

ThenThen tiiere exists a regular component of the scheme Hilbd'g',3. with general point a 
smoothsmooth curve C' C F3 of degree d' and genus g' and such that the gonality of C' is 
m i n ( d ' - 4 , [ ( g'' + 3)/2]). 

Ass a consequence of results from Chapter 2, we find a new proof for our result «(-M2:)) > 2. 

Inn Chapter 3 certain aspects of the geometry of the moduli spaces AA9,n of n-pointed 
curvess of genus g are studied. For an integer g = 1 mod 3 with g > A we set d ;— (2g+7}/3 
andd we can consider the following divisors: 

 On MgA. the closure of the locus HF (resp. CI") consisting of 1-pointed curves 
(C.(C. p) £ A4g,\ such that there exists a ĝ  on C with a hyperflex (resp. cusp) at the 
pointt p. 

 On Mg:2~ the closure of the locus FL consisting of those [C.p\.p2]  6 Mg:>  such that 
theree exists a Q2

d with flexes at both p\ and p2-

Wee determine the classes [HF].  [CU]  and [FL]  (in the respective Picard groups). 
Forr an integer d > 3 we set g := 2d — 4. We denote by TR the locus of 1-pointed 

curvess [C.p] e Mg.\ such that there exists a degree d map ƒ : C —> P1 having triple 
ramificationn at p and at some unspecified point x 6 C — {p}. It turns out that TR is a 
divisorr on .Vföj and in Section 3.6 we compute the class [TR] in Pic-(„Vl g,i). 

Wee close Chapter 3 by proving in Section 3.7 the following: 

Theoremm For g = 11.12 and 15 f he universal curve Cg has Kodaira dimension — oc. 

Thee first two chapters of this thesis are based on the papers 
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G.. Farkas: The Geometry of the Moduli Space of Curves of Genus 23. to appear in 
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G.. Farkas: The Geography ofBriU-Xoethcr IJH i in the Moduli .Space of Curves, preliniinary 
version. . 



Chapterr 1 

Thee geometry of the moduli space of 
curvess of genus 23 

1.11 Introduction 

Thee problem of describing the birational geometry of the moduli space .\4g of complex 
curvess of genus g lias a long history. Severi already knew in 1915 that ,\Ag is unirational 
forr g < 10 (cf. [Sev]: see also [ACT] for a modern proof). In the same papen- Severi 
conjecturedd that Mg is unirational for all genera g. Then for a long period this problem 
seemedd intractable (Muniford writes in [Mu] . p.51: "Whether more Mg's. g > 11. are 
unirationall  or not is a very interesting problem, but one which looks very hard too. 
especiallyy if g is quite large"). The breakthrough came in the eighties when Eisenbud. 
Harriss and Muniford proved that Mg is of general type as soon as g > 24 and that the 
Kodairaa dimension of M2:\ is > 1 (see [HM] . [EH3]). We note that Mg is rational for 
gg < 6 (see [Dol] for problems concerning the rationality of various moduli spaces). 

Severi'ss proof of the unirationality of My for small g was based on representing a 
generall  curve of genus g as a plane curve of degree d with 6 nodes: this is possible when 
<l<l  > 2^/3 + 2. When the number of nodes is small, i.e. 6 < (d + 1) (r/ -*- 2)/6. the dominant 
mapp from the variety of plane curves of degree d and genus g to M9 yields a rational 
parametrizationn of the moduli space. The two conditions involving d and ó can be satisfied 
onlyy when g < 10. so Seven's argument cannot be extended for other genera. However. 
usingg much more subtle ideas. Chang. Ran and Sernesi proved the unirationality of .\49 

forr g = 11. 12. 13 (see [CR1]. [Sol]), while for g = 15. 16 they proved that the Kodaira 
dimensionn is — oc (see [CR2.4] ). The remaining cases g — 14 and 17 < g < 23 are still 
quitee mysterious. Harris and Morrison conjectured in [HMo] that Mg is uniruled precisely 
whenn g < 23. 

Al ll  these facts indicate that M-2s is a very interesting transition case. Our main result 
iss the following: 

Theoremm 1.1 The Kodaira dimension of the moduli space of curves of genus 23 is > 2. 



Wee wil l also present some evidence for the hypothesis that the Kodaira dimension of Mr-, 
iss actually equal to 2. 

1.22 Multicanonical linear systems and the Kodaira 
dimensionn of M(j 

Wee study three multicanonical divisors on Mxi- which are (modulo SOUK1 boundary com-
ponents)) of Brill-Xoether type, and we conclude by looking at their relative position that 
K{MK{M 22Z)Z) > 2. _ 

Wee review some notations. We shall denote by Mg and Cg the moduli spaces of stable 
andd 1-pointed stable curves of genus g over C. If C is a smooth algebraic curve of genus 
g.g. we consider for any r and d. the scheme whose points arc the j^ ' s on C. that is. 

G'jC)G'jC) = {(C.Y) : C e Pic d(C).\' C Hl)(C.C).d\m(\') = r - 1} . 

fcf.. [ACGH]) and denote the associated Brill-Xoether locus in .V1,y by 

M'M'gj!gj! :={[C}eM:={[C}eM gg:G':G' dd(C)^^}. (C)^^}. 

andd by Wg(j its closure in ,\4g. 
Thee distribution of linear series on algebraic curves is governed (to some extent) b\ 

thee Brill-Xoctlivr number 

p(g.p(g. r. d) := g - (r + l)(g ~d+r). 

Thee Brill-Xoether Theorem asserts that when p(g.r.d) > 0 every curve of genus g pos-
sessess a gd. while when p(g.r.d) < 0 the general curve of genus g has no g^'s. hence in 
thiss case the Brill-Xoether loci are proper subvarieties of Mg. When p(g.r.d) < 0. the 
naivee expectation that —p(g.r.d) is the codimension of \ir d inside .Vf,y. is in general 
wayy off the mark, since there are plenty of examples of Brill-Xoether loci of unexpected 
dimensionn (Cf. [EH2]). However, we have Steffen's result in one direction (see [St]): 

IfIf  pig. r.d) < 0 then each component of Mr
 d has codimension at most -pig. r.d) en Mg. 

Onn the other hand, when the Brill-Xoether number is not very negative, the Brill-Xoether 
locii  tend to behave nicely. Existence of components of ,\Ar

( d of the expected dimension 
hass been proved for a rather wide range, namely for those g. r.d such that p(g.r.d) < 0. 
and d 

II  — 7 + r + 3 if r is odd: 
p[g-r.d)>{p[g-r.d)>{  J 

[~rg/{r[~rg/{r  -+- 2) + r + 3 if r is even. 
Wee have a complete answer only when pig. r.d) = — 1. Eisenbud and Harris have proved in 
EH2]]  that in this case W d has a unique divisorial component, and using the previously 

mentionedd theorem of Steffen's, we obtain the following result: 
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IfIf  pig.r.d) = — 1, then .\4 d is an irreducible divisor of ,\Ag. 

Wee will also need Edidin's result (see [Ed2] ) which says that for <y > 12 and p(g. r.d) — —2. 
alll  components of MT

q d have codimension 2. We can get codimension 1 Brill-Xoether 
conditionss only for the genera g for which g + 1 is composite. In that case wo can write 

«yy + l = (r + l ) ( , s- 1). s > 3 

andd set d :=  rs — 1. Obviously p(g.r.d) — —1 and -M  d is an irreducible divisor. Fur-
thermore,, its class has boon computed (of. [EH3] ): 

[M'sJ[M'sJ = cg,rM (g + 3)A - ~ - ^ 0 - £ 'tv ~ Wi I

wheree cgrd is a positive rational number equal to 3p/(2g — 4). with p being the num-
berr of g^"s on a general pointed curve (CQ.C/) of genus g — '2 with ramification sequence 
(0,, 1. 2 2) at q. For g — 23 wo have the following possibilities: 

{r.s.d){r.s.d) = (1.13.12). (11.3.32). (2.9.17). (7.4.24). (3. 7. 20). (5.5.24). 

Itt is immediate by Serre duality, that cases (1. 13. 12) and (11. 3. 32) yield the same divisor 
onn -M23- namely the 12-gonal locus ,W} 2: similarly, cases (2.9. 17) and (7.4,24) yield the 
divisorr ,\42

7 of curves having a Q2
lT. while cases (3.7.20) and (5.5.24) give rise to -Vfijo-

thee divisor of curves having a Q?20. Note that when the genus we are referring to is clear 
fromm the context, we write .M^ = -VT rf. 

Byy comparing the classes of the Brill-Xoether divisors to the class of the canonical 
divisorr A"^ p = 13A - 260 - ?>6X —  — 2<5-fl/-2;. at least in the case when g +1 is composite 
wee can infer that 

^~\4^~\4rr re = a{~^Q(t\ + b\+ ( positive combination of SQ S'g/2})-

wheree a is a positive rational number, while b > 0 as long as g > 24 but 6 = 0 for g — 23. 
Ass it is well-known that A is big on .\Ag. it follows that Mg is of general type for g > 24 
andd that it has non-negative Kodaira dimension when g = 23. Specifically for g = 23. we 
gett that there are positive integer constants in. ni j . m2- "'3 such that: 

nth'nth' = mi[~Ml
l2]  + E. mK = m2\M\7]  + E. mh' = w^[Ml0]  + E. (1.1) 

wheree E is the same positive combination of 6\ 6U. 

Propos i t i onn 1.2.1 (E isenbud-Har r i s, [EH3]) There exists a smooth curve of genus 
233 that possesses a gj2. but no gf7. It follows that ) > 1-

Harriss and Mumford proved (cf. [HM] ) that .Vf9 has only canonical singularities for g > 4. 

hencee H°(Mg.rf.g. nh'\ = H°{Mg. nK) for each 11 > 0. with My a desingularization of Mg. 
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Wee already know that dim(lino,,,A' ) > 1- where omK  -^23 y^' is the inulticanonical 
map.. m being as in (1.1). We will prove that K(.Vf_>:j) > 2. Indeed, let us assume that 
dim(ImomA')) = 1- Denote by C :— ImomA' the Kodaira image of M-y,<,- We reach a 
contradictionn by proving two things: 

 a) The Brill-Xoether divisors W\2.W\- and .Vt_*0 are mutually distinct. 
 3) There exist smooth curves of genus 23 which belong to exactly two of the Brill -

Xoetherr divisors from above. 
Thiss suffices in order to prove Theorem 1.1: since Wu. .Vf j T and .VI',0 are part of different 
inulticanonicall  divisors, they must be contained in different fibres of the inulticanonical 
mapp OmK- Hence there exists different points J.IJ. z € C such that 

M\M\22 = o~Hx) n M-n. M\7 = o~l(y) n Mn. Mï0 = o^(;) n M,^ 

Itt follows that the set-theoretic intersection of any two of them will be contained in the 
basee locus of inK-^. . In particular: 

supp(.Vt|,)) n supp(.Vff-) = supp(.VIiV) nsiippf.Vtfu) = supp(.Vt:]0) r suppLH |2) . (.1.2) 

andd this contradicts 3). We complete the proof of a) and 3) is Section 1.5. 

1.33 Deformation theory for gjj's andd limi t linear series 

Wee recall a few things about the variety parametrising gjj's on the fibres of the universal 
curvee (cf. [AC2]). and then we recap on the theory of limi t linear series (cf. [EH1]. [Mod]). 
whichh is our main technique for the study of .M2.3-

Givenn g,i\d and a point [C\ 6 X4<r  there is a connected neighbourhood V of [C],  a 
finit ee ramified covering h : M —> V. such that .Vf is a fine moduli space of curves (i.e. 
theree exists £ : C —> „VI a universal curve), and a proper variety over .VI. 

whichh parametrizes classes of couples {C.I), with [C]  6 .VI and / € G'd(C). where we have 
madee the identification C = £ ] i[C])
Lett (C. I) be a point of QT

d corresponding to a curve C and a linear series / — (£. \'). where 
CC e P i cd(C ) .r C H°{C.C). and d im(D = r + 1. By choosing a basis in V. one has a 
morphismm ƒ : C —> Fr . The normal sheaf of ƒ is defined through the exact sequence 

00 —  T( > f ' ( T,r) — > Xf — > 0. (1.3) 

Byy dividing out the torsion of Xf one gets to the exact sequence 

00 — t Kj —> Xf —> X'f —>  0. (1.4) 

wheree the torsion sheaf /C/ (the cuspidal sheaf) is based at those points x 6 C where 
(If(.c)(If(.c) — 0. and ,V| is locally free of rank r — 1. The tangent space T{CJ}{G^) fits into an 
exactt sequence (cf. AC'2]): 

00 —  C —  Hom(U \ ') —  H°(C\ Xf) —> T.cA-XQd) —+ 0. (T.-J) 

fromm which we have that dim Tir{] {Q'd) — ?>g — 3 -r p{(j. r.d) + hl(C. Xf). 
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Proposi t ionn 1.3.1 Let C be a curve and I 6 Gr
(i{C) a base point free linear series. Then 

thethe variety Qr
d is smooth and of dimension 3^ — 3-*- pig. r. d) at the point (C. /) if and only 

ifHHCXifHHCXff)) = (). 

Remark::  The condition H1(C.\f) = Ü is automatically satisfied for r = f as A*ƒ is a 
sheaff  with finite support. Thus Q] is smooth of dimension '2g + 2d — 5. It follows that Qd 

iss Irrationally equivalent to the (/-gonal locus Md when d < (g + 2)/2. 
Inn Chapter 2 we will be interseted in the differential {dn){c.i)  Tfc.i){Gfi) ~+ T-c]{Mg)-

Lett (Cl) E Qr
d be a point such that Hl(C\\f) = 0 and assume for simplicity that 

// = (C. y) is a complete, base point free linear series, that is. V — H°{C. C). By standard 
Kodaira-Spencerr theory (see [AC2] or [Mod]) one has that 

lm(d7T)lm(d7T)iCJ)iCJ) = lm{6 : H°(C.Xf) -> Hl{C.Tc)}. 

wheree Ó is the coboundary of the cohomology sequence associated to (1.3). We thus get 
thatt rk(dir)(c,i) = 3# — 3 — hx(C. /*(7pr)). By pulling back to C the Euler sequence 

00 —  OF > 0-pr(l)r+l  —> T?r —> 0. 

wee obtain that H]{C f*T7r) ~ (KerQu0(C\ £)))*', where 

Po(C.Po(C. C) : H°{C. C) -z- H°{C. Kc Z £v ) -  H°(C\ K() 

iss the Petri map. We obtain thus that the differential (d^)ic.i) has the expected rank 
min(3gg — 3, 3g — 3 4- p{g. r.d}). if and only if the Petri map is of maximal rank (which 
meanss surjective when p(g./\d) < 0). 

Itt is convenient to have a description of the annihilator (lm(dTr)(c.i))~ Q H°(Cz2Kc)-
wheree we have made the identification T[C}(Mg)

v — H°{Cz2Kc) v i a Serre duality. We 
introducee the Gaussian map (cf. [CGGH]) 

pACC)pACC) : Ker//.0(C.£) -> H°(CZ2KC). 

ass follows: let us consider the evaluation sequence corresponding to (C. C) 

00 —» Mc —> H°{C. C) Z Oc - ^ £ ^ 0. 

Wee restrict the C-linear map H°{C. C) Z Oc -> ^c  C, s Z ƒ ^ df Z s. to the kernel Mc 

andd get an (9c-linear map Mc —  ̂ c ': £  If  w e tensor this map with Qc 3 CJ. then take 
globall  sections and finally use that H°(C. Mc Z^lc Z- C'J) ~ Ker/ i0(C £ ). we get the map 
Pi(C.£)Pi(C.£) : Ker pG{C. C) -  ̂ H0(CZ2Kr). which we can loosely refer to as the 'derivative' 
off  the Petri map. 

Thee map p,\ (C. C) can be explicitly described: for an element sQ . r/0 +  + sr Z, r\r £ 
Ker/io(C.. C). with s, e H°(C. C) and t], E H°(C. £>(;  3 £'"'). if we consider the meromorphic 
functionss ƒ; = S,/SQ on C. we have that 

Pi(C.C)(sPi(C.C)(s00 Z //o H y- sr : ;/r) = so(rndf\ H i- Urdfr)-
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Ann easv calculation shows that 

flm(d7r)f r .„) -- = Im//1(C.£) C H°(C.2KC). 

Limi tt linear series try to answer questions of the following kind: what happens to a 
familyy of g^'s when a smooth curye specializes to a reducible curve? Limi t linear series 
solvee such problems for a class of reducible curves, those of compact type. A curve C is 
off  compact type if its dual graph is a tree. A curve C is tree-like if. after deleting edges 
leadingg from a node to itself, the dual graph becomes a tree. 

Lett C be a smooth curve of genus g and / = (£. V) <E Gr
d(G). C e Picd(C). V' C 

H°(C\C).H°(C\C). and dim(l ') = r + 1. Fix p G C a point. By ordering the finite set {ordplV)}^. -
onee gets the vanishing sequence of I at p: 

ooll(p)(p) : 0 < al
0(p)< .. . < a[(p) < d. 

Thee ramification sequence of / at p 

ft'(p)ft'(p) : 0 < al
Q(p) < . . . < a'r(p) < d - r 

iss defined as a[(p) = a\(p) — i and the weight of / at p is 

r r 

AA  Schubert index of type (r, d) is a sequence of integers .3 : 0 < .3Q < ... 3r < d — r. If Q 
andd 3 are Schubert indices of type (r. d) we write a < 3 ^=> a,: < 3{. i' = 0 r. The 
pointt p is said to be a ramification point of / if wl(p) > 0. The linear series / is said to 
havee a cusp at p if a-'(p) > (0.1 1). For C a tree-like curve. p\ pv € C smooth 
pointss and a1 Qn Schubert indices of type (r. d), we define 

G^(C.(p1.Q1) . . . . (pn.Q"))) := {/ e Gr
d(C) : a ' (P l) > a1 . . .. , al(pn) > a71}. 

Thiss scheme can be realized naturally as a determinantal variety and its expected dimen-
sionn is 

nn r 

pig.pig. r. d. a1 a") := p(g. r. d) - ^ ^ a). 
i-\i-\  j  = 0 

Iff  C is a curve of compact type, a crude limit $r
d on C is a collection of ordinary linear 

seriess / = {lY € Gr
d(Y) : Y C C is a component}, satisfying the following compatibility 

condition:: if >' and Z are components of C with {p}  = Y' D Z. then 

o'y )) > d - for i = 0 , . . . r. 

Iff  equality holds everywhere, we say that / is a refined limit gr
d. The 'honest' linear series 

/} -- E GT
d{Y) is called the Y'-aspect of the limi t linear series /. 
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Wee wil l often use the additivity of the Brill-Xoether number: if C is a curve of compact 
type,, for each component Y C C. let qx qs be the points where Y meets the other 
componentss of C. Then for any limi t Qr

d on C we have the following inequality: 

p(g.rAl)>p(g.rAl)> X> ( l v . c * ' y t e i) °lY(Qs)y (1-6) 
vcc c 

withh equality if and only if / is a refined limi t linear series. 
Itt has been proved in [EH1] that limi t linear series arise indeed as limits of ordinary 

linearr series on smooth curves. Suppose we are given a family n : C —> B of genus g curves, 
wheree B = Spec(i?) with R a complete discrete valuation ring. Assume furthermore that 
CC is a smooth surface and that if 0. r/ denote the special and generic point of B respectively, 
thee central fibre C0 is reduced and of compact type, while the generic geometric fibre C\ 
iss smooth and irreducible. If ln = {Cn.Vn) is a %T

d on CTr there is a canonical way to 
associatee a crude limi t series /0 on Q> which is the limi t of ln in a natural way: for each 
componentt Y of C0, there exists a unique line bundle £v on C such that 

£ £ , = £ ,,, and degz{C
Y

z) = 0, 

forr any component Z of C0 with Z ^ V'. (This implies of course that degY(C
y
Y) — d). 

Definee VY = Vrj n H°{C. CY) C #°(C„, £„) . Clearly. VY is a free i?-module of rank r + 1. 

Moreover,, the composite homomorphism 

VVYY(0)(0) -»> (7r,£y')(0) -> ^ ° ( C 0 , £ ^ ) -> H°(K£y
v .) 

iss injective. hence lY — {CY , V'y(0)) is an ordinary 2d o n ^  On e proves that / = {ly : 
yy component of Co}  is a limi t linear series. 

Iff  C is a reducible curve of compact type, I a limi t Qd on C. we say that / is smoothable 
iff  there exists IT : C —> i? a family of curves with central fibre C = C0 as above, and (£,,, V )̂ 
aa gJJ on the generic fibre C^ whose limi t on C (in the sense previously described) is /. 
Remark::  If a stable curve of compact type C. has no limi t g^s. then [C]  <£ Mgd. If 
theree exists a smoothable limi t Qr

d on C, then [C] G Mgd. 
Noww we explain a criterion due to Eisenbud and Harris (cf. [EH1]). which gives a 

sufficientt condition for a limi t Qr
d to be smoothable. Let I be a limi t Qd on a curve C of 

compactt type. Fix Y C C a component, and {q\ qs} = Y H (C — Y). Let 

Ti-.y^B.qr.B^y Ti-.y^B.qr.B^y 

bee the versal deformation space of {Y,qx qs). The base B can be viewed as a small 
(3#(K)-3+.s)-dimensionall  polydisk. Using general theory one constructs a proper scheme 
overr B. 

a:Qa:Qrr
dd(y/B:{q(y/B:{qtt.a.allnnqiqi))t))t=l=l)^B )^B 

whosee fibre over each b e B is a- 1 (6) = GT
d(Yb. (qr(b). alY(qi))* i=l ). One says that / is 

dirnensionallydirnensionally proper with respect to Y. if the Y'-aspect lY is contained in some component 
GG oïGr

d(y/B: (<7i.a'y(<7i))*=i) of the expected dimension, i.e. 

d imm G = d im B + p(lY.a
lY(q1)....a

lY(qs)). 
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Onee says that / is diiucnsionaUy proper, if it is dimensionally proper with respect to any 
componentt Y C C. The 'Regeneration Theorem" (cf. [EH1]) states that every dimension-
allyy proper limi t linear series is smoothable. 

Thee next result is a 'strong Brill-Xoether Theorem', i.e. it not only asserts a Brill -
Xoetherr type statement, but also singles out the locus where the statement fails. 

Proposi t ionn 1.3.2 (Eisenbud-Harris) Let C be a tree-like curve and for any compo-
nentnent Y C C. denote by qx qs e Y the points where Y meets the other components of 
C,C, Assume that for each Y the following conditions are satisfied: 

a.a. If g(Y) = 1 then s = 1. 

b.b. If g(Y) — 2 then s = 1 and q is not a Weierstrass point. 

e.e. If g[Y) > 3 then (Y. qx qs) is a general s--pointed curve. 

ThenThen for p] p, e C general points. p(l.a'(p]) n'(Pt)) > 0 for any limit linear 
seriesseries on C. 

Simplee examples involving pointed elliptic curves show that the condition p(g.r.d) > 

X^=ii  a''(P<) d°rf> l i 0 t guarantee the existence of a linear series / e Gr
d{C) with prescribed 

ramificationn at general points p\ .p2 p,  e C. The appropriate condition in the pointed 
casee can be given in terms of Schubert cycles. Let o = (Q0 ar ) be a Schubert index 
off  type (r. d) and 

CCd+ld+l  = W0 D \\\ D...D l'Fd+1 = 0 

aa decreasing flag of linear subspaces. We consider the Schubert cycle in the Grassmanian. 

aaaa = {A e G(r + 1. d + 1) : dim (A D WaiM) > r + 1 - /.. i = 0 r } . 

Forr a general /-pointed curve ( C pi pt) of genus g. and a1 a' Schubert indices 
off  type (r.d). the necessary and sufficient condition that C has a gr

d with ramification a' 
att p, is that 

(J(Jixiixi , ' < , 1: # 0 in H*(G(r+  l.r/-* - l j . Z j . (1.7) 

Inn the case t = 1 this condition can be made more explicit (cf. [EH3]): a general pointed 
curvee (C.p) of genus g carries a %d with ramification sequence (a0 ar ) at p. if and 
onlyy if 

r r 

^{ci,^{ci, + g-d-rr)^<g. (1 .8) 

wheree ./v = maxj.r.0}. One can make the following simple but useful observation: 
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Proposi t ionn 1.3.3 Let (C.p. q) be a general '2-pointed curve of genus g and (a0 Qr) 
aa Schubert index of type (r. d). Then C has a gr

d having ramification sequence (Q0 Qr) 
atat p and a cusp at q if and only if 

T T 

'%2(a'%2(aii+g+l-d+g+l-d  + r)+ <g + \. 

Proof:Proof: The condition for the existence of the Qr
d with ramification a at p and a cusp at 

qq is that aa  a9+1 / 0 (cf. (1.7)). According to the Littlewood-Richardson rule (see 

[F]).. this is equivalent with YH=o{ai + 9 + 1 - ci + r ) + < g + 1. d 

1.44 A few consequences of limi t linear series 

Wee investigate the Brill-Noether theory of a 2-pointed elliptic curve (see also [EH4]), and 
wee prove that A^ , d n Ai is irreducible for p(g. r,d) = - 1 . 

Proposi t ionn 1.4.1 Let (E.p.q) be a two-pointed elliptic curve. Consider the sequences 

aa : a0 < (i\ < .. .aT < d b : b0 < b] < .. . br < d. 

1,1, For any linear series I = (£, V) <E GT
d(E) one has that p(l, al(p), al{q)) > -r. Further-

more,more, if p(L a1 (p), a1(<?)) < - 1 . then p - q <E Pic°(E) is a torsion class. 
2.2. Assume that the sequences a and b satisfy the inequalities: d — 1 < at + 6r_?: < d, i — 
0 , . ... , r. Then there exists at most one linear series I € Gd(E) such that al{p) = a and 
aall(q)(q) = b. Moreover, there exists exactly one such linear series I — (OE{D),V) with 
DD e E^d\ if and only if for each i = 0 , . .. , r the following is satisfied: if al + br_i = d, 
thenthen D ~ ot p + br-x q, and if (at + 1) p + 6r_j q ~ D. then al+ i — a, + 1. 

Proof:Proof: In order to prove 1. it is enough to notice that for dimensional reasons there must 
bee sections at <E V such that div (<7j) > a\(p) p+ a^^q) q. therefore, a\(p) + ai

T_l{q) < d. 
Byy adding up all these inequalities, we get that p(L a1 (p), a1 (q)) > —r. Furthermore, 
p(l.ap(l.all(p)<a(p)<all(q))(q)) < - 1 precisely when for at least two values i < j we have equalities 
aatt + br t̂ = d, ÜJ + br-j — d, which means that there are sections al,a] 6 V such that 
div(CTJ)) = a-i p+br-i q. divfer,) — a, p + br-j q. By subtracting, we see that p-q e Pic°(£) 
iss torsion. The second part of the Proposition is in fact Prop.5.2 from [EH4].

Proposi t ionn 1.4.2 Let g.r.d be such that p(g.r,d) — —1. Then the intersection Mgd H 
Aii  is irreducible. 

Proof.Proof. Let V' be an irreducible component of A l ^ n A ^ Either Kn ln tA i  ̂ 0, hence Y — 
K n l n t A i .. or Y C A] — IntAi . The second alternative never occurs. Indeed, if Y C 
Aii  - IntAi . then since codim (V, Mg) = 2. Y must be one of the irreducible components 
off  Ai — IntAi . The components of Ai — Int A : correspond to curves with two nodes. We 
listt these components (see [Edl]): 
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 For 1 < j < g - 2. A}j is (he closure of the locus in Mg whose general point 
correspondss to a chain composed of an elliptic curve, a curve of genus g — j — 1. and 
aa curve of genus j . 

 The component A01. whose general point corresponds to the union of a smooth 
ellipticc curve and an irreducible nodal curve of genus g — 2. 

 The component A0.5_i whose general point corresponds to the union of a smooth 
curvee of genus g - 1 and an irreducible rational curve. 

Ass the general point of A L j . A0.i or A0.ff_i is a tree-like curve which satisfies the conditions 
off  Prop.1.3.2 it follows that such a curve satisfies the 'strong' Brill-Xoether Theorem, 
hencee Ai. j £ J4r

gd. A0.i £ ~Myd and A0.9_i £ A^_rf. a contradiction. So. we are left 
withh the first possibility: Y = Y n l n t A i . We are going to determine the general point 
[C][C]  e Y n IntAi . Let A' = C U E.g{C) = g-l.E elliptic. E D C = {p} such that A' 
carriess a limit gr

d. say /. By the additivity of the Brill-Xoether number, we have: 

- 11 =p(g.r.d) >p(l.C.p) + p(LE.p). 

Sincee p(J.E.p) > 0. it follows that p(l.C.p) < - 1 . so w'c(p) > r. Let us denote by 

ii  : Cy-i x C\ —t> IntAi 

thee natural map given by 3([C.p}. [E. q\) = [A' := CuE/p ~ q]. We claim that if we choose 
XX generically. then a^'(p) = 0. If not. p is a base point of lc and after removing the base 
pointt we get that [C] e Mg_ld_v Xote that p{.g - 1. r. rf - 1) = - 2 . so dim .Vt^_1-d_, = 
3g3g - 8 (cf. [Ed2]). If we denote by n : C9_i -  A4ff_i the morphism which "forgets the 
point',, we get that 

dimm ^(7r_ 1( -^ - i .d - i ) x Ci) = 3g - 6 < dim Y. 

aa contradiction. Hence, for the generic [A] e Y we must have al
Q

c(p) = 0. so al
r
E(p) = d. 

Sincee an elliptic curve cannot have a meromorphic function with a single pole, it follows 
thatt a^ip) <d-2 and this implies alc{p) > (0.1 1). i.e. Ic has a cusp at p. Thus. 
iff  we introduce the notation 

^ , . d ( 0 .11 1) = {[C.p]  e C,_, : GT
d{C. [p. (0.1 1))) # 0} . 

thenn T C 5(C_J_lrf(0. 1 1) x C{). On the other hand, it is known (cf. [EH2]) that 
CCrr

gg__idid(Q.(Q. 1 1) is irreducible of dimension 'ig - 6 (that is. codimension 1 in Cg_i)- so 

wee must have Y = MC'g_,ldi{).  1 1) x Ci). which not only proves that M' d n A : is 
irreducible,, but. also determines the intersection.

1.55 The Kodaira dimension of M23 

Inn this section we prove that s(M2:i)  > 2 and we investigate closely the nmlticanonical 
linearr systems on M>-;>,.  We now describe the three nmlticanonical Brill-Xoether divisors 
fromm Section 2. 
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1.5.11 The divisor Mv2 

Theree is a stratification of .VI23 given by gonality: 

M\QM\M\QM\ C ... C.Vfj2 C.Vf23-

Forr '2 < d < g/'2 + 1 one knows that M\. = M1
 k is an irreducible variety of dimension 

2g2g + 2d — 5. The general point of -M^rf corresponds to a curve having a unique Qd. 

1.5.22 The divisor JA\7 

Thee Seven variety Vd,g of irreducible plane curves of degree d and geometric genus g. 
wheree 0 < g < (d72

l), is an irreducible subscheme of Fd(d+3)/2
 0f dimension 3<f + 5 - 1 

(cf.. [H], [Mod]). Inside Vdi9 we consider the open dense subset Udtg of irreducible plane 
curvess of degree d having exactly ö — (d~1) ~ 9 nodes and no other singularities. There 
iss a global normalization map 

rnrn : Ud,g —> Mg. rti([Y\) :— [Y], Y is the normalization of Y 

Whenn d — 2 < g < (dT2
l). d > 5. U ĝ has the expected number of moduli, i.e. 

dimm m(U(i.g) — min(3g - 3, 3g — 3 + p(g. 2, d)). 

Inn our case we can summarize this as follows: 

Proposi t ionn 1.5.1 There is exactly one component of' Q\7 mapping dommantly to M?u. 
TheThe general element (C.l) e Q\7 corresponds to a curve C of genus 23, together with a 
0j77 which provides a plane model jor C of degree 17 with 97 nodes. 

1.5.33 The divisor M^ 

Heree we combine the result of Eisenbud and Harris (see [EH2]) about the uniqueness of 
divisoriall  components of Qr

d when p(g.r.d) = - 1 . with Sernesi's (see [Se2]) which asserts 
thee existence of components of the Hubert scheme Hdg parametrizing curves in P3 of 
degreee d and genus g with the expected number of moduli, for d — 3 < g < M — 18. d > 9. 

Proposi t ionn 1.5.2 There is exactly one component of Q^o mapping dommantly to M\0. 
TheThe general point of this com.pon.ent corresponds to a pair (C.l) where C is a curve of 
genusgenus 23 and I is a very ample g^o-

Wee are going to prove that the Brill-Xoether divisors Mr2.M17 and M"20 are mutually 
distinct. . 

Theoremm 1.2 There exists a smooth curve of genus 23 having a Q2
U. but no ĝ o 's- Equiv-

alently.alently. one has supp(.VJf7) $£ suppf.Vf^). 
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Proof:Proof: It suffices to construct a reducible curve A' of compact type of genus 23. which 
hass a smoothable limit g2

17. but no limi t Q20. If [C]  G .Vf23 is a nearby smoothing of A' 
whichh preserves the Q\7. then [C]  € M\7 - M\Q. Let us consider the following curve: 

PiPi / \ P2 r 

CiCi / \C-2 

XX := Cx U C2 U E. 

wheree (Ci.jOi) and (C2.j>2) are general pointed curves of genus 11. E is an elliptic curve, 
andd pi - p2 is a primitive 9-torsion point in Pic°(£') 
S tepp 1) There is no limit g2Q

 0Ti  Assume that / is a limi t Q2Q on A'. By the additivitv 
off  the Brill-Xoether number. 

- 11 > p(k\-P\) + pilcyp-i) + (>(JE-PI-P-I)-

Sincee ( G . pj are general points in Cn . it follows from Prop.1.3.2 that p(/c.,/;,) > 0. hence 
piJ-E-Pi-p-2)piJ-E-Pi-p-2) < - 1 - On the other hand p{lE^PuP2) > - 3 from Prop.1.4.1. 

Denotee by (a0. ai.a2, a3) the vanishing sequence of lE at pi. and by {bQ. bi. b2. 63) that 
off  lE at p2. The condition (1.8) for a general pointed curve [(C,:,p,)] € Cn to possess a g20 

withh prescribed ramification at the point p% and the compatibility conditions between lCi 

andd /£' at p, give that: 

( 1 4 - a3 ) ++ + ( 1 3 - a2 ) + + (12-G.1)^ + ( l l - a 0 ) + < 11. (1.9) 

and d 

(144 - 63)+ + (13 - b2) + + (12 - 60^ + (11 - b0)+ < 11. (1.10) 

Lstt case: P(JF;-P\<P2) = - 3 . Then o,?: + &,,_; = 20. for * = 0 3 and it immediately 
followss that 20(pi - p2) ~ 0 in Pic°{E). a contradiction. 
2nd2nd case: P(IE-PI-P2) = - 2 . We have two distinct possibilities here: i) a0 + b:i -
20.. Q, + ft2 = 20. a2 + 6 i = 20. a3 + &0 = 19- Then it follows that al* :(pi) = (0.9.18.19) 
andd alF{p2) = (0.2.11.20). while according to (1.9). a3 < 15. (because p{lC{.pi) < 1). a 
contradiction,, ii) o0 + 63 = 20, a-i + b2 = 20. a2 + 61 = 19. a3 + 60 = 20. Again, it follows 
thatt 03 = o0 + 18 > 15. a contradiction. 
3rd3rd case: P{)E-PI-P2) — - 1 - Then p(}c..pi) = 0 and / is a refined limi t g20. From (1.9) 
andd (T.10) we must have: olE{pl) < (11.12.13,14). * = 1. 2. There are four possibilities: i) 
a00 + h = ai + b2 = 20. o2 + &i = o3 + b0 = 19. Then ox = a0 + 9 < 12. so ft3 = 2 0- a0 > 17. 
aa contradiction, ii) o.0 + 63 = a2 + 6T = 20. o2 + 61 = a3 + 60 = 19. Then b3 = 20 - a0 < 14. 
soo a2 = a0 + 9 > 15. a contradiction, iii ) c/0 + 63 = Q3 + &0 = 20. <i\  + 62 = a2 + 61 = 1 9. 
Thenn 63 = 19 - a0 < 14. so o3 > oQ + 9 > 15. a contradiction, iv) a0 + 63 = a3 + 60 = 
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19.. ai + b2 = ('2 + bi = 20. Then 63 = 19 - o0 < 14. so a2 > «ï + 9 > 15. a contradiction 
again.. We conclude that A' has no limi t g20. 

S tepp 2) There exists a .smooth-able limit g'f7 on A", hence [A] 6 ,Vt17. We construct 
aa limi t linear series / of type Q\7 on A", aspect by aspect: on C\ take l(\ £ G2

l7(C,) such 
thatt alc>(pt) = (4.9.13). Xote that in this case ]Tj=o(aj- + g-d + r)+ = .9, so (1.8) ensures 
thee existence of such a g'f7. On £" we take lE = 'VE\- where \\ E\ C 4pt +13p2 = |4p2 + 13pi| 
iss a g'f7 with vanishing sequence (4.8. 13) at p; . Prop.1.4.1 ensures the existence of such a 
linearr series. In this way / is a refined limi t g 7̂ on A' with p{lc^Pi) — 0,p(/£,pi,p2) = —1. 
Wee prove that / is dimensionally proper. Let TV, : Ct —> A,. pt : A, —> Cx. be the versal 
deformationn of [{C l,pl)} e Cn, and a, : £?,(£/A*. (pV (4- 8.11))) -^ A; the projection. 

Sincee being general is an open condition, we have that a, is surjective and dim a~ (t) — 

p{lt\-Pi)p{lt\-Pi)  ~ 0- f° r e a cn ^ ^ -^f therefore 

dimm QlAd/Ai. (£,(4.8,11))) = dim A, + p{lCi,Pi) = 31. 

Next,, let 7T : C —5- A. p i ,p2 : A —y C be the versal deformation of (£ ,p i .p2) . WTe prove 
that t 

dimm g 7̂{C/X {pi.. (4. 7,11))) = dim A + pih-Pi-P-i) = 1-

Thiss follows from Prop. 1.4.1, since a 2-pointed elliptic curve (Et,pi{t),p2(t)) has at most 
onee g2

l7 with ramification (4, 7,11) at both p^t) and p2(f) , and exactly one when 9(pi (t) -
pp22{t)){t))  ~ 0. Hence Im^2

7(C/A. (pt. (4.7,11))) = {t 6 A : 9(pi(f) - p2(r)) ~ 0 in Pic°(£()} . 
whichh is a divisor on A, so the claim follows and I is a dimensionally proper g\7.

AA slight variation of the previous argument gives us: 

22 — 3 
Proposi t ionn 1.5.3 We have supp(.M17 n A ^ / supp{,Vt20 fl Ai) . 

Proof:: We construct a curve [Y]  e Ai C M23 which has a smoothable limi t g?17 but no 
limi tt g2o- Let us consider the following curve: 

GG C2 

YY := C i U C 2 U £ i U E. 

wheree (C2.P2) is a general point of Cn. (C\.pi.x) is a general 2-pointed curve of genus 
10.. (Ei.x) is general in C\. E is an elliptic curve, and py - p2 e Pic0(E) is a primitive 
9-torsion.. In order to prove that Y has no limi t g20. one just has to take into account that 
accordingg to Prop.1.3.3. the condition for a general 1-pointed curve (C. c) of genus g. to 
havee a Qr

d with ramification a at z is the same with the condition for a general 2-pointed 
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curvee {D.jr.y) of genus g - 1 to have a Qr
d with ramification a at x and a cusp at y. 

Thereforee we can repeat what we did in the proof of Theorem 1.2. Next, we construct /. 
aa smoothable limit g'f7 on Y: take lc-2 G G2

7(C2. (p-2. (4.8,11))). lE = a £ C 4p: 4- Vip2
l. 

withh Q , F ( A ) = (4. 7.11). on £\ take lE] = 14.r + :3.r. and finally on C\ take /Cl such that 
aalclci(pi)i(pi)  = (4.8. l l).Q / f ' i (x) = (0.0. 1). Prop.1.3.3 ensures the existence of /Cl. Clearly. / 
iss a refined limi t Q2

l7 and the proof that it is smoothable is all but identical to the one in 
thee last part of Theorem 1.2.

Thee other cases are settled by the following: 

Theoremm 1.3 There exists a smooth curve of genus 23 having a Q\2 but having no 02
7 

nornor $0. Equwalently. supp(.Vi{2) £ supp(;VTf7) and supp(,Vf{2) £ supp(.V| 0̂). 

Proof:Proof: We take the curve considered in [EH3]: 

PiPi / \ P-2 r 

Cll  / \ C-2 

VV := C, U C-2 U E. 

wheree (C?.p;) are general points of Cn. E is elliptic and pi - p2 G Pic°(£') is a primitive 
12-torsion.. Clearly Y has a (smoothable) limi t Q[2: on Q take the pencil |12p,4. while on 
EE take the pencil spanned by 12pi and 12;>2. It is proved in [EH3] that Y has no limi t 
0i7'ss and similarly one can prove that Y has no limi t g^'s either. We omit the detai ls .

\ oww we are going to prove that equation (1.2) 

suppOff  j2)
 n supp(M?7) = supp(„Vl27) fl s u p p O )̂ = supp(.Vt 0̂) D supp(.Vf }2) 

iss impossible, and as explained before, this wil l imply that Kf-V^ ) > 2. The main step 
inn this direction is the following: 

Proposi t ionn 1.5.4 There exists a stable curve of compact type of genus 23 which has a 
smoothablesmoothable limit 02O, a smoothable limit g2

5 (therefore also a g2
]7}, but has generic gonality. 

thatthat is, it does not have any limit g} 2. 

Intermezzo::  Before proceeding with the proof let us discuss a possible way to construct 
curvess of genus 23 with such special Bril l-\oether properties. Since we are looking for 
curvess C of genus 23 with a 02

5. a possibility is to start with a (smooth) plane curve 
T C P22 of degree d < 15 and obtain C from T by several geometrical operations. We take 
TT C P2 smooth of degree d and pick general points p^.q, G V. for 1 < i < 6. 

Lett us denote by C the curve obtained from F by identifying p,: and q( and by v : Y  C 
thee normalization map. hence v{p}) = u(qt) = s, for 1 < / < d. There exists a generalized 
0 ^^ on the integral curve C which corresponds to a torsion-free rank one sheaf on C. 
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Notee that since C is irreducible the variety of torsion-free rank one sheaves on C is a 
compactificationn of Pic(C). The generalized g2

d_s is obtained from the (unique) g2, on T 
byy adding the nodes sl as base points, hence we have that is*{gd+6) = Qd(J2i=i(Pi + </*))

Usingg results from [Ta]. it is not difficult to show that the gd+5 on C is smoothable. 
thatt is, [C]  E Mpa{c]d^s. By solving the equations d + 6 = 15 and ( ~ ) + ö — 23 we 
gett d - 7 and 5 — 8, so we could start with a smooth plane septic T C P2 and identify 

88 pairs of general points pl.ql É T, i = 1 8. The resulting curve C. of genus 23. wil l 
havee a smoothable g2

v Letting the points p%, ql come together in pairs, we obtain a curve 
off  genus 23 with 8 cusps. From the point of view of the Stable Reduction Theorem (see 
[Mod])) this is the same as attaching 8 elliptic tails to F at the cusps. 

ProofProof We shall consider the following stable curve A" of genus 23: 

rr  Pi P2 Ps 

E,E, E2 

XX := T U El U . .. U £8, 

wheree the Et's are elliptic curves, T C P2 is a general smooth plane septic and the points 
off  attachment. {pz}  = T U E% are general points of T. 
Stepp 1) There is no limit g\2 on X. Assume that / is a limi t Q\2 on A'. Since the 
ellipticc curves Et cannot have meromorphic functions with a single pole, we have that 
aalElE**  {Pi) < (10.12)- n e n ce alr{pz) > (0,1). that is. lr has a cusp at pr for i = 1 , . .. ,8. We 
noww prove that Y has no g}2's with cusps at the points p%. 

First,, we notice that dim G} 2( r) = p(15,1,12) = 7. Indeed, if we assume that 
dimm G|2( r ) > 8, by applying Keem's Theorem (cf. [ACGH], p.200) we would get that 
rr possesses a Q\, which is impossible since gon(r) = 6. (In general, if Y C P2 is a smooth 
planee curve, deg(F) = d, then gon (Y) = d- 1, and the g ^ computing the gonality is 
cutt out by the lines passing through a point p e Y. see [ACGH].) Next, we define the 
variety y 

EE = {(lqi.....qs) e G\2(T) x T8 : al{qi) > (0,1). i = 1 8} 

andd denote by 7rl : E ->  G[2(F) and TT2 : E -> T8 the two projections. For any / e G} 2(r) . 
thee fibre 7rf  l{l)  is finite, hence dim Y = dim G\2{V) — 7. which shows that TT2 cannot be 
surjectivee and this proves our claim. 
S tepp 2) There exists a smoothable limit g2

5 on X. hence [X]  € Ml5. We construct /. a 
limi tt 02

5 on X as follows: on T there is a (unique) g2. and we consider /r = $2{p\-\ \-p$). 
i.e.. the F - aspect lv is obtained from the g2 by adding the base points p1 : . . . ,p8. Clearly 
aalrlr (p(prr)) = (1.2, 3) for each i. On E{ we take lEi = QJiUp,) for i' = 1 8. where Q\ is a 
completee linear series of the form '2pt + xt\, with xt € Et - {p,} . Furthermore, alE^(pl) = 
(12.13,14).. so / = {lT-hi) is a refined limi t g2

5 on X. One sees that p(lEi.a
l^{pl)) = 

11 for all i. p{lr-a
lr{pi).. .. . Q,r(p8)) = - 1 5. and p{l) = -7. We now prove that / is 

dimensionallyy proper. 
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Lett -j : C, —t A,, p, : A, —> C, be the versal deformation space of (E,.p,). for 
ii  = 1 8. There is an obvious isomorphism over A, 

S j V C yXX (A- (12.12.12))) ~ (/|(C,/A;. (p,.U)). 

Iff  Ui : Cy;f (C,/A,. (p,, 0)) —  A,- is the natural projection, then for each t <E A,-, the fibre 
<7~<7~ll(t)(t) is isomorphic to '^(t). the isomorphism being given by 

nrnrll(t)(t) 3q  ̂ 2p,(>) + q G G j ^ l ( f ) ) . 

Thus,, t/3 (C,:/A,:, (p(, 0)) is a smooth irreducible surface, which shows that / is dimensionally 
properr w.r.t. Et. Next, let us consider TT : A' -» A. p, p8 : A -> A', the versal 
deformationn of (T.p, p8). We have to prove that 

dimm ej>, W A . (pi. (1. 1.1))) = dim A + p(/r . a
1"(pi)) = 35. 

Theree is an isomorphism over A. 

GG22
rr  (p,. (1. 1.1))) ~ ^ ( A ' / A . (ƒ,,. 0)). 

Iff  7T0 : C —> .Vf is the versal deformation space of F, then we denote by Q= —Ï M the 
schemee parametrizing' g fs on curves of genus 15 'nearby' T (See Section 1.3 for this 
notation).. Clearly ^ ( A ' / A . (]%. 0)) ~ ^ xjV | A. so it suffices to prove that Q? has the 
expectedd dimension at the point (T. gl). For this we use Prop.1.3.1. We have that Nr/T.-2 -
OOrr(7).K'r(7).K'r = Or(4). hence 

//yr.AV/p--')) - / / ° ( r . Or ( - 3 ) ) v = 0. 

soo / is dimensionally proper w.r.t. T as well. We conclude that / is smoothable. 

S tepp 3) There exists a smoothable limit g:]0 on X, that is \X] € M20. First we no-
ticee that there is an isomorphism F -H> Gl

6(T), given by 

rr 3 / J H |g: - p j e G j ( r j . 

Consequently,, there is a 2-dimensional family of g'^'s on T. of the form gf2 = gj + rjf( = 
2 g | - p -gg  where p. y e T. Pick /0 = 1'Q + IQ- with /[}. /£ e &7;(T). a general g?2 of this type. 

Wee construct /. a limi t g:]0 on A', as follows: the F-aspect is given by /r = /0(piH p«J. and 
becausee of the generality of the chosen /0 we have that p(/r-«'r(Pi) o'''(Ps)) = - 9. 
Thee ^-aspect is given by lEi = g^(16p,:). where g| = 3p, + j-,-1. with .r?; G Et - {p,}. for 
**  = 1 8. It is clear that p(lE.,aiE> (pi)) = 1 and that /' = {/ r. lE.} is a refined limit g:20 

onn X. 
Inn order to prove that I' is dimensionally proper, we first notice that /' is dimensionally 

properr w.r.t. the elliptic tails E,. We now prove that /' is dimensionally proper w.r.t. T. As 
inn the previous step, we consider ~ : A' —> A. p, p8 : A -H> A', the versal deformation 
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off  (T.pi p8) and TT0 ; C -H> M. the versa! deformation space of T. There is an 
isomorphismm over A 

$ o ( * M - ( P i . a 'r ( P i ) - - -- .(Ps.Kir(Ps)))-$u(C/M) xM A. 

Itt suffices to prove that Q'f2 = Ql2{C/M) has a component of the expected dimension 
passingg through ( r . /0) - In this way. the genus 23 problem is turned into a deformation 
theoreticc problem in genus 15. Denote as usual by a : Q\2 -> M the natural projection. 
Accordingg to Prop.1.3.1 it wil l be enough to exhibit an element (C, /) e Q^o- sitting in the 
samee component as ( r . /0) . such that the linear system / is base point free and simple. 
andd if pi : C -> P3 is the map induced by /, then H^C.X^) = 0. Certainly we cannot 
takee C to be a smooth plane septic because in this case Hl(C. A'01) ^ 0. as one can easily 
see.. Instead, we consider the 6-gonal locus in a neighbourhood of the point [r] e M\-0, 
orr equivalently, the 6-gonal locus in M, the versal deformation space of T. One has 
thee projection Q\ -  ̂ M and the scheme Q\ is smooth (and irreducible) of dimension 
37(== 2g + 2d - 5: g = 15. d— 6). We denote by 

V.GÏXMGI^M.V.GÏXMGI^M. (i([C.LÏ}}  = [C}. 

Theree is a stratification of M given by the number of pencils: for I > 0 we define. 

M(i)°M(i)°  := {[C] e M : C possesses i mutually independent, base-point-free Q\'S } . 

andd M{i)  := M(i)°. The strata M(i)° are constructible subsets of M. the first stra-
tumm M{\) = Im (Ql) is just the 6-gonal locus; the stratum M{2) is irreducible and 
dimm M(2) = g + Ad - 7 = 32 (cf. [ACT]). We denote by Msept := m{U7^) n M the 
closuree of the locus of smooth plane septics in AT and by Moct := m([/8,i5)

 n M the 
closuree of the locus of curves which are normalizations of plane octics with 6 nodes. Since 
thee Severi varieties ['7,1.5 and Lr

8.15 are irreducible, so are the loci Msept and Moct- Fur-
thermoree dim MSept = 27 and dim Moct = 30. We prove that M8ept Q Moct. Indeed, let 
uss pick Y' C P2 a smooth plane septic, and L C P2 a general line. L  Y =  +  + p7. 
Denotee Z :- Co L, deg (Z) = 8.pa(Z) = 21. We consider the node p- unassigned. while 
Pi .-- .P66 are assigned. By using [Ta] Theorem 2.13. there exists a flat family of plane 
curvess rr : Z -  B and a point 0 e B. such that Z0 = 7r_1(0) = Z. while for 0 ƒ b € B. 
thee fibre Zb is an irreducible octic with nodes p i (6) . .. .pe{b), and such that pt(b) —> pt. 

whenn b -> 0, for / — 1 6. If Z' ->  B is the family resulting by normalizing the surface 
Z,Z, and T] : Z"  ̂ B is the stable family associated to the semistable family Z' —> R then 
wee get that ri~l(0) = ^  while rfl(b) i s the normalization of Zb for 6 ^ 0 . This proves 
ourr contention. 

Sincee Moct is irreducible there is a component A of Q\ xM Q\, such that p{A) 3 A40€f. 
Thee general point of A corresponds to a curve C and two base-point-free pencils / ' . /" e 
G\{C)G\{C) such that if ƒ' : C -H> P1 and ƒ" : C -^ P1 are the corresponding morphisms. then 

0 == (ƒ'.ƒ") : C ^ P 1 x P1 
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iss birational. Since L] £ p{A) we can assume that [I\/„./(( ] <E .4. As a matter of fact, we 
cann start the construction of a limi t g:]0

 o n t n e genus 23 curve X = V L E\ ^ . .. J £*. bv 
takingg any pair (/(,./(,') € G,-(n x G^T). such that dim l'D - /(" = 3. the argument does 
nott change. 

Wee denote by // : .4 -> t??, the map given by ?/(C. /'./") := I C./' - /") . Tlie fact that 
/// ma]>s to Qy2 follows from the base-point-frec-pencil-trick. 

Wee are going to show that given a general point [C]  e Mort. and (C.I. I') E //" '( '(?]). 
thee condition HUC.\0l) - 0 is satisfied, hence £f2 is smooth of the expected dimension 
att the point (C. l-t-i'). This will prove the existence of a component of L}*.,  passing through 
(T.. /o) and having the expected dimension. We take C C P2. a general [joint of L'xA-,. with 
nodess px p§ e P2 in general position. Theorem 3.2 from [ACT] ensures that there 
existss a plane octic having 6 prescribed nodes in general position. Let // : C —> C be 
thee normalization map. i;' l(p,) — q\ + q" for / = 1 C. Choose two nodes, say p} and 
p>.p>. and denotejn- QJy = \H - q\ - q'{\ and \)\ = -H - q!2 - <(.[  . the linear series obtained 
byy projecting C from p{ and p2 respectively. Here H e z/*CV>(l) i*  <ui arbitrary line 
sectionn of C. The morphism induced by (g .̂ f^) is denoted by o : C -> P1 x P1 and 
oii  = .s- o o : C -> P\ with .s : F' x P1 ^ P3 the Segre embedding. There is an exact 
sequencee over C 

00  A'0  A~0l  o \Y ? l x ? 1 / ?3 —M). (1.11) 

Wee can argue as in [AC2] p.473. that for a general {C.^\.\\\) with [C]  E M()rt. we have 
hhll(C.\(C.\00)) = 0. Indeed, let us denote by AQ the open set of A corresponding to points 
(A"././' )) such that \ : A -+ P1 x P1. the morphism associated to the pair of pencils 
(/,/')) is birational. and by U C _40 the variety of those points (A"././') G AQ such that 
HH]] (X.X(X.XXX)) # 0. Define 

VV := {,r = (X. 1.1'. T. T') : (X. 1.1') e U. T is a frame for /. T' is a frame for / ' } . 

Wee may assume that for a generic x e U. the corresponding pencils / and /' arc1 base-
point-free.. Suppose that U has a component of dimension a. For any x £ V. 

T,(Y)T,(Y) C Hl)(X. A\ ) . and dim TT(V] > a t- 2 dim PGZ.[2) = n + G. 

Iff  A.\ is the cuspidal sheaf of \ and A"( = A \ / / C v then according to [ACT] Lemma 1.4. 
forr a general point x <E V one has that. 

TTxx(V)nH°(X.fC(V)nH°(X.fCxx)) = 0. 

fromm which it follows that a < g - 6. If not. one would have that //°(A\ X[) > g + 1. 
andd therefore by Clifford's Theorem. h](X.Xx) - h](X.X[) = 0. which contradicts the 
definitionn of U. Since clearly dim Mocf > g - 6. we can assume that hl(C. X0) - 0. for 
thee general [C] e .Vfw.,. Therefore, by taking cohomology in (1.11). we get that 

HHll(C.X(C.X0l0l)) = Hl(C.OrC2)). 
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wheree Oc{\) = o\07s{\). By Serre duality. 

HH11(C.O(C.OCCC2))C2)) = 0<^ A " r - 2 g > - 2 r^ = 0. (1.12) 

Sincee A'(- = oH — 2^i= i(</ '  Q1')- equat ion (1.12) becomes 

?? = : ) 

Iff  L — /7Y7̂2 C  we can wri te z>*(£) = y'L + <// + q'2 +  -+ .r + y -+- c -t- t. and (1.13) is 
rewr i t tenn as 

2H-.r-y-z-t-Y,(<l'2H-.r-y-z-t-Y,(<l'tt + </:) = 0-

So.. one has to show that there are no conies passing through the nodes p^.p+.p?, and 
p$p$ and also through the points in L  C — '2p\ — 2p2. Because [C]  G tVió is general we 
mayy assume that x.y.z and f are distinct, smooth points of C. Indeed, if the divisor 
.r.r + y + z + t on C does not consist of distinct points, or one of its points is a node, we 
obtainn that C has intersection number 8 with the line L at 5 points or less. But according 
too [DH]. the locus in the Severi variety 

{[A' ]]  G Ud,g  A has total intersection number m + 3 with a line at rn points } 

iss a divisor on Ud,a, so we may assume that [C]  lies outside this divisor. Now. if x.y.z 
andd t are distinct and smooth points of C, a conic satisfying (1.13) would necessarily 
bee a degenerate one. and one gets a contradiction with tin1 assumption that the nodes 
P].....P]..... Pa oï C are in general position.
Remark::  We have a nice geometric characterization of some of the strata „Vf, . First, 
byy using Zariski's Main Theorem for the birational projection Q\ —> W{\). one sees 
thatt [C]  G M{!)Sing if and only if either [C]  G M(2)°. or C possesses a Ql

e such that 
dimm !'2gg > 3. In the latter case, the ĝ  is a specialization of 2 different g^'s in some 
familyy of curves, hence ,Vt(2) = .\A(l)s,ny (cf [Co2]). As a matter of fact. Coppens has 
provedd that for 4 < k < \{g + l ) /2] and 8 < g < (k - l ) 2. there exists a A'-gonal curve of 
genuss g carrying exactly 2 linear series g[. so the general point of.Vl(2) corresponds to a 
curvee C of genus 15. having exactly 2 base-point-free g^'s. Furthermore, using Coppens' 
classificationn of curves having many pencils computing the gonality (see [Col]), we have 
thatt M(G) — M0ct- and M{i)  = M p̂t. for each / > 7. 

Noww we are in a position to complete the proof of Theorem 1.1: 
ProofProof of Theorem 1.1 According to (1.2). it wil l suffice to prove1 that there exists a smooth 

curvee T'] G -W23 which carries a g:j0. a g2
7 but has no gj2's- i n t n e proof of Prop.1.5.4 we 

constructedd a stable curve of compact type [A] G Mxi sucli that |A] G M~]7 H M20. but 

[A']]  ^ -M12. If we prove that [A"] G .\A\7
 n . ^20- t n at ^s- t n<' r f ' are smoothings of X which 

preservee both the g2
7 and the g^. we are done. One can write M\7

 nM2Q = } \ J. . . J >',. 
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wheree Y] are irreducible codimension 2 subvarieties of .VI23  Assume that [A"] £ l'i . If 
YiYi n .VI23 ^ 0. then [A'] 6 >!_= } ) 0 .Vf23 C .Vl'f. n M ^ . and the conclusion follows. 
Soo we may assume that V'i C .V123 - A423. Because [A'] G A, - |Ĵ  A ; . we must have 

>'' C Ai . It follows that .VI17 n Ai and ,Vf20 n A Ï have } \ as a common component. 

Accordingg to Prop. 1.4.2. both intersections M\- n Aj and M20 H Ai are irreducible, 

hencee M17 H A , = .Vf20 n A , = i ) . which contradicts Prop. 1.5.3. Theorem 1.1 now 

follows..

1.66 The slope conjecture and .M23 

Inn this final section we explain how the slope conjecture in the context of M23 implies 
thatt K(M2Z) = 2, and then we present evidence for this. 

Thee slope of Mg is defined as sg : - inf {a G R>0 : aX - 6  ̂ 0} . where 6 = d0 + 6\ + 
 + ^[g/2- ̂  € Pk{Mg)_Z_R. Since A is big. it follows that sy < oc. If E is the cone of 

effectivee divisors in Div(Mg) Z K. we define the slope function s : E -> R by the formula 

ssDD := inf {a/b : a. b > 0 such that 3c, > 0 with [D]  = «A - 6rt - V V r ) , } . 

forr an effective divisor D on .Vf9. Clearly sg < sD for any D E E . When g + 1 is composite, 
wee obtain the estimate sg < 6 + V2/(g+ 1) by using the Brill-Noether divisors Mr

gd. with 
p(g.r.d)p(g.r.d) = - 1 . 

Con jec tu ree 1 ([HMo] ) We have that sg > 6 + 12/(5 + 1) for each g > 3. tua'f/i equality 
whenwhen g + 1 is composite. 

Harriss and Morrison also stated (in a somewhat vague form) that for composite g + l, the 
Brill-Noetherr divisors not only minimize the slope among all effective divisors, but they 
alsoo single out those irreducible D e E with sD — sg. 

Thee slope conjecture has been proved for 3 < g < 11. g  ̂ 10 (cf. [HMo]. [CR3.4]. 
[Tan]).. A strong form of the conjecture holds for g = 3 and g — 5: on M:i the only 
irreduciblee divisor of slope s:i — 9 is the hyperelliptic divisor, while on .VI5 the onlv 
irreduciblee divisor of slope ,s.5 = 8 is the trigonal divisor (cf. [HMo]). Conjecture 1 would 
implyy that K(M9) = - oc for all g < 22. For g = 23. we rewrite (1.1) as 

nn r ^ 1 o , V ^ ( ' ( 2 3- 0 - 4 ) . , 
nKnKM,M,33 = ~ \Mg.d]  + Snó, + Y, — ^ -not (n > 1). (1.14) 

(seee Section 1.2 for the coefficients cgŝ ). As Harris and Morrison suggest, we can ask 
thee question whether the class of any D e E with sD = sg is (modulo a sum of boundary 
componentss A j proportional to [.Vl23 d]. and whether the sections defining (multiples of) 
MM22:: idid form a maximal algebraically independent subset of the canonical ring R(M2:>,)-
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Iff  so. it would mean that the boundary divisor SnSi -+- (1/2) ^T^_,/M/(23 - /) - 4)rt, is 
aa fixed part of nl\  ̂ . Moreover, using our independence result for the three Brill -
Noetherr divisors, it would follow that /(ü(.Vi2:} . ^A ' - M M ) grows quadratic-ally in n. for n 
sufficientlyy high and sufficiently divisible, hence H(M->:\)  — 2. We would also have that 
yjj  n .VI23 = M\, H M\- H M\y with H the common base locus of all the linear systems 

Evidencee for these facts is of various sorts: first, one knows (cf. :Tan]. [CR3j) that 
j/(A" M... has a large fixed part in the boundary: for each n > 1. every divisor in / /A^ ) 3 

mustt contain A, with multiplicity 161> when / = 1. \9n when / — 2. and (21 - i)n for 
/'' = 3 9 or 11. The results for Ai and Aj are o])timal since these multiplicities 
coincidee with those1 in (1.14). Note that [Aj ] = '2S}. 

Next,, one can show that certain geometric loci in .V12.-$ which are contained in all 
threee Brill-Noether divisors, are contained in Ü as well. The method is based on the 
triviall  observation that for a family ƒ : Y —t B of stable1 curves of genus 23 with smooth 
generall  member, if B.K^.n < 0 (or equivalent ly. slope(A'/B) = (5/(/AH > 13/2). then 
o[B)o[B) C Ü. where o : B —> Mxi- o{b) — [A'd, is the associated moduli map. We have that: 

 One can fil l up the ei-gonal locus Ml{  with families ƒ : X -  ̂ B of stable curves of genus 
yy such that slope(A7-B) is 8 + A/y in the hyperelliptic case. > 7 + 6/y in the trigonal and 
>> 6 + V2/(y + 1) in the tetragonal case (cf. [Sta]). For y = 23 it follows that M\ C E. 
Notee that this result is not optimal if we believe the slope conjecture1 since we know that 
M\M\ C M\2^M2

lTnM%. (The inclusion Ml Q M:i
)(i is a particular case of a result from 

[CM]. ) ) 
 We take a pencil of nodal plane curves of degree d with j assigned nodes in general 

positionn such that (rf
2') — ƒ = 23. and with b base points, where 4/ -+- b = d1. After 

blowing-upp the base points, we have a pencil V —> P1 with fibre1 \Y,\ € M"d- For this 
pencill  A?i = \(Oy) + 23 - 1 = 23 and 6?i = c>{Y) + 88 = 91 4- b  ƒ. The condition 
(5Pi/A ?ii  > 13/2 is satisfied precisely when d < 10. hence taking into account that such 
pencilss fill  tip M'j,. we obtain that M2

nj C !Z. Note that Mj0 C .VI;. and as mentioned 
above,, the 8-gonal locus is contained in the intersection of the Brill-Noether divisors. 

 In a similar fashion we can prove that .Vf^.-.(2). the locus of curve's e)f genus 23 which 
are11 double coverings of curves of genus ~ is contained in ^ for ~. < 5. 

Thee fact that the slope's of other divisors on M->:\ (or on Mg for arbitrary g) consisting 
off  curves with special geometric characterization, are larger than 6 — \2/(y + 1). lends 
furtherr support to the slope hypothesis. In another paper we will compute the class of 
otherr divisors on M21' the closure in M2.1 of the locus 

\\C]\\C]  E Mr?,  C possesses a g|:j with two different triple points}. 

andd the closure of the locus 

{[C]{[C]  e M>.\  C has a gf8 with a 5-fold point, i.e. E:D £ C[ " such that g f8( -D) = g[;J} . 

Inn each case we will show that the slope estimate holds. 
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Chapterr 2 

Thee geography of Bri l l -Noether loci 
inn the moduli space of curves 

2.11 Introduction 
Wee start by explaining the meaning of the word -geography' from the titl e of this chapter. 
Manyy papers have been published where people studied the geography of certain mathe-
maticall  objects (e.g. surfaces), meaning that they looked at them from the point of view 
off  a naturalist. Our understanding of the term 'geography' is rather different: we study 
thee position of the Brill-Noether loci Mr

gd = {[C]  6 Mg : C carries a Qr
d]  on the 'map' 

off  the moduli space of curves. We compare different Brill-Noether loci, look whether 
theyy meet transversally (or are in general relative position) inside Mg, or describe their 
positionn with respect to other distinguished loci in Mg (e.g. loci of curves sitting on 
certainn surfaces). In most cases we prove that two such loci in Mg are as transversal (or 
intersectt as properly) as possible, unless there are some obvious containment relations. 
Thee general philosophy is that there are no ways (except the obvious ones) to construct 
linearr series on curves with specific properties. 

Thiss chapter consists of relatively independent sections. After Section 2.1 in which 
wee set up the necessary techniques, we ask in Section 2.3 whether the only constraints 
onn the possible gr

d's on a general £-gonal curve C of genus g are related to the g[ on C 
(ass it is the case for hyperelliptic and trigonal curves). We prove that a general Agonal 
curvess C of genus g. where k is rather high with respect to g, has no other linear series 
withh negative Brill-Noether number except QI and \KC - fljtl-  In Section 2.4 we show 
thatt by imposing two distinct conditions on a curve C of genus g (the existence of a 
pencill  Ql

k and of an embedding C C F" of degree d. where r > 3 and p{g. r,d) = - 1 ), we 
bringg down accordingly the number of moduli such curves depend on. Section 2.5 deals 
withh the problem of computing the gonality of space curves: we show that for a wide 
rangee of d and g such that p(g. 3. d) < 0 one can find smooth curves C C P3 of degree 
dd and genus g which fil l up a component of the Hubert scheme Hilbrf,5,3 and for which 
gon(C)) = min([{ g + 3 ) / 2 ] . d -4 ): if d-A < [(# + 3)/2j. every pencil computing the gonality 
iss given by the planes through a 4-secant line to C Finally, in Section 2.6 we ask what 
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kindd of surfaces can contain a Brill-Xoether general curve. 

2.22 Deformations of maps and smoothing of algebraic 
spacee curves 

Wee review some facts about deformations of maps and smoothing of reducible, nodal 
curvess in Pr . These techniques together with the theory of limi t linear series already 
discussedd in the previous chapter wil l be our main tools throughout this chapter. We 
startt by describing the deformation theory of maps between (possibly singular) complex 
algebraicc varieties. Our main reference is [Ran] (certain aspects of the theory are well 
treatedd in [Mod] as well). 

Lett ƒ : X —> Y be a morphism between complex projective varieties. We denote 
byy Def(A". ƒ. Y) the space of first-order deformations of the map ƒ. while the space of 
first-orderr deformations of A' (resp. Y) is denoted by Def(A') (resp. Def(V)). The 
standardd identification Def(A') = Ext1 {ttx. Ox) is obtained by associating to any first-
orderr deformation A' of X the class of the extension 

(JJ —> Ox —> ttx Ox —>  ÏÏ,Y —>  0. 

Thee deformation space Def(A\ ƒ. Y) fits in the following exact sequence: 

HomHomCxCx{f*n{f*n YY.. Ox) —  Def(A\ ƒ. Y) —  Dcf(A') ~ Deï(Y) —  Extlf(QY. Ox). (2.1) 

Thee second arrow is given by the natural forgetful maps, the space Hom0x(f*QY.Ox) = 
H°{X.H°{X. f'Ty) parametrizes first-order deformations of ƒ : A" —> Y when both A' and Y 
aree fixed, while for A.B. respectively Ox and 0\ -modules. Ext'f(B,A) denotes the de-
rivedd functor of Homf(B.A) = Hom0x(f*B.A) = Homcv (B, f,A). Under reasonable 
assumptionss (triviall y satisfied when ƒ is a finite map between nodal curves) one has that 
Ext}(Q r .C?v)) = ExtU.f*V.y.Ox). Using (2.1) it follows that when A' is smooth and 
irreduciblee and Y is rigid (e.g. a product of projective spaces) Def(A\ ƒ. Y) = H°(X. A'/). 
withh A ƒ the normal sheaf of the map ƒ (see Chapter 1 for the definition). 

Next,, we recount some basic: facts about moduli spaces of maps from curves to pro-
jectivee varieties. For Y a smooth, projective variety and 3 G H2{Y~.Z). one can consider 
thee Kontsevich moduli space Mg{Y. 3) of stable maps ƒ : C -+ Y from reduced, con-
nected,, nodal curves of genus g to V. such that ƒ,([(?]) = 3 (see [FP] for the construc-
tionn of these moduli spaces). If ƒ : C -> V" is a point of Mg(Y. 3) with C smooth. 
f l?g(./)) = 1 and ƒ has no cusps (i.e. it is an immersion), then by Riemann-Roch 
\iC.Xf)\iC.Xf) = dim(V) (1 - g) + 3.9 - 3 - 3  KY. Because Tf(Mg(Y. 3)) = H°(C,Xf). 
thee number 

dim(V)) (1 - g) +3g - 3 - 3  Ky 

iss called the expected dimension of the Kontsevich moduli space. If there exists a point 
[ƒ]]  e Mg(Y.3). with C smooth. deg(/j = 1 and H](C3Xf) = 0. then every class in 
H°(C.Xf)H°(C.Xf) is unobstructed, ƒ is an immersion (cf. [ACT] Lemma 1.4) and ~Mg{Y.3) is 
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smoothh of the expected dimension at the point [ƒ]. An irreducible component of Mg(Y. 3) 
whichh has the expected dimension and is generic-ally smooth, is said to be regular. 

Wee now describe a few smoothing techniques of algebraic curves in V. r > 3 (cf. 
[HH] ,, [Se2]). Let A' be a nodal curve in F . with pa(X) = g.dvg(X) = d. We say that A 
iss smoothable in V if there exists a flat family of curves {A, }  in P" over a smooth and 
irreduciblee base, with the general fibre A, smooth while the special fibre A'0 is A . In other 
words,, if Hilbd.p.r denotes the Hilbert scheme of curves in V of degree d and (arithmetic) 
genuss g, then A is snioothable in F if and only if the point [A] belongs to a component 
off  Hilbd.9,r whose general member corresponds to a smooth curve. 
Forr A' C V a nodal curve with normal sheaf A'A- = A A / Pr, one has the exact sequence 

00 —> Tx —> T7r : Ox —> Xx —*  Tx —  0. 

wheree Tx is the Lichtenbaum-Schlessinger cotangent sheaf based on Sing(A) and which 
describess deformations of the nodes of A'. The basic smoothing criterion is the following 
resultt of Hartshorne and Hirschowitz: 

Proposi t ionn 2.2.1 Let A C V be a nodal curve. Assume H1(X.XX) = 0 and that 
forfor each p € Sing(X), the map H°(X,NX) -  H°(TXp) is surjective (that is, non-zero). 
ThenThen X is smoothable in Pr and the Hilbert scheme is smooth of the expected dimension 

XX(X.(X. Xx) = (r + l)d - (r - 3){g - I) at the point [A] , 

Wee will be interested in smoothing curves A C V which are unions of two curves C and E 
meetingg quasi-transversally at a finite set A. For such a curve one has the Mayer-Vietoris 
sequence e 

00 —> Ox —  Oc ~ OE —+  —  0. (2.2) 

ass well as the exact sequences 

00 —  OE(-X) —  Ox —  Oc —  0. (2.3) 

and d 

00 —  QE —  ux —> « r ( A) —  0. (2.4) 

wheree ^A- is the dualizing sheaf of A'. We will also need the following results: 

Proposi t ionn 2.2.2 Let C C F be a smooth curve with Hl(C.Xc) = 0. 

1.1. (Sernesi) Let H C F be a hyperplane transversal to C and Q C H a smooth, 
irreducible,irreducible, rational curve of degree r — 1 meeting C quasi-transversally m < r + 2 
points.points. Then X = C U Q is smoothable and Hl{X. Xx) = 0. 
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2.2. (Ballico-Elliaj Let px pr^2 t C lx r - 2 point.-, in yencral linear position and 
EE C Y a smooth rational carve: of degree r which meets C quasi-trunsvcrsallij at 
PiPi pr-2- Then X — C w E is smooth able and Hl{X. A \ ) = (). 

/.. (Bollno-Ellia) Assume r = 3 and let L C F'1 hi a line mutiny C quasi-transversally 
atat k < 3 points. If k — 3 assumt furthermore that not all tanqent lines to C at 
thethe points in L n C lie in the same plane. Then X = C  ̂ L is sm oathable and 
WiX.Xx)WiX.Xx) = 0. 

2.33 Linear series on A-gonal curves 

Forr a smooth curve C of genus y one defines the «omJ/ry seepience (r/|.(/2 dr. . . . J 
byy dr :=  mui{d e Z>, : d < y - 1. 3 a g,', on C} . Tins sequence is strictly increasing and 
clearlyy dr < rd{. The first term r/, is just the gonnlity of C. while obviously dr = y + r 
lorr r > //. so we will restrict ourselves to the first y - 1 terms of' the sequence. The Brill -
Xoetherr Theorem tells us that dr < [rly  - - 2j/(r -+- 1)] and we have «'quality when C is 
aa general curve of genus y. The terms of the gonalitv sequence can be easily computed for 
variouss classes of curves (hyperelliptic. trigonal, smooth plane curves). In order to find 
thee r/,.'s for a curve C. it suffices to look only at the set of linear series 

5(C)) = {:£> : D e Div(C).deg(D) < y - l.h°(D) > 2.h\D) > 2} . 

Thiss is because any g'fl with d > '2y- 1 is non-special, hence r — d-q. while for d < 2q-2 
byy interchanging if necessary g,y by A"c - Q'  ̂ . we land eventually in the range d < y - 1. 

Wee would like to determine the sequence {dy.d-j ) for a general /--gonal curve of 
genuss y when k < {y + 2)/2 (\.v. p(y. \.k) < 0). Coppens and Martens (cf. [CM]) have 
investigatedd how the existence of a gj. on a curve C can be used to produce special linear 
seriess on C with negative Brill-Xoether number (i.e. the ones you cannot expect to find 
onn a general curve of genus y). Under certain numerical constraints, a general A'-gonal 
curvee C of genus y carries linear series g;y = (r - ƒ )g>. + E (which we shall call Score 
//nearr series, see the motivation below), where 0 < ƒ < k - 2 and E e DW(C)-E > 
0.. For r = 2 one recovers a famous result of Beniamino Segre (see [ACl]) : A general 
iionhyperelllpticc /--genial curve C of genus y has a linear series g~ — g], + E\ with E > 0. 
whenn d > iy-rk + 2)/2. and which provides a plane model Y of C with an ordinary (d-k)-
foldd singularity p and nodes as other singularities. The original g{, can be retrieved by 
projectingg F from p. When r = 3 and k > 4. a general A'-gonal curve of genus y has a 
linearr series g;}  = Ql

k + E when d > (2y + k-r6)/3. Thus for a general [C]  € M\k one has 
thatt d,(C) < Ag + k-3)/2] and d:i(C) < '\2y + k -i- S)/3] and we expect to have equality 
inn the case when the Segre linear series have negative Brill-Xoether number. This would 
certainlyy be the case if the following two expectations wen.1 true: 

 a) For a general [C]  G M\jk. the Segre linear series are of minimal degree among 
thosee g,', = D e S[C) for which D - g[ ^ 0. (This is known to be true at least 
whenn /' = 2 and 2k > [iy + k + 3)/2]. see [CKM] Proposition 1.1). 
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 3) If ĝ  G S(C) and Qr
d - gji = 0. then p(g. r.d) > 0. (This holds when r = 1 (cf. 

[AC1])) and for A- < 4 (cf. [CM])) . 

Wee are going to prove that these expectations hold in the case when the curve C is of 
relativelyy high gonality (but still non-generic): 

Theoremm 2.1 Let g and k be positive integers such that - 3 < p(g.l.k) < 0. Assume 
furhermorefurhermore that k > 6 when p(g. l.k) = - 3 . Then a general k-gonal curve of genus g has 
nono Qd 's with negative Brill-Noether number except gj. and Kc — QI\- In other words, the 
k-gonalk-gonal locus ,\4]

 k is not contained in any other proper Brill-Naether locus Mr
gd. 

Remark::  A general A:-gonal curve of genus g with p(g. l.k) < 0 has a unique pencil QI 
(cf.. [ACT]) so there is no ambiguity when we speak of "the Q\ of a general A:-gonal curve"*. 

Proof:Proof: We wil l make use of the theory of limi t linear series. In each case we construct 
A'-gonall  curves of compact type that do not possess any limi t gr

d with r > 2. d < g - 1 
andd p(g. r. d) < 0. Using the fact that the fc-gonal locus Ml

gk is irreducible we obtain the 
conclusionn for a general [C]  € Ml

g k. 
Thee case p(g. 1. k) = - 1 (when Ml

gk is an irreducible divisor in Mg) is settled using 
thee curves constructed in the proof of Theorem 1.2. Since the proof goes along the same 
liness we skip the details. 

Assumee now that p(g. 1. k) — —2. Because any component of Mr
g d has codimension 

>> 3 when p(g.r.d) < —3 (cf. [Ed2]). it suffices to construct a /c-gonal curve of genus g 
havingg no Qr

d's when p(g. r.d) G {  — 1. —2}. 
Lett us consider the following curve of genus '2k. 

XX : = d u C 2 U £ i U 4 

wheree (Ci.x) and (C2. y) are general pointed curves of genus k — 1. E% are elliptic curves 
andd x-p G Pic0(£\) is a primitive A'-torsion as it is p- y G Pic0(£"2). It is straightforward 
too construct a limi t gjj. on A": on C\ take the pencil \kxr on C2 take the pencil ,ky\. on 
EiEi the pencil (kx.kp). spanned by kx and kp. while on E2 the pencil (kp.ky). 
Assumee now that there is a limi t Qr

d on A', say /. with r > 2. d < 2k -1 and p(g. r. d) < Ü. 
Fromm (1.6). we have that 

- ii  > P(JX) > f>(k\-x) + fKk-2-y) + P(1EI-*-P) + p(lE2-p-y)-

Becausee of Prop. 1.3.2 one has p(lCl.x) > 0 and p(l-c2- y) > 0- Moreover, we have that 
p(Ei.x.p)p(Ei.x.p) > - 1 and p(E2.p.y) > - 1 . Indeed, if say p(Ei.x.p) < -2. then by denoting 
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byy (a0 ar) the vanishing sequence of lEl at x and by (bQ bT) that of lEl at p. it 
wouldd follow that for at least 3 indices i. < j < k there are equalities a, + 6r_;- = (ij+b r_j = 
aakk + br-k ~ d. from which k\{a} - a,) a nd k {ak - a,), hence d > ak. > a, + 2k > 2k. which 
iss a contradiction since we assumed d < 2k — 1. 
Thiss implies that there are essentially two cases to consider: 

1.. p{lCl.x) = f>(lc2-y) = 0.p(IEl.f.p) = - l . p ( / s2 . p . y ) = 0. 

2.. p(ICl.x) = 0.p{lC2-y) = l.p(lEl.x.p) = p(lE.2.p.y) = - 1 . 

Inn both cases / is a refined limi t g .̂ The other possibilities can either be dismissed right 
awayy (when one of the adjusted Brill-Xoether numbers is > 2). or arc equivalent to the 
casess just mentioned. 

Lett us first settle case 1. By using (1.8). 

rr  r 

^(k^(k - 1 - a\K' (x) + /)+ = J j A - - 1 - a1* 1 (x) + i) = k - l . hence 

a'ia'iKiKi (J') < A- - 1 + /. and similarly af1 (y) < k - \ + i. for all / = 0 r. (2.5) 

Sincee on E2 we have inequalities af'2 (p) + ar%(y) > d - 2, for all i (otherwise once again 
wee would clash with the assumption d < 2k - 1). we eventually obtain that 

«!:fi '(p)) < k + i + 1, for all i = 0,... . r. (2.6) 

Sincee p(lEl,x,p) = - 1 , there must be indices i < j with a,El(x) + a^^p) = af1 (x) + 

(J-r-jip)(J-r-jip)  = d. from where we get that a f' (x) - a**  (x) = k. Then, because of (2.5) and 
(2.6)) we can write 

rfrf_fr-r_fr-r + / - l < r f - a'r%(p) = a1**  (x) < j - 1. 

hencee 2r + k > d. Combine this with p(2k. r. d) > -2 to get that k < (r2 + r + 2)/{r - 1). 
Butt we also have that 2k > r2 + r + 1 (because p(2k, r, d) > -r and d < 2k - 1). so all 
inn all, we end up with r3 - 2r2 - 2r - 5 < 0. which can be possible only for r < 3. When 
rr  G {2. 3} . by plugging in one of the previous inequalities we have that 8 < g — 2k < 16. 
Butt these cases can be disposed of easily. First, notice that when g e {10. 12,16}, since 
gg + 1 is prime, we have no codimension one Brill-Xoether condition on Mg. To treat 
onee of the remaining cases when we do have a codimension one Brill-Noether locus, take 
forr example g - 14 and r = 2, hence d = 11. In this case the inequalities (2.6) can be 
improvedd and this leads to a contradiction: since on E1 we have that p(lEl.x.p) — — 1, 
exactlyy two of the numbers a /1 (x) + a.^ip) are equal to 11 while the remaining one is 
equall  to 10. There are three cases and each can be dismissed swiftly. 

Wee turn to case 2. Use again (1.8) to obtain that aT
E'2{y) < k + r. Moreover 
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c/f'iy)c/f'iy) + alQ2{p) > d - 1. hcnce a\El (p) < A- + i + 1. for all ? = 0 r. hence we 

havee obtained again (2.6). while the inequalities a*1 (,r) < k - i + 1 for / = 0 r still 
hold,, so the previous argument can be repeated here as well. 

Wee treat now the case pig. 1, k) = - 3 . that is g — 2k + 1. with A' > 6. Note that 
whenn k = 5. Segre's Theorem gives a $y = Jgï + ZTj. with E > 0. on a general 5-gonal 
curvee of genus 11. i.e. the 5-gonal locus M\l-rt is contained in the Brill-Noether divisor 
MM22

UU 9. The idea is the same, but the computations are a bit more cumbersome. We use 
thee following curve: 

A'' := Ci U C2 U Ey U E-2 U £. 

wheree (CV J) and (C2- y) are general pointed curves of genus k — 1. the curves E. E\, E2 

aree all elliptic, and the differences x — pi e Pic0(£"i).pi - p2 € Pic0(E), and p2 - y £ 
Pic0(£2)) are all primitive A:-torsions. Just as in the previous case, it is clear that X 
possessess a limi t gj.. Assume now by contradiction that there exists / a limi t gr

d on X, 
withh r > 2. d < g - 1 and p(g, r, c?) < 0. There are many cases to consider, but it is 
clearr that in order to maximize the chances for such a limi t gr

d to exist, the adjusted 
Brill-Noetherr numbers must be as evenly distributed and as close to 0 as possible: a very 
positivee Brill-Noether number on one component, implies by (1.6) very negative Brill -
Noetherr numbers on other components (2-pointed elliptic curves) and this immediately 
yieldss a contradiction. Wre will only treat one case the other being similar. Assume 
p{lp{l cc,-x),-x) = p(lc2-y) = pih^XiPi) = p(lE2*p2.y) = 0- and p(f£,pi ,p2) = - 1 - Then by 
(1.8)) we have that aT

El ( j ) < k+r-1 and ar
E'2 (y) < k+r-l.  Since ar

E' (x)+a0
El (pj) > d-2 

andd ar'2 (y) + a$2 (p2) > d - '2, we get that 

aT{Pi)<iaT{Pi)<i  + k + l and a\E(p2) <i  + k + l, for ? = 0 . . .. , r. (2.7) 

Ass in the case p = —2, we can conlude from (2.7) that 2r+A.' + 2 > d. This we combine with 
pig.pig. r.d) > -r to obtain that k < (r2 + 3r + 2 ) / ( r- 1). Also 2k > r2 + r {just put together 
dd < 2k and p(g. r. d) > -r). and in the end we get that r3 - 2r2 - 7r - 4 < 0 O r < 4. 
Thee case r = 4 can be dismissed though right away, because then all inequalities we 
havee writen down become equalities, hence g = 21.d = 20. and pig. r.d) = - 4. contra-
dictionn since we assumed pig.r.d) — - 1 . When r < 3 we have that k < 10. In these 
particularr cases however, we can improve the inequalities (2.7) (which we have watered 
downn to obtain an argument working for general r). and we easily reach a contradiction.

Remark::  One can try to extend these results for more negative values of pig. l.k). The 
casess p = - 4 (resp. p = - 5) could be handled by slightly modifying the curves used for 
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treatingg the cases p — - 2 (resp. p = - 3 ): require that the points x e C\ and y e C-2 are 
ordinaryy Weierstrass points instead of general points. We have checked that for g < 23 
Theoremm 2.1 still holds when p e {—4. —5}. For instance we get that the general 10-gonal 
curvee of genus 23 does not possess any @ "̂s with r >'2.d< 22 and negative Brill-Noether 
number.. In these cases however, computations become horrendous therefore we think 
thatt limi t linear series cannot provide the full answer to problem 3). 

2.44 Existence of regular components of moduli spaces 
off  maps to P1 x F 

Inn this section we construct regular components of the moduli space .Vf^P1 x PC {k,d)) 
off  stable maps ƒ : C ->  P1 x Pr of bidegree (k. d). in the case k > r + 2. d > r > 3. and 
p{g.r.d)<{). p{g.r.d)<{). 

Thee spaces Mg(r\d) (or the Hilbert schemes Hilbd.s.r of curves C C PCdeg(C) = 
d.pJC)d.pJC) = g) have been the subject of much study in the past 20 years. For instance, in 
thee case of curves in P3 one knows that for each g there is D(g) e Z such that for any 
dd > D{g). there exists a curve C C P3 of genus g and degree d. with Hl(C A'C/P--J ( - 2)) = 0 
(soo also Hl{C.XC/7-i) — 0). The numbers D{g) satisfy the estimate limsup D{g)g~2's < 
(9/8)1 /33 (of. [E11H]'). Therefore, when (asymptotically) d > .g2/3(9/8)1/:{ . there are regular 
componentss of My^K d) whose general points correspond to embeddings C °-> P3. In the 
casee p{g.r,d) > Ü there is a unique (regular) component of Mg(F

r,d) which dominates 
MMgg and whose general point corresponds to a non-degenerate map to Pr (i.e. the image 
iss not contained in a hyperplane). This follows from the fact that Gr

d(C) is irreducible 
forr general C when p(g.r.d) > 1 (see [ACGH]); when p(g.r.d) = 0 an extra monodrorny 
argumentt is needed. 

Whenn the target space is P1 x P1, Arbarello and Cornalba proved that any component 
off  A-I^P1 x P1- {d. h)). when 2 < g. d. h. having general points corresponding to birational 
mapss C —  ̂ P1 x P1. is regular: as a matter of fact, it is not hard to see that there is exactly 
onee such component. More generally, the methods from [ACT] can be used succesfully 
inn order to compute dim Mg{Y.;i) when V is a smooth surface: if M C Mg{Y.3) is a 
componentt of dimension > g + 1 and containing a point [ƒ : C  Y] with deg( ƒ) = 1. 
thenn M is regular. One uses here in an essential way the fact that the normal sheaf Xj is 
off  rank 1. hence the Clifford Theorem gives a straightforward condition for the vanishing 
off  H[(C. Xf). so this techniques cannot be applied for handling moduli spaces of maps to 
higherr dimensional target spaces Y. 

Althoughh we only treat the case of curves mapping into P1 x Pr when r > 3. it will 
bee clear that our methods can be also applied to study regular components of the moduli 
spacee of curves sitting on the Segre threefold P! x P2. 

Wee start our study of moduli spaces of maps into P1 x P '. Fix integers g > 0. d > r > 3 
andd k > 2, as well as C a smooth curve of genus g with maps ƒ, : C -  ̂ P1. ƒ,> : C —> PC 
suchh that. deg(/i) = k. deg(/2(C)) = d and f2 is genetically injective. Let us denote by 
ƒƒ : C -> P1 x Pr the product map. 
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Theree is a commutative diagram of exact sequences 

0 0 

I I 
TTc c 

I I 
00 —  Tc —  r(T?ix?r) —  A> 

00 —> r c ~ 7 - c —> /r(7V')^/2(7pO —  -V*^- Yfc ->o 
I I 
0 0 

Byy taking cohomology in the last column, we see that the condition Hl(C.Nf) = 0 is 
equivalentt with Hl{C.Nfl) = 0 (trivial). Hl{C.Nh) = 0. and 

I m KK : H°{C.Nfl) -> tfHCTc)} + Im{<52 : H°(C.Nh) -> Hl(C,Tc)} = Hl(C\Tc), 

(2.8) ) 

wheree the condition (2.8) is equivalent (cf. Chapter 1) with 

(dTrOww ( T ^ M ^ P 1 , * ) ) ) + (d7r2)[/2] (T [ / 2 ] (.M s(Pr ,d))) = T[c](.V1fl ), (2.9) 

(wee assume that the curve C has no automorphisms, otherwise we work in the versal de-
formationn space of C, it makes no difference). The projections TTI : Mg(P

l, k) —> Mg and 
7r22 : .Mg(F

r, d) —)  Mg are the natural forgetful maps. Slightly abusing the terminology, if 
CC is a smooth curve and (lu l2) € G\(C) x GT

d{C) is a pair of base point free linear series 
onn C, we say that {CJuh) satisfies (2.9) if (C.fi.f2) satifies (2.9). where fi and f2 are 
mapss associated to /x and l2. 

Wee prove the existence of regular components of „Vf^P 1 x Pr . (k\ d)) inductively, using 
thee following: 

Propos i t ionn 2.4.1 Fix positive integers g.r.d and k with t / > r > 3 . A " > r + 2 and 
p(g.r.d)p(g.r.d) < 0. Let us assume that C C F is a smooth nondegenerate curve of degree d 
andand genus g, such that hl(C. Nc) = 0, h°{C. Oc{Y)) = r + 1 and the Petri map 

Ho(C)Ho(C) = /io(C. Oc(\))  H°(C. Oc(l)) 0 H°(C. A" c(-1)) -  H°(C. Kc) 

isis surjective. Assume furthermore that C possesses a simple base point free pencil Ql
k say 

I.I. such that | Oc ( l ) l ( - 0 = 0 and (C.l. c{\)\) satisfies (2.9). 
ThenThen there exists a smooth nondegenerate curve Y Q V with g(Y) — g + r + f, 

deg(Y)) = d + r and a simple base point free pencil I' 6 Gl(Y). so that Y enjoys exactly 
thethe same properties: hl(Y.\y) = 0. h°(Y.Oy(l)) = r + 1. the Petri map HQ{Y) IS 
surjective.surjective. \OY{1)\{-V) = 0 and (Y.l'. Oy{\)) satifies (2.9). 
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Proof:Proof: We first construct a reducible A'-gonal nodal curve X C Fr . with pa(X) = 
gg + r -j- 1. deg(A") — d -<- r. having all the required properties, then we prove that X can 
bee smoothed in Fr preserving all properties we want. 

Lett f\ : C —> PL be the degree k map corresponding to the pencil /. The covering fx is 
simplee (i.e. over each branch point A e P1 there is only one ramification point s £ / f ' (A ) 
andd ex(fi) = 2). hence the monodromy of fx is the full symmetric group. Then since 

!O c( l ) i ( - / )) = 0- w? have that for a general A £ F1 the fibre ffiX) = p\ + V pk 

consistss of A' distinct points in general linear position. Let A — {p1 pr-i}  be a sub-
sett of ƒ,- :(A) and let E C Tr be a rational normal curve (deg(£) = ) passing through 
PiPi Pr+2- (Through any r + 3 points in general linear position in Pr . there passes 
aa unique rational normal curve, so we have picked E out of a 1-dimensional family of 
curvess through the chosen points pi pr+2)- Let A' : = C U E. with C and E meeting 
quasi-transversallyy at A. Of course pa{X) — g -+- ?' + 1 and deg(A") = d + r. Note that 
pig.pig. r. d) = p{g + r + 1. r. d + r). 

Wee first prove that [A'] e ,V1 ^ u , (that is. A" is A'-gonal). by constructing an ad-
missiblee covering of degree A' having as domain a curve A"', stably equivalent to A'. Let 
X'X' := A U Dr+3 U . . .. U Dk. where D, ~ P1 and D, n A = {p,}. for i = r + 3 k. Take 
VV := (Pl )i \Jxi^l)2 a union of two lines identified at A. We construct a degree A- admissible1 

coveringg ƒ' : A ' -> 1" as follows: take f'c = ƒ, : C -> (P 'h. / 'p = /2 : £ -> (P ' )2 a 
mapp of degree r + 2 sending the points p\. . .. .pr+2 to A. and finally ƒ' : D, ~ (P')2 

isomorphismss sending p, to A. Clearly ƒ' is an admissible covering, so A" which is stably 
equivalentt to X' is a A'-gonal curve. 

Lett us consider now the space l-Ly+r+Lk  of Harris-Mumford admissible coverings of 
degreee A- (cf. [HM] ) and denote by TTJ : 'Hg+r+i, k —> Mg+r+\  the natural projection which 
sendss a covering to the stable model of its domain. If we assume that Aut(C) = {Idc} 
(whichh we can safely do), then also Aut( / ') = {Idx>}.  so [ƒ'] is a smooth point of Hg+r+i .A-. 
Wee compute the differential of the map 7Ti at [ƒ']. We notice that T'f>](H y+r+uk) = 
Deï(X'.f'.Y)Deï(X'.f'.Y) = Def(A. ƒ.}") . where ƒ = j \ : A -+ Y. The differential (dn^r is 
justt the forgetful map Def(A'. ƒ. Y) —> Def(A') and from the sequence (2.1) we get that 
Im(/ƒ-,)[ƒ,!!  = üj-'flm u2). where u, : Def(A) -  Ext1 (/*QV . C9A-) and u2  Def(V) -> 
Ex[Ex[]] if*Qy.Oif*Qy.Oxx)) are the dual maps of u{ : Hl)(X.xx  f*Qy) -)- H°(X. X̂ ; QA-) and 
;/2

yy : Ff°{X. x̂ : / * ^y ) -^ H°iY.^y ,:. Hv ) (the last one induced by the trace map 
trr : f*jj x —  -o'v)- Starting with the exact sequence on A'. 

00 —> TorsUA- : »v) —  -.v i. Sï.v —> Qr
2tX)  Of (A) —  0. 

wee can write the following commutative diagram of sequences 

00 0 0 

11 I I 
tftf üü(TorsUv(TorsUv :, f*9.y)) -y tf0Uv ; ) - tf°(2A" r - /?, + A) : tf°(2A'£- - R2 + A] 

:lu{):lu{)  tors I»,"' 

//°(Tors(I-AA -O.v),) -+ //°U'A-  f->A-j — //°(2AV + A) - t / / ° (2A ' f + A) 
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wheree i?i (resp. R->) is the ramification divisor of the map f\ (resp. f2). Taking into 
accountt that H°(E. 2KE - R2 + A) = 0 and that H°(Y. ^y Z 9.y) = tf°(TorsUy : Or ) ) . 
wee obtain that 

lm(dir,)lm(dir,)lr]lr]  - (H°(C.2KC- R, + A) e Ker (^ )t o r s) " . (2.10) 

wheree (u£)to„  : tf°(Tors(ó;A- Z f*^y)) -> H°(Tors( ŷ 3 S"2r)) is the restriction of u£. The 
spacee Ker(f/.2 )torS is just a hyperplane in H°(Tors(^x S f*Qy)) — Cr + 2. 

Remark::  Since A G Cr + 2 was chosen generically in a fibre of the g{, on C. it follows from 
Riemann-Rochh that h°(C\ 2KC - i?i + A) = .g - '2k + 3 + r = eodim(~V +̂r+1J,., AÏ f l + r + i J. 
Iff  C has only finitely many Ql

k's the fibre of the map ny : /Hg+r+1 j(  Mg+r+ i over the 
pointt [X]  is (r 4- l)-dimensional: the fibre is basically the space of degree r + 1 maps 
ff22 : £*  —> P1 such that f2(pi) = . .. — f2(pr+2) — A. Moreover, if we assume (in the case 
gg > 2k — 2) that [C]  is a smooth point of the locus Ml

qk (which happens precisely when 
CC has only one Q[

k and dim|2g[ — 2). then we have for the tangent cone 

TCTC[x][x] (M^(M r̂+hkr+hk)) = UlImfdTr,), : = e TT71([X})}  = H°(C, 2KC - /?, + A ) 1 . 

whichh shows that [X] is a smooth point of the locus M +i  k. 

Wee compute now the differential 

{d7v{d7v22))[x][x]  : T[A -](Hilb d^r,f l+r+ i ir) -»  T[X ](^Vt ff+T.+i), 

whichh is the same thing as the differential at the point [X <—> V] of the projection 
7r22 : Mg+r+iiP',d  + r) —  ^M s + r +i . We start by noticing that A" is smoothable in IP" 
andd that H*{X,NX) = 0 (apply Prop.2.2.2). We also have that X is embedded in V 
byy a complete linear system, that is h°(X,Ox(lj)  = r + 1. Indeed, on one hand, since 
XX is nondegenerate. h°(X. Ox(l)) > h°{ÏF. CV(1 )) = r + 1: on the other hand from the 
sequencee (2.3) we have that h°(X. Ox{l))  < h°{C. Oc{\)) = r + 1. 

Iff  A is embedded in P1" by a complete linear system, we know (cf. Section 1.3) that 

Im(d7TIm(d7T22))[x][x]  = (lmfii(X)}^. 

wheree H\(X) : KQTHO(X) —> H°(X.JJX Z Qx)
 ls the 'derivative*  of the Petri map /JQ(A') : 

H°(X.OH°(X.Oxx(l))(l))  Z H°(X.JJX{-1)) -> H°(X.LCX). We compute the kernel of fi0(X) and 
showw that jJ.o(X) is surjective in a way that resembles the proof of Prop.2.3 in [Se2]. 

Fromm the sequence (2.4) we obtain H°(X. ux) — H°(C. Kc + A) , while from (2.3) we 
havee that H°{X. Ox{\)) = H°(E, OE{\)) (keeping in mind that H°(C. Cc ( l ) f - A ) ) = 0. 
ass pi pr+2 are in general linear position). Finally, using (2.4) again, we have that 
H°{X,H°{X, JJX{ — 1)) = H°{C. Kc( — 1) + A) . Therefore we can write the following commutative 
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diagram: : 

H°(C.Oc(l)):-:.H°(C.KH°(C.Oc(l)):-:.H°(C.Kcc(-l))(-l))  "  ̂ H°(C.KC) 

ii  i 
H°(C.H°(C. Oc(l))  H°{C. h'c(-l) + A) —> H°(C. Kc + A) 

H°(X.OH°(X.Oxx(l))(l))  ZH°{X.usx(-l)) 

Itt follows that Ker^o(C) C Ker/i0(A') . By using Corollary 1.6 from [CR]. our assumptions 
{fJo{C){fJo{C) surjective and card (A) > 4) enable us to conclude that ^o(X) is surjective too. 
Thenn Ker/./.0(C) = Ker/i0(A') for dimension reasons, hence also Im/z^A') = Im/^fC) C 
H°(C.2KH°(C.2KCC)) C H°(X.JJXZQX). We thus get that lm(dn2)[x- = ( Im/^fA)) - = (Im//,(C))J 

Thee assumption that iC.j1.f2) satisfies (2.9) can be rewritten by passing to duals as 

H°{C.2KH°{C.2KCC - R  ̂ + ( I m ^ C ) ) 1 - H'iCTc) <É=*  H°(C.2KC - Ri) n I m / ^ C) = 0. 

Thenn it follows that Im/y^A) n {H°{C.2KC - i?i + A) ~ Ker((u2')tora)) - 0. which is the 
samee thing as 

(dn,)^(dn,)  ̂ (T7/ ](W f l+r+ i.j t)) + (rf7r2)-A^r1 (Tx^?n(Mg+r^(r,d + r))) = Ex\1(nx.Ox). 
(2.11) ) 

Thiss means that the images of 'Hg+r^  ̂ under the map TTI and of ,V ( 9 + r +i (F . d + r) under 
thee map TT2, meet transversally at the point [X]  £ Wg^T+\. 

Claim ::  The curve X can be smoothed in such a way that the Q\ and the very ample 
QQrr

dd++ rr are preserved (while (2.11) is an open condition on Hg+r+i.k  x -^/l.9+r+i(Pr- d + r)). 

Indeed,, the tangent, directions that fail to smooth at least one node of A' are those in 
|J [= 11 //°(TorsPi (JJX r-> Ï7A'))"'"  whereas the tangent directions that preserve both the Ql

k 

andd the $d+r are those in 

((IrriA/.i(C )) + H°(C. 2KC - Rx + A)) 1 Ker(u*')t o r s)\ 

Sincee obviously //0(TorsPi(ujx "Z i\x)) <£ Ker(uo)t0rs f° r ' = 1 r + 2. by moving in 
aa suitable direction in the tangent space at [ƒ'] of 7r~17r2(.

;Vly^ r^i (P7", d + r)). we finally 
obtainn a curve V' C Pr with g(y) = g + r + l.deg(V') = d + r and satisfying all the 
requiredd properties.

Inn order to use Prop.2.4.1 as the inductive step (g.d) 1—» ig + r + \.d + r) in the 
constructionn of regular components of .Vf^fP1 x Pr . (A\c/)). we need curves C ' CT with 
allall the properties listed in the statement of the Proposition (so that we can start the 
induction).. We are able to construct such curves when pig.r.d) — —1. i.e. when MT

gd is 
aa divisor in XAQ. 

^ o ( - V J J 
H°(X, H°(X, 
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Theoremm 2.2 Let r > 3. * > (2r + l ) / ( r - 1) and k > 3 be integers such that 

(rs(rs + s - l ) / 2 < A- < rs- r - 1. 

77?enn /or any integers d. g such that p(g. r. d) = - 1 and g > (r + 1 ){s — 1) — 1 f/iere e.r;,s7.s 
aa regular component of the moduli space of maps .Vf^fP 1 x Fr . (k.d)). 

Remarks::  1. Theorem 2.2 actually provides regular components of the Hubert scheme 
off  curves of bidegree (k.d) in P1 x T , where k and d are as above. 
2.. In the case g — 23 (extensively treated in Chapter 1). the theorem provides regular 
componentss of .V^ fP1 x F3. (A\2Ü)J when k > 8. 

Proof:Proof: We set (/o = (?" + l ) ( s — 1) - 1 and <i0 = rs - 1. One checks that p(gQ. r. d0) = - 1 
andd any solution (g. d) of the equation p(g, r. d) = — 1 with g > g0. can be obtained from 
(<7o>> do) D>' applying several times the transformation (g, d) »-> (5 + r + 1. d+ r). According 
too Prop.2.4.1 it suffices to construct a smooth curve C C F of genus g0 and degree d0. 
withh hl{C..\c) = 0.h0(C.Oc{l))  = r + 1. having the Petri map //0(C) surjective. and 
alsoo carrying a simple base point free pencil 2I — \Z\ such that 2Q\ is non-special and 
\O\Occ(l)\(-9l)(l)\(-9l)  = V. 

Forr such a triple fC.gj., C?e(l).)  condition (2.9) also required in Prop.2.4.1 is imme-
diatelyy satisfied: if f\ : C —> P1 is the map corresponding to Q\. we know (cf. Section 
1.3)) that (dTTi)^; ( T ^ A ^ P 1 . ^ ) ) ) = H°{C,KC - 2Z)X = Hl(C.Tc). because |2Z| is 
non-special,, so (2.9) follows at once. 

I tt is more convenient to replace the projection .Vf^fP1. k) —> -V4go by the surjective 
properr map n : Q\ —> Mgo. given by TT(C.I) — [C], where / € Gj[.(C). Of course TT does 
nott exist quite as it stands, instead one should replace Mgo by a finite cover over which 
thee universal curve has a section, but we can safely ignore this minor nuisance. The map 
TTT is surjective (and with connected fibres) because p(<?o, l.k) > r — 1. Theorem 6.1 from 
[Se2]]  ensures the existence of an irreducible, smooth, open subset U of Mgo{^

r. d0), of the 
expectedd dimension, such that all points of U correspond to embeddings of smooth curves 
CC --> P. with hl(C. Ac) = 0. h°(C. Oc ( l ) ) = r + 1 and po(C) surjective. Since Mr

g0tdo 

iss irreducible (cf. Chapter 1). it follows that the natural projection TT2 : U —> -^Ldo is 
dominant. . 

Wee now find a curve C having the properties listed above. For a start, we notice that it 
iss enough to find one curve [Co] € W?Q do possessing a simple, complete, base point free g|. 
suchh that 2QI is non-special, because then, by semicontinuity we get the same properties 
forr a general point of U. To find one particular such curve we proceed as follows: take 
Coo a general (r + l)-gonal curve of genus g0. These curves wil l have rather few moduli 
(rr + 1 < {(g + 3)/2]) but we still have that [C0] € - W ^ . Indeed, according to [CM] p. 
348.. we can construct a complete, birationally very ample & r

do = g]._1 + F on Co- where 
FF is an effective divisor on C0 with h°(C'o. F) — 1. Using Corollary 2.2.3 from [CKM] we 
findd that Co also possesses a complete, simple, base-point-free ĝ  which is not composed 
withh the g^i computing gon(C0). and such that 2%\ is non-special. Since these are open 
conditionss they wil l hold generically along a component of G\(CQ). Applying semiconti-
nuity.. for a general element [C] G .\AT

 d (hence also for a general element [C] £ I")  the 
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varietyy G\{C) wil l contain a component .4 with general point / e -4 being simple, base 
pointt free and with '2/ non-special. 

Wee claim that there exists a pencil / € .4 having the properties listed above and more-
overr OcA):(-/) — 0. Suppose not. Then if we denote by \'d~_\( Oc[l).)  the variety of 
effectivee divisors of degree d0 — k on C imposing < r — 1 conditions on Cc ( l ) | . we have 
that t 

dimm VJ-_\(\Oc(l) ) > dim .4 > p(g0.1. k) > r - 1. 

thee last inequality being the only point where we need the assumption k > (rs + s — l ) /2. 
Thereforee C C F has at least ocr~l (d0 - /^-secant (r — 2}-planes. hence also at least 
Dcr_11 r-secant ( r - 2)-planes (because c70 - ^ > H- This last statement clearly contradicts 
thee Uniform Position Theorem (see [ACGH]. p. 112). Al l in all. the general point [C]  e U 
enjoyss all properties required to make Prop.2.4.1 work.

Remarks::  1. We could apply Prop.2.4.1 and get regular components of the moduli space 
MgifMgif11 x V.(k.d)) for lower values of p(g. r. d) (and not only when p(g.r.d) = - 1 ). if 
wee knew that the (r + l)-gonal locus Mgr^1 is contained in every component of Mr

gd (or 
att least in a component of ,\4'\d with the expected number of moduli). No such result 
appearss to be known at the moment (except in the case p(g. r.d) — - 1 ). 
2.. Let us fix g. k such that p(g. 1. k) > 0. One knows (cf. [ACGH]) that if / e Gl

k{C) is a 
complete,, base point free pencil, then dim T^G^C)) — p(g, l,k) + h](C,2l). Therefore 
iff  A is a component of G\(C) such that dim A — p{g. 1. k) and the general / e A is base 
pointt free such that '21 is special, then A is nonreduced. We ask the following question: 
whatt is the dimension of the locus 

MM := {[C]  E Mg : every component of G\{C) is nonreduced }? 

AA result of Coppens (cf. [Co4]) says that for a curve C if the scheme W£(C) is reduced 
andd of dimension p(gA.k), then the scheme W£+l(C) is reduced too and of dimension 
p(g,p(g, 1. k + l). Therefore it would make sense to determine dim (A/) when pig. 1. k) £ {0.1} 
(dependingg on the parity of #). We suspect that M depends on very few moduli. A suitable 
upperr bound for dim (A/) would rule out the possibility of a component of MT

 d being 
containedd in M (we have the lower bound 3g — 3 + p(g. r. d) for all components of MT

 d) 
andd we could apply Prop.2.4.1 without having to resort to Corollary 2.2.3 from [CKM] , 

2.55 The gonality of space curves 

2.5.11 Preliminaries 

Thee gonality of a curve is perhaps the second most natural invariant of a curve: it gives 
ann indication of how far from being rational a curve is. in a way different from what the 
genuss does. For g > 3 we consider the stratification of Mg given by gonality: 

MlMl 22QMl,c...CMlQMl,c...CMlkkc...cMc...cMgg. . 
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wheree Mgk — Mg for A1 > [{g + 3)/2]. The number \{g + 3)/2] is thus the generic 
gonalityy for curves of genus g. We want to study the relative position of the Brill-Xoether 
locii  Mgd (with r > 3.p{g.r.d) < 0) and the A-gonal loci Ml

 k (where k < (g + 2)/2). 
Moree precisely, we would like to know the gonality of a general point of Mr

g d. Since 
thee geometry of the loci Mgd is. as we already pointed out in Section 1.2. very messy 
(existencee of many components, some unreduced and/or of unexpected dimension), we 
wil ll  content ourselves with computing gon(C) when [C]  is a general point of a " 
componentt of Wg d (i.e. a component which is generic-ally smooth, with general point 
correspondingg to a curve with a very ample gd). 

Thee same problem for r — 2 has already been solved by M. Coppens (cf. [Co3]): 

Proposi t ionn 2.5.1 Let v : C —> F be the normalization of a general, irreducible plane 
curvecurve of degree d with S — g — (d~l) nodes. Assume that 0 < 6 < (d2 — Id + 18)/2. Then 
gon(C)) — d — '2. 

Remarks::  1. The result says that there are no Ql
d_:i 's on C. On the other hand a Qd_2 

iss given by the lines through a node of Y. 
2.. The condition 6 < (d2 - Id + 18)/2 is equivalent with p(g. 1. d - 3) < 0. This is the 
rangee in which the problem is non-trivial: if p(g. 1. d — 3) > 0. the Brill-Xoether Theorem 
providess 0^_3's on C. 

Forr r > 3 we could expect a similar result. Let C C fr be a suitably general smooth 
curvee of genus g and degree d. with p(g.r.d) < 0. We can always assume that d < g — 1 
(byy duality Qr

d (->  Kc — §d we can always land in this range). One can expect that a g|, 
computingg gon(C) is of the form gd(-D) = {E - D : E G gr

d. E > D\ for some effective 
divisorr D on C. Since the expected dimension of the variety of e-secant (r — 2)-plane 
divisors s 

VrHti)VrHti)  {D e Ce : d\mgd(-D)>l} 

iss 2r — 2 — e (cf. [ACGH]). we may ask whether C has finitely many (2r — 2)-secarrt 
(rr — 2)-planes (and no (2r — l)-secant (r — 2)-planes at all). This is known to be true 
forr curves with general moduli, that is. when p(g.r.d) > 0 (cf. [Hirsch]): for instance a 
smoothh curve C C P3 with general moduli has only finitely many 4-secant lines and no 
5-secantt lines. However, no such principle appears to be known for curves with special 
moduli. . 

Definit ion ::  We call the number min(r/ — 2r + 2. [(g + 3)/2]) the expected gonality of a 
smoothh nondegenerate curve C C IF of degree d and genus g. 

Thee main result of this section is the following: 

T h e o r emm Let g > 5 and d > 8 be integers, g odd. d even, such that d2 > Sg. 4d < 3.g +12. 
dd22 — 8.9 + 8 is not a square and either d < 18 or g < Ad — 31. If 

id',id', g') E {(d. g). (d + 1. g + 1). (d + 1. g + 2). (d + 2. g + 3)} . 

thenthen there exists a regular component of Hil lvy. 3 whose general point [C]  is a smooth 
curvecurve such that gon(C') =min(r/' - 4. [(g' + 3)/2]). 
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Om11 eau approach this problem from a different angle: find recipes to compute the 
gonalityy of various classes of curves C C P'\ Our knowledge in this respect is very scant: 
wee know how to compute the gonality of extremal curves C' C Pr (that is. curves attaining 
thee C'astelnuovo bound, see ACGH]) and the gonality of complete intersections in P' Icf. 
|Ba]):: If C C Ps is a smooth complete intersection of type [a.b] then gonlC') = (ib — I. 
wheree / is the degree of a maximal linear divisor on C. Hence an effective divisor D C C 
computingg gon(C) (that is deg{D) = gon((") and h{){C.D) > 2). is residual to a linear 
divisorr of degree / in a plane section of C. Of course, we know gon(C') in a few other 
cases:: It is a classical result that the gonality ol a smooth plane C curve of degree d is 
dd — 1 and every Q*j_] on C is of the form jC'V(l) (—/>)  where p £ C. If C is a smooth 
curvee of type {a.b} on a smooth quadric surface in P3. then gon(C) = min(r/.^). i.e. 
thee gonality is computed by a ruling. One gets a similar result for a curve sitting on 
aa Hirzebruch surface. Finally, in [Pa] then1 is a rather surprising lower bound for the 
gonalityy of a smooth curve C C Pr in terms of the Seshadri constant of C. which is an 
invariantt measuring the positivity of 0~>{\) in a neighbourhood of C. 

2.5.22 Linear systems on smooth quartic surfaces in P3 

Wee recall a few basic facts about linear systems on A'3 surfaces (cf. |SO]). Let S be a 
smoothh A'3 surface. For an effective divisor D C 5'. we have hl(S.D) — li ()(D.On) - 1. 
Iff  C C S is an irreducible curve then Hl(S. C) — 0. and by Riemann-Roch we have that 

CC2 2 

dimjtfjj  — 1 + — — pfl(C). 

Inn particular C2 > — 2 for every irreducible1 curve1 C. 

Proposi t ionn 2.5.2 Let S be a A'3 surface. We have the following equivalences: 

1.1. C'2 — — 2 £=^> dim C = 0 <^=> C is a smooth, rational curve. 

2.2. C2 = 0 ^ > dim C = 1 <^=>  pjC) = 1. 

Forr a A'3 surface one also has a 'strong Bertini' Theorem: 

Proposi t ionn 2.5.3 Let C be a line bundU on a A'3 surface S. Then C ha* no hasi 
pointspoints outside its fixed components. Moreover, if bs C = 0 then either 

 C2 > 0. h](S. C) = 0 and the general member of \C\ is a smooth, irreducible curve 
ofof (jevus C2/2 + 1. or 

 C2 — 0 and C = ÜsikE). where k £ Z.>|. E C S is an irreducible curve with 
pJE)pJE) = 1. We have that h°(S. C) = k + 1. hl(S. C) = k - 1 and all divisors in L 
areare of the form £\ + - -  4- E\. with E, ~ E. 
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Wee are interested in space turves sitting on A'3 surfaces and the starting point is Mori's 
Theoremm let'. [Mo] J: iff / > 0. g > 0. there is a smooth curve C C F ! of degree d and genus 
g.g. lying on a smooth quartic surface S. if and only if (1) g — d2/S-rl. or (2) g < d2/8 and 
{(Ly){(Ly) ^ (5.3). Moreover, we can choose S such that Pic(S) = TLB. = Z{\/d)C in case (1) 
andd such that Pic(S) = 1H : ZC. with tf2 = 4. C2 - 2g - 2 and ƒƒ  C = J. in case (2). 
Inn each case H denotes a plain1 section of .5'. Xote that from the Hodge Index Theorem 
onee has the necessary condition 

(C(C  Hf - H'2C2 = d2 - 8{g - 1) > 0. 

Wee wil l repeatedly use the following observation; 

Proposi t ionn 2.5.4 Let S C P;) be a smooth quartic surface with a smooth curve CCS 
suchsuch that Pie(S) = 7LH-—TLC and assume that S has no (—2) curves. For a divisor DCS 
wewe have that: 

1.1. D is effective <= >̂ D2 > 0 and D  H > 2. 

2.2. If D2 — 0 and D  H > 2. then D — kE. where E is an irreducible carve of genas 1 
andand h°{S. D) = k + 1. //' (5. D) = k - l . 

3.3. If D2 > 0 and D- H > 2. then the genend element of D is smooth and irreducible. 

Remarks::  a) The first part of Proposition 2.5.4 is based on the fact that if D C S is a 
curvee with deg(D) = D  H < 2. then h°(S. D) = 1. i.e. D is isolated. But every isolated 
curvee is a (—2) curve and we have assumed that there are no such curves on S. 
b)) If S C P3 is a smooth quartie surface1 with Picard number 2 as above. 5 has no ( — 2) 
curvess when the equation 

2m22 + mnd + (g - l)n2 = - 1 . (2.12) 

hass no solutions in. n £ Z. This is the case for instance when d is even and g is odd. 

2.5.33 Brill-Noether special linear series on curves on A'3 surfaces 

Thee study of special linear series on curven lying on A*3 surfaces began with Lazarsfeld's 
prooff  of the Brill-Xoether-Petri Theorem (cf. [La]). He noticed that there is no Brill -
Xoetherr type obstruction to embed a curve in a A'3 surface: if C0 C S is a smooth curve 
off  genus g >'2 on a A'3 surface such that Pic(S) = ZC0. then the general curve C e C0 

satisfiess the Brill-Xoether-Petri Theorem, that is. for any line bundle A on C. the Petri 
mapp IIQ(C.A) : H[)(C. A) H°(C.KC AJ) -> H°(C.KC) is injective. We mention that 
Petri'ss Theorem implies (trivially ) the1 Brill-Xoether Theorem. 

Thee general philosophy when studying linear series on a A'3-section C C S oï genus 
gg > 2. is that the type of a Brill-Xoether special g'y often does not depend on C but 
onlyy on its linear equivalence class in 5. i.e. a Qr

d on C with p(g.r.d) < 0 is expected to 
propagatee to all smooth curves C" e C . This expectation, in such generality, is perhaps 
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aa hit too optimistic, but it was proved to be true for the Clifford index of a curve (see 
GLj) :: for C C .S' a smooth A~3-section of genus // > 2. one has that Cliff)C" ) — Cliff(C) 

forr every smooth curve (" G C . Furthermore, if Cliff ( C") < \[g — 1 )/2] (the generic value 
off  the Clifford index), then there exists a line bundle C on 5 such that for all smooth 
C'' G C the restriction C r<  computes Clif f C ). Recall that the Clifford index of a curve 
CC of genus (j is defined as 

Cliff(C )) := inin{Cliff(D ) : D G Div(C).//'(D.) > 2.h1(D) > 2} . 

wheree for a divisor D on ('. we have Cliff(D ) = deg(D) - 2(h°lD) - 1). Note that in 
thee definition of Cliff(C) the condition ld[D) > 2 can be re])laced with deg(D) < g - 1. 
Anotherr invariant of a curve is the Clifford dimension of C defined as 

Cliff-dini(C )) := min{ r > 1 : 3tfd on C with d < // - 1. such that d - 2r = Cliff(C')} . 

Curvess with Clifford dimension > 2 arc1 rare: smooth plane curves are precisely the curves 
off  Clifford dimension 2. while curves of Clifford dimension 3 occur only in genus 10 as 
completee intersections of two cubic surfaces in P'*. 

Harriss and Mumford during their work in ;HM] conjectured that the gonality of a 
A3-sectionn should stay constant in a linear system: if C C S carries an exceptional Q[

lt 

thenn every smooth C' G C carries an equally exceptional Ql
H. This conjecture was later 

disprovedd by Donagi and Morrison (cf. [DMo]) who showed that the gonality can vary 
inn a linear system: Consider the following situation: let ~ : S -H> P2 be a A"3 surface, 
doublee cover of P2 branched along a smooth sextic and let C = 7r*(Pp2(3). The genus of a 
smoothh C G C. is 10. The general C G \C, carriers a very ample 0 .̂ hence gon(C) = 5. 
Onn the other hand, any curve in the codimension 1 linear system ir*H°(¥ 2. C%i(3)) 
iss bielliptic. therefore has gonality 4. Under reasonable assumptions this turns out to 
bee the1 only counterexample to the Harris-Mumford conjecture. Ciliberto and Pareschi 
provedd (in [CilP]) that if C C S is such that C is base-point-free and ample, then either 
gon(C')) = gon(C) for all smooth C' G C\. or (S. C) are as in tin1 previous counterexample. 
Althoughh gon(C) can drop as C varies in a linear system, base point free g^'s on A'3-
se<lionss do propagate: 

P ropos i t i onn 2.5.5 (Donag i -Mor r i son) Let S be a A"3 surface. C C S a smooth, non-
hypihypi rcllipti(  curve and Z a complete, base point free g]

d on C such that pig. l.rf) < 0. 
TIKIITIKII  there is an effect in divisor D C ,S' such that: 

 h°(S.D)>2. IP(S.C-D) > 2 . d e gr ( D r ) < g - l . 

 Cliff(C . Dr,\ < Cliff(C. Z). for any smooth C" G C . 

 Then is Z{) G Z . consisting of distinct ponds such that Z{) C Dr C. 
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2.5.44 The gonality of curves on quartic surfaces 

Forr a wide range of d and g we construct curves C C P3 of degree d and genus g having 
thee expected gonality. We start with the case when g is odd and d is even when we can 
realizee our curves as sections of smooth quartic surfaces. 

Theoremm 2.3 Let g > 5. d > 8 be integers, g odd, d even, such that d2 > Sg. Ad < 3^ + 12 
andand d2 - Sg + 8 is not a square. Then there exists a smooth curve C C P3 of degree d 
andand genus g such that gon(C) = min{rf - 4, [(g + 3)/2]). If gon(C) = d-A< \{g + 3)/2], 
everyevery g ^4 computing the gonality is given by the planes through a 4-secant line to C. 
Moreover.Moreover. C has only finitely many 4-secant lines, finitely many tangential trisecants and 
nono o-secant lines. 

Proof:Proof: By Mori's Theorem, for such d and g, there exists a smooth quartic surface 
S C P33 and C C S a smooth curve of degree d and genus g such that Pic(S) = ZH-^ZC. 
wheree H is a plane section. The conditions d and g are subject to. ensure that S does 
nott contain ( -2) curves or genus 1 curves (the existence of a curve with self-intersection 
00 would imply that d2 - Sg + 8 is a square). 

Wee prove first that Cliff-dim(C) = 1. It suffices to show that C C 5" is an ample divisor, 
becausee then by using Prop.3.3 from [CilP] we obtain that either Cliff-dim(C) = 1 or C 
iss a smooth plane sextic, g — 10 and (5, C) are as in Donagi-Morrison's example (then 
Cliff-dim(C)) = 2). The latter case obviously does not happen. 

Wee prove that C  D > 0 for any effective divisor DCS. Let D ~ mH + nC, with 
m,, n e Z, such a divisor. Then D2 = 4m2+2mnd+n2{2g-2) > 0 and D-H = Am+dn > 2. 
Thee case m < 0. n < 0 is impossible, while the case m > 0. n > 0 is trivial. Let us assume 
mm > 0, n < 0. Then D  C = md + n{2g - 2) > -2n(d2/8 - g + 1) + d/2 > 0. because 
dd22/8/8 > g. In the remaining case m < O.n > 0 we have that nD - C > -mD  H > 0. so 
CC is ample by Xakai-Moishezon. 

Ourr assumptions imply that d < g -1, so C c ( l) is among the line bundles from which 
Cliff(C )) is computed. We get thus the following estimate on the gonality of C: 

gon(C)) = Cliff(C) + 2 < Cliff( C.HC) + 2 = d - 4, 

whichh yields gon(C) < min(d - 4, \{g + 3)/2]). 
Assumee now that gon(C) < [(g + 3)/2]. We wil l then show that gon{C) = d - A. 

Lett \Z\ be a complete, base point free pencil computing gon(C). By applying Prop.2.5.5. 
theree exists an effective divisor DCS satisfying 

h°{S.D)h°{S.D) > 2,h°{S.C-D) > 2,deg(JDc) < g-\, gon(C) = ClifF(£>c) + 2 and Z C DnC. 

Wee consider the exact cohomology sequence: 

00 - j . H°(S. D-C)  ̂ H°(S. D) -> H°(C, Dc) -> Hl(S. D - C). 

Sincee C-D is effective and  ̂ 0. one sees that D-C cannot be effective, so H°(S, D-C) = 
0.. The surface S does not contain ( -2) curves, so C - D\ has no fixed components: the 
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equationn [C-Df = 0 has no solutions, therefore (C-Df > 0 and the general element of 
C-DC-D is smooth and irreducible. Then it follows that Hl(S. D-C) - Hl(S C-D)' — Ü 

Thuss H°{S.D) = H°[C.DC) and 

gon(C)) = 2 + Cliff (£>c) = '2 +D-C -2 dim D = D  C - D2. 

Wee consider the following family of effective divisors 

.44 := {D e Div(S) : h°(S. D) > 2. h°(S. C-D)>2. C-D<g-1}. 

andd since we already know that d-4 > gon(C) > o. where o = mm{D-C-C2 : D e .4} . 
wee are done if we prove that a >d-4. Take D G A. such that D ~ rnH + nC. in. n e Z. 
Thee conditions D2 >{).D- C <g-\ and 2 < D  H < d - 2 (use Prop.2.5.4 for the last 
inequality)) can be rewritten as 

2m2m22 + mnd + n2ig - 1) > 0 (i) . 2 < Am + nd < d -2 (ii) . md + {2n - \){g - 1) < 0 (iii) . 

Wee have to prove that for any D e A tlie following inequality holds 

ƒƒ {HI. n) = D-C - D'2 = —ini2 + >n(d - 2nd) + in - n2){2g - 2) > ƒ{  1. Ü) - d - 4. 

Wee solve this standard calculus problem. Denote by a :=  (d -+- \/r/2 - 8 ^ + 8 )/4 and 
;jj  : = (d - \/f/2 - 8*7 + 8 )/4. We dispose first of the case n < 0. Assuming n < 0. from 
(i)) we have that either rn < -bn or in > -an. If rn < -bn from (ii) we obtain that 
22 < n(d - 46) < Ü. because n < 0 and d - 4b = yfd1 - 8g + 8 > 0. so we have reached a 
contradiction. . 

Wee assume now that n < 0 and m > -an. From (iii ) we get that m < (g-l)(l-2n)/d. 
Iff  -cm > [g - 1)(1 - 2n)/d we are done because there is no m £ Z satisfying (i). (ii ) and 
(iii) .. while in the other case for any D £ A with D ~ rnH + nC. one has the inequalities 

tttt \  ̂ a \ /o o n (r/2 -8g + 8) + dJd2 -8q + 8 ff {in. n) > f {-an. n) = (2g - 2 - ad)n = - - ^ — Y -1 (_„ ) > r/ _ 4. 

unlesss n = - ] and d2 - 8g < 8 (which forces d2 - 8g = 4). In this last case we obtain 
inin > (f/ + 4)/4 so f{m.-l) > f((d + 4)/4. - l j > d - 4. 

Thee case n > 0 can be treated rather similarly. From (i) we get that either in < -an 
orr in > -bn. The first case can be dismissed immediately. When in > -bn we use that 
forr any D e A with D ~ rnH — nC. 

fini.ii)fini.ii)  > min{  ƒ ( - ( # - l)(2n - l)/d.n).mixx{f(-bn.ri). f{(2 - nd)/4.n)}}. 

Elementaryy manipulations give that 

f[-(gf[-(g  - \){2n - \)/d. n) = (g - 1 j / 2 [(2// - \)2{d2 - 8g + 8)/<72 + 1} > d - 4 

(usee that d2 > 8.9 and d <g-\). Xote that we have equality if and only if n = 1. rn = - 1 
andd d = g - I. This possibility is compatible with the other conditions onlv for g e 
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{11.13.15}. . 
Furthermoree f{-bn. n) = n{2g - 2 - bd) > 2g - 2 - bd and 2g - 2 - bd > d - 4 O 

44 < yjd2 - Sg + S < d - 4. When this does not happen we proceed as follows: if 
\Jd\Jd22 - Sg + 8 > d - 4 then if n = 1 we have that m > -b > - 1 . that is m > 0. but 
thiss contradicts (ii) . When n > 2. we have / ( (2 - nd)/A.n) = {(d2 ~ Sg + 8)(n2 - n) + 
(2c?? - 4)]/4 > d - 4. Finally, the remaining possibility 4 > ^Jd2 - Sg + 8 can be disposed 
off  easily by an ad-hoc argument (our assumptions force in this case d2 — Sg = 4). 

Al ll  this leaves us with the case JI = 0. when f(m. 0) = -4m2 + md. Clearly f(m, 0) > 
ƒƒ (1. 0) for all m complying with (i).(ii ) and (iii) . 

Thuss we proved that gon(C) = d—4. We have equality D-C — D2 = c i -4 where D e A. 
iff  and only if D = H or in the case d = g - 1. g e {11.13.15}  also when D = C -H. It is 
easyy to show that if d = g — 1 then Kc — 2H C- therefore we can always assume that the 
divisorr on S cutting a 0^_4 on C is the plane section of S. Since Z C HC\C. if we denote 
byy A the residual divisor of Z in H n C. we have that h°{C. H c - A) = 2. so A spans a 
linee and Z is given by the planes through the 4-secant line (A). This shows that every 
pencill  computing gon(C) is given by the planes through a 4-secant line. 

Theree are a few ways to see that C has only finitely many 4-secant lines. The shortest 
iss to invoke Theorem 3.1 from [CilP]: since gon(C') = d - 4 is constant as C' varies in 
\C\.\C\. for the general smooth curve C" € \C' one has dim irj_4(C") = 0. Thus C has 
onlyy finitely many 4-secant lines and no 5-secant lines. Note that the last part of this 
assertionn can also be seen directly using Bezout's Theorem: if L C P3 were a 5-secant line 
too C\ then L C S. but S contains no lines. Finally, C has only finitely many tangential 
trisecantss because C is nondegenerate and we can apply a result from [Kaji] .

Remarks::  1. One can find quartic surfaces S C P3 containing a smooth curve C of 
degreee d and genus g in the case g = cP/8 + 1 (which is outside the range Theorem 2.3 
dealss with). Then d = 4m, g = 2m2 + 1 with m > 1 and C is a complete intersection of 
typee (4. m). For such a curve. gon(C) = d - L where / is the degree of a maximal linear 
divisorr on C (cf. [Ba]). If S is picked sufficiently general so that it contains no lines, by 
Bezout.. C cannot have 5-secant lines so gon(C) = d — 4 in this case too. 
2.. Mori's Theorem can be extended to curves sitting on A"3 surfaces which are embedded 
inn higher dimensional projective spaces: for r > 3. d > 0. g > 0 such that g < d2 j(4r — 4) 
andd {d.g)  ̂ (2r - l . r ) . there exists a A'3 surface 5 C Pr of degree 2r - 2 containing 
aa smooth curve C of degree d and genus g and such that Pic(S) = Z/Z -T ZC. where 
HH is a hyperplane section of 5 (see [Kn]) . It seems very likely (although I have only 
checkedd several particular cases) that under the same conditions (i.e. S contains no 
genuss 0 or genus 1 curves) the analogue of Theorem 2.3 still holds, that is gon(C) = 
min([(33 + 3) /2 ] .< i -2r + 2). 

Wee want to find out when the curves constructed in Theorem 2.3 correspond to 'good 
points'' of Hilb(/.s,.-j. We have the following: 

Proposi t ionn 2.5.6 Let C C S C P3 be a smooth curve sitting on a quartic surface such 
thatthat Pic(S) = TJH  ZC with H being a plane section and assume furthermore that S 
contamscontams no ( -2) curves. Then Hl(C. -VC/?3J — Ü if and only if d < 18 or g < 4d — 31. 
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Proof:Proof: We use the exact sequence 

00 —> \ c / s —> -V c /?3 —+ A-5/?3 . (9C —  0. (2.13) 

wheree A>/?3 Oc = Oc{4) and A c , s = A"c. We claim that there is an isomorphism 
HH}}{C.{C. .\C/73) = -W!(C Cc(4)). Suppose this is not the case. Then the injective map 
HHll{C.K{C.Kcc)) -+ W{C\XCt?i) provides a splitting of the sequence (2.13) and by using 
Propositionn 3.25 from [Mod] we obtain that C is a complete intersection with S. This is 
clearlyy a contradiction. 

Wee have isomorphisms Hl[CAHc) = H2{SAH-C) = H°(S.C-4H)J. According to 
Prop.2.5.44 the divisor C-4H is effective if and only if (C-4H)2 > 0 and {C-AH)-H > 2. 
fromm which the conclusion follows. D 

Wee need to determine the gonality of nodal curves not of compact type and which 
consistt of two components (like those appearing in Prop.2.2.2). The following result is 
intuitivelyy clear if one uses admissible coverings: 

Proposi t ionn 2.5.7 Let C — C3 U^ C2 be a quasi-transversal union of two smooth curves 
C\C\ and C2 meeting at a finite set. A. Denote by g} = g{Ci).g2 = g{C2).5 ~ card(A). Let 
usus assume that C\ has only finitely many pencils g]

d, where 6 < d and thai the points of 
AA  do not occur in the same fibre of one of these pencils. Then gon(C) > d+ 1. Moreover 
ifif  gon(C) = d+l then either (1) C2 is rational and there is a degree d map fl : C\ -  ̂ P1 

andand a degree 1 map f2 : C2  ̂ P1 such that /2 a = f2 A. or (2) there is a gl
d+l on Cx 

containingcontaining A in a fibre. 

Proof:Proof: For the proof we use Section 2 of [EH1] (the one which works for nodal curves not 
necessarilyy of compact type). We briefly reviewed this in Chapter 1 (see also [Est] for a 
clearr account on limit, linear series on (general) reducible nodal curves). Let us assume 
thatt C is fc-gonal, that is. a limi t of smooth A;-gonal curves. Then there exists a family 
off  curves 7T : C -  ̂ B. with B = Spec(i?), R being a discrete valuation ring, such that the 
centrall  fibre C0 is C. the generic fibre Cv is smooth (r) € B is the generic point) and there 
iss a gjj. on Cv. which as in Chapter 1 we denote by ln = (CV.VV). where V  ̂C 7r,£̂  is a 
vectorr bundle of rank 2. To the family of pencils lv we can associate a limi t linear series 
onn C as follows (cf. [Est]): there are unique line bundles Lx and C2 on C such that: 

1.. L\ and C2 are extensions of Cv: C, Ci — Cv. for / = 1. 2. 

2.. If VCi :=  VrjDnXi Q ^£7; . then the map V£l(0) -> #° (C i, £1('0) C l) is injective and 
thee map VCl(0) -> H°{C2, A (0) Ca) is # 0. Similarly. VCJ0) -> H°(C2.C2{0) Ca) is 
injectivee and l£.2(0) -^ H0(d.C2(0) Cl) is ï 0. 

Notee that in the case of curves of compact type, it was possible to get for each component 
off  the special fibre one extension of Cv whose restriction had degree k on the chosen 
componentt and degree 0 on all the other components of the special fibre; obviously we 
cannott expect something like this for arbitrary nodal curves. We also point out that 
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evenn in the case when C is of compact type the extensions Lx and C2 may differ from 
Eisenbud-Harris""  extensions: this happens when there is some ramification at the nodes 
off  C. 

Lett us denote by / > 0 the unique integer such that C{ — C2{IC2} and by d\ = 

degC l(£ii  c'i )-^2 = tlegCa(£2 c j - Then cf + d2 = k + IS. 
Wee show first that k > d + 1. Suppose A- = d. Then dx = d.d2 = IS > 1 (because 

h°{Ch°{C22.C.C22{{)){{))  c2) > 2). and then (£i(0) cv V£l(0)) is one of the finitely many g^'s on C{. 
Fromm 2. we have that 1 < h°{C\. £2(0) C l) < h0{d,Ci(0) c\ ~ A) , that is. A is contained 
inn a fibre of a Ql

d on C\. a contradiction. 
Assumee now k — d + f. There are two cases to consider: (i). d\ = d, d2 = IS + 1 which 

forcess / = 0 (if / > 1 once again A would be entirely contained in a fibre of a Ql
d on Ci). 

hencee £2 = A - so we have only one line bundle on C which gives a degree d + 1 map 

22 ->  F1, which is case (i ) of Prop.2.5.7 (ii) . d\ = rf+1, d-2 = IS. Again, the condition 
h°(Ch°(C22,C,C22(Q)(Q) c2) > 2 gives / > 1. hence 1 < ^ ( G . ^ O) c j < / i ° (C t .A (0 )C l - A) , which 
yieldss case (2) of Prop.2.5.7. a 

Theoremm 2.3 provides space curves of expected gonality when d is even and g is odd. 
Naturally,, we would like to have such curves when d and g have other parities as well. We 
wil ll  achieve this by attaching to a 'good' curve of expected gonality, either a 2 or 3-secant 
linee or a 4-secant conic. 

Theoremm 2.4 Let g > 5. d > 8 be integers with g odd and d even, such that d2 > 8g, Ad < 
3.99 + 12, d2 - 8g + 8 is not a square and either d < 18 or g < Ad - 31. If 

(d',g')(d',g') e {(d, g). (d + 1, g + 1). (d + I, g + 2), {d + 2, g + 3)}. 

thenthen there exists a regular component of Hilbd>.g<.3 with general point [C]  a smooth curve 
suchsuch that gon(C') = min(d' - 4. [(g' + 3)/2]). 

Proof:Proof: For d and g as in the statement we know by Theorem 2.3 and Prop.2.5.6 that there 
existss a smooth, nondegenerate curve C C P3 of degree d and genus g. with gon(C) = 
m in (d -4,, [(g + 3)/2\) and Hl(C. A'c/i?3) = °- W e c an ^so assume that C sits on a smooth 
quarticc surface S and Pic(S) = ZH e IC. Moreover, in the case d - 4 < [(.9 + 3)/2] the 
curvee C has only finitely many g^_4's. all given by planes through a 4-secant line. 

i)) Let us settle first the case {d'.g') = (d + l.g + 1). Take p.q £ C general points. 
II  = pg C P3 and A" : = C u I . By Prop.2.2.2 A' is smoothable and Hl{X. Nx) = 0. 
Iff  d - 4 < [(# + 3)/2], then since C has only finitely many 0^_4's. by applying Prop. 
2.5.77 we get that gon(A') = d - 3. In the case d - A > \{g + 3)/2] we just notice that 
gon (A)>gon(C)) = [(5' + 3)/2]. 

ii )) Next, we tackle the case {d'.g') = {d+ l.g + 2). Assume first that d - A < 
[ig+3)/2][ig+3)/2]  & d ' -4 < [(.9'+3)/2]. Let p e C be a general point. The image of the projection 
7v7vpp : C —> P2 from p is a plane curve of degree d-\ having only nodes as singularities, which 
meanss that C has no stationary trisecants through p (i.e. trisecants pqq' such that Tq{C) 
andd Tg>(C) meet), because a stationary trisecant would correspond to a tacnode of ~p(C). 
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Pickk L one of the (d~2) ~g trisecants through p and consider A := C ' L l . The conditions 
requiredd by Prop.2.2.2 (part 3) being satisfied. A" is smoothable and HX{X. Xx) = 0. To 
concludee that gon(A') = d - 3. we have to show that there is no g^_4 on C containing 
LnCLnC in a fibre. A line in P3 (hence also a 4-secant line to C) can meet only finitely many 
trisecants.. Indeed, assuming that m C IP'3 is a line meeting infinitely many trisecants. by 
consideringg the correspondence 

TT = {(.P- 0 S C x m : 3/ a trisecant to C passing through p and t\. 

thee projection 7r2 : T — /// yields a g3 on T. hence C' is trigonal as well, a contradiction. 
Sincee /; and L have been chosen generally we may assume that L does not meet anv of 
thee 4-secant lines. 

Inn the remaining case c/-4 > [(g+3)/2]  we apply Theorem 2.3 to obtain a smooth curve 
C\C\ C P3 of degree c/ and genus g + 2 such that gon(Cj ) = (g + 5)/2 and / ^ ( (A . A C l) = 0. 
Wee take Aj : = C\ UL\ with L2 being a general 1-secant line to C\. Then AA is smoothable 
andd gon(A",) = gon (d }  = (g -r 5)/2. 

iii )) Finally, we turn to the case (d'.g') = (c/ + 2. g + 3). Take H C P3 a general 
planee meeting C in c/ distinct points in general linear position and pick 4 of them: 
Pi.p-2-P.i-P4Pi.p-2-P.i-P4 £ C n H. Choose Q C H a general conic such that QC\C — {pi-p2-Pi-Pi}-
Prop.2.2.22 ensures that X :=  C U Q is smoothable and Hl{X. Xx) = 0. 

Assumee first that d'-A < [(.g'-f 3)/2]. We claim that gon(A') > gon(C') + 2. According 
too Prop. 2.5.7 the opposite could happen only in 2 cases: a) there exists a g^_3 on C. say 
\Z\Z . such that \Z {-px - p2 -p^-Pi)  ̂ 0. b) there exists a degree d-A map ƒ : C -> P1 

andd a degree 1 map ƒ' : Q -> P' such that ƒ(/;,) = f'(pi). for /' = 1 4. 
Assumee that, a) does happen. We denote by U = {D ej C4 : IOc( l ) (-£>) / 0}  the 

irreduciblee 3-fold of divisors of degree 4 spanning a plane and also consider the correspon-
dence e 

^  ̂ = {(!. D) e G]
(1_3(C) x U : !(-D)  ̂ Q)}. 

withh the projection ~{ : E —> G^_3(C). We have that dim H > 3. There are two 
possibilities:: aj) There is / € 7r,(L) such that iO c ( l J | ( - /) = 0. Then x~[l(l) is finite 
hencee dim Gfj_3(C) > 3. By using the theory of excess linear series (cf. [ACGH]) we get 
thatt dim Gl

d_A[C) > 1. a contradiction. a2) For all / e TV^E) we have that !Cc( l ) j ( - / ) / 0 
andd then C lias oc2 trisecants. But a nondegencrate curve in P3 can have at most oc1 

trisecants.. so by picking the plane section H n C generally we can assume that a2) does 
nott happen either. 

Wee now rule out case b). Suppose that b) does happen and denote by L C P3 the 4-
secantt line corresponding to ƒ. Let {p} - LnH. and pick / C H a general line. As Q was 
aa general conic through pA p4 we may assume that p £ Q. The map ƒ' : Q —> / is (up 
too a projective isomorphism of/) the projection from a point q e Q. while f {p.;) — p~pnl. 
forr ? = 1 4. By Steiner's Theorem from classical projective geometry, the condition 

(f(P\)f(P2}f{Pz)f(p4))(f(P\)f(P2}f{Pz)f(p4)) = (f'(P\)f'(P2}f'(p*)f'[p-i))  is equivalent with px.p2, p^.pA.p and 
qq being on a conic, a contradiction since p <£ Q. 

Finally,, when d' - 4 > [(>/ + 3)/2]. we have to show that gonLY) > gon(C') -+- 1. We 
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notee that dim G,1 3j/.>(C) = 1 (for any curve one has the inequality dim G*on < 1). By 

takingg H <E (P3)'"'' general enough, we obtain that pi p4 do not occur in the same 

fibree of a 8 |s + 3 1 / 2.
 n 

Ass an application of all these results we give a totally different proof of the most 
difficul tt part of Chapter f. namely Prop. 1.5.4: 

Theoremm 2.5 The Kodaira dimension of M-n is > 2. 

Proof:Proof: We apply Theorem 2.4 when (d. g) = (18.23). There exists a curve C C P3 of 
degreee 18 and genus 23 such that gon(C) = 13 (generic). Hence [C] G -Vf23.17 n -^23.20 
butt [C]  # .VI23.12- which basically proves i) of Chapter 1.

2.66 Miscellany 

Inn this section we gather several facts about the relative position of certain loci in Mg. 
Thee Brill-Noether Theorem asserts that the general curve of genus g has no linear series 
withh negative p. However, it is notoriously difficult to find smooth Brill-Noether general 
curves.. We discuss whether various geometrically defined subvarieties of Mg (e.g. loci of 
curvess which lie on certain surfaces, or admit irrational involutions) might possess Brill -
Noetherr general curves. 

Lett us look first what kind of surfaces can a Brill-Noether general curve lie on. Lazars-
feldd proved that a general A'3 surface (with Picard number 1) contains Brill-Noether-Petri 
generall  curves. It seems pretty hard to obtain such results for other classes of surfaces. 
W7ee have the following observation: 

Proposi t ionn 2.6.1 1. A general surface S C IP3 of degree d > 5 does not contain non-

degeneratedegenerate Brill-Noether general curves. 

2.2. A smooth curve of genus g > 29 with generic gonality {{g + 3)/2] cannot, lie on an 

EnriquesEnriques surface. 

Proof:Proof: By the Noether-Lefschetz Theorem, if S is a general surface of degree d > 5, 
Pic(S)) = ZH. with H being a plane section. Hence any curve C C 5 is a complete 
intersection.. For C ~ mH with m > 2. we have that 2g(C) - 2 = md{m + d - 4). from 
whichh clearly p(g. 3. md) < 0. so C is not Brill-Noether general. 

Supposee now that C C 5" is a smooth curve of genus g. sitting on an Enriques surface. 
Theree exists ,2E\ an elliptic pencil on S such that C  E < y/2g - 2 (cf. [CD] Corollary 
2.7.1).. In the exact sequence 

00 —  H°(S.2E - C) —> H°(S.2E) —+ H0(C.2EC) 

wee have that h°(S. 2E) > 2 and H°{S.2E-C) = 0 (because {2 E - C)  E < 0). Therefore 
CC carries a g\E.c. Since for g > 29 we have that 2y/2g~ZI2 < (g + l ) /2. the curve C does 
nott have generic gonality. ^ 
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Wee would like to know whether curves having an irrational involution can be Brill -
Xoetherr general. We will restrict ourselves to double covers, although these considerations 
cann be carried out for coverings of arbitrary degree. \Ye have the following results: 

Proposi t ionn 2.6.2 1. For g > 1. the gent rul point of the locus \'C] G M2ll~\ : =rr : C —> 
A",, elegit) = 2. g\X\ = g) is Brill-Xoether g< neral. 
2.2. For odd g > 1. the general point of the locus {[C]  G M>,i-\  : 5rr : C —> A", ('tale, with 
deg(/r)) = 2. //(A') = g) is of generic gonaliti/ g  1. 

Proof:Proof: 1. 1'sing limit linear series we find a Brill-Xoether general curve (' of compact 
typee and genus '2g, having a map of degree 2 onto a curve A of compact type and genus g. 
Takee (-4./;). a general pointed curve of genus g. and It a smooth rational curve. Consider 
A""  := .4 Up It i. which is of genus g. Let (C\.pi) and  p->) 1H> two copies of (A.p) and 
(E..r.(E..r. y) a 2-])ointed elliptic curve such that ./  - tj G Picü(£") is not torsion. We construct 
aa curve of compact type of genus '2g — 1. by taking C :— (\ Uf;,-„.,.  E Ur^> C>. It is 
straightforwardd to construct a degree 2 map a ; C —> A: lake o~(C,.p,) = (A.p) and 
oo £ : E —> It. the double covering given by the linear system ./  -+- y on E. This shows 
thatt C is a limi t of smooth curves of genus '2g — 1 having a double cover with 4 branch 
points.. The claim that C is Brill-Xoether general (i.e. it does not admit any limit linear 
seriess with negative Brill-Xoether number) is a byproduct of Propositions 1.3.2 and 1.4.1. 

2.. The idea is the same, to construct an unramified double cover a : C —> A', with 
A""  and C of compact type. g(C) = 2g - l.g(X) = g and C having no g^'s. This time 
wee take A :— .4 Up E. with (A.p) a general curve of genus g — 1 and E an elliptic curve, 
andd C :— C\ U;„  E' UP2 C>. where (C,.pA are just copies of (A.p) . E' is a copy of E and 
PiPi - Ih  Pic0 . We obtain an étale double cover a : C -+ A', by mapping C\ and C2 

too .4 . E' to E. such that cr(pl) = a(p2) = p. The proof that C has no limit g^'s is similar 
too a few other such proofs in this thesis, so we omit it. Xote that this construction in the 
unramifiedd case can also be found in Tier].

Inn the previous proposition, the restriction to odd g in the unramified case seems to 
bee rather artificial. Although we believe that for a sufficiently large even //. there are 
Brill-Xoetherr general curves of genus 2g — 1 mapping 2:1 to a curve1 of genus g. for g = 6 
wee have the rather surprising result which we regard as a one-off: 

Proposi t ionn 2.6.3 If a : C —* C is an ftali double cover with g(C) — W.g(C') - G. then 
CC is G-gonal (whereas the generic gonalitij on ,Mn is 7 I. 

Proof:Proof: Let us consider the moduli space1 Rtl of pairs (C. //). where1 C is a smooth curve of 
genuss 6 anel // G-2 Picu(0). We elenote by o : 7v(i —> Mn the1 map given by o{C. //) := [C]. 
wheree n : C —> C is the1 étale double cove1]1 corresponding to //. i.e. atO(-. — C'V  ij. 

The11 key observation is the1 following result of Ye IT a (cf. [Ye]): for a ge-neral point 
(C.. //) G Re,- there exists an Knriejues surfae-e1 ,S' sueh that C C S. C2 = 10 (hener eliin.C = 

.. C is ve>rv ample and g - Ks  More-over, if (C.//) G 7v,, is general, the Enriques 
surface11 S can be1 chosen generally toe) in the 10-diniensional moduli space eif' Enriquê  
surface's.. By general theory (cf. [CD]) .S' eontains 10 curves of genus 1. E\ EUi. such 
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thatt ErEj = l - ötj and C ~ l /3 (£i +  4- E10). Let ~ : A' -  5 be the A'3 cover of 5. 
CC = TT-1(C) and F, = T T " 1 ^ ) . with 3C ~  +  + F10. For some 1 < / < 10. consider 
thee exact sequence 

00 —> tf°(A\ F, - C) —  H°{X. Ft) —  tf°(C. F,: c-,). 

Certainlyy H°(X. F, - C) = 0 and although F( might be isolated on S. when we pass 
too the A'3 surface A', we get that fc°(A\Fj) = 2, so Ft gives a pencil on C of degree 
6(== Fi  C = 2£j  C). This shows that o{H(>) C M\ut.

Remark::  In a similar way. we can show that any smooth curve lying on the A'3-cover of 
aa general Enriques surface cannot have maximal gonality, so it is Brill-Xoether special. 

oo o 
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Chapterr 3 

Divisorss on moduli spaces of pointed 
curves s 

3.11 Introduction 

Forr integers g > 3 and n > 1 we denote by Mg,n the moduli space of complex n-pointed 
curvess of genus g and by MgM its compactification. the moduli space of n-pointed stable 
curves.. When n — 1 we wil l sometimes use the notation Cg — Mgj for the universal 
(stable)) curve of genus g. 

Thee loci Mr
gd C Mg consisting of curves having a Qr

d turned out to be extremely 
usefull  for understanding the birational geometry of Mg. One can consider analogous 
Brill-Noetherr loci in Mg,n defined as follows: if a1.... ,an are Schubert indices of type 
(r,, d) (that is 0 < a\ < ... < QJ. < d — r, for i = 1 , . .. . n). we consider the subvariety 

MlMl nnJa\Ja\ .  , an) := {[C,Pl,. . . ,pn] G M3.n : 3/ G Gr
d(C) with o'(p,-) > QJ for all ?}

Thee "strong Brill-Xoether Theorem' of Eisenbud and Harris (cf. Section 1.3) asserts that 
forr a general n-pointed curve (C.pi pn) of genus g. the dimension of the variety 

GGrr
dd(C(C (p,.al).... , (Pn.a

n)) = {IG Gr
d(C) : Q ' ( A ) > a1 for / = 1 n} 

iss the adjusted Brill-Xoether number p(g.r.d.al an) = p(g.r.d) — ] L " = I ^ Z J = O QJ* 
Whenn this number is — 1 one expects to find divisors on Wg,n. We will try to understand 
thee geometry of such divisors when r = 2 and n E {1-2} . that is. we wil l look at loci of 
11 or 2-pointed curves having a ĝ  with prescribed ramification at the marked points. We 
mentionn that the case r = n = 1 has already been treated in [Lo], but as it wil l turn out. 
computationss are significantly more involved in the case of 2-dimensional linear series. 

Experiencee shows that on Mg the most interesting divisors defined in terms of linear 
seriess are those consisting of curves with certain g^'s having ramification as ordinary as 
possible:: in general the more ramification one imposes on a linear series, the higher the 
slopee of the resulting divisor on Mg wil l be. hence it wil l be less relevant for understanding 
thee birational geometry of Mg. It is natural to expect the same for Brill-Xoether divisors 
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onn .Vf_fjl.„. which mean* that we wil l be mainly interested in the case when the ar>  are 
minimal. . 

Forr an integer g = 1 mod 3 and > 4. we set d : = ('2g -+- 7)/3. so that p\g.2.d) — 1. 
Theree are two ways to get Brill-Xoether divisors with minimal ramification on .V1, |. 
Eitherr we take a = (0.1.1) and then we consider the divisor of curves with a marked 
pointt that is a cusp. i.e. 

CI'CI' :=  M'2yld((0.1.1)) = {[C.p]  e MyA : 3&I on C with a cusp at p}. 

orr we take a = (0.0.2) and then we get the divisor of curves with a marked point that is 
aa hyper flex, i.e. 

HFHF := M; l d( (0.0.2)) = {[C\p]  G MgA : B$2
d on C with a hyperffex at p}. 

Wee are going to compute the classes of the closures CU and HF in .^ig\. 
Onn .\4g.-> there is only one way to get a Brill-Xoether divisor by imposing minimal 

ramification,, and that is by taking o' = r r = (0. 0. 1) to obtain the divisor of curves with 
2-markedd points that are both flexes: 

FLFL :— {lC.p1.p2} 6 Wu:i  : 3g;j on C having flexes at p\ and

Wee shall also compute the class [FL]  <= Pic;(.V(g 2). 
Althoughh I think that computations of divisor classes on ,Vfp,n are interesting in them-

selvess because they enhance our understanding of families of (pointed) curves, the original 
motivationn for studying the divisor FL C M(j.> was an attempt to prove that the moduli 
spacee .Vf'22.2 is of general type. It is proved in [Lo] that .\A22n is of general typt1 for 
vv > 8: since M-23,n is of general type for n > 1 and Mn.n is of non-negative Kodaira 
dimensionn for n = 5 and of general type for n > 6. it is natural to expect that the 
boundd for genus 22 is some way off from being optimal. The divisor FL. or some of its 
pullbackss to My.n via the maps Mgn —> Mq:>  forgetting some marked points, seemed 
thee most likely candidate for being part of a multicanonical linear system, i.e. to have 
AA v-i,, , ~ a FL + ( effective divisor ). for some a > 0. Unfortunately our calculation 
showss this not to be the case. 

Inn Section 3.0 we compute the class of yet another divisor on the universal curve 
W,,,\-W,,,\- This time we consider a divisor which although is defined by a geometric condition 
inn terms of linear series on curves, is different from the Brill-Xoether divisors from Sec-
tionn 3.1. in the sense that it appears as the push-forward of a codimension 2 Brill-Xoether 
locuss in Wg,2 under the map ~2 : -M9.2 ~~'f -^Vi forgetting the second point. 

Forr an integer d > 3 we set g := '2d — 4. We define the following codimension 1 locus 
inn the universal curve 

77?? := {{C.p} e M9A : 3/ e G'J(C). =./  eC - {p} such that a[(p) > 3 and a[(.r) > 3} . 

thatt is. 77? is the locus of 1-pointed curves [C.p] for which there exists a degree d map 
ƒƒ : C —> P1 having triple ramification at the marked point p and at some unmarked point 
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xx e C.J- # p. Clearly. TR = n2(M
l
g2 J (0.2). (0.2))). Since p(.g. 1.(7. (0.2). (0.2)) = - 2 

thee expected codimension of ,Vt^2_rf((0. 2). (0. 2)) inside Mgo is 2 and it is easy to see that 
thiss is also the actual codimension. hence TR is a divisor on MgA- ^Ve shall compute the 
classs [TR] <E Pic;(.Vfff .i) of the closure of TR in MgA. 

Wee close this chapter by proving in Section 3.7 the following 

T h e o r emm 3.1 For g = 11.12.15 the Kodaira dimension of the universal curve Cg is —oc. 

3.22 The Picard group of the moduli space of pointed 
curves s 

Wee review a few facts about the Picard groups of the moduli spaces My.n- when g > 3 and 
nn > 1. The main references are [AC3] and [Lo] (but also [Mod], for a very comprehensible 
discussionn on divisor classes on moduli stacks). All Picard groups we consider jure with 
rationall  coefficients: in particular we have isomorphisms Picfun(Mgjl) — P i e ^ . M ^) ~ 
Ak{MAk{Mgg,,nn).). Here by Pic/un we understand the Picard group of the moduli stack (functor). 
Fromm now on we denote Pic^(.Vl0,ri) by Pk:(Mg.n). 

Forr 1 < i < n let us denote by TT,: : MgM ->  Mg,„-i  the morphism which forgets the 
2-thh point. We denote by vl € Pic(Mg.n) the class on the moduli stack which associates 
too every n-pointed family of curves (ƒ : C —> B.O\ an : B -> C) the class of the line 
bundlee O*{JJJ) on B. where uif — UJC/B is the relative dualizing sheaf of ƒ. 

Forr 0 < i < [g/2] and A C {1 .2 , . .. . n} . we denote by & i:A the irreducible divisor 
onn MgM whose general point is a reducible curve of two components, one of genus i. the 
otherr of genus g — i. meeting transversally at a point and such that the germs / component 
containss precisely the marked points corresponding to A The index set .4 is subject to 
thee obvious conditions card(.4) > 2 if i = 0 and 1 e A for i = g/2. We denote by 6i:A 

thee class on the moduli stack associated to the divisor A,.,i. We also write S.rA = 8g_i-A>. 
wheree A' := {1 n} - A. as well as öi = Sg_i:<tj.  The key result is the following: 

P ropos i t i onn 3.2.1 (Harer, A rba re l l o -Corna lba) For g > 3 and n > 1 the group 
Pic(.Vfg,n)) is freely generated by the class of the Hodge line bundle A and by the classes i', 
forfor 1 < i < n and the boundary classes 6i:A. where 0 < / < [g/2] and A C {1 n}. 

Wee briefly discuss now the cases that are of interest to us. i.e. when n ^ {1.2} . If n = 1 
wee denote by TT : MgA —> Mg the natural projection. Clearly u — -jj — ci(^v): also 

TT*(A )) = A. -*(6Q) = S0 and n*(6,) = 6, + 6g.,. for 1 < i < [g/2]. 

Iff  i = [g/2] we have that 7T*(ö-g;2) — ^'9/2

Whenn n = 2 we look at the maps -, : Mg:2 —> MgA forgetting one of the points. One 
hass that v, — f i f^v j + <V{i.2} - As for the pullbacks. we wil l need the formulas (cf. To]) 

-*CA)) = A. 7T*(ö0) = V -*2{v) - e, - ö0:ji.2}  and ~*2(ói:A) = ör_A + ói:A {̂2}. 
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3.33 Counting linear series on curves via Schubert 
calculus s 

Inn order to compute the class of Brill-Xoether divisors on .\A<,,-,,. one has to figure out the 
intersectionn numbers of such divisors with various curves in .Ms.„ . Typically, we have to 
answerr questions like: 

Givenn q. r. d and n' <\ *  Schubert indices of type ( r. d) such that /){</.  r. d. o '. . . . . o ' ] 
(J.. how many g';'s with prescribed ramification at the * marked points does a general *-
pointedd curve of genus g have? In other instances one has to compute the number of g7, s 
havingg prescribed ramification at unprescribed points. 

Inn each case we will solve such problems using Schubert calculus: we let our curves de-
generatee to curves of compact type that are unions of F1's and have elliptic tails and no 
otherr components. Computing the number of limi t g'/s with special properties on such 
curvess boils down to computations in the cohomology rings of certain Grassmannians. 

Wee now outline the method. We use as references GH] and EH-7)], while rF] is a ref-
erencee for general properties of Schubert cycles in Grassmannians. Let (' be an algebraic 
curvee of genus //, let p G C be a point and / = (£. \') € G'tj[C). To this data we associate 
thee following' strictly decreasing flag in Hl)((\ C/£{-(d + \)p)) ~ C''': 

Tip)Tip) : H"{C.C/a-{(l+l)p))  = U'o D \\\ D . .. D \Vd D U",,^ = 0. 

when'' Wj = H0(C.C(-ip)/C(-(d + l)p)). If n = (o() nr ) is a Schubert index of 
typee {r.d). the condition Ql(p) > a is equivalent with \ ' belonging to the Schubert cycle 
aa00 e G(r.H°(C.C/C{-(d+l)p))) = G(r.d) defined w.r.t. the flag Tip) (see Section 1.3 
forr our way of denoting Schubert cycles which basically coincides with that from [GriffHa] 
exceptt that we write the indices in reversed order). For instance, p is a ramification point 
off  / if and only if \' 6 rr,0 0.ij -

Lett us now consider the special case C — P1. There is only one line bundle of de-
greee d on P1. namely C — Oy-d.d). Making once and for all the identification C'*1 = 
/ / ° (F l .. Oydd)}. the variety G'^iF1 ) is just the Grassmannian Gir.d) of projective r-planes 
inn p ' = T(H0(?\O^id))). For each point p <E P' we have the flag Tip) with respect to 
whichh we can define Schubert cycles in G{i\d). 

Lett j>]  /^ G Fl be distinct general points and o1 os Schubert indices of type 
II  r.d). For each 1 < / < s- we consider tin1 Schubert cycle rr lV € Gir.d) defined in terms 
off  T\p,). It is proved in FHj] that (Ja\ rra,r, are (linicii>iona}iY  transverse: every 
componentt of P]'" , <ra, has codimension 

yy codim((7a,. Gir. c/)) = y ^ o'. 

andd in ])articular ("]"-' i °~a' ~ ^ n a n (l  o n l v if' ^n'  <"V" — " m H'{G[r.  d). Z). This shows 
thatt t here exists a g', on P1 having ramification > o' at p,. for/ — 1 .s\ if and only if 
CTCTlyly \\ . . . ( T , , , ^  0 . 
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Proposi t ionn 3.3.1 Let a1 a*  be Schubert indices of type {r.d) such that 

r=[r=[  j-0 

andand pi p^.J'i i's € P1 distinct general points. Then, the variety of g'd's on P1 

havinghaving cusps at the points px pg and ramification > a' at s, for i — 1 s is 
reduced.reduced. 0-dtmensional and consists of ag

[Q , X]aai . .. aas points. 

Proof:Proof: This has been basically settled in [EH5]. To be precise. Eisenbud and Harris 
provedd a similar statement for the Schubert cycles of the form a{0 0MI] rather than 
fj (0jj  !). but by duality we obtain the claimed statement from theirs. Just use that the 
duall  of the cycle <7(ü.i i> in G{r.d) is the cycle <T(0 o.rj in G(c/ - r - l.d).

Wee will repeatedly use the following formula (cf. [GH. page 269]): if a = (a0 ar ) 

iss a Schubert index of type (r. d) such that Y7i=o a« + rV = ( r + ^ ( ^ ~ ;") w e n a ve t h at 

n,v,(a;; _ ai + j - i) 
a ( — >> V i i) = 0 -n r = o ( f l _ r f + / + Q,. + r ) ! - ^ 

Anotlierr formula that we will find quite useful is the classical Flikker formula (see 
[Mod,, page 257]): If C is a smooth curve of genus g and / a gr

d on C, then 

JTT a-'(p) = (r + l ) c /+ (r + l ) r ( ö - 1). (3.2) 
pec c 

wheree ivl{p) is the weight of p in / (cf. Chapter 1 

3.44 Divisors on Ai 9-1 9-1 

Inn this section we compute the classes of the divisors CU and HF of curves with a marked 
pointss that is either a cusp or a hyper flex. We will use Theorem 4.1 from [EH2] which 
givess informations about the subspace of P\c{My.i) generated by the classes of the Brill -
Xoetherr divisors. 

Fixx g > 3 and let us denote by n : MyA -)  Mg the natural projection. Inside 
Pic(„Vf ffil )) one can look at the subspace generated by the classes of all divisors Mgd(a). 
wheree a = (a0 a,-) is a Schubert index of type (r. d) such that p(g. r. d) - Y^i=o a' = 

- 1 .. We note that the Brill-Xoether loci we consider on Mg.i wil l have exactly one 
divisoriall  component (cf. [EH2] Theorem 1.2) and possibly some other lower dimensional 
components.. It is not known whether the Brill-Xoether divisors on Mg.n. with n > 2 are 
irreducible11 or not. 

Onee distinguished Brill-Xoether divisor on Mg.\ is the locus of Weierstrass points 

VVV := {[C. p] e -V19.i : p is a Weierstrass point of C). 
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Clearlyy H' = M\A.,,((().# - 1)). that is. the locus of those (C.p) for which there is a gj 
withh total ramification at p. The class of the closure1 H' in My.\ has heen computed fcf. 
Tuk]): : 

/ . - I I 

Anotherr <livisor class we consider on Mu\ is 

ff  + 1 'J~l 

BXBX := U/ - 3)A - ^ - ^ r t 0 - V /(<y - /)r),-. 
bb ^-^ 

i - i i 

Here.. /i.V is (modulo multiplication by a positive rational constant) the class of the 
pullbackk of any BrilhXoether divisor M , on Mg. when f>(g.r.d) = —1. The class 13.X 
iss effective when there are Brill-Xoether divisors on MH and this happens precisely when 
gg 4- ] is composite. When g 4- 1 is prime, it is not clear whether BX is effective (as a 
matterr of fact, the slope conjecture (see (Mid of Chapter 1) predicts it is not). For g 4 1 
primee (in particular we can then write g = 'Ik — 2). the effective divisor on X4g having 
thee largest slope known to this date, is the closure of the locus 

EEll
kk := {[C]  e My : 3g| on C such that 2g| is special } . 

Thee slope of Hi is (6A-2 + k - 6)/k(k - 1) (cf. [EH3]). A general curve of genus 2k - 2 
hass (2A- — '2)\/(k\(k — 1)!) linear systems g[. and El is the locus of curves C for which the 
SCIHMIK11 67[(C) is nonreduced. This happens when two g|'s come together, so that we get 
aa g[ with dim 2g[ > 3. or equivalently by Riemann-Roch. 2g[ is special. 

Wee have the following remarkable result of Eisenbud and Harris (cf. [EH2]): 

Proposi t ionn 3.4.1 The Bnll-Noether suhspace in Pic(.Vfs,i) 'is two-dimensional, gener-
atedated hi) the clas.sis TV] and BX. 

Remark::  More generally. Logan has proved in To] that for n > 1 the subspace of 
PicC.'Viyy ,J generated bv the classes of the Brill-Xoether divisors on Mu „  lias dimension 

i-r:' 1') -- ' ^  _ _ 
Wee now compute the classes of the divisors HF and CI . 

Theoremm 3.2 Lit g = 1 mod 3 he an integer > 4 and set d :— (2g 4- 7)/3. We hare the 
followingfollowing relations en Pic(.VlK] ); 

/.. [WF] = r (a \ ~ b c - ,u rt„ - ZU < > rt,). 

iehieh ere 

(l(l = 2( g:i - l<f  ~ 1 Or/ - 1 66). b = 1 hg (g -2)(g-d + 6). e(i = (g2 + \)g 4- 23) (g - d ->-1). 
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e,, = (g - i){ög2 + 2ig2 + Sig + log - 110 - 74 - i) and 

cc = S(g-3)\/({g-d + 6V. (g-d + 3Y. [g - <l   ̂ 1)!) . 

2.2. [CT] = c'((g + A) X^g v - ^ ó0 - £ ? : / (/ + ^9 ~ ') <>',)

wherewhere c' = 2i(g - 2)!/((.g - d + 5)! (g -d + 3)! (g ~ d + 1)!) . 

Remark::  Let us try to understand the meaning of uur formulas in the simplest case. 
gg — 4. d = 5. By substitution we get 

[HF][HF]  = -2A + 20c - 12d"i - GS2 - 26:i. 

Onn the other hand, on a curve C of genus 4 every ĝ  is of the form A"c - J';, for some 
xx e C. The marked point p e C is a hyperfiex of jA' c--.r| if and only if h°{C.4p + .r) > 3. 
Thiss implies that p is a Weierstrass point of C and x is one of the 2 points in the effective 
divisorr Kc - Ap. Therefore HF = 2 W, and this can also be seen by comparing our 
formulaa to Cukierman's (cf. [Cuk]): 

[VV]]  = -A + 10v + -65i - 3<52 - S3. 

Ass for the other divisor, when g = 4, one finds that 

CUCU = {(C.p) e C4 : there exists x e C such that h°{C, 2p + x) > 2} . 

Ourr formula gives in this case \CU] = 8A + 4v - 6<S| - 662 - 4<S3. Note that the class 
off  the divisor CU on CA already appears in [Fa] page 423 (that is the {A . y} part in our 
formula). . 

Proof:Proof: 1) We start by computing [HF]  which is technically a bit more difficult than 
computingg [CU]. 

Sincee H~F = M2
g l d((0. 0. 2)) is a Brill-Xoether divisor, by applying Prop. 4.1 it follows 

thatt there are rational constants v. p such that 

[~HF][~HF]  = p BX + v[\\'}.  (3.3) 

andd we just have to determine the coefficients p and v. We use the method of test curves, 
i.e.. we intersects both sides of (3) with curves in Mg.\: we write down 1-dimensional 
familiess of 1-pointed curves of genus g and compute the degrees of A. r j u i d the S's on 
thatt curve as well as the degree of HF. We need two test curves in Mg.\ which wil l 
providee two linear equations in p. and v. Since it is pretty difficult to write down explicit 
familiess of curves of genus g with smooth general member, most of the test curves we use. 
wil ll  be entirely contained in the boundary Mg.\ — -W9.i. 

Wee obtain the first test curve as follows: Take a general curve D of genus g - 1 and 
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aa general 2-pointed elliptic curve (E.Q.p). We get a 1-dimensional family in Aj C Mgl 

byy identifying the fixed point 0 e E with a variable point q e B. the marked point being 
thee fixed point p e E, Let us denote by {A , := E ^ B.p e E}qeD the resulting family. 

Thee degrees of the generators of Pk(MyA) on the family we have just constructed, 
aree as follows: 

deg(A)) = Ü. deg(r) = 0. deg(ói) = -deg(AB ) = A-2g. 

whilee d0 and ó^for 2 < i < g- 1, all-vanish. Xext we evaluate deg(f lT). that is the degree 
off  the divisor HE on the curve in Mg.\ we have written down. 

Lett us take (Xq = E uqB.pe E) a member of our family. Then [Xq,p] e HF if and 
onlyy if there exists a (smoothable) limi t Q2

d on Xq. say /. with vanishing > (0.1.4) at p. 
Usingg the additivity of the Brill-Xoether number we have that: 

- 11 > p{l. ol(q)) > p(lB. ala{q)) + p[lE. ah:{q). a'K(p)). 

Sincee p(!E. o>"(ƒ/). ali: (p)) > 0 (if we assume p~ q e Pk°(E) not to be a torsion class) and 
alsoo p(lB,alB{q)) > - 1 (because [B]  e .Vf5_i is general), it follows that p(IB. a'13(q)) = 
- 1 .. that. p{lE.aiF-{q).alF-{p)) = 0 and a^{p) = (0.1.4). By using Prop. 1.4.1 we have 
thatt d - 1 < «,*(ƒ;) + 4 - , (4.) < f/ for / = 0. 1. 2 and there are two cases two consider: 
1st1st case: ah:{q) = (d-4. d-2. d- 1) from which al"(q) = (1.2. 4). By "The Regeneration 
Theorem'' (cf. Chapter 1). all these linear series are smoothable. In order to compute the 
contributionn to deg(HF) in this case, we have to count how many points q G B there are 
suchh that there is a Q2

d_] on B with ordinary ramification at q. 

Att this point, one might worry about the multiplicities with which we count such 
linearr series. It turns out that all multiplicities we encounter during this proof are equal 
too 1. The reason is that if we denote by (ƒ : X -> B.p : B -> X) the versal deformation 
spacee of (Xq.p). then in a similar way to the proof of Lemma 3.4 from [EH'2]. one can 
showw that the variety QjiX/B. (p. (0. 0. 2))) of g2

d's with hyperflexes on 1-pointed curves 
nearbyy (Xq.p), is transversal to our test curve. 

Byy standard Brill-Xoether theory. B possesses 2(g-l)\/((g-d+2y.(g—d+3)\{y-d+4)\) 
linearr series gj_v By PlÜcker's formula (3.2) each such g^_] has 3d + 6g-l» ramification 
pointss (all ordinary, since B is general). We thus get a contribution of 

2(3e// + 6 < / - 1 5 ) ( . g - l )! 

(g-d(g-d + A)\ (g-d+3)\ [y-d + 2)\ ' ( 3 , 4 ) 

2nd2nd case: ah- [q]  = (d - 5. d - 2. d). hence al*(q) =JJ}. 2. 5). Once again, all these linear 
seriess are smoothable and the contribution to óeg(HF) we get in this case, is the number 
off  0^'s on a general curve of genus g - 1 with vanishing sequence (0. 2. 5) at an unspecified 
point.. We now determine this number. 

Lett the curve B degenerate in a 1-dimensional family {B,} having smooth generic 
fibree and as special fibre, a curve of compact type B0 ;= F1 U Ex O . .. U £<,_,. where E, 
aree general elliptic curves. {Pi} = E, n P1 and Pl pg_1 e P1 are general points. We 
countt the number of limi t gjj's 011 #o uïth ramification (0. 1.3J at some unspecified point 
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xx E B0. 
Notee that in principle we could have x — p, for some /. that is. there exists xt G Bt 

andd and a family of 2-dimensional linear series lt € Gd(Bt. (xt. (0. 1.3))) for t ^ 0. such 
thatt lim^o-ft — A- (i-p- the hyperflexes xt specialize to a node of the central fibre). In 
thiss case however, by making a finite base-change, blowing-up sufficiently often the nodes 
off  B0 and resolving the resulting singularities, we obtain a new generically smooth family 
{B'{B' tt.x'.x'tt)) and linear series l\ € G'd(B't, [x'tA0.1.3))) for t  ̂ 0. such that no ramification 
pointt of /{  specializes to a node of B'0. The central fibre B'0 is derived from BQ by inserting 
chainss of P1-s at the nodes of BQ. Since this operation (explained in [EH1]) does not 
changee the Brill-Xoether theory of the central fibre, we may assume from the beginning 
thatt all ramification has been swerved away from the nodes. 

Conversely,, using semicontinuity of fibre dimension for the space of (limit ) gĵ 's with 
hyperflexess on curves nearby B0. we find that all limi t Qd on BQ with vanishing > (0.1. 4) 
att an unmarked point, are smoothable to every nearby curve in a way that maintains the 
hyperflex.. This shows that the number of limi t g^'s on B0 having a hyperflex. is the same 
ass the number of (honest) g^'s with a hyperflex on a general curve of genus g — 1. 

Lett / be a limi t Q2
d on B0 with ramification > (0.1. 3) at a smooth point x. In general, 

fromm the Pliicker formula it follows that for any linear series Qd on P1 and for any number 
off  points yi ym e P1. the inequality p{Qr

d.a(yi) ^{ijm)) > 0 holds. Using this 
observationn and that on BQ we have p{Lal(x)) = —1, by additivity it follows that x must 
bee on one of the elliptic tails, say x e £ ] . Then we must have p(lEl< alt: i (x), alEi (pi)) = 
- 1 .. p ^ . o M f e )) = 0 for 2 < 1' < 0 - 1 and p(/?1, a W P i) al^{pg  = 0. This 
meanss that the aspect h\ has cusps at the points p2 . . . . -Pg-i- As for the £1-aspect of / 
theree are three possibilities: 

 alEi{ Pl) = (d - ó.d - 2.d - 1). so al^(Pl) = (1.2.5). Then clearly 3p, + 2x ~ 
bx.bx. so 3x ~ 3pi on Ex. On Pl we have (after subtracting the base point pi) 
aa 2d-i with ramification (0.0.2) at pi and cusps at p2 Pg-2- According to 

Sectionn 3.3 the number of such linear series is a{0,0.2)crfc7i i) ( t n e product is taken in 
HHtoptop{G(2.d{G(2.d — 1).Z)). Since there are 8 choices for x £ E\ and x can lie on any of 
thee g — 1 elliptic tails, using formula (3.1). we get a total contribution of 

k(k( n 9-2 9 6 ( g - l )! 
8 (55 - 1) om:2] a[()11] = {g_d+-)l{g_d + 2)}{g_d+1)]  (3.o) 

 a
lhi (pi) = (d ~Q,d- 2. d). so a'?' (p}) = (0. 2. 6). Then 2.r ~ 2pi on Ex. and in this 

casee we obtain a contribution of 

~,~, n 9-2 1 4 4 ( g - l )! 
3(.99 - 1 <7fo.i.4) er"o 1 1) = 1 ; 1 e n / 1 0,1 1 TÏÏ  {,i-b> 

iUAAliUAAl (g — d + 6)l (g — d + 2)1 (g - d)l 
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 o'£i (p,) = (d - 5. of - 3 ^ ) . hence cM (jh) = (0. 3. 5). Then óx ~ öpi on Ex and the 
contributionn to óeg(HF) is 

Q-22 7 2 0 ( g - D! 
24(99 - .) „ „ , , „  of0.,„  = i 9 _ ^ 5 > , ( 9 _ r f + 3 , , ,9 _ ( , ) ,  (3.7) 

Byy adding (3.4).(3.5).(3.6) and (3.7). we obtain that 

,, /T7-F, 1 6 ( # - 1 )! (79
2 + 48g -184) 

deg(HF)deg(HF) = — -—  ̂ - 3 8) 
(g-d(g-d + 6)l (g - d+ 3)1 (g-d+ 2)1  [ó-ö} 

Sincee from (3.3) we have that deg(HF) = '2{g- l)(g-2)/j. + g(g- \){g-2)v. the equation 
(3.8)) provides one linear relation between ;/ and v. 

Inn order to obtain a second relation, we use as test curve a general fibre of the map 
7TT : Mg,\ —> Mg. We fix C. a general curve of genus g and let p e C vary. For this family 
off  course deg(c) = 2g - 2. while A and all the d's vanish. We also need deg(H F) which is 
justt the number of g^'s on a general curve of genus q having a hyperfiex at an unspecified 
point. . 

Too compute this number we let C degenerate to C0 :— P1 U E{ U . .. U Eg. where Et are 
generall  elliptic curves, {p,} = E7 n P' and pi p ^ P 1 are general points. We count 
limi tt g^'s on C0 with vanishing > (0,1, 4) at some point x G C0. As before, it turns out 
thatt all these g^'s are smoothable and no two gjj on smooth curves nearby C0 coalesce. 
Plücker'ss formula forces the point x to sit on an elliptic tail. 

Takee I a limi t $2
d on C0 with a hyperfiex at a point x and assume that x e £ ] . It is 

straightforwardd to see that a'£i (x) = (0. 2.4) and Q/£I (pi) = (d ~ 4. d - 2. d). from which 
4pii  ~ Ax. which gives 15 choices for x G El. On the spine P1 we have to count g^'s with 
vanishingg sequence (0, 2. 4) at px and cusps at p2 ,pg. The number of such linear series 
iss (T(o.i,2) tfo,liy t n e product being computed in Htop(G(2,d).Z). Since x can sit on any 
off  the tails EA.... .Eg. we get that 

deg(HF)deg(HF) ~ Ida am I 2\ ^?n
- , \, = —— (3 9) 

hh y ( }  ( 0 J 1) (g-d + ö)\(g-d + 3)\(g-d+l)r ' 

whichh immediately gives 

240 ( 5 - 2 ) ! ! 

(g+l)(g+l)  (g-d + o)\ (g-d + sy. (g-d+l)\ 

Byy plugging in we obtain p as well, hence [HF]  too. 

2)) In order to compute [CU]  we could use exactly the same test curves employed for the 
computationn of [HF].  but there is a shorter way of doing things in this case. Thankfully, 
ourr results do not depend on which method we choose. 

Wee fix a general elliptic curve E and consider the map j : ~MgA -+ ~Mg+\  given by 
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j(\B.p])j(\B.p]) := [B Up E] (attaching an elliptic tail). Then CU = j*{M g^1M). As already 
pointedd out in Chap.1. we have 

i(»+i)/2: : 

[AÏ^i. d]]  = /((ff + -4)A-(.9 + 2)/6tS0- E '(5 + 1 -0 Si). 

wheree ƒ = 3a/{2g - 2). with a being the number of g^'s on a 1-pointed curve of genus 
5 - 11 and having ramification (0,1. 2) at the marked point. By degenerating the 1-pointed 
curvee of genus g -1 to (P1 U Ex U . .. U Eg . p e P1), where the E, are elliptic, {p,}  = P1 nE{ 

forr i'. = 1 g and p.pi ,pg € P1 are general points, we see that a = rX(0,i,2) afo.i.i) 

(e(e Htop(G(2.d).Z)). from which we obtain 

f ==  2 4 ( g - 2 )! 

77 (g-d + b)\{g-d + Z)\(g-d + l)\

Thee pullback j *  acts on the generators of Pic(Mg+i) as follows: 

j*(5 0)) = ÓQ. j*(\)  = A, j*(b'i ) = - v + V i (by adjunction), j * ( ^ ) = ds_j + d\_i for i > 2. 

Wee get immediately the stated formula for [CU].  n 

3.55 A divisor on Mg2 

Usingg results from the previous section we compute the class of the divisor of curves with 
22 marked points that are flexes of a 2-dimensional linear series on the curve: 

Theoremm 3.3 Let g = 1 mod 3 be an integer > 4 and set d := (2g + 7) /3. We have the 

followingfollowing formula in Pic(A"fg<2).' 

9-19-1 9 -1 

[Ft][Ft]  = c"(A X + B (vt + v2) -C ÖQ-D 50:{i.2}  - ^ a ' 6i:W ~Hbj ^ ( ^ l ) -

w;/iere e 

J44 = 6(5
3 + 9 9

2 - 2 5 - 1 4 0 ), B = 6(5 + l ) ( 5 + l l ) ( 5 - 2 ) . C = 5
3 + 7#2 - 1GV? - 76. 

DD = \2g(g - 2){g + 11). b% = 6(g - i)((g2 + Ag)(i + 2) - (32? + 44)). 

a,, = 6(g3(i + 1) - ƒ (i2 - 4*  - 10) - g(4i2 + 32/ + 13) + (32?2 - 22)) and 

c"c" = Mg - 3)1/{(g - rf + 6)! (g - d + 3)! (y - d + 1)!). 

Remark::  When g — 4. d = 5 we have that 

F II  = {[C.p!.p2] ^ .M4.2 : there exists x e C such that h°(C. x + 3pi) > 2 for *' = 1. 2} . 
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Ourr formula gives in this case 

'Yl\'Yl\ = GA-15( 1̂^(_-J)- (
J>o-2-4<>0: { i .2f-15( î : l l } ^^ : { i ,-(V i :O}  t - lS^ ! ,^ .>} -12 :̂ { 1 .2} -G^! : |1 2f. 

ProofProof oi Theorem 3.3: We determine the coefficient> in the expression of FL] in three 
steps.. First, we consider the map ~2 : M,l2 —> -Wtf.i which forgets the second point. We 
claimm that 

f~_>u[FZ]]  -rto^i.2}] = [ 7 7 F] - [ rT ] . (3.10) 

Thiss is almost obvious: If A" — C û P1. px. p2] . with />,./̂  € P1. is a general point in 
FLFL H A(): . then there exists /. a limit 0;) on A*  having flexes at p\ and p2. Using \\\e 
additivityy of the Brill-Xoether number on A' we have that such a linear series is refined, 
thatt p(l,l.(\

l{p]).a
l)p->).nl{q)) = 0 and p(lc. aic(q)) = - 1 . It follows that ir' c(q) = 2 

andd this happens if either a'r{q) = (0. 1.4) (and then [Cq] G ITT), or <i lr{q) = (0.2.3) 
landd then [C.q] G CI'). On P1 on the other hand, there is precisely one g;j with flexes at 
bothh [>]  and p-2 and vanishing [d — A.d — \.d) (resp. [d — 3.(7 — 2.<7)) at the j)oint r/, so 
indeedd (-2),([FZ]  f)ü:{i.-j} ) = [HF] + F T ] . We use (3.10) together with Theorem 3.2 to 
determinee a few coefficients in the expression of [FL]. 

Lett us write [FT]  = A X+ B ( n + r-j) -C S0-D %{i.2[ - E?~i' " ' 'FiO ~J2'!-l b> F{i._ r 
Sincee (-2)»fA  <5[):{|.2}J = A. ("ictJ^oj, ) = - r . (7r-_>)*(rf(,  d0:{i.2} > = V 

(( TTo ) ,( <-V^0:{l.->} ) = 0 iV»I" /" = 1 . 2. ( - J . ) , ( (J) , : { l } - ^0 : {1 .2 } J = 0 H l l d ( 7T2 )„  ( F {  i ,j }  F):{  L 2 }  ) = F { l f 

forr 1 < / < g — 1. from (3.10) and Theorem 3.2 we obtain the coefficients A.CD and h, 
forr 1 < / < ƒ/ - 1. 

Inn order to get the coefficients of c'i and C'2- we use the following test curve: fix C 
aa general curve of genus g. let p[ G C be a general fixed point and p2 G C a variable 
point.. When p2 hits yjj. by blowing-u]) we insert a P1 at p\ G C. therefore deg((50:{i.'2} ) = 1 
forr this family. Moreover, degfi'i) — 1 (tin1 restriction of i\ to this family is Oc{}>\)). 
deglfo)) = '2(j — 1 (because the restriction of L-2 to this family is the line bundle Q^ip]}) 
andd finally A and all the other Fs vanish. 

Wee now compute deg(i-T). By the Schubert calculus we have already employed a 
numberr of times, we see that C has rx,0 (J ,, a 0̂ ] r (G H'"p{&(2. d). Z)) linear series g-J 
withh a flex at a fixed point p\. By Ph'icker. each of these linear series has 'id — 6q — 7 
ramificationn points different from px. thus we get that 

Wee have in this way the relation 2gB — D = deg(FZ-). which allows us to determine B. 
Wee are left with the task of determining the coefficients <i, of F{i} - when 1 < i < g — 1-

Forr this purpose, we us*1 a new test curve. Take (B.q) a general 1-pointed curve of genus / 
andd [C(j.p2) a general 2-pointed curve of genus g — i. We take A" : = B\JfjC and consider 
ass marked points a moving point p\ G B and the fixed point p> G C For this family we 
havee that 

degir-JJ = 2/ - 1. deg(r2) = 0. deg(^_; i i _,j) = 1. deg!^,|,} ) = - 1 . 
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whilee A and the remaining d's vanish. Thus we have the equation 

a,, = - ( 2/ -l)B + bg-i + deg(F I ). (3.11) 

wheree the only unknown in the left-hand side is deg(FL) which we now determine. 
Wee have to solve the following problem: let (Y.p) a general 1-pointed curve of genus g 

degeneratingg to (A' = B VJq C.p-2)- There are fT(0.o.i) vfQl r, linear series Q2
d on Y having a 

flexx at p. Fix one of them. How many of its ramification points wil l end up on the genus 
// component B as Y specializes to A"? 

Too answer this we let A" further degenerate to X' := £\ U . .. U Eg. a string of g elliptic-
curves,, the marked point, call it r0 being on E\. We assume that the component C of A' 
degeneratess to U9:Z\Ej. whereas B degenerates to U? 1+AE}. If {r, }  = ElC\El+\. assume 
r,, — Ti-\ 6 Pic°(£,;) is not a torsion class. Pick / one of the limi t g^'s on A"' that have 
aa flex at r0. Because of our assumptions. P{IE,- & IE' (O-i)- ^lEi (fi)) = 0. for 1 < i < g. 
Byy Plücker. the aspect lEi has 8 flexes which are smooth points of A"', which means that 
theree wil l be 8?' flexes on the components Eg_i+i. .... Eg. hence finally. 

AQjAQjnn\ \ 

dog(FI)) = 8W ( „ . „  <r«a[u = ( g _ < , + 5 ) | ( g _ d + 3 ) , ( g _ d + 2 ),

Substitutingg in (3.11) we have the coefficients a, as well. We have determined all terms 
inn the expression of [EL].

Remark::  We discuss now the case g = 22, d = 17. which as we already pointed out. was 
thee initial motivation for computing [FL]. 
Onee tries to show that the Kodaira dimension of the moduli space A^22,2 is > 0 by 
exhibitingg an explicit effective multicanonical divisor. Recall (cf. Chap. 1) that on -VI23 
thee Brill-Xoether divisor A l 23 17 of curves with a Q2

7, is multicanonical (modulo a positive 
combinationn of the classes d,. for i > 1). Therefore, it seemed possible that on ,M22.2- the 
divisorr FL of 2-pointed curves with a g2

l7 having flexes at both marked points, would be 
multicanonicall  as well. 

Thee canonical class A'-^ 2 can be computed easily (sec also [Lo]): if TY2 : A"tff.2 —> -Mg.i 

andd ~ : Mg,\ —> Mg are the natural maps, then A'-^ 2 = TT.^A'^ J + c.\{jjn2) and 
KKMMgAgA = ~*(KMg) + v- w h i c h gives. 

h'ch'c = 13A + v - 26o - 3(ó: + ög-i) - 2 ^ 6t. and 
i=2 i=2 

KKMM99.2.2 =  1 3 A + L'i + v'i  ~ 2óo ~ 250:{i.2}  - 3 Y  ̂ &\:A - 2 Yl 6"A-
AA i>2,A 

Too make computations easier to handle, we introduce the following notation: for Di and 
DD22 divisor classes on MgTl. we write 

D\D\ >s D-2 <^ >̂ D] — D2 is a non-negative combination of the classes 6,.A. where / > 1. 
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Ourr Theorem 3.3 shows that in the case1 g = 22, we have that 

2477 253 229 
- y -- A + — U', + r2) - 242 r)0:{1 ,f - — d0 >^ 0. 

(thee left-hand side is modulo boundary classes a rational multiple of FL\). Other known 
effectivee divisor classes on .Vf222

 a r fl the following: 

 The class of the Weierstrass divisor Wei := ~, (TV) - ~2{ VV). that is the closure of 
thee locus of those \C.p\.pf\ for which either /;, or p2 is a Weierstrass point of C. 
Onee has that [Wei] <„- - 2 A + 253 (n + r2) - 506 rt0. 

 The pullback of the divisor F]2 from .Vl22. that is. the closure of the locus of those 

[C.pi.p-j][C.pi.p-j]  for which C has a gj2 such that dim 2gj2 > 3. One has that that 

[E\.[E\.22]]  <6 870 A - 132 o"0. 

 The closure of the locus D := {[C.p}.p2]  e  hü{C. Upi -r ll/; 2) > 2} . One 
hass (cf. [Lo]) that [D]  <6 -A + GG (<.-, + ) - 253 %{1 ,2} . 

Onee can then show that [F L] is not expressible as a positive linear combination of 

[Wei],, [F ]2]  and [D].  so by knowing [FL]  we really extend the knowledge of the effec-

tivee cone on Pic (,V/t 22.2 )
Onn the other hand, one sees that A"^ cannot be expressed as a positive combination 

off  the four effective classes mentioned before. Although our computation of [FL] provides 
aa new effective divisor class on .Vf22.2- this enlargement is not big enough to include the 
canonicall  class. In the spirit of the slope conjecture that predicts that on Mf/ the effec-
tivee divisors of lowest slope are the Brill-Xoether divisors, since A'-^. lies outside the 
Brill-Xoetherr subspace in Pic(.Vf22 2). we make the following: 

Conjectur ee 2 The Kodaira dimension c>f ,\A222 (<md hence that of Mr>,\) is — x.. 

3.66 The divisor of curves with two tr iple ramification 
points s 

Inn this section we compute the class of the divisor TR of 1-pointed curves that admit a 
mapp to P1 having both the marked point and some unspecified point as triple ramification 
points. . 

Lett us fix an integer d > 3 and we set g := '2d — 4. For a general 1-pointed curve 
(C.p)(C.p) of genus g the variety of pencils G\{C) is an irreducible smooth surface1. Among 
thee DC2 pencils of degree d there are finitely many / 6 G)f{C) for which p is a triple 
ramificationn point, that is. a\(]>)  > 3. Moreover, all linear series / satisfying this condition 
aree complete, base point free and all ramification apart from p is ordinary. Imposing 
thee condition that there exists a degree <7 map ƒ : C —  P1 with two triple ramification 
points,, one of which is marked, we obtain a codimension 1 condition on .Vl r/1. We have 
thee following: 
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Theoremm 3.4 Let d > 3 be an integer and set g :— '2d —A. We hare the following relation 
inin Pk(MgA): 

g-i g-i 

[TR][TR]  = m [a X + b i - ^ C Si). 
j - 0 0 

where where 

aa = 2{18d3 - 39d2 - V20d + 290). b = 8(Gr/2 - 28c/ + 35)(2d - 4). 

r00 = 6r/3 - 2Ad2 + 13d + 30. 

CiCi = 2{2d - 4 - ij(24c/2 + 9id"2 - 1 V2d - 42id + 140 + 500 for i > 1 and 

mm  = 6(2rf-6)!/(d ! (rf-3)! ) . 

Remark::  In the simplest case d — 3. y — 2 our formula gives the relation 

[77?]]  = 801  + 104 - 120A. (3.12) 

wheree A is a boundary class on .\A>.\- namely A — do/10 + öi/ö (cf. ÏEH3]). For genus 2 
onee ha,s the following interpretation for our divisor 

TRTR = {[C.p]  £ M-2.1  3x £ C.x # p. such that 3p ~ 3x } . 

Duringg the proof of Theorem 3.4 we wil l need the result for the particular case g = 2. 
hencee we will settle this case independently. 

3.6.11 Counting pencils with two triple points 

Inn order to determine the intersection multiplicities of TR and various test curves in Mg,\ 
wee will need certain enumerative results contained in the following result: 

Proposi t ionn 3.6.1 1) Let (C.p.q) be a general 2-pomted curve of genus 2d — 6 with 
dd > 3. The number of pencils gl

d on C having triple points at both p and q is 

W )) = ' 2 " - 6 , , ( ^ - r f M ^ ) ^ 

2)2) Let C be a general curve of genus 2d — 4 with d > 3. The number of pencils gl
d on C 

havinghaving triple ramification at some distinct points x, y £ C is 

ww „ 48(6(i2-28rf + 35) (2d - 4)\ 
A ( d )) = rf!frf-3)!~ ' 

Remarks::  1. In the expression of F{d) we make the convention l/nl = 0 for n < 0. 
2.. For d = 3 our formula gives A'(3) = 80. that is. for a general curve C of genus 
22 there are 160 — 2 - 80 pairs of points (i.y) £ C x C. x ^ y. such that 3x ~ 3y. 
Thiss can also be seen directly by considering the map v : C x C —  Picü(C) given by 
(.'(.r.. y) = Oc(3x - 3y). Then L'*(0) = \ j C y ( . i '* U A _J) = 2  32  32 = 1G2. where jj  is a 
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differentiall  form representing 0. To get the answer to our enumerative question we have 
too subtract from 1C2 the contribution of the diagonal A C C x C. This excess intersection 
contributionn is equal to 2 (cf. Di]) . so in the end we get 160 — 162 — 2 pairs of distinct 
pointss i.r.y) <E C x C with 3./' ~ 3y. 

Proof:: 1) We let {C.p.q) degenerate to the following 2-pointed curve of compact type 
(C00 := P1 J f ] L .. . U E-id-ti-Po-Uol where £", are general elliptic curves, {p,} = £", r P1 

andd y>L /c>(y D-PO-QO € P1 are general points. We have to count the number of limit 
g'/ss on Co having Triple ramification at p(j and <y0. This is the same as the number of g,!/s 
onn P1 having cusps (i.e. ordinary ramification) at py p>d-(> and triple ramification at 
ppQQ and ^o- By Pro]).3.3.1 this number is rr(

2
(),. rr™-*  (in / / '""(G(l . f/). Z)). This product 

cann be computed using formula (v) at the bottom of page 273 in [F] and one has that 

( r / - 3 ) ! 22 r / ! ( f / - 6 ) ' 

2)) Once more, we let C degenerate to C() — P! U E\ U . . . U E2d-\- where E, are general 
ellipticc curves, {p,} = P1 n £, and ;>, //_,,,__! 6 P1 are general points. We count limit 
f^'ss on C0 with vanishing > (0. 3) at two distinct points x. y e C0. Let / be such a limit g,1,. 
Bvv a standard argument we have already outlined before, we can assume that both .r and 
/// are smooth points of C0 and by the addilivity of the Brill-Xoether number we obtain 
thatt x.y must lie on the tails E,. Since E, are general, we can assume that j{E,)  ̂ 0 
(thatt is. none of the E,'$ is the Fermat cubic), hence there can be no g', on £",- with three 
triplee points. There are two cases: 

a)) There are 1 < / < j < 2d - 4 such that ./  e E, and y e Ey Then a'**  {p,) = aEj (pj) = 
(d(d - 3.<7). hence 3./- ~ 3p, on E, and 3y ~- 3pj on Ey There are 8 choices for x e E,. 8 
choicess for y G £, and (2d.^4) choices for the tails E, and E} containing the triple points. 
Onn P' we count g^'s with cusps at {p, PI,Ï-\\ ~  and triple points at p, and 
Pj.Pj. This number is again of02) V2Q^3- so we get in this case1 a contribution of 

« ( ^ r > . ^ , «« = 3 2 ^ - 4 . ! ( ^ - s r 7 ; l _ ) . , 3 , 3, 

b)) There is 1 < / < 2d - 4 such that ,r, y € £",. We distinguish between two cases here: 

!>])!>])  <i lh'(p,) - (d - 'i.d - 1). On P1 we count g^ ,'s with cusps at p{ p,t! i and 
thiss number is a;(

fl
)J'

i (in Htop(Gi\.d - 1).Z)). On E, we have to compute the number of 
g-j'ss having triple ramification at some unspecified points / G E, — {p,\ and which also 
havee simple ramification at pt. Let us denote {E,.pi) = (E.p). If we regard p e E as the 
originn of E. then the translation . y) H-> (y - x. -x) establishes a Injection between the 
sett of pairs (x. y) € E x E - A. x ^ p ^ y. such that there is a Q\ in which x. y.p appear 
withh multiplicities 3.3 and 2 respectively, and the set of pairs lu. e) e E x E — A. with 
itit  / j) / r such that there is a g:'}  in which u.r.p appear with multiplicities 3.2 and 3 
respectively.. The latter set has obviously cardinality 16. hence the number of pencils Q\ 



wee are counting is 8 = 16/2. All in all we have a contribution of 

*(9H*(9H  4 U « 8(2d-4)(2d-4)\ 
8i2d8i2d ~ 4 ) ^ > = (d-2)l{d-l)\  ( 3" 1 4) 

h)h) a'E< (Pi) = (rf-4. (/). This time, on P1 we look at g^'s with cusps at {/>!.... . 7 ^ - 4 } -
{pi}{pi}  and a 4-fold point at p}. Their number is am) a**-5 (in Htop(G(l. d). Z)). On E, 
wee shall compute the number of g^'s for which there are distinct points x, y e Ei - {p,} 
suchh that p.x.y appear with multiplicities 4.3 and 3 respectively. Again, for simplicity 
wee denote (E^p^) = (E,p) and we proceed as follows: We consider E the closure in E x E 
off  the locus 

{{u,{{u, v) GEx E-A:3l,e G\{E) such that a[{p) = 4, a\(u) > 3, a[{v) > 2} . 

Thee class of the curve E can be computed readily. If Fr denotes the numerical equivalence 
classs of a fibre of the projection nl : E x E —> E. for / = 1. 2. then 

EE - 10Fl + 5F2 - 2A. (3.15) 

Thee coefficients in this expression are determined by intersecting E with A and the fibres 
of-,.. One has that En A - {(x.x) e E x E : x  ̂ pAp ~ 4.r}  and E r i T r ^ p) = {(y,p) G 
EE x E : y  ̂ p,3p  ̂ 3y}. It, is easy to check that these intersections are transversal, hence 
EE  A = 15, E  F2 = 8 whereas obviously E  Fi = 3 and these relations yield (3.15). 

Thee number of pencils / C |4p| having two extra triple points wil l then be equal to 
1/22 #(ramification points of ir2  E ->  E) = E2/2 = 20. We have obtained in this case a 
contributionn of 

M-5M-5 _ Q 0 ( ^ ~ 4 ) ! 

( d - 4 )!!  d\ 
20(2dd - 4) ^o,.,) < T }

5 = 8 0^ ^ / ; , . (3.16) 

Addingg together (3.13),(3.14) and (3.16). we obtain the stated number N(d).

3.6.22 A divisor class on M2.1 

Heree we compute the class of TR when g — 2. We have the following: 

Propos i t ionn 3.6.2 Let us consider the divisor 

TRTR = {[C.p]  € M2.i :3x £C - {p}. such that 3x ~ 3p}. 

ThenThen [TR] = 80c + 10<50 - 120A. 

Proof:Proof: There are a few ways to compute [TR]. One is to consider the map j : M2.1 —> M4 
givenn by j([B.p])  :=  [B Up C0].  where (C0,p) is a general 1-pointed curve of genus 2. On 
,Vf44 we have the divisor of curves with an abnormal Weierstrass point, that is. 

DD  {[C]  e M4  3x e C such that h°(C. 3x) > 2} . 
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Onee knows (cf. [Di] ) that 

[D][D]  = 264A - 30fi0 - 96di - V2$62. (3.17J 

Wee claim that j " (D j = TR + 16 VV. Indeed, let [B.p] e .M2.i be such that j{[B.p])  € 75. 
Thenn there is a limi t Q\ on A" = B Up C0. say /. which lias a point of total ramification at 
somee j ' 6 A". There are two cases depending on whether x lies on C0 or on B. 

Iff  r e B. then a'co(p) — (0.3). hence /f--0 = 3p {and there is a single choice for lc-Q). 
whilee on B we have the linear equivalence1 3/) ~ 3.r. hence [B.p] 6 T/?. 

Iff  .r G C0. then u//} (p) = (1.3). i.e. p e B is a Weierstrass point and /# — p + i2pi. 
Onn Co we have alc»(p) = (0.2) and a!c'a(x) = (0.3). so there exists y e C0 - {p. ,r}  such 
thatt 3J' ~ 2p + t/. To compute the number of such points x G Co ~ C. we intersect the 
curvess f^C) and /2(C) inside Pic3(C). where ƒ,  : C -4 Pic3(C) are given by f^t) = 
Oc(3t)Oc(3t) and /2(f ) = Oc[2p + t) respectively. Clearly IJAC)} = 90 and [/2(C)] = 0. hence 
/ i (C)) " /2(C) = 18. However, we have to discard from this intersection the point Oc{'ip) 
att which the condition x ƒ p is no longer satisfied. At this point the curves f,{C) have a 
commonn tangent line and using Lemma 6.2 or 6.4 from [Di] one gets that the intersection 
multiplicityy at Oc('ip) is actually 2. The answer to our enumerative problem is thus 
1 6 - 1 8 - 2.. _ __ 

Wee have proved that j*(D)  — TR-t 16 VV'. From this and from (3.17) we get the 
expressionn for [TR] if we take into account that J*(6Q} = 6Q. j*{Si) — 6\. j*(d 2) — — I' 
andd j*(X) = A = ó~0/10 + th/ó.

3.6.33 The class of the divisor TR 

Wee now compute the class of the divisor TR in Pic(.M9j ) : 
ProofProof of Theorem 3.4: By Prop. 3.2.1 there are rational constants A.B.CQ Cg-i 
suchh that the following relation holds: 

. 9 -1 1 

[TR][TR] =A\ + B v-J2C' 6<-
ii  = Q 

Wee first consider the map o : .Vfo.^i —> -^y.i obtained by associating to a (g + l)-pointed 
curvee (R.po py) of genus 0 the 1-pointed curve (C.po). with C = R U E\ U . . . U Eg 

andd {ƒ),}  — £ , n P' for 1 < i < g. where E, are general elliptic curves. We show that 
o{X\\i,o{X\\i,gĝ \)^\) ^ TR — 0. Then by using Lemma 4.2 from [EH2] we obtain relations between 
thee coefficients of TR: for i. > 1, 

nn (g-i)Uj-i-l)  u  ̂ i{g-i)  r< 

Notee that Lemma 4.2 as stated in [EH2] is not ap])licable to the divisor TR. but a brief 
inspectionn of its proof shows that its conclusions are valid for any divisor on Wg,\ whose 
supportt is disjoint from Im(o). hence1 for TR too. 
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Thee proof that Im(o) H TR — 0 is an immediate application of Prop. 1.4.1 together 
withh Pliicker's formula (3.2). 

Xext.. we take the map j : M2.\ -^ -^g.i sending a Cpointed curve (D.q) of genus 
22 to (A" = B Uq CQ.P). where (Co.p.q) is a general 2-pointed curve of genus g - 2. The 
pull-backk j *  acts on the generators of the Picard group as follows: j*{\)  — A. j*(c) — 
0.. J*(ÓQ) — ÖQ. j*(ög--2) = —f. j*{óg-\) = 6[ and j*{6,)  — 0 for 1 < i < g — 3. Since on 
W-i.iW-i.i w e &^o have the relation ö\ = 5A — 6Q/'2. we obtain 

ƒƒ ([77?]) = {.4 - öCg^)X + (Cs_!/2 - C0)do + Cg.2u. (3.18) 

Wee now compute j*(TR). Let us take [£?.(/] 6 j*{TR). Then there exists /. a limi t Ql
d on 

AA = £ u9 C0 and a point x e X such that a[(x) > 3 and u\(p) > 3. 
Iff  x 6 C0. then p(lB. a'B(q)) = - 1 and we get that q € Z? is a Weierstrass point. The 

multiplicityy with which W appears in j*(TR) is the number of g^'s on Co in which p.q 
andd an unspecified point x / p. q appear with multiplicities 3.2 and 3 respectively. By 
Schubertt calculus this number is 

„ ,, = 8<2rf - 6) af0,, < - f = 8(2rf - 6)(2rf - 6)! ( J J  ̂ - ^ J ^ )

Iff  j ' E B. then we have the linear equivalence 3q ~ 3.r on B. that is. [Ö. g] £ TR2. 
wheree we have denoted by TR2 the divisor TR when g = 2. The multiplicity with winch 
T/?22 appears in j*(TR) is just the number of Q]

d's on C0 with triple ramification at the 
fixedd points p and q. According to Prop.3.6.1 this number is n2 — F(d). 

Wee have thus obtained that j*{[TR])  = m [W] + n2 [TR2]. which according to (3.18) 
providess three new relations between ,4 and the C{s. 

Finallyy we determine the coefficient B. It is enough to intersect TR with a general 
fibree of the map IT : Mg.i —> Mg and to divide the intersection number by 2g - 2. The 
intersectionn number is twice the number of 0^'s on a general curve C of genus '2d — 4 
havingg two points of triple ramification. By Prop.3.6.1 this number is 2\(d). hence we 
obtainn that B = X(d)/(2d - 5).

3.77 The Kodaira dimension of the universal curve 

Att the beginning of Chapter 1 we recounted attempts by various people to understand 
thee birational geometry of ,\4g. in particular to compute its Kodaira dimension. Similar 
questionss can be asked about the moduli spaces MgM. Obviously the problem is non-
triviall  only for g < 23: since for g > 24 the moduli space ,\4g is of general type, the 
spacess Mg.n. with n > 1 wil l be of general type too. 

Thee case g = 23 turns out to be quite easy too: since the relative dualizing sheaf of 
thee map n : .M23.1 —> -W23 is big one only needs the effectiveness of K-  ̂ to conclude 
thatt A'^2 31 = L' + ~*(K-Q2i) is big too. hence M2: in is of general type for all n > 1. 
Inn the case 4 < g < 22. Logan computed a number fig) such that for all n > f(g) the 
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modulii  space .Mg,,,, is of general type (see [Lo].). 
Wee shall content ourselves with the ease a = I which we approach from a different 

angle:: it is known that for g < 16. y / 14. the Kodaira dimension of Wg is — oc. Is there 
aa similar result for the universal curve Cg — M9A in this range? 

Thee problem is almost trivial for y < 10: the universal curve is unirational for these 
genera.. To see this, one can easily adapt Seven's argument about the unirationality of 
\i\i gg.. This is also remarked in [Lo]. For most remaining cases we have the following: 

Theoremm 1 For y — 11. 12. 15 the Kodaira dimension of the universal curve Cg is — oc. 

Proof:Proof: We assume that s(Cg) > 0. i.e. some multiple of the canonical divisor A'̂ _ is 
effective.. We are going to reach a contradiction with some estimates for the slope sg of 
MMgg (see end of Chapter 1 for the definition of sq). 

Wee denote as usual by ~ : Cy —> Mg the natural projection and we have seen that 

KKcc = l 3A+ i ' - 3 (<5, +ög^)-2Yl-=2^-
Assumee there exists m > 0 such that mh'p is effective. We consider the divisor of 

__ L g 

Weierstrasss points VV C Cg. whose class, we recall, is 

s -i i 

[W]]  = -A + y[y + i ) / 2 t- - ]T(ry - i)(g - i + l ) / 2 6,. 

Clearlyy TUKQ cannot contain VV with arbitrarily high multiplicity. In fact, it suffices to 

choosee a G Z>i such that og{y + l ) / 2 > m and then o>V ^ rnK  ̂ . Indeed, otherwise the 

divisorr rnK  ̂ — a.\V would have negative degree on the fibres 7r'_1[C]. where [C]  G Mg is 

arbitraryy and this is impossible. 

Afterr choosing such an a. we consider the push-forward D :— j»(mA'^ -aW). which is 

ann effective divisor on Wg. In particular, we have that $D > sg. where by sp we denote 

thee slope of D. Since 

[D][D]  = ma 7vA.h'cg ' f^
7]) ><5 ( W * + 6g2 - Vg ^ 2)A - 1/2 y(y + l)(4g - 3) 6. 

wee obtain that 
__ 2{\3gi + 6y2 - 9y + 2) 

SDSD ~ 5 ( 5 + l ) f 4 9 - 3 ) 

Onn the other hand, it is known that su = 7( = 6 -+- 12/(c; -+- 1)). ,s12 > 41/6 = 6.63... (cf. 
[Tan])) and su> > 6.667 (cf. ;CR4]). The values of sD are 6.62... for g = 11. 6.61... for 
gg — 12 and 6.59... for g — 1-3. hence in each of these cases we have found an effective 
divisorr on Mg having slope > sfr which is a contradiction. 

Wee note that there is also a bound s-16 > 6.56 [cf. [CR4]). but for this genus we have 
xxDD — 6.58.... so we cannot conclude that K(C ) 6) = — oc.
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Samenvatting g 

Inn dit proefschrift bestuderen we de meetkunde van de moduliruimte Mg van algebraïsche 
krommenn van geslacht g. Deze ruimte ,Vf9 is de universele parameterruimte van krommen 
vann geslacht g in die zin. dat ieder punt van Mg correspondeert met een isomorfieklasse 
vann krommen. 

Eenn belangrijk probleem in de algebraïsche meetkunde is de natuur van ,\4g als alge-
braïschee variëteit. Het is een klassiek resultaat dat voor g < 10 the moduliruimte My 

unirationaall  is. terwijl Mg van algemeen type is voor g > 24. zoals Harris. Mumford 
enn Eisenbud hebben bewezen. Men vermoedt dat alle moduliruimten Mg met g < 22 
gedomineerdd worden door regel variëteit en. en dit laat één geval over, namelijk de moduli-
ruimtee .Vt23- dat dan een overgangsgeval is tussen twee uitersten: gedomineerd door een 
regelvariëteitt tegenover van algemeen type. 

Inn Hoofdstuk 1 bewijzen we dat de Kodairadimensie van .Vf23 minstens 2 is. We 
dragenn verder feiten aan die suggereren, dat de Kodairadimensie van .M23 gelijk is aan 2. 
Onss bewijs is gebaseerd op de expliciete studie van drie Brill-Xoetherdivisoren op .M23 
diee multikanoniek blijken te zijn. 

Inn Hoofdstuk 2 bestuderen we de geografie (relatieve positie) van verschillende Brill -
Noetherlocii  (dat wil zeggen, van loei van krommen die zekere Qr

ds bezitten). In paragraaf 
2.44 tonen we het bestaan aan van een reguliere component van het Hilbertschema van 
krommenn van bigraad (k, d) in P1 x F" voor bepaalde k en d en r > 3. In paragraaf 
2.55 construeren we gladde krommen C C P3 van graad d en geslacht g die de verwachte 
gonaliteitt min(d - 4, [(,9 + 3)/2]) bezitten. Als gevolg hiervan verkrijgen we een nieuw-
bewijss van ons resultaat « (^23) > 2. 

Inn Hoofdstuk 3 berekenen we de klasse van verschillende divisoren op de moduliruimten 
Mg,Mg,nn voor n = 1. 2. Deze divisoren woorden gedefinieerd door meetkundige voorwaarden 
voorr het bestaan van lineaire reeksen op krommen. In paragraaf 3.6 berekenen we de 
Kodairadimensiee van de universele kromme Cy voor g gelijk aan 11. 12 en 15. 
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