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A well-established principle of Mumford asserts that all moduli spaces of curves
of genus g > 2 (with or without marked points), are varieties of general type, except a
finite number of cases occurring for relatively small genus, when these varieties tend to
be unirational, or at least uniruled, see [HM], [EH1], [FL], [Log], [V] for illustrations of
this fact. In all known cases, the transition from uniruledness to being of general type
is quite sudden. The aim of this paper is to determine the Kodaira dimension of the
universal Jacobian of degree g over Mg for any genus g, in particular to highlight the

surprising transition cases g = 10, 11. Let Cg,n := Mg,n/Sn be the universal symmetric

product of degree n. Since the fibre of the projection map ϕ : Cg,n → Mg over a smooth
curve [C] ∈ Mg is birational to the n-th symmetric product Cn, it follows trivially that

Cg,n is uniruled when n > g. The global Abel-Jacobi map

ag : Cg,g 99K Pic
g
g,

establishes a birational isomorphism between Cg,g and (a compactification of) the de-

gree g universal Picard variety αg : Pic
g
g → Mg. For a smooth curve [C] ∈ Mg, the

map ϕ−1([C]) → Picg−1(C) factors through Cg: the Abel-Jacobi map Cg → Picg(C) is
the blow-up of Picg(C) along the Fitting ideal corresponding to the subscheme W 1

g (C),

whereas ϕ−1([C]) → Cg is an iterated blow-up along the diagonals. Thus, we may re-

gard Cg,g as a global blow-up of Pic
g
g. Applying the additivity of Kodaira dimensions

for abelian fibrations [U] to the fibre space αg, we obtain that κ(Pic
g
g) = 3g−3, whenever

Mg is of general type. It is natural to wonder, whether the equality κ(Pic
g
g) = κ(Mg)

holds for every g. We answer this question in the negative. Our most picturesque result,
concerns the transition cases in the birational classification of universal Jacobians:

Theorem 0.1. The universal Jacobian Pic
10
10 has Kodaira dimension zero. The Kodaira dimen-

sion of Pic
11
11 equals 19.

It is well-known that both M10 and M11 are unirational varieties. We note that
when g ≤ 11, these are the only cases when Cg,n has non-negative Kodaira dimension.
Using the existence of certain Mukai models of the moduli space of curves of genus g <

10, it easily follows that Pic
g
g is unirational for g ≤ 9. In fact more can be said:

Theorem 0.2. The moduli space Cg,n is unirational for all g < 10 and n ≤ g. Furthermore,

C10,n is uniruled for all n 6= 10; the space C11,n is uniruled for all n 6= 11.

For higher g, we show that Cg,g is of the maximal Kodaira dimension it could
possibly have, in view of Iitaka’s easy addition inequality for fibre spaces

κ(Cg,g) ≤ dim(Mg) + κ
(
ϕ−1([C])

)
= 3g − 3.
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Theorem 0.3. For g > 11, the Kodaira dimension of Pic
g
g is equal to 3g − 3.

Theorems 0.1, 0.2, 0.3 highlight the fact that Pic
g
g does not capture the intricate

transition of Mg from uniruledness to general type that occurs in the range 17 ≤ g ≤ 21.

We describe the main steps in the proof of Theorems 0.1, 0.2 and 0.3. A key role is
played by the effective divisor

Dg := {[C, x1, . . . , xg] ∈ Mg,g : h0
(
C,OC(x1 + · · · + xg)

)
≥ 2}.

The class of the closure of Dg inside Mg,g has been computed, see [Log] Theorem 5.4,
or [F1], for an alternative proof:

Dg ≡ −λ +

g∑

i=1

ψi −

[g/2]∑

i=0

∑

T⊂{1,...,g}

(
|#(T ) − i| + 1

2

)
δi:T ∈ Pic(Mg,g).

The divisor Dg is Sg-invariant under the action permuting the marked points, thus if

π : Mg,g → Cg,g is the quotient map, there exists an effective divisor D̃g ∈ Eff(Cg,g) such

that Dg = π∗(D̃g). Note that D̃g is an exceptional divisor of the rational Abel-Jacobi

map ag : Cg,g 99K Pic
g
g, and as such, it is uniruled and an extremal point of Eff(Cg,g).

In Theorem 1.1, we prove that for g ≥ 4 pluri-canonical forms on Cg,g,reg extend

to any desingularization of Cg,g. Thus in order to bound κ(Cg,g) from below, it suffices
to exhibit sufficiently many global sections of KCg,g

. To that end, we choose an effective

divisor class D ≡ aλ −
∑[g/2]

i=0 biδi ∈ Eff(Mg) of small slope s(D) := a/min
[g/2]
i=0 bi. For

composite g + 1, one can take D = M
r
g,d to be the closure of the Brill-Noether divisor of

curves with a gr
d, where ρ(g, r, d) = g − (r + 1)(g − d + r) = −1; there exists a constant

cg,d,r > 0 such that [EH2],

M
r
g,d ≡ cr

g,d · bng :=≡ cg,d,r

(
(g + 3)λ −

g + 1

6
δ0 −

[g/2]∑

i=1

i(g − i)δi

)
∈ Pic(Mg).

In particular s(M
r
g,d) = 6 + 12/(g + 1). By linear interpolation, we find an effective

divisor E on Cg,g supported along D̃g, ϕ∗(D) and the boundary of Cg,g, such that

KCg,g
=

(
14 − 2s(D)

)
ϕ∗(λ) + E.

Whenever s(D) < 7 (and such a divisor D ⊂ Mg can be chosen exactly when g ≥ 12,
see [FV] for the particularly difficult case g = 12), the following inequality holds:

κ(Cg) ≥ κ
(
Cg, (14 − 2s(D))ϕ∗(λ)

)
= κ(Mg, λ) = 3g − 3.

Since the opposite inequality is immediate, this proves Theorem 0.3. We summarize
this discussion by linking Cg,g to the slope s(Mg) := inf{s(D) : D ∈ Eff(Mg)} of the
moduli space of curves.

Proposition 0.4. Assume s(Mg) < 7 for a given genus g. Then κ(Cg,g) = 3g − 3.

This highlights that the birational geometry of Cg,g is governed by a linear series

on Mg of slope 7, rather than the canonical linear series, for which s(KMg
) = 13/2.
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We briefly discuss the cases g ≤ 11. In this range, apart from ag◦π : Mg,g 99K Pic
g
g,

there exists a second birational contraction of Dg, under a birational map

fg : Mg,g 99K Mg,g,

where the target Mg,g is a GIT model of Mg,g emerging from Mukai’s constructions
[M1], [M3], [M4]. In genus 11, using this, we prove a stronger result, concerning the
birational type of both C11,11 and its covering M11,11:

Theorem 0.5. One has that κ(M11,11) = κ(C11,11) = 19.

Note that dim(M11,11) = 41, and M11,11 is the first example of a moduli space

Mg,n with g ≥ 2, having intermediate Kodaira dimension. It is known [Log] that M11,n

is uniruled for n ≤ 10 and of general type for n ≥ 12. To interpret such results, for a
genus g ≥ 2, we define the invariant

ζ(g) := min{n ∈ Z≥0 : κ(Mg,n) ≥ 0}.

We think of ζ(g) as measuring the complexity of the general curve of genus g. Since the
relative dualizing sheaf of the forgetful map Mg,n → Mg,n−1 is big, it follows that Mg,n

is of general type for n > ζ(g). Then results in [HM], [EH2], [F2] imply that ζ(g) = 0, for
g ≥ 22. From [FP] Proposition 7.5 one obtains the value ζ(10) = 10, whereas Theorem
0.5 implies that ζ(11) = 11. This indicates, in precise terms, that counter-intuitively,
algebraic curves of genus 10 are more complicated than curves of genus 11!

We make a few comments on Theorem 0.5. We note that KM11,11
is an effec-

tive combination of the pull-back to M11,11 of the 6-gonal divisor M
1
11,6 on M11, the

divisor D11, and certain boundary classes δi:S . Then we construct (cf. Proposition
1.4), rational curves R ⊂ M11,11 passing through a general point of D11, such that (i)

−R · D11 > 0 equals precisely the multiplicity of D11 in the above mentioned expres-
sion of KM11,11

, and (ii) R is disjoint from all boundary divisors ∆i:T . Therefore, nD11

is a fixed component of the pluri-canonical linear series |nKM11,11
| for all n ≥ 1. The

equality κ(M11,11) = 19 is related to the Mukai fibration

q11 : M11,11 99K F11,

over the 19-dimensional moduli space F11 of polarized K3 surfaces of degree 20. The
map q11 associates to a general element [C, x1, . . . , x11] ∈ M11,11 the unique K3 surface
S containing C, see [M2]. According to Mukai, S is precisely the ”dual” K3 surface to
the non-abelian Brill-Noether locus corresponding to vector bundles of rank 2

S∨ = SUC(2, KC , 6) := {E ∈ SUC(2, KC) : h0(C, E) ≥ 7}.

An analysis of the fibration q11 shows that the difference KM11,11
− D11 is es-

sentially the pull-back of an ample class on F11. Eventually, this leads to the equality
κ(M11,11) = κ(M11, bn11) = 19, where the last symbol stands for the Iitaka dimension

of the linear system generated by the Brill-Noether divisors M
1
11,6 and M

2
11,9 on M11.

In the final section of this paper we study the uniruledness of Mg,n when g ≤ 9.

Theorem 0.6. The space Mg,n is uniruled for n ≤ f(g), where f(g) is given in the table below:

3



g 5 7 8 9 10
f(g) 13 13 12 10 9
h(g) 15 15 14 13 11

New here is the statement regarding the uniruledness of Mg,n. For the sake of
comparison, we have copied from [Log] and [F2] Theorem 1.10, the bound h(g), for
which Mg,n is known to be of general type when n ≥ h(g). We note that moreover,

κ(M7,14) ≥ 2, thus ζ(7) = 14. Nothing appears to be known about the Kodaira di-

mension of M5,14 and M8,13, which are the missing cases from the classification, when
g ≤ 8. The case g = 6, where a complete solution is known, cf. [Log], [CF], is omitted
from the table.

In order to prove Theorem 0.6, it suffices to establish that KMg,n
is not pseudo-

effective and then use [BDPP] to conclude that Mg,n is uniruled. The non-effectiveness

of KMg,n
is established by exhibiting one or two extremal uniruled divisors on Mg,n, sat-

isfying certain numerical properties, see Proposition 5.2.

1. AN EXTREMAL EFFECTIVE DIVISOR ON Mg,g

We begin by setting notation and terminology. If M is a Deligne-Mumford stack,
we denote by M its associated coarse moduli space. Let X be a complex Q-factorial
variety. A Q-Weil divisor D on X is said to be movable if codim

(⋂
m Bs|mD|, X

)
≥ 2,

where the intersection is taken over all m which are sufficiently large and divisible. We
say that D is rigid if |mD| = {mD}, for all m ≥ 1 such that mD is an integral Cartier
divisor. The Kodaira-Iitaka dimension of a divisor D on X is denoted by κ(X, D). As
usual, we set κ(X) := κ(X, KX). We say that a curve Γ ⊂ X is a covering curve for a
divisor D ⊂ X , when Γ deforms in a family of 1-cycles {Γt}t∈T , such that ∪t∈T Γt = D.

We recall the notation for boundary divisor classes on the moduli space Mg,n, cf.
[AC1]. For an integer 0 ≤ i ≤ [g/2] and a set of labels T ⊂ {1, . . . , n}, we denote by ∆i:T

the closure in Mg,n of the locus of n-pointed curves [C1 ∪ C2, x1, . . . , xn], where C1 and
C2 are smooth curves of genera i and g− i respectively, and the marked points lying on
C1 are precisely those labeled by T . As usual, we define δi:T := [∆i:T ] ∈ Pic(Mg,n). For
0 ≤ i ≤ [g/2] and 0 ≤ c ≤ g, we set

∆i:c :=
∑

#(T )=c

δi:T , δi:c := [∆i:c]Q ∈ Pic(Mg,n).

By convention, δ0:c := ∅, for c < 2. If φ : Mg,n → Mg is the morphism forgetting

the marked points, we set λ := φ∗(λ) ∈ Pic(Mg,n) and δirr := φ∗(δirr) ∈ Pic(Mg,n),

where δirr := [∆irr] ∈ Pic(Mg) denotes the class of the locus of irreducible nodal curves.

Furthermore, ψ1, . . . , ψn ∈ Pic(Mg,n) are the cotangent classes corresponding to the

marked points. The canonical class of Mg,n can be computed by using Grothendieck-

Riemann-Roch for the universal curve over Mg,n:

(1) KMg,n
≡ 13λ − 2δirr +

n∑

i=1

ψi − 2
∑

T⊂{1,...,n}
i≥0

δi:T − δ1:∅.

On the universal symmetric product Cg,n, we denote by λ̃, δ̃irr, δ̃i:c := [∆̃i:c] ∈ Pic(Cg,n)

the divisor classes corresponding to the same symbols on Mg,n. The general point
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from the ∆̃0:2 corresponds to a marked curve with automorphism group isomorphic to

Z/2Z, therefore δ̃0:2 = [∆̃0:2]Q = [∆̃0,2]/2. Let π : Mg,n → Cg,n and ϕ : Cg,n → Mg be the

quotient and forgetful maps respectively, thus φ = ϕ ◦ π. Clearly, π∗(λ̃) = λ, π∗(δ̃irr) =

δirr, π∗(δ̃i:c) = δi:c, where the last formula, in the case i = 0, c = 2, takes into account the

branching of the map π along the divisor ∆̃0:2 ⊂ Cg,n.

We introduce the tautological line bundle L on Cg,n, having fibre

L[C, x1 + · · · + xn] = T∨
x1

(C) ⊗ · · · ⊗ T∨
xn

(C),

over a point [C, x1 + · · · + xn] := π([C, x1, . . . , xn]) ∈ Cg,n. We set ψ̃ := c1(L), and let

πi : Mg,n → Mg,1 be the morphism forgetting all expect the i-th marked point. Then

(2) π∗(ψ̃) =

n∑

i=1

π∗
i (ψ) =

n∑

i=1

(
ψi −

∑

i∈T⊂{1,...,n}

δ0:T

)
=

n∑

i=1

ψi −
n∑

c=2

c δ0:c ∈ Pic(Mg,n).

From the Riemann-Hurwitz formula KMg,n
= π∗(KCg ,n) + δ0:2 applied to π, we obtain

(3) KCg,n
≡ 13λ̃ − 2δ̃irr + ψ̃ − 2

∑

i≥1,c≥0
(i,c) 6=(1,0)

δ̃i:c − 3δ̃1:0 − δ̃0:2 +
n∑

c=3

(c − 2) δ̃0:c ∈ Pic(Cg,n).

In order to obtain lower bounds on the Kodaira dimension of Cg,n, we need

to control its singularities. We fix a point [C, x1 + · · · + xn] ∈ Cg,n, and denote by
Def(C, x1, . . . , xn) the versal deformation space of the n-pointed curve (C, x1, . . . , xn),
viewed as an open neighborhood of the origin in the tangent space to the moduli stack
T[C,x1,...,xn](Mg,n) = Ext1(Ω1

C ,OC(−x1 − · · · − xn)). We set

Aut(C, x̄) :=
{
σ ∈ Aut(C) : σ({x1, . . . , xn}) = {x1, . . . , xn}

}
.

An analytic neighbourhood of [C, x1 + · · · + xn] ∈ Cg,n is isomorphic to the space

Def(C, x1, . . . , xn)/Aut(C, x̄) ⊂ H0
(
C, ωC ⊗ Ω1

C(x1 + · · · + xn)
)∨

/Aut(C, x̄),

where the last identification uses Serre duality. To describe the action of Aut(C, x̄) on
the tangent space of the moduli stack, we recall the concept of age.

Let (V, ρ) be a finite dimensional complex representation of a finite group G. If
the eigenvalues of ρ(g) ∈ GL(V ) are exp(2πiri), where 0 ≤ ri < 1 for i = 1, . . . , d, then
following [R], we define the age of the element g ∈ G as

age(g) := r1 + · · · + rd.

According to the Reid-Tai criterion, the singularities of V/G are canonical, if and only if
for each element g ∈ G which does not act as a quasi-reflection, the inequality age(g) ≥
1 holds, cf. [HM] pg. 27. Next we show that the singularities of Cg,n are no worse that

those of Mg. In particular, one can bound the Kodaira dimension of Cg,n by bounding
the number of global sections of KCg,n

. This result concerning singularities, is also the

main reason why we work with Cg,g as a model for the universal Jacobian, rather than

with Caporaso’s compactification Pg,g → Mg, see [C].
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Theorem 1.1. Fix integers g ≥ 4 and n, l ≥ 0, and let ǫ : C̃g,n → Cg,n be any resolution of

singularities. Then l-canonical forms of Cg,n,reg extend, that is, there are group isomorphisms

ǫ∗ : H0
(
Cg,n,reg, KC

⊗l
g,n

) ∼=
→ H0

(
C̃g,n, KeC⊗l

g,n

)
.

Proof. We choose a point [C, x1 + · · · + xn] ∈ Cg,n which violates the Reid-Tai crite-
rion, that is, there exists an automorphism σ ∈ Aut(C, x̄) which permutes the points
x1, . . . , xn, such that with respect to the action of σ on H0

(
C, ωC ⊗ Ω1

C(x1 + · · · + xn)
)
,

we have that age(σ) < 1. If {Cα}α are the normalizations of the components of C and
{pαβ}β are the points on Cα whose images in C are either nodes of C or marked points
x1, . . . , xn, we recall that there exists an exact sequence:

(4) 0 →
⊕

p∈Sing(C)

Torp → H0
(
C, ωC ⊗ Ω1

C(x1 + . . . + xn)
)
→

⊕

α

ω⊗2
Cα

(∑

β

pαβ

)
→ 0,

where Torp ⊂ H0
(
C, ωC ⊗ Ω1

C(x1 + · · · + xn)
)

is the 1-dimensional space of torsion
differentials based at p ∈ Sing(C). It is proved in [HM] pg. 34, that Torp contributes at
least 1/ord(σ) to age(σ), for each node p ∈ Sing(C). We distinguish two cases:
(i) σ acts non-trivially only on exceptional components R of C, which are smooth rational

curves such that #(R ∩ (C − R)) ≤ 2. In other words, σ induces the trivial automor-
phism on the stable model of C. Let R be an exceptional component, and for simplicity
we assume that R meets the rest of C at only one point. We set {p} := R∩C and denote
by P ⊂ R − {p} the marked points lying on R. Since σ ∈ Aut(R) has finite order, say
l, one finds that σ has precisely two fixed points p = 0,∞ ∈ R, and that σ(z) = ζ · z,
where ζ 6= 1 is an l-th root of unity. The points in P − {∞} can be grouped in orbits of
l elements, and an immediate calculation shows that the contribution to age(σ) coming

from H0(R, ω⊗2
R (p + P )) is at least (l− 1)/l +

(
l−3
2

)
. Since as mentioned above, there is a

further contribution to age(σ) of at least 1/l, coming from Torp(ωC ⊗Ω1
C(x1 + · · ·+xn)),

it follows that age(σ) ≥ 1, and this case corresponds to a canonical singularity. The case

#(R ∩ (C − R)) = 2 is analogous, also leading to a canonical singularity.

(ii) There exists a non-exceptional component of C on which σ acts non-trivially. Since
age(σC) (with respect to the action on H0(C, ωC ⊗ Ω1

C)) cannot exceed age(σ) < 1, the
analysis from [HM] pg. 34-40, shows that in this case C = C1 ∪E, C1 ∩E = {p}, where
C1 is a smooth curve of genus g − 1 and E is an elliptic curve. Moreover σC1 = IdC1 ,
and one distinguishes between the cases when ord(σE) = 2, 4, 6. If at least one of the
points xi lies on E, an immediate calculation shows that age(σ) ≥ 1, thus this case too
corresponds to a canonical singularity. When {x1, . . . , xn} ⊂ C1 − {p}, then if U ⊂ Mg

is the analytic neighbourhood of [C1 ∪p E] constructed in [HM] pg. 41-43, any pluri-

canonical form defined on Cg,n,reg extends over ϕ−1(U). This completes the proof. ¤

We turn to the study of the divisor D̃g ⊂ Cg,g defined as the closure of the locus of
points [C, x1 + · · ·+ xg] ∈ Cg,g moving in a pencil. First we note that its class is given by

(5) D̃g ≡ −λ̃ + ψ̃ −
∑

i≥1,c≥0

(
|c − i| + 1

2

)
δ̃i:c −

g∑

c=2

(
c

2

)
δ̃0:c ∈ Pic(Cg,g).
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We construct rational curves ℓ ⊂ Cg,g sweeping-out the divisor D̃g: We fix [C] ∈
Mg, a complete base point free pencil A ∈ W 1

g (C), and define the locus

ℓ := {[C, x1 + · · · + xg] ∈ Cg,g : h0(C, A(−x1 − · · · − xg)) ≥ 1}− ⊂ Cg,g.

Proposition 1.2. One has that ℓ·ψ̃ = 2g−2, ℓ·δ̃0:2 = 2g−1, whereas ℓ has intersection number

0 with all remaining standard generators of Pic(Cg,g). It follows that ℓ · KCg,g
= ℓ · D̃g = −1.

Proof. Let ℓ̃ ⊂ Cg, be the isomorphic image of ℓ under the blow-up map ϕ−1([C]) → Cg

of the diagonals. Then, using e.g. [K] Proposition 2.6, we have that ℓ̃ · KCg = −1. On

the other side, ℓ̃ · KCg = ℓ · KCg,g
= ℓ · ψ̃ − ℓ · δ̃0:2 (one may assume that A ∈ W 1

g (C)

has only simple ramification points, hence ℓ · δ̃0:c = 0 for c ≥ 3). Furthermore, ℓ · δ̃0:2

equals the half of the number of ramification points of A, that is, 2g − 1, and the rest is
immediate. ¤

As explained in the Introduction, for g ≥ 12 the estimate s(Mg) < 7 holds, and
from (5) one finds that

(6) KCg,g
∈ Q>0

〈
λ̃, [D̃g], {δ̃i:c}(i,c) 6=(0,2), ϕ∗Eff(Mg)

〉
.

Coupled with Theorem 1.1, this implies that κ(Cg,g) = 3g − 3. Furthermore, we note

that D̃g appears with multiplicity 1 in the stable base locus of KCg
.

Proposition 1.3. Set g ≥ 11. Then |nKCg,g
| = nD̃g + |nKCg,g

− nD̃g|, for all n ≥ 1.

Proof. The coefficient of D̃g in the expression (6) is equal to 1. Since ℓ ⊂ D̃g is a covering

curve, such that ℓ · KCg,g
= ℓ · D̃g = −1, whereas ℓ has intersection number zero with

the remaining classes appearing in (6), the conclusion follows. ¤

We are thus left with the study of Dg := π∗(D̃g) ⊂ Mg,g, in the range g ≤ 11.

Proposition 1.4. For 3 ≤ g ≤ 11, the irreducible divisor Dg is filled up by rational curves

R ⊂ Mg,g such that R · Dg < 0. It follows that Dg ∈ Eff(Mg,g) is an extremal rigid divisor.
Moreover, when g 6= 10, one can assume that R · δi:T = 0 for all i ≥ 0 and T ⊂ {1, . . . , g}.

Proof. We first treat the case g 6= 10, and start with a general point [C, x1, . . . , xg] ∈ Dg.
We assume that the points x1, . . . , xg ∈ C are distinct and h0(C, KC(−x1−· · ·−xg)) = 1.
Let us consider the (g − 2)-dimensional linear space

Λ := 〈x1, . . . , xg〉 ⊂ P
(
H0(C, KC)∨

)
= Pg−1.

Since φ(Dg) = Mg, we may assume that [C] ∈ Mg is a general curve. In particular, C

lies on a K3 surface S
|OS(C)|
→֒ Pg, which admits the canonical curve C as a hyperplane

section, cf. [M1]. We intersect S with the pencil of hyperplanes {Hλ ∈ (Pg)∨}λ∈P1 such
that Λ ⊂ Hλ. Since (i) the locus of hyperplanes H ∈ (Pg)∨ such that the intersection
S ∩ H is not nodal has codimension 2 in (Pg)∨, and (ii) the pencil {Hλ}λ∈P1 can be

viewed as a general pencil of hyperplanes containing P
(
H0(C, KC)∨

)
as a member, we

may assume that all the curves Hλ ∩S are nodal and that the nodes stay away from the
fixed points x1, . . . , xg. In this way we obtain a family in Mg,g

R := {[Cλ := Hλ ∩ S, x1, . . . , xg] : Λ ⊂ Hλ, λ ∈ P1},
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inducing a fibration f : S̃ := Bl2g−2(S) → P1, obtained by blowing-up the base points

of the pencil, together with g sections given by the exceptional divisors Exi
⊂ S̃ corre-

sponding to the base points x1, . . . , xg. The numerical parameters of R are computed
using, for instance, [FP] Section 2. Precisely, one writes that

(7) R · λ = (φ∗(R) · λ)Mg
= g + 1, R · δirr = (φ∗(R) · δirr)Mg

= 6g + 18, R · δi:T = 0,

for i ≥ 0 and T ⊂ {1, . . . , g}. Finally, from the adjunction formula, R ·ψi = −(E2
xi

)S̃ = 1

for 1 ≤ i ≤ g. Thus, R · Dg = −1. Since R is a covering curve for the divisor Dg, it

follows that Dg is a rigid divisor on Mg,g.

We turn to the case g = 10, when the previous argument breaks down because
the general curve [C] ∈ M10 no longer lies on a K3 surface. More generally, we fix
g < 11, g 6= 9 and pick a general point [C, x1, . . . , xg] ∈ Dg. We denote by X := Cij

the nodal curve obtained from C by identifying xi and xj , where 1 ≤ i < j ≤ g.

Since [X] ∈ ∆0 ⊂ Mg+1 is a general 1-nodal curve of genus g + 1, using e.g. [FKPS],
there exists a smooth K3 surface S containing X . We denote by ν : C → X ⊂ S the
normalization map and set ν(xi) = ν(xj) = p. The linear system |OS(X)| embeds S in
Pg+1 and ν∗(OS(X)) = KC(xi + xj). Let ǫ : S′ := Blp(S) → S be the blow-up of S at
p and E ⊂ S′ the exceptional divisor. Note that C viewed as an embedded curve in S′

belongs to the linear system |ǫ∗OS(1) ⊗OS′(−2E)| and C · E = xi + xj . Let Z ⊂ S′ the
reduced 0-dimensional scheme consisting of marked points of C with support {xi, xj}

c.
Since h0(C,OC(x1 + · · · + xg)) = 2, we find that Z together with the tangent

plane Tp(X) = Tp(S) span a (g − 1)-dimensional linear space Λ ⊂ Pg+1. We obtain a

1-dimensional family in Dg by taking the normalization of the intersection curves on S

with hyperplanes H ∈ (Pg+1)∨ passing through Λ. Equivalently, we note that

h0(S′, IZ/S′(C)) = h0(S′,OS′) + h0(C, KC(−x1 − · · · − xg)) = 2,

that is, |IZ/S′(C)| is a pencil of curves on S′. We denote by ǫ̃ : S̃ := Bl2g−4(S
′) → S′ the

blow-up of S′ at the (ǫ∗(H)− 2E)2 = 2g − 4 base points of |IZ/S′(C)|, by f : S̃ → P1 the
induced fibration with (g− 2) sections corresponding to the points of Z, as well as with
a 2-section given by the divisor E := ǫ̃−1(E). Since deg(fE) = 2, there are precisely two
fibres of f , say C1 and C2, which are tangent to E. We make a base change or order 2
via the morphism fE : E → P1, and consider the fibration

q′ : Y ′ := S̃ ×P1 E → E.

Thus p : Y ′ → S̃ is the double cover branched along C1 + C2. Clearly q′ admits two
sections E1, E2 ⊂ Y ′ such that p∗(E) = E1 + E2 and E1 · E2 = 2. By direct calculation,
it follows that E2

1 = E2
2 = −3. To separate the sections E1 and E2, we blow-up the two

points of intersection E1 ∩ E2 and we denote by q : Y := Bl2(Y
′) → E the resulting

fibration, which possesses everywhere distinct sections σi : E → Y ′ for 1 ≤ i ≤ g,
given by the proper transforms of E1 and E2 as well as the proper transforms of the
exceptional divisors corresponding to the points in Z. The numerical characters of the
family Γij := {[q−1(t), σ1(t), . . . , σg(t)] : t ∈ E} ⊂ Mg,g are computed as follows:

Γij · λ = 2(g + 1), Γij · δirr = 2(6g + 17), Γij · ψl = 2 for l ∈ {i, j}c,

Γij ·ψi = Γij ·ψj = −(E2
i )Y ′ + 2 = 5, Γij · δ0:{i,j} = 2, Γij · δl:T = 0 for l ≥ 0, T ⊂ {i, j}c.
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We take the Sg-orbit of the 1-cycle Γij with respect to permuting the marked points,

Γ :=
1

g(g − 1)

∑

i<j

Γij ∈ NE1(Mg,g),

and note that Γ ·Dg = −1. Each component Γij fills-up Dg, which finishes the proof. ¤

We keep all the notation from the proof of Proposition 1.4 and set R̃ := π∗(R) and

Γ̃ := π∗(Γ) ∈ NE1(Cg,g). Note that Γ̃ = π∗(Γij)/2 for all 1 ≤ i < j ≤ g.

Corollary 1.5. The following intersection identities on Cg,g hold true:

R̃ · λ̃ = g + 1, R̃ · δ̃irr = 6g + 18, R̃ · ψ̃ = g and R̃ · δ̃i:c = 0 for all pairs (i, c),

Γ̃ · λ̃ = g +1, Γ̃ · δ̃irr = 6g +17, Γ̃ · ψ̃ = g +1 and Γ̃ · δ̃0:2 = 1, Γ̃ · δ̃i:c = 0 for (i, c) 6= (0, 2).

It follows that R̃ · KCg,g
= 2g − 23 and Γ̃ · KCg,g

= 2g − 21.

2. THE MUKAI MODEL OF Mg,g

Having showed that the divisor Dg ∈ Eff(Mg,g) is extremal when g ≤ 11, our

next aim is to construct a ”modular” birational contraction of Mg,g, such that Dg ap-
pears among its exceptional divisors. We achieve this goal for g ≤ 9, using Mukai’s
fundamental work on classification of Fano varieties. We recall that for g ≤ 9, there
exists a ng-dimensional Fano variety Vg ⊂ PNg of index ng − 2 and ρ(Vg) = 1, where
Ng := g+ng−2, such that general 1-dimensional complete intersections of Vg are canon-
ical curves [C] ∈ Mg with general moduli. For g ≤ 5, Vg is a complete intersection of
hypersurfaces; for 6 ≤ g ≤ 9 one has the following table, see [M1], [M3]:

g ng Ng Vg

6 6 10 Quadric section of cone over G(2, 5)
7 10 15 Spinor variety OG(5, 10)
8 8 14 Grassmannian G(2, 6)
9 6 13 Symplectic Grassmannian SG(3, 6)

The automorphism group Aut(Vg) acts in a natural way on the product V g
g and we

choose the polarization L := OVg(1) ⊠ · · · ⊠ OVg(1) ∈ Pic(V g
g ). We call the GIT-quotient

Mg,g := (V g
g )ss(L)//Aut(Vg)

the Mukai model of Mg,g. There exists a birational rational map

fg : Mg,g 99K Mg,g, fg

(
[C, x1, . . . , xg]

)
:= (x1, . . . , xg) mod Aut(Vg).

The inverse map is given by f−1
g (x1, . . . , xg) := [〈x1, . . . , xg〉 ∩ Vg, x1, . . . , xg]. It is easy

to see that fg contracts all boundary divisors ∆i:T , where i ≥ 0. From [M1], [M4], it
follows that fg also blows-down the pull-back of the unique Brill-Noether divisor on

Mg when g 6= 4, 6 (respectively the Petri divisor on M4 and M6). By comparing Picard
numbers, the exceptional divisor Exc(fg) must contain one extra component:

Proposition 2.1. For g ≤ 9, the morphism fg contracts the divisor Dg.

Proof. It suffices to note that fg blows-down the covering curves R ⊂ Dg ⊂ Mg,g con-
structed in the course of proving Proposition 1.4. ¤
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We use the existence of the Mukai variety Vg, to establish Theorem 0.2.

Proof of Theorem 0.2. In the range g ≤ 9, n ≤ g, the unirationality of Cg,n follows from

that of Mg,n. Indeed, the parameter space

Σ := {
(
(x1, . . . , xn), Λ) ∈ V n

g × G(g, Ng + 1) : xi ∈ Λ, for i = 1, . . . , n
}

maps dominantly onto Mg,n via the map
(
(x1, . . . , xn), Λ

)
7→ [Vg ∩ Λ, x1, . . . , xn]. Since

Σ is a Grassmann bundle over the rational variety V n
g , the conclusion follows. It is

proved in [FP] that M11,n (thus Cg,n as well), is uniruled for n ≤ 10. Similarly, M10,n is
uniruled for n ≤ 9, cf. loc. cit. ¤

These results can be improved when g ≤ 6 using plane models of minimal degree:

Proposition 2.2. Cg,n is unirational for all g ≤ 6 and n ≥ 0.

Proof. One used the representation of the general curve [C] ∈ Mg as a plane model of

degree d := [(2g + 8)/3] with δ :=
(
d−1
2

)
− g nodes in general position, cf. [AC2]. We

describe the details for the case g = d = 6. We choose general points p1, . . . , p4 ∈ P2

and fix an integer l ≥ 3 such that 6l − 20 < n ≤ 6l − 14. On the normalization C of a

curve Γ ∈ |OP2(6)(−2
∑4

i=1 pi)|, the complete linear series KC(l − 3) = g6l−14
6l−8 is cut out

by degree l curves passing through p1, . . . , p4. We define the incidence correspondence

U :=
{(

Γ, Xl, {ai}
6l−8−n
i=1

)
∈ |OP2(6)(−2

4∑

i=1

pi)| × |OP2(l)(−
4∑

i=1

pi)| × (P2)6l−8−n :

Γ · Xl ≥ 2(p1 + · · · + p4) + a1 + · · · + a6l−8−n

}
.

We note that U is rational. The residuation map r : U 99K C6,n defined by

r
(
Γ, Xl, {ai}

6l−8−n
i=1

)
:= [C, D], where Γ · Xl = 2

4∑

i=1

pi +
6l−8−n∑

i=1

ai + D,

and C → Γ is the normalization map, is dominant. Thus C6,n is unirational. ¤

3. THE KODAIRA DIMENSION OF M11,11

On M11 there exist two divisors of Brill-Noether type consisting of curves with
special linear series, namely the closure of the locus of 6-gonal curves

M1
11,6 := {[C] ∈ M11 : G1

6(C) 6= ∅}

and the closure of the locus M2
11,9 := {[C] ∈ M11 : G2

9(C) 6= ∅}. The divisors M
1
11,6 and

M
2
11,9 are irreducible, distinct, and their classes are proportional, cf. [EH2]. Precisely,

there are explicit constants c1
11,6, c

2
11,9 ∈ Z>0, such that

bn11 :≡
1

c1
11,6

M
1
11,6 ≡

1

c2
11,9

M
2
11,9 ≡ 7λ− δ0−5δ1−9δ2−12δ3−14δ4−15δ5 ∈ Pic(M11).

By interpolating, we find the following explicit canonical divisor:

(8) KM11,11
≡ D11 + 2 · φ∗(bn11) +

5∑

i=0

11∑

c=0

di:c δi:c,

10



where

d0:c =
c2 + c − 4

2
for c ≥ 2, d1:c = 8 +

(
|c − 1| + 1

2

)
for c ≥ 1,

d1:0 = 7, d2:c = 16 +

(
|c − 2| + 1

2

)
, d3:c = 22 +

(
|c − 3| + 1

2

)
,

d4:c = 26 +

(
|c − 4| + 1

2

)
, and d5:c = 28 +

(
|c − 5| + 1

2

)
.

Similarly, at the level of the universal symmetric product C11,11 one has the relation

(9) KC11,11
≡ D̃11 + 2 · ϕ∗(bn11) +

∑

(i,c) 6=(0,2)

di:c δ̃i:c.

One already knows that multiples of D11 are non-moving divisors on M11,11. We

show that D11 does not move in any multiple of the canonical linear system on M11,11.

Proposition 3.1. For each integer n ≥ 1, one has an isomorphism

H0
(
M11,11,OM11,11

(nKM11,11
)
)
∼= H0

(
M11,11,OM11,11

(nKM11,11
− nD11)

)
.

In particular, κ
(
M11,11

)
= κ

(
M11,11, KM11,11

− D11

)
. Furthermore, on C11,11, one has that

κ
(
C11,11

)
= κ

(
C11,11, KC11,11

− D̃11

)
.

Proof. Using the notation and results from Proposition 1.4, we recall that we have con-
structed a curve R ⊂ M11,11 moving in a family which fills-up the divisor D11, such

that R · D11 = −1 and R · δi:S = 0, for all i ≥ 0 and T ⊂ {1, . . . , g}. All points in R
correspond to nodal curves lying on a fixed K3 surface S, which by the generality as-
sumptions, can be chosen such that Pic(S) = Z. Applying [Laz], all underlying genus
11 curves corresponding to points in R satisfy the Brill-Noether theorem, in particular
R · φ∗(bn11) = 0, that is, R · KM11,11

= R · D11 = −1. It follows that for any effective di-

visor E on M11,11 such that E ≡ nKM11,11
, one has that R ·E = −n. Moreover, the class

E −nD11 is still effective and then |nKM11,11
| = nD11 + |nKM11,11

−nD11|. The proof in

the case of C11,11 is similar. One uses that π∗(D̃11) = D11, hence R̃ · D̃11 = R · D11 = −1,

as well as R̃ · KC11
= −1. The rest of the argument is identical. ¤

We are in a position to complete the proof of Theorem 0.5:

Theorem 3.2. We have that

κ
(
M11,11, 2 · φ∗(bn11) +

∑

i,c

di:c · δi:c

)
= κ

(
C11,11, 2 · ϕ∗(bn11) +

∑

(i,c) 6=(0,2)

di:c · δ̃i:c

)
= 19.

It follows that the Kodaira dimension of both M11,11 and C11,11 equals 19.

Proof. To simplify the proof, we define a few divisors classes on M11,11:

A := 2 · φ∗(bn11) +
∑

i≥0,c

di:c δi:c ≡ KM11,11
−D11 and A′ := A −

11∑

c=2

d0:c δ0:c,

as well as, B := bn11 + 4δ3 + 7δ4 + 8δ5 ∈ Pic(M11).
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We claim that for all integers n ≥ 1, one has isomorphisms,

H0
(
M11,11,OM11,11

(nA)
)
∼= H0

(
M11,11,OM11,11

(nA′)
)
.

Indeed, we fix a set of labels T ⊂ {1, . . . , 11} such that #(T ) ≥ 2 and consider a pencil
{
[Ct, xi(t), p(t) : i ∈ T c]

}
t∈P1 ⊂ M11,12−#(T ),

of (12 − #(T ))-pointed curves of genus 11 on a general K3 surface S, with marked
points being labeled by elements in T c as well by another label p(t). The pencil is in-
duced by a fibration obtained from a Lefschetz pencil of genus 11 curves on S, with
regular sections given by (12 − #(T )) of the exceptional divisors obtained by blowing-
up S at the (2g−2) base points of the pencil. To each element in this pencil, we attach at
the marked point labeled by p(t), a fixed copy of P1 together with fixed marked points
xi ∈ P1 − {∞}, for i ∈ T . The gluing identifies the point p(t) ∈ Ct with ∞ ∈ P1. If
RT ⊂ M11,11 denotes the resulting family, we compute:

RT ·λ = g+1, RT ·δirr = 6(g+3), RT ·δ0:T = −1, RT ·ψi = 1 for i ∈ T c, RT ·ψi = 0 for i ∈ T.

Moreover, RT is disjoint from all remaining boundary divisors of M11,11. One finds

that RT · φ∗(bn11) = 0. Thus for any effective divisor E ⊂ M11,11 such that E ≡ nA, we
find that RT · E = −nd0,c.

Since for all T , the pencil RT fills-up the divisor ∆0:T , we can deform the curves

RT ⊂ ∆0:T , to find that E −
∑11

c=2 nd0:c · δ0:c is still an effective class, that is,

|nA| =
11∑

c=2

nd0:c · ∆0:c + |nA′|,

which proves the claim. Next, by direct calculation we observe that the class A′−2φ∗(B)
is effective. Zariski’s Main Theorem gives that φ∗φ

∗OM11
(B) = OM11

(B), thus

κ
(
M11,11, A

′
)
≥ κ

(
M11,11, φ

∗(B)
)

= κ(M11, B) = 19.

The last equality comes from [FP] Proposition 6.2: The class B contains the pull-back of
an ample class under the Mukai map [M2]

q11 : M11,11 99K F11, [C, x1, . . . , x11] 7→ [S ⊃ C, OS(C)],

to a compactification of the moduli space of polarized K3 surfaces of degree 20.
On the other hand, since φ∗(δi) =

∑
S δi:S for 1 ≤ i ≤ 5, there is a divisor class on

M11 of type B′ := 2 · bn11 +
∑5

i=1 aiδi ∈ Pic(M11), with ai ≥ 0, such that φ∗(B′)−A′ is
an effective divisor. It follows that

κ
(
M11,11, A

′
)
≤ κ

(
M11,11, φ

∗(B′)
)

= κ(M11, B
′).

If R11 ⊂ M11 is the family corresponding to a Lefschetz pencil of curves of genus 11
on a fixed K3 surface, then R11 · B′ = 0. The pencil R11 moves in a 11-dimensional
family inside M11 which is contracted to a point by any linear series |nB′| on M11 with
n ≥ 1 (in fact a general curve R11 is disjoint from the base locus of |nB′|). One finds that
κ(M11, B

′) ≤ 19, which completes the proof. The case of C11,11 proceeds with obvious
modifications. ¤
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4. THE KODAIRA DIMENSION OF C10,10

The geometry of M10 is governed to a large extent by the divisor K10 of curves
lying on K3 surfaces. It is shown in [FP] that K10 is an irreducible divisor of class

K10 ≡ 7λ − δ0 − 5δ1 − 9δ2 − 12δ3 − 14δ4 − b5δ5 ∈ Pic(M10),

where b5 ≥ 6. Furthermore, s(K10) = 7 is the minimal slope of an effective divisor on
M10. The irreducible divisor K10 is rigid. Indeed, if R10 ⊂ K10 is the covering family
obtained by blowing-up the base points of a pencil of curves of genus 10 on a fixed K3

surface, then R10 · K10 = −1 (see [FP] Lemma 2.1). Since R10 · δi = 0 for 1 ≤ i ≤ 5, this
argument proves that any divisor D ∈ Eff(M10) with s(D) = s(K10), is rigid as well.

Comparing the expression of [K10] with that of KC10,10
, we obtain the formula

(10) KC10,10
≡ D̃10 + 2 · ϕ∗(K10) +

∑

(i,c) 6=(0,2)

di:c δ̃i:c,

where remarkably, the coefficients di:c have exactly the same values as in formula (10)

for 1 ≤ i ≤ 4, while d5:c = 2b5 − 2 +
(|c−5|+1

2

)
, for 0 ≤ c ≤ 10. We point out that the

coefficient d0:2 of δ̃0:2 in formula (10), equals 0.

Theorem 4.1. For each n ≥ 1, there is an isomorphism of groups

H0
(
C10,10,OC10,10

(nKC10,10
)
)
∼= H0

(
C10,10,OC10,10

(nKC10,10
− nD̃10)

)
.

Proof. We use Corollary 1.5. Through a general point of the divisor D10 on M10,10 there

passes a curve Γ̃ ⊂ C10,10 such that Γ̃ · D̃10 = Γ̃ · KC10,10
= −1 and Γ · δ̃i:c = 0 for

(i, c) 6= (0, 2). One obtains that |nKC10,10
| = nD̃10 + |nKC10,10

− nD̃10|. ¤

End of proof of Theorem 0.1 when g = 10. We define the following divisor classes on C10,10:

A := 2 · ϕ∗(K10) +
∑

(i,c) 6=(0,2)

di:c δ̃i:c ≡ KC10,10
− D̃10 and A′ := A −

10∑

c=3

d0:c δ̃0:c.

We claim that H0
(
C10,10,OC10,10

(nA)
)
∼= H0

(
C10,10,OC10,10

(nA′)
)

for all n ≥ 1. Indeed,

we fix a set of labels T ⊂ {1, . . . , 10} with c := #(T ) ≥ 3, as well as two indexes i, j ∈ T c

and consider the 1-cycle Γij ⊂ M10,11−c constructed in Proposition 1.4. We label by
{p(t), xl(t) : t ∈ P1}l∈T c the sections of the family. We obtain a covering curve Γ′

ij for

the divisor ∆0:T ⊂ M10,10, by attaching along the section p(t) a fixed (c + 1)-pointed
rational curve to each of the curves in Γij , in a way that the marked points labeled by

T are precisely those lying on the rational component. Then Γ̃0:c := π∗(Γ
′
ij) ⊂ C10,10 is

a covering curve for ∆̃0:c. From Corollary 1.5, Γ̃0:c · δ̃0:c < 0 and Γ̃0:c has intersection

number 0 with all the components of supp(A) − ∆̃0:c (Note that ∆̃0:2 does not appear

among these components). We repeat this argument for all divisors ∆̃0:c, where 3 ≤ c ≤
g, and the claim becomes obvious. We finish the proof by using the same argument as
at the end of the proof of Theorem 3.1: There exists an effective class B′ ∈ Eff(M10)

such that B′−K10 is effective, s(B′) = s(K10) = 7, and such that ϕ∗(B′)−A′ is effective.
Then κ(C10,10) = κ(C10,10, A

′) ≤ κ(C10,10, ϕ
∗(B′)) = κ(M10, B

′) = 0. ¤

13



5. THE UNIRULEDNESS OF Mg,n

We formulate two general principles, which we use in proving the uniruledness
of some moduli spaces Mg,n. We begin with the following trivial remark:

Proposition 5.1. Let X be a projective Q-factorial variety and D ⊂ X an irreducible divisor
filled-up by curves Γ ⊂ X , such that Γ · D ≥ 0 and Γ · KX < 0. Then X is uniruled.

We can extend this principle to the case of several divisors as follows:

Proposition 5.2. Let X be a projective Q-factorial variety and suppose D1, D2 ⊂ X are irre-
ducible effective Q-divisors such that there exist covering curves Γi ⊂ Di, with Γi · Di < 0 for
i = 1, 2 (in particular both Di ∈ Eff(X) are non-movable divisors). Assume furthermore that

(11)

∣∣∣∣
Γ1 · D1 Γ1 · D2

Γ2 · D1 Γ2 · D2

∣∣∣∣ ≤ 0,

∣∣∣∣
Γ1 · KX Γ1 · D1

Γ2 · KX Γ2 · D1

∣∣∣∣ < 0.

Then X is a uniruled variety.

Proof. According to [BDPP], it suffices to prove that KX is not pseudo-effective. By

contradiction, we choose α, β ∈ R≥0 maximal such that KX − αD1 − βD2 ∈ Eff(X).
Then we can write down the inequalities

Γ1 · KX ≥ α(Γ1 · D1) + β(Γ1 · D2) and Γ2 · KX ≥ α(Γ2 · D1) + β(Γ2 · D2).

Eliminating α, the resulting inequality contradicts the assumption β ≥ 0. ¤

We turn our attention to the proof of Theorem 0.6 which we split in three parts:

Theorem 5.3. M5,n is uniruled for n ≤ 13.

Proof. A general 2-pointed curve [C, x, y] ∈ M5,2 carries a finite number of linear series

L ∈ W 2
6 (C), such that if νL : C

|L|
−→ Γ ⊂ P2 is the induced plane model, then νL(x) =

νL(y) = p1. Note that Γ has nodes, say p1, . . . , p5, and dim |OP2(Γ)(−2
∑5

i=1 pi)| = 12.
We pick general points {xi}

11
i=1 and {pj}

5
j=1 ⊂ P2, then consider the pencil of sex-

tics passing with multiplicity 1 through x1, . . . , x11 and having nodes (only) at p1, . . . , p5.
The pencil induces a fibration f ′ : S → P1, where S := Bl21(P

2) is obtained from P2 by
blowing-up p1, . . . , p5, x1, . . . , x11, as well as the remaining unassigned base points of
the pencil. The exceptional divisors Exi

⊂ S provide 11 sections of f ′. The exceptional
divisor Ep1 induces a 2-section. Making a base change via the map f ′

Ep1
: Ep1 → P1,

the 2-section Ep1 splits into two sections Ex and Ey meeting at 2 points. Blowing these
points up, we arrive at a fibration f : Y → Ep1 , carrying 13 everywhere disjoint sections,

Ẽx, Ẽy, Ẽx1 , . . . , Ẽx11 , where Ẽxi
⊂ Y denotes the inverse image of Exi

, and Ẽx, Ẽy de-
note the proper transforms of Ex and Ey respectively. This induces a family of pointed
stable curves

Γ :=
{
[Cλ := f−1(λ), Ẽx · Cλ, Ẽy · Cλ, Ẽx1 · Cλ, . . . , Ẽx11 · Cλ] : λ ∈ Ep1

}
⊂ M5,13.

We compute the numerical characters of Γ (see also the proof of Proposition 1.4):

Γ · λ = deg(fEp1
)
(
χ(S,OS) + g − 1

)
= 10, Γ · δirr = deg(fEp1

)
(
c2(S) + 4g − 4

)
= 80,

Γ · ψx = Γ · ψy = 5, Γ · ψx1 = · · · = Γ · ψx11 = 2, Γ · δ0:xy = 2,

whereas Γ is disjoint from the remaining boundary divisors. One finds, Γ·KM5,13
= −2,

which completes the proof. ¤
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Remark 5.4. It is known that M5,15 is of general type, [F2]. Using the fact that 12 general

points in P4 determine a canonical curve of genus 5, it is proved in [CF] that M5,n is

rational when n ≤ 12. Hence Theorem 5.3 settles the cases M5,13.

Theorem 5.5. M8,n is uniruled for n ≤ 12.

Proof. We apply Proposition 5.2 when D1 is a suitable multiple of the Brill-Noether
divisor on M8 consisting of curves with a g2

7, that is,

D1 ≡ 2 · bn8 :=
2

c2
8,7

M
2
8,7 ≡ 22λ − 3δ0 − 14δ1 − 24δ2 − 30δ3 − 32δ4 ∈ Pic(M8).

We also set D2 := ∆irr ∈ Eff(M8,n). To construct a covering curve Γ1 ⊂ D1, we lift

to M8,n a Lefschetz pencil of 7-nodal plane septics. The fibration f : Bl28(P
2) → P1

obtained by blowing-up the 21 + 7 base points of a general pencil of 7-nodal plane

septics, induces a covering curve m : P1 → M8 for the irreducible divisor M
2
8,7. The

numerical invariants of this pencil are

m∗(λ) = χ(S,OS) + g − 1 = 8 and m∗(δ0) = c2(S) + 4(g − 1) = 59,

while m∗(δi) = 0 for i = 1, . . . , 4. Moreover, for n as above, f carries n sections given by
the exceptional divisors corresponding to n of the unassigned base points. If Γ1 ⊂ M8,n

denotes the resulting, then

Γ1 · λ = φ∗(Γ1) · λ = 8, Γ1 · δirr = φ∗(Γ1) · δirr = 59, Γ1 · ψi = 1 for i = 1, . . . , n,

and Γ1 · δi:T = 0. It follows that Γ1 · D1 = −1, Γ1 · KM8,n
= n − 14 and Γ1 · D2 = 59.

We construct a covering curve Γ2 ⊂ D2 and start with a general pointed curve
[C, x1, . . . , xn+1] ∈ M7,n+1. We identify xn+1 with a moving point y ∈ C, that is, take

Γ2 :=
{[ C

y ∼ xn+1
, x1, . . . , xn

]
: y ∈ C

}
⊂ M8,n.

It is easy to compute that Γ2 · λ = 0, Γ2 · δirr = −2g(C) = −14, Γ2 · δ1:∅ = 1, Γ2 · ψi =
1, for i = 1, . . . , n, and Γ2 · δi:T = 0 for (i, T ) 6= (1, ∅). Therefore Γ2 · D1 = 28 and
Γ2 · KM8,n

= 25 + n. The assumptions of Proposition 5.2 are satisfied when n ≤ 12. ¤

Remark 5.6. The results of Theorem 5.5 are almost optimal. The space M8,14 is of gen-

eral type, [Log]. Note that it was already known [Log], [CF], that M8,n is unirational

for n ≤ 11, thus the improvement here is the case M8,12.

Proposition 5.7. M9,n is uniruled for n ≤ 10 (in fact unirational for n ≤ 9).

Proof. We apply Proposition 5.1, when D := φ∗(M
1
9,5) is the pull-back of the 5-gonal

locus inside M9. If [C] ∈ M
1
9,5 is a general 5-gonal curve and A ∈ W 1

5 (C) is the (unique)

g1
5, then there exists an effective divisor D ∈ C3, such that h0(C, A ⊗ OC(D)) ≥ 3, cf.

[AC2]. In particular, A ⊗ OC(D) ∈ W 2
8 (C) induces a plane model of C having a 3-fold

point, such that |A| can be retrieved by projecting from this point.
To obtain a covering curve for D, we start with general points p0, p1, . . . , p9 ∈ P2

and consider the surface ǫ : S := Blp0,...,p9(P
2) → P2 together with the line bundle

L := ǫ∗OP2(8) ⊗ OS(−3Ep0 −
∑9

i=1 Epi
) ∈ Pic(S). Note that dim |L| = 11. We fix

10 general points x1, . . . , x10 ∈ S, hence the pencil |I{x1,...,x10}/S ⊗ L| induces a curve
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Γ ⊂ M9,10. Standard calculations yield that Γ · λ = 9, Γ · δirr = 64 and Γ · ψi = 1 for

i = 1, . . . , 10. Therefore Γ · KM9,10
= −1, while Γ · φ∗(M

1
9,5) > 0. Since Γ ⊂ φ∗(M

1
9,5) is

a covering curve, this finishes the proof. ¤

Finally, we turn to the case of genus 7. In order to establish the uniruledness of
M7,n, we consider the following effective divisors on M7,n:

D1 := {[C, x1, . . . , xn] ∈ M7,n : ∃L ∈ W 2
7 (C) with h0(C, L(−x1 − x2)) ≥ 1},

and D2 := 3
2c17,4

φ∗(M
1
7,4) ≡ 15λ − 2δ0 − 9δ1 − 15δ2 − 18δ3 ∈ Pic(M7) is (a rational

multiple of) the divisor of 4-gonal curves on M7. Before computing the class [D1], we
need a calculation, which may be of independent interest:

Proposition 5.8. Let g ≡ 1 mod 3 be a fixed integer and set d := (2g + 7)/3, so that the
Brill-Noether number ρ(g, 2, d) = 1. One considers the effective divisor of nodes of plane curves

Nodeg := {[C, x, y] ∈ Mg,2 : ∃L ∈ W 2
d (C) such that h0(C, L(−x − y)) ≥ 2}.

The class of its closure in Mg,2 is given by the formula:

Nodeg ≡ cg

(
(g + 4)λ +

g + 2

6
(ψ1 + ψ2) −

g + 2

6
δirr − gδ0:{1,2} − · · ·

)
∈ Pic(Mg,2),

where cg :=
24(g − 2)!

(g − d + 5)! (g − d + 3)! (g − d + 1)!
.

Proof. We denote by φ1 : Mg,2 → Mg,1 the morphism forgetting the second marked

point. The divisor Cug := (φ1)∗(Nodeg · δ0:{1,2}) coincides with the cusp locus in Mg,1,

that is, the locus of pointed curves [C, x] ∈ Mg,1, such that there exists L ∈ W 2
d (C) with

h0(C, L(−2x)) ≥ 2.
In order to compute its class, we fix a general elliptic curve [E, x] ∈ M1,1 and

consider the map j : Mg,1 → Mg+1, given by j([C, x]) := [C ∪x E]. Then

Cug = j∗(M
2
g+1,d),

where M
2
g+1,d is the Brill-Noether divisor on Mg+1 consisting of curves with a g2

d (Note

that ρ(g + 1, 2, d) = −1). Since the class [M
2
g+1,d] ∈ Pic(Mg+1) is known, cf. [EH2], and

j∗(λ) = λ, j∗(δirr) = δirr, j∗(δ1) = −ψ + δg−1:1, we find the following expression

Cug ≡ cg

(
(g + 4)λ + gψ −

g + 2

6
δirr −

g−1∑

i=1

(i + 1)(g − i)δi:1

)
∈ Pic(Mg,1).

Using the formulas (φ1)∗(λ · δ0:{1,2}) = λ, (φ1)∗(δ
2
0:{1,2}) = −ψ, (φ1)∗(δirr · δ0:{1,2}) = δirr

and (φ1)∗(ψi · δ0:{1,2}) = 0 for i = 1, 2, one finds that the δ0:{1,2}-coefficient of Nodeg

equals the ψ1-coefficient of Cug, while the λ, δirr-coefficients coincide.

One still has to determine the ψ1-coefficient in [Nodeg]. To this end, we fix a gen-

eral point [C, q] ∈ Mg,2 and consider the test curve C2 := {[C, q, y] : y ∈ C} ⊂ Mg,2.
Then, C2 · ψ1 = 1, C2 · ψ2 = 2g − 1 and obviously C2 · δ0:{1,2} = 1. On the other hand,

C2 · Nodeg equals the number of points y ∈ C, such that for some (necessarily complete
and base point free) L ∈ W 2

d (C), the morphism

χ(L, y) : L∨
|y+q → H0(C, L)∨
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fails to be injective. The map χ(L, y) globalizes to a morphism of vector bundles over
C × W 2

d (C), and the number in question is the Chern number of the top degeneracy
locus of χ and is computed using [HT]. We omit the details. ¤

Proposition 5.9. The class of the closure of D1 in M7,n is given by the formula

D1 ≡ 44λ + 6(ψ1 + ψ2) − 6δirr − 28δ0:{1,2} − 6
n∑

j=3

(δ0:{1,j} + δ0:{2,j}) − · · · ∈ Pic(M7,n).

Proof. We denote by φ12 : M7,n → M7,2 the morphism retaining the first two marked

points. Then D1 = φ∗
12(Node7), and the conclusion follows from Proposition 5.8 using

the pull-back formulas for generators of Pic(M7,2), see e.g. [Log] Theorem 2.3. ¤

Theorem 5.10. M7,n is uniruled for n ≤ 13.

Proof. We start by constructing a covering curve for D1. Choose general points p1, . . . , p8,
x3, . . . , x12 ∈ P2, and a general line l ⊂ P2. Then consider the pencil of plane septics of
geometric genus 7 passing through x3, . . . , x12 and having nodes at p1, . . . , p8. Blowing-
up the nodes as well as the base points of the pencil, we obtain a fibration f : S → P1,
where S := Bl25(P

2). We observe that f has sections {Exi
}i=3,...,12, given by the re-

spective exceptional divisors, a 2-section given by Ep1 and a 7-section induced by the
proper transform of l. We make base changes of order 2 and 7 respectively, to arrive at
the 1-cycle Γ1 :=

{
[Ct, x1(t), . . . , x13(t)] : t ∈ P1

}
⊂ M7,13, where x1(t) and x2(t) map

to the fixed node p1 ∈ P2, whereas the image of x13(t) lies on the line l. One finds that:

Γ1 · λ = 14 · g = 98, Γ1 · ψ1 = Γ1 · ψ2 = 35, Γ1 · ψ3 = · · · = Γ1 · ψ12 = 14, Γ1 · ψ13 = 22.

Furthermore, Γ1 · δ0:{1,2} = 14, Γ1 · δirr = 14 · 52 = 728, and finally Γ1 · δj:T = 0 for all

pairs (j, T ) 6=
(
0, {1, 2}

)
. Clearly Γ1 is a covering curve for D1.

Next, we construct a covering curve for D2 and use that if [C] ∈ M1
7,4 and A ∈

W 1
4 (C) is the corresponding pencil, then there exists a divisor D ∈ C3 such that A ⊗

OC(D) ∈ W 2
7 (C). One fixes general points p, {pi}

5
i=1, {xj}

13
j=1 ∈ P2 and considers the

pencil of genus 7 septics with a 3-fold point at p, nodes at p1, . . . , p5 and passing through

x1, . . . , x13. This induces a covering curve Γ2 ⊂ φ∗(M
1
7,4) with the following invariants:

Γ2 · λ = 7, Γ2 · δirr = 53, Γ2 · ψi = 1 for i = 1, . . . , 13, and Γ2 · δj:T = 0 for all (j, T ).

Thus, Γ1 · D1 = −28, Γ2 ·D2 = −1, Γ1 ·D2 = 14, Γ2 · D1 = 2, as well as Γ1 ·KM7,13
= 22

and Γ2 · KM7,13
= −2. The assumptions of Proposition 5.2 are thus fulfilled. ¤
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[U] K. Ueno, On algebraic fiber spaces of abelian varieties, Math. Annalen 237 (1978), 1-22.
[V] A. Verra, The unirationality of the moduli space of curves of genus 14 or lower, Compositio Mathematica

141 (2005), 1425-1444.
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