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Rezumat. The classical de Jonquières and MacDonald formulas describe the virtual number of
divisors with prescribed multiplicities in a linear system on an algebraic curve. We discuss the
enumerative validity of the de Jonquières formulas for a general curve of genus g.

1. Introduction

De Jonquières’ formula [dJ] is concerned with the following classical enumerative question:
Given a suitably general (singular) plane curve of Γ degree d and geometric genus g, how many
plane curves of given degree meet Γ in ni unspecified points with contact order ai, for i = 1, . . . , e?
De Jonquières using an ingenious recursive argument (later considerably simplified by Torelli
[T] and then slightly generalized by Allen [All]) showed that the number in question equals[

an1
1 an2

2 · · · anee
]

n1! n2! · · ·ne!
, where in general we define the quantity

(1) [a1 · · · ae] = a1 · · · ae
g!

(g − e− 1)!

(
a1 · · · ae
g − e

−
e∑
i=1

a1 · · · âi · · · ae
g − e+ 1

+ · · ·+ (−1)e
1

g

)
.

The formula (1) recovers many well known formulas in the theory of algebraic curves, for
instance the number 2g−1(2g − 1) of odd theta characteristics on a smooth curve of genus g, or
the Plücker formula for the total number of ramification points on a linear series on a curve.
The original proofs [dJ], [T] of the de Jonquières formula use an induction on the multiplicities
ai coupled with the Brill-Cayley correspondence principle. For a historic perspective on the de
Jonquières formula we refer to Zeuthen’s treatise [Z, 136], or if one prefers English, the books
of Coolidge [Coo, Book 3, Chapter 3.3] or Baker [Ba, pages 35-45]. De Jonquières’ formula
has been rediscovered by MacDonald [McD] and Vainsencher [V] and a summary of their work,
reinterpreting this number as a fundamental class of a modified diagonal on the symmetric
product of a smooth curve can be found in the book [ACGH].

In order to formulate the problem in modern terms, let C be a smooth curve of genus g and
we fix a linear series ` = (L, V ) ∈ Grd(C). For a partition µ = (a1, . . . , ae) of d, we define the de
Jonquières cycle DJµ(C, `) to be the locus of divisors of the type a1 · x1 + · · ·+ ae · xe lying in
the linear system `. Observe that DJµ(C, `) can be realized as the rank r degeneracy locus of
the evaluation morphism of vector bundles

χ : V ⊗OCe −→ Jµ(L)

over the product Ce, where the fibre of the vector bundle Jµ(L) over a point (x1, . . . , xe) equals
the d-dimensional vector space L|a1·x1+···+ae·xe . Accordingly, the virtual dimension of DJµ(C, `)
equals e−d+r. In the case e = d−r, this number equals zero and one expects ` to contain finitely
many divisors with multiplicities prescribed by the partition µ. As pointed out in [ACGH, page
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359], the virtual class of this degeneracy locus can be realized via the Porteous formula as the
coefficient of the monomial t1t2 · · · te in the polynomial(

1 + a2
1t1 + · · ·+ a2

ete
)g(

1 + a1t1 + · · ·+ aete
)d−r−g

.

It is straightforward to see that this is simply a convenient way to repackage compactly the
information contained in the formula (1). For instance, we obtain that a linear system ` ∈ Grd(C)
is expected to contain precisely

2r
((

d− r
r

)
+ g

(
d− r − 1

r − 1

)
+

(
g

2

)(
d− r − 2

r − 2

)
+ · · ·

)
divisors containing r double points, that is, of the type 2 · x1 + · · · + 2 · xr + xr+1 + · · · + xd−r
and so on. Here we use the convention that

(
m
−h
)

= 0 when h > 0.

More generally, we consider a positive partition µ = (a1, . . . , ae) and set |µ| := a1 + · · · + ae
and `(µ) := e. For 0 ≤ f ≤ |µ| we define the generalized de Jonquières (secant) locus

DJfµ (C, `) := Z|µ|−f (χ) =
{

(x1, . . . , xe) ∈ Ce : dim
∣∣V (−a1 · x1 − · · · − ae · xe)

∣∣ ≥ r − |µ|+ f
}
.

Being a degeneracy locus, each component ofDJfµ (C, `) has dimension at least e−f(r+1−|µ|+f).

If µ = (1e), then using the notations of [CM] or [F], we observe that DJfµ (`) = V e−f
e (`) can

be identified with the variety of e-secant (e − f − 1)-planes to the embedded curve C
|V |
↪→ Pr.

Moreover, if |µ| = d, then DJd−rµ (C, `) = DJµ(C, `) is the locus of de Jonquières divisors in the
linear series `. De Jonquières loci have been used to study the geometry of the moduli spaces
of curves or that of strata of holomorphic differentials [BCGGM]. The class of effective divisors
on Mg involving de Jonquières conditions have been computed in [Cot], [FV1], [FV2], or [Mu].

The question of how to interpret the de Jonquières count when a curve C ⊆ Pr acquires
singularities has been treated both in classical and modern times. The problem we address in
this note on the other hand is the enumerative validity of the de Jonquières count when C is a
general curve in moduli. We treat this problem variationally and consider de Jonquières cycles
associated to all linear systems ` ∈ Grd(C), that is, we set up the correspondence:

(2) Σf
µ(C) :=

{(
`, x1, . . . , xe

)
: (x1, . . . , xe) ∈ DJfµ (C, `)

}
π1

ss

π2

**
Grd(C) Ce

The main result of this paper is then summarized as follows:

Theorem 1.1. Let C be a general curve of genus g and we fix a partition µ = (a1, . . . , ae), as
well as positive integers d, r and f with ρ(g, r, d) ≥ 0 and |µ|−r ≤ f ≤ |µ|. Then each irreducible

component of Σf
µ(C) has dimension ρ(g, r, d) + e− f(r + 1− |µ|+ f). Accordingly, if

ρ(g, r, d) + e− f(r + 1− |µ|+ f) < 0,

then DJfµ (C, `) = ∅ for every linear series ` ∈ Grd(C).

This result generalizes [F, Theorem 0.1] to the case of an arbitrary partition µ, the result in
loc.cit. corresponding to the case when µ = (1e). It also generalizes Ungureanu’s results [U,
Theorem 1.5] corresponding to the case when |µ| = d = deg(`), asserting that if C is a general
curve, no linear series ` ∈ Grd(C) possesses a de Jonquières divisor of length e < d− r. Observe
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that the case f = |µ|− r in Theorem 1.1 can be obviously reduced to the classical de Jonquières

case, by extending the partition µ to µ′ = (µ, 1d−|µ|) of the degree d of the curve in question.

We now discuss several cases in which Theorem 1.1 applies. The first case beyond the classical
de Jonquières situation treated for instance (under some restrictive assumptions) in [U] is when
f = |µ| + 1 − r, when the residual linear series

∣∣V (−a1 · x1 − · · · − ae · xe)
∣∣ is a pencil, which

can be formulated as saying that under the map ϕ` : C → Pr induced by the linear series `, the
(ai − 1)-st osculating planes to C at the points xi span a codimension two plane, that is,

(3)
〈
a1 · x1, . . . , ae · xe

〉 ∼= Pr−2.

Tangential secants. Let us consider the case a1 = 2 and a2 = · · · = ae = 1 and f = 1, in which
case the condition (3) translates into saying that 〈2 · x1, x2, . . . , xe〉 ∼= Pe−1, that is, the tangent
line to C at the point x1 lies in the (e − 1)-plane spanned by the points x1, . . . , xe. Following
classical terminology, we say that 〈x1, . . . , xe〉 is a tangential (e+ 1)-secant to C. Theorem 1.1
can be formulated in this case as follows:

Corollary 1.2. We fix positive integer g, r, d and e such that 2e < r + 1 − ρ(g, r, d). For a
general curve C of genus g, no linear seris ` ∈ Grd(C) carries a tangential (e+ 1)-secant.

Note that every space curve C ⊆ P3 of degree d and genus g is expected to have finitely many
tangential trisecants and their number T (d, g) = 2(d− 2)(d− 3) + 2g(d− 6), which can derived
from the de Jonquières formula, has been first computed by Salmon and Zeuthen [Z, 64], see
also [ACGH, page 364]. It is an interesting result of Kaji [K], valid to a large extent even in
positive characteristic, that an arbitrary smooth space curve C ⊆ P3 cannot have infinitely many
tangential trisecants, see also [BP] for various extensions of this result. For space curves, our
Corollary 1.2 reduces to the Brill-Noether Theorem, but already for curves C ⊆ P4 it goes beyond
that and it states that when ρ(g, r, d) = 0 a general such curve has no tangential trisecants.

Multiple tangents. Passing now to the case of tangent planes, that is, when a1 = · · · = ae = 2,
we look at (2e− 2)-planes in Pr that are tangent to C at e points, that is,〈

2 · x1, . . . , 2 · xe
〉 ∼= P2e−2.

We call such a configuration an degenerate e-tangent to C ⊆ Pr. With this terminology, Theorem
1.1 takes the following form:

Corollary 1.3. Fix positive integers g, r, d, e with ρ(g, r, d) ≥ 0 and 3e < r+2−ρ(g, r, d). Then
a general curve C of genus g has no linear series ` ∈ Grd(C) with degenerate e-tangents.

The simplest case where Corollary 1.3 applies is when e = 2, r = 5. It says that for a general
curve C of genus g, no embedded curve ϕ` : C → P5 of degree d with ρ(g, r, d) = 0 has a pair of
coplanar tangent lines.

Another immediate application of Theorem 1.1 is when again a1 = · · · = ae = 2 but this time
f = 2e− r > 0, hence 〈

2 · x1, . . . , 2 · xe
〉∼= Pr−1.

In other words, the points x1, . . . , xe span a tangent hyperplane. We find the following result:

Corollary 1.4. Fix integers g ≥ 1, r ≥ 3 and d such that ρ(g, r, d) ≥ 0 and e ≥ r + 1. Then
for a general curve C of genus g the locus of linear systems ` ∈ Grd(C) such that ϕ` : C ↪→ Pr
admits an e-secant tangent hyperplane is equal to ρ(g, r, d) + r − e.

In particular, for e = r+1 specializes to the known result [U], that for a Brill-Noether general
curve C ⊆ Pr no hyperplane can be tangent at more than r points.
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Flex lines and bitangents. A general smooth space curve C ⊆ P3 is expected to possess no
bitangent or flex lines lines, that is, no de Jonquières divisors of length two corresponding to
the partitions µ = (2, 2) and µ = (3, 1) respectively. We consider the problem more generally
for curves C ⊆ Pr and our result in this case lends a sharp form to this expectation.

Corollary 1.5. Fix positive integers g ≥ 1, r ≥ 3 and d with ρ(g, r, d) ≥ 0 and a1, a2 such that

a1 + a2 >
ρ(g, r, d) + 2r

r − 1
.

Then for a general curve C of genus g, no degree d embedding ϕ` : C ↪→ Pr possesses a secant
line meeting the image of C with multiplicities a1 and a2 at the points of secancy.

For instance when r = 3, e = 2 and |µ| = 4, Corollary 1.5 implies that when ρ(g, 3, d) ≤ 1, for
a general curve C of genus g no embedding ϕ` : C ↪→ P3 of degree d possesses either a bitangent
or a flex line.

The last application of Theorem 1.1 is to the case when the partition µ is of length one.

Corollary 1.6. We fix positive integers g, r, d and a such that 2a > ρ(g, r, d) − 1 + 2r. Then
a general curve C of genus g carries no linear series ` ∈ Grd(C) having a point x ∈ C with
`(−a · x) ∈ G1

d−a(C).

Specializing even further to the case d = 2g − 2 and r = g − 1 in which case ` necessarily
equals the canonical linear series |ωC |, via the Riemann-Roch Theorem Corollary 1.6 can be
reformulated as stating that for a general curve of genus g, if a ≥ g − 1 we have that

h0
(
C,OC(a · x)

)
≤ a+ 2− g,

for each point x ∈ C. When a = g− 1 we obtain that C carries no pencil of degree g− 1 totally
ramified at a point, which is a well-known result. The locus of curves [C] ∈ Mg having such a

pencil has been studied by Diaz [D], who also computed the class of its compactification inMg.

Acknowledgments: This article is dedicated to the memory of Csaba Varga (1959-2021), one of the
defining mathematical personalities in Cluj/Kolozsvár. The intellectual influence he had on my mathe-
matical development during my studies at the Babes,-Bolyai University between 1991 and 1995 cannot
be overstated.

The author was supported by the DFG Grant Syzygien und Moduli and by the ERC Advanced Grant

SYZYGY of the European Research Council (ERC) under the European Union Horizon 2020 research

and innovation program (grant agreement No. 834172).

2. Generalized de Jonquières divisors on flag curves

We fix a smooth curve C of genus g and we denote by Grd(C) the variety of linear systems

of type grd on C, that is, pairs ` = (L, V ), where L ∈ Picd(C) and V ⊆ H0(C,L) is an (r + 1)-
dimensional subspace of sections. Recall that when C is a general curve of genus g, then Grd(C) is
a smooth variety of dimension equal to the Brill-Noether number ρ(g, r, d) = g−(r+1)(g−d+r).
Our proof of Theorem 1.1 is by degeneration and we will use throughout the theory of limit
linear series. We begin by quickly recalling the notation for vanishing and ramification sequences
of linear series on curves largely following [EH1] and [EH2].

If ` = (L, V ) ∈ Grd(C) is a linear series, the ramification sequence of ` at a point q ∈ C

α`(q) : 0 ≤ α`0(q) ≤ · · · ≤ α`r(q) ≤ d− r
is obtained from the vanishing sequence

a`(q) : 0 ≤ a`0(q) < · · · < a`r(q) ≤ d



GENERALIZED DE JONQUIÈRES DIVISORS ON GENERIC CURVES 5

by setting α`i(q) := a`i(q) − i, for i = 0, . . . , r. In case the underlying line bundle L is clear
from the context, we write αV (q) = α`(q) and aV (q) = a`(q). The ramification weight of q with
respect to ` is defined as the quantity wt`(q) :=

∑r
i=0 α

`
i(q). We denote by

ρ(`, q) := ρ(g, r, d)− wt`(q)

the adjusted Brill-Noether number of ` with respect to q. We recall also the Plücker formula

(4)
∑
q∈C

α`(q) = (r + 1)d+ (r + 1)r(g − 1),

measuring the total ramification of `. Incidentally, assuming that ` has only simple ramification
points, that is, points with ramification sequence at most (0, . . . , 0, 1), then (4) is an instance of
the de Jonquières formula (1) applied to the linear series ` and to the partition µ = (r+1, 1d−r−1)
of d).

Following Eisenbud-Harris [EH1, page 364], let us recall that a limit linear series on a curve
X of compact type consists of a collection ` =

{
(LC , VC) ∈ Grd(C) : C is a component of X

}
,

satisfying a compatibility condition on the vanishing sequences at the nodes of X in terms of
the vanishing sequences of the aspects on the two (smooth) components of X on which each

node of X lies. We denote by G
r
d(X) the variety of limit linear series of type grd on X. More

generally, if q ∈ Xreq is a smooth point and α =
(
0 ≤ α0 ≤ · · · ≤ αr ≤ d − r

)
is a Schubert

index, we denote by G
r
d

(
X, (q, α)

)
the variety of limit linear series ` ∈ G

r
d(X) satisfying the

condition α`(q) ≥ α. From basic principles it follows that each component has dimension at
least ρ

(
g, r, d, α) = ρ(g, r, d)−wt(q). Eisenbud and Harris offer in [EH2, Theorem 1.1] sufficient

conditions ensuring when the equality

(5) dim G
r
d

(
X, (q, α)

)
= ρ(g, r, d)− wt(α)

holds, which we will make an essential use of in the course of proving Theorem 1.1. In case a
pointed curve [X, q] satisfies the condition (5) for each r, d ≥ 1 such that ρ(g, r, d) ≥ 0 and for
each choice of a Schubert index α, we say that [X, q] verifies the strong Brill-Noether Theorem.

Having fixed a positive partition µ = (a1, . . . , ae), a positive integer f with |µ| − r ≤ f ≤ |µ|
and a smooth curve C, we have defined in the Introduction the subvariety Σf

µ(C) ⊆ Grd(C)×Ce.
Due to its determinantal structure, each irreducible component of Σf

µ(C) has dimension at least

dim Grd(C) + e− f(r + 1− |µ|+ f) ≥ ρ(g, r, d) + e− f(r + 1− |µ|+ f).

From this fact we obtain that once one shows that for a general curve C of genus g each

irreducible component of Σf
µ(C) has dimension at most ρ(g, r, d) + e− f(r+ 1− |µ|+ f), it will

also follow that Σf
µ(C) is in fact equidimensional of this dimension.

Assume we are in a situation when Σf
µ(C) in nonempty for a general (and therefore for an

arbitrary) smooth curve C of genus g.

2.1. Universal de Jonquières divisors on curves of compact type. The proof of Theorem
1.1 relies, like several other proofs involving limit linear series, on degenerating a smooth curve
of genus g to a flag curve consisting of a rational spine and g smooth elliptic tails. It is known
[EH1] and [EH2] that such curves satisfy the Brill-Noether Theorem independently of the position
of the g points of attachment on the rational spine. One has however to deal with the serious
complication that, under this degeneration, although one has a good understanding of the aspects
of the limit linear series on the flag curve, a priori there is no control on the position of the e
marked points lying in the support of a generalized de Jonquières divisor. For the combinatorial
argument required to prove Theorem 1.1 it is however essential to ensure that one can always
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find such a flag curve degeneration of a generic curve of genus g in which these e marked points
specialize to a subcurve of the flag curve having relatively small arithmetic genus. To make
sure this is possible, we employ a strategy already used in [F], which relies on considering all
flag curves of genus g at once and using certain basic facts about the geometry of the (rational)
parameter space of such a curves.

We set some further notation. Let j : M0,g → Mg the map assigning to a stable rational

pointed curve [R, p1, . . . , pg] ∈ M0,g fixed smooth elliptic tails E1, . . . , Eg at the marked points
p1, . . . , pg. We denote the resulting compact type curve by

X := R ∪p1 E1 ∪ . . . ∪pg Eg,
that is, pa(X) = g and let pR : X → R be the map contracting each elliptic component Ei to
the point pi. We introduce the universal n-pointed curve Cg,n =Mg,n+1 of genus g and denote

by π : Cg,n → Mg,n the morphism forgetting the (n + 1)-st marked point. For e ≥ 1, we write

πe : Ceg,n →Mg,n for the e-fold fibre product of Cg,n over Mg,n. We finally introduce the map

(6) χ : M0,g ×Mg
Ceg → C

e
0,g,

which collapses the fixed elliptic tails E1, . . . , Eg and projects the corresponding marked points
onto the rational spine R. With the notation introduced above, we thus have

χ
(

[R, p1, . . . , pg], (x1, . . . , xe)
)

=
(

[R, p1, . . . , pg], pR(x1), . . . , pR(xe)
)
,

where x1, . . . , xe ∈ X.

Let DJ ⊆ Ceg be the closure of the locus of generalized de Jonquières divisors on smooth curves
of genus g, that is, of the following determinantal variety

DJ :=
{

[C, x1, . . . , xe] : [C] ∈Mg, xi ∈ C, ∃` = (L, V ) ∈ Grd(C) such that

dim
∣∣V (−a1 · x1 − · · · − ae · xe)

∣∣ ≥ r − |µ|+ f
}
.

Since we assume that Σf
µ(C) 6= ∅ for a general curve [C] ∈ Mg, we have that πe

(
DJ
)

= Mg,

where recall that πe : Ceg →Mg. Next, we define the locus

(7) U := χ
(
M0,g ×Mg

DJ
)
⊆ Ce0,g.

We use the commutativity of the following diagram, where the horizontal upper arrow is induced
via the stabilization isomorphism Cg,n ∼=Mg,n+1, see [Kn, page 175] by taking fibre products

Ce0,g
πe
��

// Ceg
πe
��

M0,g
j //Mg

in order to conclude that πe(U) =M0,g. We denote by e−m the generic fibre dimension of the

map πe|U : U →M0,g. Thus 0 ≤ m ≤ e and

dim
(
U ∩ π−1

e [R, p1, . . . , pg]
)

= e−m,

for a general stable curve [R, p1, . . . , pg] ∈M0,g.
We introduce the birational map

ϑ : Ce0,g →M
g−3+e
0,4

∼= (P1)g−3+e
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whose components are the forgetful morphisms πi : M0,g+e → M0,4 which for i = 4, . . . , g + e
only retain the marked points labelled by 1, 2, 3 and i respectively. Fixing for instance the first
three marked points as usual p1 = 0, p2 = 1 and p3 =∞ ∈ P1, by slightly abusing notation we
can think of ϑ as the map assigning(

[R, p1, . . . , pg], x1, . . . , xe
) ϑ7→

(
p4, . . . , pg, x1, . . . , xe

)
∈ (P1)g−3+e.

Using essentially only the elementary fact that the diagonal of P1 × P1 is ample, we then
establish in [F, Proposition 2.2], that depending on whether ϑ(U) ⊆ (P1)g−3+e intersects the
small diagonal (x1 = · · · = xe) in (P1)g−3+e or not, one of the following three possibilities occur:

• There exists a point (p4, . . . , pg, x1, . . . , xe) ∈ ϑ(U) with x1 = · · · = xe and at least g −m− 3
of the points p4, . . . , pg are mutually distinct.
• There exists a point (p4, . . . , pg, x1, . . . , xe) ∈ ϑ(U) such that at least g − m of the points
p4, . . . , pg are equal to a point r ∈ P1 r {x1, . . . , xe}.
• There exists a point (p4, . . . , pg, x1, . . . , xe) ∈ ϑ(U) such that e − 1 of the marked points
x1, . . . , xe are equal and at least g −m of the points p4, . . . , pg are equal to 0.

Investigating the fibres of the map ϑ in each of these cases we find the following, see [F]:

Proposition 2.1. Keeping the notation above, if dim(U) = g − 3 + e−m, there exists a point(
[R, p1, . . . , pg], x1, . . . , xe

)
∈M0,g ×Mg

DJ,

such that on the flag curve X = R∪p1E1∪. . .∪pgEg the limiting de Jonquières divisor (x1, . . . , xe)
satisfies either (i) x1 = · · · = xe ∈ Rr {p1, . . . , pg}, or else, (ii) x1, . . . , xe all lie on a connected

subcurve Y ⊆ X of genus at most m and with
∣∣Y ∩ (X r Y )

∣∣ ≤ 1.

2.2. The proof of Theorem 1.1. We fix a partition µ = (a1, . . . , ae) and a positive integer

f ≥ |µ| − r. We assume that the variety Σf
µ(C) ⊆ Grd(C) × Ce is not empty for every smooth

curve C of genus g. Keeping the notation above, we denote by e−m the fibre dimension of the
surjective morphism πe : U → M0,e. Recall that we defined DJ ⊆ Ceg to be the closure of the
universal locus of de Jonquières divisors and we assume that e−n is the generic fibre dimension
of the surjective morphism

πe|DJ : DJ→Mg.

Since when specializing to the subvariety of flag curves via the map j : M0,g ↪→ Mg the fibre
dimension of πe can only go up, we have that m ≤ n. We now apply Proposition 2.1 and let
X = R∪E1∪ . . .∪Eg be the corresponding flag curve of genus g as above, where for i = 1, . . . , g
we denote by pi ∈ R the node corresponding to the intersection of the spine R (which may itself
well be reducible) with the subtree of X ending in the elliptic tail Ei. We denote by Y ⊆ X
the connected subcurve of X onto which the marked points x1, . . . , xe (limiting a generalized de
Jonquières divisor) specialize. According to Proposition 2.1 there are two possibilities:

(i) pa(Y ) = m ≤ min{e, g}, or
(ii) x1 = · · · = xe ∈ Rr {p1, . . . , pg}.

We first treat case (i). Let Y ′ := X r Y be the subcurve of X complementary to Y and set
{p} := Y ∩ Y ′. When m = g, then set Y := X and Y ′ = ∅ and we let p ∈ X be a general
(smooth) point. The divisor a1 · x1 + · · ·+ ae · xe is a limit of generalized de Jonquières divisors
on smooth curves of genus g neighboring the genus g curve of compact type X. Applying the
formalism of stable reduction, we can find a flat family of nodal curves of genus g

ϕ : X → (T, t0)

over a smooth pointed curve, together with sections s1, . . . , se : T → X such that:
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(1) The generic fibre ϕ−1(t) = Xt is a smooth curve of genus g, whereas the central fibre

X̃ := ϕ−1(0)

is stably equivalent to X, that is, it is a curve of arithmetic genus g obtained from X by possibly
attaching chains of smooth rational curves at the singularities of X.

(2) si(0) = xi ∈ X̃reg for all i = 1, . . . , e.
(3) There exists a line bundle Lη of related degree d defined on the complement of the central
fibre Xη = X r ϕ−1(0), and a subvector bundle Vη ⊆ ϕ∗(Lη) of rank r + 1, such that for t 6= 0,
setting Lt = Lη|Xt ∈ Pic(Xt) and Vt = Vη|t ⊆ H0(Xt, Lt), we have that(

(Lt, Vt), s1(0), . . . , se(t)
)
∈ Σf

µ(Xt),

that is, dim
∣∣Vt(−a1 · s1(t)− · · · − ae · se(t))

∣∣ ≥ r − |µ|+ f .

We shall denote by Ỹ ⊆ X̃ the inverse image of Y under the contraction morphism X̃ → X.

Then set Ỹ ′ := X̃ r Ỹ and we still denote by p the point of intersection of Ỹ and Ỹ ′.
Since when forming the family X → T we allow us the possibility of a further base change

and that of resolving the resulting singularities, we may furthermore assume that the flag curve

X̃ carries a (refined) limit linear series

` =
{
`Z = (LZ , VZ) : Z is a component of X̃

}
∈ Grd

(
X̃
)

obtained following the procedure described by Eisenbud and Harris [EH1] as a limit of the linear
series (Lt, Vt). Furthermore, the sublinear series described in (3) induce a limit linear series

`′ =
{
`′Z = (LZ(−DZ), V ′Z) : Z is a component of X̃

}
∈ Gr−|µ|+fd−|µ|

(
X̃
)
,

where DZ is an effective divisor on Z supported on the union of the points s1(0), . . . , se(0) that

happen to lie on Z and the point of intersection Z ∩ X̃ r Z (which is a smooth point of Z), and
V ′Z ⊆ H0(Z,L′Z) is respectively a subspace of sections of dimension r + 1− |µ|+ f .

Note that p is a smooth point of both subcurves Ỹ and Ỹ ′ of X̃, therefore it is a smooth point

of a unique irreducible component of Ỹ , respectively of a unique irreducible component of Ỹ ′.
We consider the respective aspects of ` and slightly abusing notation, we denote by

a`Ỹ (p) =
(
a0 < · · · < ar

)
the sequence obtained by ordering the vanishing orders at p of the sections corresponding to the

irreducible component of Ỹ containing p. Similarly, we let

a`Ỹ ′ (p) =
(
b0 < · · · < br

)
be the sequence obtained by ordering the vanishing orders at p of the sections contained in

the aspect of ` corresponding to the component of Ỹ ′ containing p. Note that ai + br−i = d for
i = 0, . . . , r. Furthermore, by ordering the vanishing orders at p of the aspect of `′ corresponding

to the component of Ỹ containing p, we obtain the sequence

a
`′
Ỹ (p) =

(
ai0 < · · · < air−|µ|+f

)
.

Clearly, this is a subsequence of a`Ỹ (p). The entries in the complementary subsequence can be
ordered as well and we denote this subsequence by

(
aj0 < aj1 < · · · < aj|µ|−f−1

)
. Note that{

ai0 , . . . , air−|µ|+f
}
∪
{
aj0 , . . . , aj|µ|−f−1

}
=
{
a0, . . . , ar

}
.
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While the entries in the sequence (aj0 < · · · < aj|µ|−f−1
) corresponding to vanishing orders of

sections of a linear series on a single irreducible component of Ỹ , using the procedure described

in [F, Lemma 2.1], one can construct a sublimit linear series `]
Ỹ
∈ G|µ|−f−1

d (Ỹ ) of `
Ỹ

such that

its vanishing sequence a
`]
Ỹ (p) equals precisely

(
aj0 < · · · < a|µ|−f−1

)
.

We first assume Ỹ ′ 6= ∅. The point p ∈ Ỹ is a smooth point and lies on one of its rational

component. In particular the genus m pointed curve [Ỹ , p] verifies the strong Brill-Noether

Theorem, that is, both varieties G
r−|µ|+f
d−|µ|

(
Ỹ , (p, α

`′
Ỹ (p))

)
and G

|µ|−f−1
d

(
Ỹ , (p, α

`]
Ỹ

(p)
)
)

have the

expected dimension given by the corresponding adjusted Brill-Noether numbers, in particular
these numbers must be non-negative, cf. [EH2, Theorem 1.1]. We thus obtain the following two
inequalities by writing this for out for the limit linear series `

Ỹ
and `

Ỹ ′ respectively:
(8)

dim G
|µ|−f−1
d

(
Ỹ ,
(
p, α

`]
Ỹ

(p)))
= ρ
(
`]
Ỹ
, p
)

= ρ
(
m, |µ|−f−1, d

)
−aj0−· · ·−aj|µ|−f−1

+

(
|µ| − f

2

)
≥ 0,

as well as

(9) dim G
r−|µ|+f
d−|µ|

(
Ỹ ,
(
p, α

`′
Ỹ (p)

))
= ρ(`′

Ỹ
, p) =

ρ
(
m, r − |µ|+ f, d− |µ|

)
− ai0 − · · · − ar−|µ|+f +

(
r + 1− |µ|+ f

2

)
≥ 0.

The same considerations can be applied to the complementary subcurve Ỹ ′ of X̃. The point of

attachment p lies on a rational component component of Ỹ ′, therefore the strong Brill-Noether
inequality holds for `Y ′ as well, and we obtain:

(10) dim G
r
d

(
Ỹ ′, (p, α`Ỹ ′ (p))

)
= ρ(`

Ỹ ′ , p) = ρ(g −m, r, d)−
(
b0 + · · ·+ br

)
+

(
r + 1

2

)
≥ 0.

We add the inequalities (8), (9) and (10) together and use the fact that (`
Ỹ
, `
Ỹ ′) form a refined

limit linear series, therefore the vanishing orders of `′
Ỹ

, `]
Ỹ

and those of `
Ỹ ′ respectively add up,

that is,

r∑
k=0

bk +

r−|µ|+f∑
k=0

aik +

|µ|−f−1∑
k=0

ajk =

r∑
k=0

(
ak + br−k

)
= (r + 1)d.

We obtain the following estimate:

0 ≤ ρ(g −m, r, d) + ρ
(
m, r − |µ|+ f, d− |µ|

)
+ ρ
(
m, |µ| − f − 1, d

)
−(r + 1)d+

(
r + 1

2

)
+

(
r + 1− |µ|+ f

2

)
+

(
|µ| − f

2

)
= ρ(g, r, d)− f(r + 1− |µ|+ f) +m ≤ ρ(g, r, d)− f(r + 1− |µ|+ f) + e,

which is precisely the second half of Theorem 1.1. Note that in the last inequality, the assumption
m ≤ e guaranteed by Proposition 2.1 is absolutely essential.

In the case m = g, when necessarily e ≥ g and Ỹ = X̃, we proceed along similar lines. We
add together inequalities (8) and (9) to obtain:
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ρ(g, r, d) + e− f(r + 1− |µ|+ f) =

ρ(g, r − |µ|+ f, d− |µ|
)
−
r−|µ|+f∑
k=0

aik +

(
r + 1− |µ|+ f

2

)
+

(
ρ
(
g, |µ| − f − 1, d

)
−
e−f−1∑
k=0

ajk +

(
e− f

2

))
+

r−|µ|+f∑
k=0

aik +

|µ|−f−1∑
k=0

ajk −
(
r + 1

2

)
+ e− g

= dim G
r−|µ|+f
d−|µ|

(
Ỹ ,
(
p, α

`′
Ỹ (p)

))
+ dim G

|µ|−f−1
d

(
Ỹ ,
(
p, α

`]
Ỹ

(p)))
+

r−|µ|+f∑
k=0

aik +

|µ|−f−1∑
k=0

ajk −
(
r + 1

2

)
+ e− g ≥ 0,

since
r−|µ|+f∑
k=0

aik +

|µ|−f−1∑
k=0

ajk =
r∑

k=0

ak ≥
(
r + 1

2

)
and, as explained, e ≥ g.

Assume finally we are in the case (ii), that is, when x1 = · · · = xe ∈ Rr{p1, . . . , pg}. Keeping

the previous notation, we observe that the limit linear series ` ∈ Grd(X̃) has vanishing sequence
at x1

a`(x1) ≥
(

0, 1, . . . , |µ| − f − 1, |µ|, |µ|+ 1, . . . , r + f − 1, r + f
)
,

therefore wt`(x1) ≥ f(r + 1 − |µ| + f). Taking into account that [X̃, q] satisfies the strong
Brill-Noether Theorem, cf. [EH2, Theorem 1.1], Theorem 1.1, we obtain the inequality

0 ≤ dim G
r
d

(
X̃,
(
x1, α

`(x1)
)
≤ ρ(g, r, d)− f(r+ 1− |µ|+ f) ≤ ρ(g, r, d) + e− f(r+ 1− |µ|+ f).

This concludes the proof that the assumption Σf
µ(C) 6= ∅ for a general curve of genus g implies

that ρ(g, r, d) + e− f(r + 1− |µ|+ f) ≥ 0.

We come now to the dimensionality statement for the variety Σf
µ(C) ⊆ Grd(C) × Ce, when

C is a general curve of genus g. Recalling from the Introduction that π2 : Σf
µ(C) → Ce is the

natural projection, with our notation we have dim π2

(
Σf
µ(C)

)
= e−n ≤ e−m, where e−n has

been defined as the minimal fibre dimension of the surjection DJ→Mg. We now estimate the

fibre dimension of π2 over a general point (y1, . . . , ye) ∈ π2(Σf
µ). To that end, we specialize once

more to the locus of flag curves. For an e-pointed curve [X,x1, . . . , xe] of compact type, where

the marked points are pairwise distinct smooth points of X, we denote by Σf
µ(X,x1, . . . , xe) the

subvariety of G
r
d(X) consisting of limit linear series

` =
{
`Z = (`Z , VZ) : Z is a component of X

}
∈ Grd(X)

possessing a sublimit linear series of the form

`′ =
{
`′Z =

(
LZ(−DZ), V ′Z

)
: Z is a component of X

}
∈ Gr−|µ|+fd−|µ| (X),

where supp(DZ) = Z ∩
(
(X r Z) ∪ {x1, . . . , xe}

)
. As already explained, via Proposition 2.1

we may consider a further degeneration to a flag curve [X̃, x1, . . . , xe], where X̃ = Ỹ ∪ Ỹ ′ with

Ỹ ∩ Ỹ ′ = {p} satisfies the conditions (1)-(3). Recall that x1, . . . , xe ∈ Ỹreq r {p}. It follows that
for the generic fibre dimension of π2 the following inequality holds:
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dim π−1
2 (y1, . . . , ye) ≤ dim Σf

µ

(
X̃, x1, . . . , xe

)
.

Furthermore, the dimension of Σf
µ

(
X̃, x1, . . . , xe) cannot exceed the dimension of the space of

triples
(
`′
Ỹ
, `]
Ỹ
, `
Ỹ ′

)
described earlier, which as explained, via the estimates (8), (9) and (10)

equals

dim G
r−|µ|+f
d−|µ|

(
Ỹ ,
(
p, α

`′
Ỹ (p)

))
+ dim G

|µ|−f−1
d

(
Ỹ ,
(
p, α

`]
Ỹ

(p)))
+ dim G

r
d

(
Ỹ ′, (p, α`Ỹ ′ (p))

)
= ρ(g, r, d)− f(r + 1− |µ|+ f) +m.

It follows that

dim Σf
µ(C) ≤ dim π2

(
Σf
µ(C)

)
+ dim Σf

µ

(
X̃, x1, . . . , xe

)
≤ e− n+m+ ρ(g, r, d)− f(r + 1− |µ|+ f) ≤ e− f(r + 1− |µ|+ f),

since, as explained, m ≤ n. This brings the proof of Theorem 1.1 to an end.
�

Remark 2.2. A natural extension of Theorem 1.1 could be to consider the transversality of curves
C ⊆ Pr with respect to non-linear spaces. For instance, staying at the level of space curves,
it is expected that a general curve C ⊆ P3 has finitely many 8-secant conics (but no 9-secant
conics), finitely many 12-secant twisted cubics (but not 13-secant twisted cubics) and so on.
The smooth curves confirming this expectation have been recently characterized as those for
which the blow-up of Pr along C yields a threefold with big and nef anticanonical divisor, see
[BL]. The (virtual) number of 8-secant conics to C ⊆ P3 has been computed by Katz [K] as an
iteration of multiple point formulas. It would be interesting to have a study of the enumerative
validity of this and other similar formulas mirroring Theorem 1.1. In this case however more
subtle phenomena, related to the (Strong) Maximal Rank Conjecture [AF, Conjecture 5.1], must
come into play and which go beyond the Brill-Noether genericity of the curve in question. It is
for instance clear that whenever C ⊆ P3 lies on a quadric there is a positive dimensional family
of 8-secant conics, so at the very least these curves will have to be excluded, probably other as
well.
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