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Abstract In a central limit type result it has been shown that the pth power variations
of an α-stable Lévy process along sequences of equidistant partitions of a given time
interval have α

p -stable limits. In this paper we give precise orders of convergence
for the distances of the approximate power variations computed for partitions with
mesh of order 1

n and the limiting law, measured in terms of the Kolmogorov-Smirnov
metric. In case 2α < p the convergence rate is seen to be of order 1

n , in case α < p <

2α the order is n1− p
α .

Keywords Lévy process ·Stable process ·Power variation ·Central limit theorem ·
Fourier transform ·Tail probability ·Rate of convergence ·Empirical distribution
function ·Minimum distance estimator ·Brownian bridge
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1 Introduction

In Ditlevsen (1999) it was suggested to model a paleo-climatic temperature time
series representing measurements extending over the last glacial period, and found
in ice cores obtained from a drilling in the Greenland ice shield, by stochastic
dif ferential equations (SDE) driven by additive Lévy processes. By an elementary
correlation analysis it was argued that an α-stable Lévy noise with α = 1.75 fits
the data best. To make this claim accessible to a statistical analysis, in Hein et al.

J. M. Gairing (B) · P. Imkeller
Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
e-mail: gairing@math.hu-berlin.de

P. Imkeller
e-mail: imkeller@math.hu-berlin.de



74 Methodol Comput Appl Probab (2015) 17:73–90

(2010) it was proposed to choose the power variations of the diffusion modeled by
the time series as test statistics. For this purpose it was necessary to investigate the
asymptotic behavior of variations of power p, taken along a partition of the time axis
by equidistant intervals of length of the order 1

n , of trajectories of α-stable processes,
and more generally of trajectories of diffusion processes with additive α-stable noise.
In a functional central limit type result, it was shown that as n → ∞, the laws of
the power variations taken over intervals [0, t] and considered as processes in the
variable t, weakly converge to the law of an α

p -stable process.
In this paper, our goal is to prepare the construction of a statistical test with

confidence bands for the right α in the paleo-climatic series considered by Ditlevsen
(1999), by evaluating the rates of convergence in the previously sketched central
limit theorem as the mesh of the partition sequence along which p-variations are
calculated, tends to infinity. In fact, we compare the distance of the laws of the
power variations taken on time grids of order 1

n with the laws of the limiting α
p -stable

process, in terms of the Kolmogorov-Smirnov metric. In our main result (Theorem
2) we prove that the convergence order is as fast as O( 1

n ) in case 2α < p, of order

O(
log n
n ) if 2α = p, of order O(n1− p

α ) as long as α < p < 2α, of order O(
(logn)2

n ) if
p = α, and of order O(n1−2 p

α ) in case α
2 < p < α. Its proof is mainly based on a

direct estimate of the Kolmogorov-Smirnov distance of two probability measures
by integrals of their characteristic functions on finite intervals [−T,T], up to an
error term converging to 0 as T → ∞. The exact convergence rates result from
asymptotic expansions of the characteristic functions of appropriate functionals of
stable processes, that in turn can be derived from a careful treatment of integrals of
asymptotic expansions of tail probabilities for stable random variables, obtained in
Uchaikin and Zolotarev (1999).

With a view towards the construction of a minimum-distance estimator we con-
sider the empirical disitribution of an i.i.d. sample of approximate p-variations of
α-stable processes. We show that their standardized Kolmogorov-Smirnov-distance
from the α/p-stable limit fluctuates according to the supremumof a Brownian bridge
as expected from empirical process theory.

The material of this paper is organized as follows. An introductory Section 2
explains the different types of stable distributions and processes we consider, and
states the central limit theorem for p-variations of α-stable processes. In the short
Section 3 we state our main result, which is carefully derived in Section 4. Its main
ingredients, asymptotic expansions of tail probabilities, and the resulting asymptotic
expansions of characteristic functions of stable laws, are treated in Sections 4.1
and 4.2.

2 Notation and Preliminaries

The model dynamics considered in Ditlevsen (1999) and Hein et al. (2010) are
governed by an SDE of the form

Xt = x +
∫ t

0
f (s, Xs)ds + Lt , t ≥ 0 . (1)

Here f = − ∂
∂xU can be thought of as the gradient of a pseudo potential describing

simple features of the climate system. The noise process L is assumed to be an
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α-stable Lévy process. Loosely speaking L is a time homogeneous stochastic process
with independent increments and stochastically continuous trajectories. It is also
standard to consider a version that has right continuous trajectories with left limits
(see Sato 1999). Stable processes form the important subclass of self similar Lévy

processes, i.e. they admit a scaling Lat
d= a1/αLt for any a > 0 with α ∈ (0, 2], where

d= denotes equality in distribution. This, together with additivity, is the key to the
validity of a central limit theorem. The one dimensional marginals of stable processes
are α-stable random variables with characteristic function EeiλLt = etψ(λ) where ψ is
the second characteristic of an α-stable law.

In general four parameters are required to fully describe a one dimensional stable
law, a location parameter μ ∈ R, a scale parameter c > 0, a skewness parameter β ∈
[−1, 1] and the tail index α ∈ (0, 2]. Then ψ can be written as

ψ(λ) =

⎧⎪⎨
⎪⎩

−cα|λ|α
(

1 − iβsign(λ) tan
πα

2

)
+ iμλ , α �= 1,

−c|λ|
(

1 + iβ
2

π
sign(λ) log |λ|

)
+ iμλ , α = 1,

λ ∈ R . (A)

This is the most frequent parametrization, and we adopt the notation of Samorodnit-
sky and Taqqu (1994) in writing L1 ∼ Sα(c, β, μ). Throughout the work we will only
consider strictly stable distributions which by definition requires μ = 0. This is not a
real restriction since we only exclude a linear drift in the noise process L.

We will also need a second parametrization for strictly stable laws to obtain a
series representation of densities following Uchaikin and Zolotarev (1999). Here ψ

is expressed as

ψ(λ) = −cα|λ|αe−i π
2 δsign(λ) , λ ∈ R , (B)

with skewness parameter

δ =
⎧⎨
⎩

2

π
arctan

(
β tan

(π

2
α
))

, α �= 1,

0 , α = 1,
|δ| ≤ min{α, 2 − α} ≤ 1, (2)

and scale

c(B) =
⎧⎨
⎩
c(A) cos

(π

2
δ
)−1/α

, α �= 1

c(A) , α = 1
.

To avoid confusion we sometimes distinguish the two parametrizations by capital
letter indices S(A)

α (c, β, μ), S(B)
α (1, δ).

In Hein et al. (2010) it was observed that the variation of trajectories of the
solution X of Eq. 1 is only determined by the α-stable noise L. More precisely for
p > 0 the equidistant power variation or short p-variation

Vn
p(X)t :=

	nt
∑
i=1

|Xi/n − X(i−1)/n|p , t ≥ 0,

is considered there. They show now that in the limit the processes coincide in
Skorokhod topology, i.e. limn→∞ Vn

p(X) = limn→∞ Vn
p(L). The following functional

limit theorem for α-stable Lévy processes from Hein et al. (2010) will be the starting
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point for our investigation of convergence rates for CLT for power variations of
stable processes.

Theorem 1 Let L be a strictly α-stable Lévy process with L1 ∼ Sα(c, β, 0). If p > α/2,
then

(
Vn

p(L)t − ntBn(α, p)
)
t≥0

D−→ (L′
t)t≥0 (n → ∞) ,

in the Skorokhod topology. Here, L′ is an α/p-stable process, where L′
1 ∼ Sα/p(c′,

1, 0) with scale

c′ =

⎧⎪⎪⎨
⎪⎪⎩
cp

(
2

π
	(α)	

(
1 − α

p

)
sin

(π

2
α
)

cos

(
πα

2p

))p/α

, α �= p ,

cp
(
	(α) sin

(π

2
α
))p/α

, α = p .

(3)

The normalizing sequence (Bn(α, p))n∈N is deterministic and given by

Bn(α, p) =

⎧⎪⎪⎨
⎪⎪⎩
n−p/αE|L1|p ,

α

2
< p < α ,

E sin(n−1|L1|α) , p = α ,

0 , p > α .

(4)

Remark 1 The scaling constant c′ as a function of p is continuous at p = α because

lim
x→1

	(1 − x) cos
(π

2
x
)

= π

2
.

Also the c′ given here differs from the one given in Hein et al. (2010). Yet using
trigonometric identities and the property that

	(α)	(1 − α) = π

sin(πα)
, α �= 1 ,

we verify that they coincide avoiding the singularity at p = α in Hein et al. (2010).

3 Convergence Rates for Power Variations

3.1 Convergence Rates

Let L be an α-stable Lévy process with α ∈ (0, 2) , i.e. L1 ∼ Sα(c, β, 0). Furthermore
let

(
Vn

p(L)t
)
t≥0 be the associated realized power variation processes for some p > α

2 ,
and n ∈ N. By convergence of the one dimensional marginals the random variables
Vn

p(L)t converge to an α-stable random variable Vp,t ∼ Sα/p(t p/αc′, 1, 0) for any fixed
t > 0, with the limiting scale c′ given in Theorem 1. The main goal of this article is
to quantify this convergence in terms of the Kolmogorov-Smirnov or uniform metric
given here for two real valued random variables X, Z by

D(P, Q) = sup
x∈R

|P (X ≤ x) − P (Z ≤ x) | .
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Theorem 2 (Convergence rates) Let t > 0 and α
2 < p. Then we have

D(
Vp

n (L)t,Vp,t
) =

⎧⎪⎨
⎪⎩
O(n−1), if 2α < p ,

O(log(n)n−1), if p = 2α ,

O(
n1− p

α

)
, if α < p < 2α .

For α
2 < p ≤ α we have

D( (
Vp

n (L)t − ntBn(α, p)
)
,Vp,t

) =
{O (

log(n)2n−1
)
, if p = α ,

O(
n1−2 p

α

)
, if

α

2
< p < α .

Before we give the proofs in Section 4 let us investigate the consequences of these
results to an estimation procedure.

3.2 Simple Minimum Distance Estimation

We have derived explicit bounds on the rate of convergence to the α/p-stable
limit distribution of the power variation functionals Vp

n (X) of sample paths. This
knowledge enables us to set up a simple minimum distance fitting procedure for the
parameters of the noise in the spirit of Hein et al. (2010).

Assume for the rest of this section that we observe an independent sequence
{(X (i)

t )0≤t≤T}i∈N of copies of the process X , and for simplicity set T = 1. (Al-
ternatively one could also observe the process X on disjoint intervals of length
T = 1). For any m, n we obtain an i.d.d.sample {Vp

n
(i)}1≤i≤m by computing power

variations Vp
n (X (i)) along equidistant partitions of length n. Denote by μn

m =
1
m

∑m
i=1 δ(· − Vp

n
(i)

) the empirical measure obtained from this sample and by Sα/p =
Sα/p(c′, 1, 0) the stable limit distribution.

The aim is to derive the asymptotic distribution of the quantity D(μn
m,Sα/p) and

under mild conditions on m and n as they tend to infinity.
In classical empirical process theory the Kolmogorov-Smirnov statistic 
m =

D(μm, μ) that measures the distance between the empirical distribution of a sample
μm to the underlying distribution μ, is extensively studied. It is well known that 
m

is distribution free—meaning that its distribution does not depend on μ, and that√
m
m is asymptotically distributed like B∗ := max0≤t≤1 |B0

t |, for a Brownian bridge
B0 independent of the sample (e.g. see Billingsley 1999).

The question arises under what conditions onm, n this limit behavior carries over
to the statistic D(μn

m,Sα/p).

Theorem 3 Let (nm)m∈N be a increasing sequence of integers with limm→∞ nm = ∞
such that the limit of the following expressions is zero

0 = lim
m→∞

⎧⎪⎨
⎪⎩

√
m/nm, if 2α < p ,√
m · log(nm)/nm, if p = 2α ,√
m · (nm)1− p

α , if α < p < 2α .

Then there is a Brownian Bridge B0 independent of X such that
√
mD(

μnm
m ,Sα/p

) d−→ B∗ asm → ∞ ,

where B∗ := max0≤t≤1 |B0
t |.
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Proof If we denote byμnm the distribution of Vp
nm (X1), the triangle inequality implies

√
m|D(

μnm
m ,Sα/p

) − D(μnm
m , μnm)| ≤ √

mD(μnm ,Sα/p) .

Since the Kolmogorov-Smirnov statistic is distribution free, the distribution of the
second summand on the left hand side is the one of 
m independent of nm and
asymptotically that of B∗ as m tends to infinity. The right hand side is converging
to zero under the conditions on m, nm if we recall the orders given in Theorem 2.
Hence convergence to B∗ pertains asm goes to infinity. ��

4 Proofs for the Uniform Distance

In this section we verify the rates claimed in Theorem 2. To simplify the notation,
throughout the proof we introduce the “centered” variation

Yp
n (L) := (

Vp
n (L)1 − nBn(α, p)

)
, n ∈ N, p > 0 .

We identify its characteristic function to be

ϕYp
n
(λ) =

(
ϕ|L1 |p

(
λ

np/α

))n

e−iλnBn(α,p).

Since (Yp
n (L))n∈N converges to the value at time 1 of the α/p-stable Vp,· with

characteristic function γ (λ) = exp(−ψ(λ)), where �ψ(λ) = σ |λ| α
p (and σ = c

α
p ), it is

clear that the product

η = ϕ|L1 |p
(

λ

np/α

)
e

ψ(λ)

n −iλBn(α,p) (5)

converges to 1 for any λ ∈ R. The product is of the form η = η(ξ) with ξ = λ
np/α

except in case α = p which we will neglect for convenience of notation. This is due
to Eq. A leading to the simple relationship ψ(λ)

n = ψ( λ
np/α ) = ψ(ξ), and the equation

λBn(α, p) = λ
np/α E(|L1|p) = ξE(|L1|p) which follows from Eq. 4.

We use a refined version of CLTs with stable limit laws (see Paulauskas 1974;
Christoph andWolf 1992), where the order is refined to regular variation at 0. A real
valued function H ≥ 0 is said to be regularly varying at 0 of index β ≥ 0 (see e.g.
Bingham et al. 1989) if for all a > 0

lim
x→0

H(ax)
H(x)

= aβ .

Theorem 4 Assume that we have |η(ξ) − 1| = O(H(ξ )) in the framework just ex-
plained, with a function H ≥ 0 regularily varying at zero of index β > α

p ∨ 1. Then

D(
Yp

n (L)t,Vp,t
) = O(nH(n−p/α)) + O(n−p/α) .

Proof The well known smoothness inequality of Berry and Esséen (e.g. Feller (1971,
lemma XVI.3.1, p. 537)) relates the distance of distribution functions to the distance
of characteristic functions. Here it reads

D(
Yp

n (L)t,Vp,t
) ≤ 1

π

∫ T

−T

∣∣∣∣ϕYp
n
(λ) − γ (λ)

λ

∣∣∣∣ dλ + 24m
πT

, (6)
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for any T > 0 and γ (λ) = exp(−ψ(λ)). If f denotes the density of Vp,t, m can be
chosen according to

sup
x∈R

f (x) ≤ 1

π

∫ ∞

0
exp(−σλ

α
p )dλ = σ

p
α

	(
p
α
)

π
=: m < ∞ .

We estimate as follows

|ϕYp
n
(λ) − e−ψ(λ)| =

∣∣∣∣
(

ϕ|L1 |p
(

λ

np/α

))n

e−iλnBn(α,p) − e−ψ(λ)

∣∣∣∣
= e−σ |λ| α

p |ηn − 1| = e−σ |λ| α
p |(η − 1 + 1)n − 1|

≤ e−σ |λ| α
p
n|η − 1| exp(n|η − 1|) ,

where the last line results from an elementary estimation starting with the binomial
formula. We will chose T = τnp/α for a scaling constant τ to be determined. By this
choice the second summand of Eq. 6 is O(n−p/α). For the first term, we find the
estimation

∫ T

−T

∣∣∣∣ϕYp
n
(λ) − γ (λ)

λ

∣∣∣∣ dλ

≤ 2
∫ τnp/α

0

n|η (
λ

np/α

) − 1|
λ

exp

(
n|η

(
λ

np/α

)
− 1| − σλα/p

)
dλ

≤ 2
∫ τnp/α

0

n
λ
H

(
λ

np/α

)
exp

(
−

(
σ − h

(
λ

np/α

))
λα/p

)
dλ

Here for ξ ∈ R we express H(ξ ) = h(ξ )ξα/p with a function h which is regularly
varying at zero of index β − α

p > 0. In particular h(ξ ) = o(1). By choosing τ small
enough we can therefore guarantee that σ − h(ξ ) ≥ κ for some κ > 0 for 0 ≤ ξ ≤ τ .
Hence we can further estimate

∫ T

−T

∣∣∣∣ϕYp
n
(λ) − γ (λ)

λ

∣∣∣∣ dξ ≤ 2
∫ ∞

0

n
λ
H

(
λ

np/α

)
exp

( − κλα/p)dλ.

In order to obtain the asymptotic equivalence we apply Fatou’s lemma to the fraction

lim sup
n→∞

[(
nH

(
1

np/α

))−1 ∫ ∞

0

n
λ
H

(
λ

np/α

)
exp

( − κλα/p)dλ

]

≤
∫ ∞

0
lim sup
n→∞

1

λ
H

(
λ

np/α

) /
H

(
1

np/α

)
exp

( − κλα/p)dλ

=
∫ ∞

0
λβ−1 exp

( − κλα/p)dλ = p
α

κ− p
α
β	

( p
α

β
)

< ∞ .

This completes the proof. ��
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Remark 2 If |η(ξ) − 1| is actually of polynomial order O(|ξ |r) for r > α/p as consid-
ered in the general CLT in Paulauskas (1974) and Christoph and Wolf (1992), the
condition |η(ξ) − 1| = o(ξα/p) holds and we recover

D(
Yp

n (L)t,Vp,t
) = O(n−(rp/α−1∧p/α)) ,

since then |η(ξ) − 1| = O(n−rp/α). This will be sufficient for all cases except p = α,
p = 2α (c.f. Lemma 5).

Recalling the definition of η in Eq. 5 we can write

|η − 1| = eσ
|λ|
n

α/p|ϕ|L1|p
(

λ

np/α

)
− e− ψ(λ)

n +iλBn(α,p)| .

Since we estimate this quantity on the interval defined by |λ|
np/α ≤ 1, it is enough to

bound

|ϕ|L1|p
(

λ

np/α

)
− e− ψ(λ)

n +iλBn(α,p)| ≤ |ϕ|L1|p
(

λ

np/α

)
− 1 + ψ(λ)

n
− iλBn(α, p)|

+|ψ(λ)

n
− iλBn(α, p)|2 . (7)

In the last inequality we use the fact that the real part in the exponent is negative.
The second summand of the right hand side is known as it consists of the second
characteristic of the stable limit and deterministic normalization constants. In order
to control the behavior of the first summandwe establish an asymptotic expansion for
the characteristic function ϕ|L1 |p in the following lemma, normalized by the numbers
Bn(α, p),n ∈ N.

Lemma 5 Let ϕ|L1 |p be the characteristic function of the random variable |L1|p and
(Bn(α, p))n∈N the normalizing sequence of Theorem 1. If λ and n are such that ξ =
|λ|
np/α ≤ 1 we have the following representation

ϕ|L1 |p(ξ ) − 1 + ψ(ξ) − iξE(|L1|p) = 1 − ψ(ξ) + R(ξ ) ,

with the convention that the expectation is set to zero if p > α. The remainder term R
is of order

R(ξ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(|ξ |2 α
p
)
, if p > 2α ,

O(|ξ | log
(|ξ |−1

))
, if p = 2α ,

O(|ξ |1), if α < p < 2α ,

O(|ξ |2), if
α

2
< p < α .

If p = α, we have

ϕ|L1 |α
(

λ

n

)
− 1 + ψ

(
λ

n

)
− iλE sin (n|L1|α) = 1 − ψ

(
λ

n

)
+ R(λ, n) ,

with R(λ,n) = O(
log( n

λ
)

λ2∨|λ|
n2

)
.
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The preceding lemma provides all the necessary tools needed to prove our main
result. Since the lemma just collects the explicit error bounds stated in the Lemmas 7,
8 and 9 a formal proof is omitted.

Proof (Proof of Theorem 2) First consider the case p �= α. We have seen that
it suffices to bound Eq. 7. Recalling our convention for the expectation to be
interpreted as zero in case p > α, we see that the second term asymptotically satisfies

|ψ
(

λ

np/α

)
− i

λ

np/α
E(|L1|p)|2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O
(( |λ|

np/α

)2 α
p

)
, if p > α ,

O
(( |λ|

np/α

)2
)

, if
α

2
< p < α .

Writing ξn = λ
np/α , we observe that the resulting convergence orders for n → ∞ are

non-slower than the ones given in Lemma 5. Thus the right hand side of Eq. 7 is of
the order stated in Lemma 5. We can then apply Theorem 4 with H = R. Retaining
only the dependence on n to verify the hypotheses of Theorem 4, we obtain

|η(ξn) − 1| =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(n−2), if p > 2α ,

O(n−2 log n), if p = 2α ,

O(n− α
p ), if α < p < 2α ,

O(n−2 α
p ), if

α

2
< p < α .

This completes the proof for p �= α. Let now p = α. Here Lemma 10 assures that

|�ψ(λ)

n
− λE sin(n−1|L1|α)| = O

(
λ

n
log

(n
λ

))
.

Taking the square we see that the convergence order for n → ∞ is actually slower
than the rate resulting from Lemma 5 since the logarithm appears squared. Thus
we obtain the convergence order O( λ2∨λ

n2 log
(
n
λ

)2
). Since only regular variation at

zero determines the order, Theorem 4 applies with H(ξ ) = ξ 2 log(ξ−1)2. The proof is
complete. ��

4.1 Tail Probabilities

In this subsection we obtain a series expansion of the tail probabilities of |X|p , p > 0,
with a strictly stable random variable X ∼ S(A)

α (c, β, 0). We look for an asymptotic
expansion in x > 0 for the quantity

P[|X|p ≥ x] , p > 0 , x > 0 .

The tail probabilities determine the characteristic function of |Lα|p which we
investigate in the following subsection. It is possible to derive series expansions
by inverting Fourier transforms. For the density of a strictly stable distribution in
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parametrization (B), Uchaikin and Zolotarev (1999, p. 115) give a series expansion
with negative powers. For any N ∈ N the density is given by

f δ
α (x) = π−1

N∑
k=1

(−1)k−1 	(αk + 1)

k! sin(kρ+π)x−αk−1

+ π−1 	(α(N + 1) + 1)

(N + 1)! θ(x)x−α(N+1)−1 , |θ(x)| ≤ 1, x > 0 ,

where f δ
α (−x) = f−δ

α (x), and

ρ+ := α + δ

2
, ρ− := α − δ

2
.

The quantities θ as well as �(±) will be used to denote parameter dependent small
quantities bounded by one.

We recall that we have S(B)
α (1, δ) = Sα(cos( π

2 δ)1/α, β, 0). This implies that for X ∼
S(A)

α (c, β, 0) we have

b · X ∼ S(B)
α (1, δ) with b =

⎧⎨
⎩
c−1 cos

(π

2
δ
)1/α

, α �= 1 ,

c−1 , α = 1 ,

and the parameter δ chosen according to Eq. 2. Then we have for x > 0

P[|X|p ≥ x] = P[X ≤ −x1/p, X ≥ x1/p] =
∫ −bx1/p

−∞
f−δ
α (|y|)dy+

∫ ∞

bx1/p
f δ
α(y)dy,

where

∫ ∞

bx1/p
f δ
α (y)dy = π−1

N∑
k=1

(−1)k−1 	(αk + 1)

k! sin(kρ+π)

∫ ∞

bx1/p
y−αk−1dy

+ π−1 	(α(N + 1) + 1)

(N + 1)!
∫ ∞

bx1/p
θ(y)y−α(N+1)−1dy

= π−1
N∑

k=1

(−1)k−1 	(αk + 1)

k!αk sin(kρ+π)b−kαx−kα/p

+ π−1 	(α(N + 1) + 1)

(N + 1)!α(N + 1)
b−α(N+1)�+(x)x−(N+1)α/p,

and �+(x) is determined by

�+(x) = α(N + 1)

∫ ∞

1
θ(bx1/pz)z−α(N+1)−1dz,
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thus |�+(x)| ≤ 1. And similarly

∫ −bx1/p

−∞
f−δ
α (|y|)dy =

∫ ∞

bx1/p
f−δ
α (y)dy

= π−1
N∑

k=1

(−1)k−1 	(αk + 1)

k!αk sin(kρ−π)b−kαx−kα/p

+ π−1 	(α(N + 1) + 1)

(N + 1)!α(N + 1)
b−α(N+1)�−(x)x−(N+1)α/p .

Re-substituting b we obtain for x > 0

P[|X|p ≥ x] = π−1
N∑

k=1

(−1)k−1 	(αk + 1)

k!αk
{
sin(kρ+π) + sin(kρ−π)

}
b−kαx−kα/p

+ π−1 	(α(N + 1) + 1)

(N + 1)!α(N + 1)
b−α(N+1)

{
�+(x) + �−(x)

}
x−(N+1)α/p

= 2

π

N∑
k=1

(−1)k−1 	(αk)

k! cαk sin(
π

2
αk) cos(

π

2
δk) cos(

π

2
δ)−kx−kα/p

+ 2

π

	(α(N + 1))

(N + 1)! cα(N+1) cos(
π

2
δ)−(N+1)�(x)x−(N+1)α/p .

Here � = 1
2 (�+(x) + �−(x)), with |�| ≤ 1, and we made use of the trigonometric

identity

sin(kρ+π) + sin(kρ−π) = 2 sin
(α

2
kπ

)
cos

(
δ

2
kπ

)
.

With these arguments we have proven the following lemma.

Lemma 6 (Tail probabilities) Let X ∼ S(A)
α (c, β, 0) be a random variable with a

strictly stable distribution, and let δ be given by Eq. 2. For p > 0 and any N ∈ N we
then have

P[|X|p ≥ x] =
N∑

k=1

Akx−kα/p + ĀN+1�(x)x−(N+1)α/p , x > 0 , (8)

where |�(x)| ≤ 1, and for 1 ≤ k ≤ N + 1 we have

Ak = 2

π
(−1)k−1 	(αk)

k! cαk sin
(π

2
αk

)
cos

(π

2
δk

)
cos

(π

2
δ
)−k

,

Āk = 2

π

	(αk)

k! cαk cos
(π

2
δ
)−k

.

4.2 Expansion of the Characteristic Function

Let L be a strictly stable Lévy process. Then L1 ∼ Sα(c, β, 0) is a strictly stable
random variable. We want to calculate the first terms in a power series expansion
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for the characteristic function ϕ|L1 |p of |L1|p, p > 0, and give an estimate for the
remainder. We will establish an equation of the following form

ϕ|L1 |p
(

λ

np/α

)
− iλBn(α, p) = 1 − ψ(λ)

n
+ R

for λ in a certain neighborhood of zero. Let exp(−ψ(λ)) be the characteristic function
of the α

p -stable limit distribution as given in Theorem 1. If p �= α we recall that ψ(λ)

is of the form −σ |λ| α
p , σ > 0 so that we can simplify the expansion using ξ = λ

np/α .
This will be done in three lemmas that cover the cases p > α, p = α and α > p > α

2
separately. To calculate moments, we shall use the following equation relating them
to tail probabilities. For X ≥ a and g ∈ C1(R+) we may write

E(g(X)) =
∫ ∞

a
g(x)dP(X ≤ x) = g(a) +

∫ ∞

a
g′(x)P(X > x)dx . (9)

If p > α, the normalizing sequence (Bn(α, p))n∈N is zero and the desired expan-
sion is stated in the following first approximation lemma.

Lemma 7 For p > α and |ξ | ≤ 1 we have

ϕ|L1|p(ξ ) = 1 − A1|ξ | α
p 	

(
1 − α

p

)
cos

(
πα

2p

) (
1 − i sign(ξ ) tan

(
πα

2p

))
+ R(ξ )

For the remainder term R we have

|R(ξ )| =
{
O

(
|ξ |1∧2 α

p

)
, if p �= 2α ,

O (|ξ | log
(|ξ−1|)) , if p = 2α .

Proof Throughout the proof we only consider ξ > 0. The case ξ < 0 just amounts to
considering the complex conjugate. Integration by parts and the series expansion (8)
yield for N ∈ N

ϕ|L1 |p (ξ ) = Eeiξ |L1|p = 1 +
∫ ∞

0
(iξ)eiξxP(|L1| > x1/p)dx

= 1 +
N∑

k=1

Akξ

∫ ∞

0
(ieiξx)x−k α

p dx + ĀN+1ξ

∫ ∞

0
(ieiξx)�(x)x−(N+1) α

p dx

= 1 +
N∑

k=1

Akξ
k α

p

∫ ∞

0
(ieiy)y−k α

pdy + ĀN+1ξ

∫ ∞

0
(ieiξx)�(x)x−(N+1) α

pdx.

We choose N := max(k ∈ N : k α
p < 1) ≥ 1 such that the integrals in our asymptotic

expansion are of the form
∫ ∞

0

(
ieiy

)
y−bdy = −	(1 − b ) cos

(π

2
b

)(
1 − i tan

(π

2
b

))
,

for exponents satisfying 0 < b < 1. If we exclude (N + 1) α
p = 1, the last integral is

finite and the lemma is proven. For p < 2α observe that N = 1 and thus no error
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term of order O(ξ
2 α

p ) exists. It remains to consider the case (N + 1) α
p = 1. The last

integral takes the form
∫ ∞

0
iξeiξx ĀN+1�(x)x−1dx .

Since �(x) is not known explicitly we divide the integral into
∣∣∣∣
∫ 1

0
iξeiξx ĀN+1�(x)x−1dx

∣∣∣∣

=
∣∣∣∣∣
∫ 1

0
(iξ)eiξx

(
P(|L1| > x1/p) −

N∑
k=1

Akx
−k α

p

)
dx

∣∣∣∣∣

≤
(

1 +
N∑

k=1

p
kα

|Ak|
)

ξ ,

and ∣∣∣∣ĀN+1

∫ ∞

1
iξeiξxx−1dx| = |ĀN+1

∫ ∞

ξ

iξeiyy−1dy
∣∣∣∣

≤ |ĀN+1|ξ
∣∣∣∣log(1) − log(ξ ) +

∫ ∞

1

i cos(y) − sin(y)
y

dy
∣∣∣∣

= |ĀN+1|ξ
(
log(ξ−1) + |si(1)| + |ci(1)|) .

The trigonometric integrals ci(1) and si(1) are finite constants, given by the sine-
(resp. cosine-) integral function. Hence we obtain the desired logarithmic bound. ��

For α
2 < p < α we normalize by Bn(α, p) = n−p/αE|L1|p, n ∈ N. The correspond-

ing expansion is given next.

Lemma 8 Let α
2 < p < α. Then we have for |ξ | ≤ 1

ϕ|L1|p(ξ )−iξE|L1|p=1−	

(
1 − α

p

)
cos

(
πα

2p

)(
1−i sign(ξ ) tan

(
πα

2p

))
A1ξ

α/p+R(ξ )

with a remainder term R bounded according to |R(ξ )| = O(ξ 2).

Proof Again is suffices to consider ξ > 0. By integration by parts and the series
expansion of Lemma 6 for N = 1 we get the following expansion

ϕ|L1|p(ξ ) − iξE|L1|p =
∫ ∞

0
eiξxdP(|L1|p ≤ x) − iξ

∫ ∞

0
x dP(|L1|p ≤ x)

= 1 + iξ
∫ ∞

0

(
eiξx − 1

)
P(|L1|p > x)dx

= 1 + iξ
α
p

∫ ∞

0

(
eiy − 1

)
A1y

− α
pdy

+ iξ
∫ ∞

0

(
eiξx − 1

)
Ā2�(x)x−2 α

pdx .



86 Methodol Comput Appl Probab (2015) 17:73–90

Again we change the variable writing y = ξx. The first integral is evaluated for 1 <

b = α
p < 2 by

∫ ∞

0

(
eiy − 1

)
y−bdy = 	(1 − b )

(
sin

(π

2
b

)
+ i cos

(π

2
b

))
,

= −	(1 − b ) cos
(π

2
b

)(
1 − i tan

(π

2
b

))
A1 .

The remainder term R consists of the second integral. We make use of |eiy − 1| ≤
|y| and a re-substitution of the tail expansion. Integrating on [0, 1] we then have

|iξ
∫ 1

0

(
eiξx − 1

)
Ā2�(x)x−2 α

pdx| ≤ ξ

∫ 1

0
ξx|P (|L1| > x1/p) − A1x

− α
p |dx

≤ ξ 2
∫ 1

0
x
(
1 − |A1|x− α

p
)
dx

≤
(

1

2
+ |A1|

2 − α
p

)
ξ 2 .

Let 0 < a < 1 < b < 2 and calculate∣∣∣∣
∫ ∞

a

(
eiy − 1

)
y−2bdy

∣∣∣∣ ≤
∫ 1

a
y1−2bdy +

∫ ∞

1
2y−2bdy

≤ 1 − a2(1−b)

2(1 − b )
+ 2

(2b − 1)
.

If we set y = ξx, b = α
p and a = ξ , the above estimate yields

∣∣∣∣iξ
∫ ∞

1

(
eiξx − 1

)
Ā2�(x)x−2 α

pdx
∣∣∣∣ =

∣∣∣∣ξ 2 α
p

∫ ∞

ξ

(
eiy − 1

)
Ā2�

(
ξ−1y

)
y−2 α

pdy
∣∣∣∣

≤ |Ā2|ξ 2 α
p

⎛
⎝1 − ξ

2(1− α
p )

(
α
p − 1

) + 2(
2 α
p − 1

)
⎞
⎠

≤ 2|Ā2|
⎛
⎝ 1(

α
p − 1

) + 1(
2 α

p − 1
)

⎞
⎠ ξ 2 .

In total we get a remainder term of the required form. ��

For p = α a normalization by Bn(α, p) = E sin(n−1|L1|α), n ∈ N, is required. In
this case it is not possible to state the lemma for a general argument ξ because the
normalization does not depend explicitly on a parameter ξ = λ

n , but implicitly as n
appears inside the sine.

Lemma 9 Let p = α,n ∈ N. Then we have for 0 < λ < n

ϕ|L1 |α
(

λ

n

)
− iλE sin(n−1|L1|α) = 1 − π

2
A1

λ

n

(
1 − i

2

π
log(λ)

)
+ R

(
λ

n

)

with a remainder term R of order O
(

λ2∨|λ|
n2 log( n

λ
)
)
.
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Proof As in the previous proofs, the integration by parts formula (9) and the series
expansion of Lemma 6 for N = 1 yield the following expansion

ϕ|L1 |α
(

λ

n

)
− iλE sin(n−1|L1|α) =

∫ ∞

0

(
ei

λ
n x − iλ sin

( x
n

))
dP(|L1|α ≤ x)

= 1 +
∫ ∞

0

(
i
λ

n
ei

λ
n x − i

λ

n
cos

( x
n

))
P(|L1|α > x)dx

= 1 + λ

n

∫ ∞

0

(
− sin

(
λ

n
x
) (

cos

(
λ

n
x
)

+ i − cos
( x
n

)))
A1x−1dx

+ λ

n

∫ ∞

0

(
− sin

(
λ

n
x
)

+ i
(

cos

(
λ

n
x
)

− cos
( x
n

)))
Ā2�(x)x−2dx .

Let us consider the real part of the first integral. This time set y = λ
n x to get

∫ ∞

0

λ

n
sin

(
λ

n
x
)
A1x−1dx = λ

n
A1

∫ ∞

0

sin(y)
y

dy = λ

n
A1si(0) = λ

n
π

2
A1 .

We identify this number as the real part of the desired constant. We evaluate the
imaginary part, to get

∫ ∞

0

λ

n

(
cos

(
λ

n
x
)

− cos
( x
n

))
A1x−1dx = λ

n
A1

∫ ∞

0

cos(λy) − cos(y)
y

dy

= λ

n
A1 log(λ) .

Now combing the real and the imaginary part we obtain the constant stated in the
lemma. It remains to give a bound on R corresponding to the second integral. Again
we will consider the integration domains [0, 1] and ]1,∞[ separately. For the former
we have
∣∣∣∣
∫ 1

0

λ

n
sin

(
λ

n
x
)
Ā2�(x)x−2dx

∣∣∣∣ ≤ λ

n

∫ 1

0
sin

(
λ

n
x
) ∣∣P(|L1|α > x) − A1x−1

∣∣ dx

≤ λ

n

(∫ 1

0

λ

n
xdx + |A1|

∫ 1

0

λ

n
dx

)
= λ2

n2

(
1

2
+ |A1|

)
,

and
∣∣∣∣
∫ 1

0

λ

n

(
cos

(
λ

n
x
)

− cos
( x
n

))
Ā2�(x)x−2dx

∣∣∣∣

≤ λ

n

∫ 1

0

∣∣∣∣cos

(
λ

n
x
)

− cos
( x
n

)∣∣∣∣
∣∣P(|L1|α > x) − A1x−1

∣∣ dx
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≤ λ

n

(∫ 1

0

∣∣∣∣λnx − x
n

∣∣∣∣ dx + |A1|
∫ 1

0

∣∣∣∣λnx − x
n

∣∣∣∣ x−1dx
)

= λ|λ − 1|
n2

(
1

2
+ |A1|

)
.

Here to estimate the integrals involving the cosine we use | cos(x) − cos(y)| ≤ |x − y|
for all x, y ∈ R. Now let us argue for the latter integral on ]1, ∞[. Substituting y = λ

n x,
we can bound the real part by

λ

n

∫ ∞

1

∣∣∣∣sin

(
λ

n
x
)
Ā2x−2

∣∣∣∣ dx = λ2

n2
|Ā2|

∫ ∞

λ
n

| sin(y)y−2|dy

≤ λ2

n2
|Ā2|

∫ ∞

λ
n

1 ∧ y
y2

dy = λ2

n2
|Ā2|

(
1 − log

(
λ

n

))
.

Similarly we can give a bound for the imaginary part, given by

λ

n

∫ ∞

1

∣∣∣∣
(

cos

(
λ

n
x
)

−cos
( x
n

))
Ā2x−2

∣∣∣∣ dx = λ2

n2
|Ā2|

∫ ∞

λ/n

∣∣∣cos(y) − cos
( y

λ

)∣∣∣ y−2dy

≤ λ2

n2
|Ā2|

(∫ 1

λ/n

∣∣∣∣1− 1

λ

∣∣∣∣ y−1dy+
∫ ∞

1
2y−2dy

)

≤ λ

n2
|Ā2|

(
−|λ − 1| log

(
λ

n

)
+ 2λ

)
.

Summing everything up we finally obtain

|R
(

λ

n

)
| ≤

(
1 + 2|A1| +

(
3 − 2 log

(
λ

n

))
|Ā2|

)
λ2 ∨ |λ|

n2
.

��

Lemma 10 Let n ∈ N. We have for 0 < λ < n∣∣∣∣A1
λ

n
log(λ) + λE sin(n−1|L1|α)

∣∣∣∣ ≤ λ

n

(
|A1| log

(n
λ

)
+ |E sin(|L1|α)| + 2 + ϑ

)
.

We have ϑ := sup0<x≤1 �(x)/x < ∞, where � is the function that appears in Lemma 6
in the second order series expansion of P(|L1|α > x).

Proof As in the previous proofs we use integration by parts, with the result

A1
λ

n
log(λ) + λE sin(n−1|L1|α)

= A1
λ

n

∫ ∞

0

cos(λx) − cos(x)
x

dx + λ

n

∫ ∞

0
cos(n−1|L1|α)P(|L1|α > x)dx

= λ

n

∫ ∞

0
A1

cos(λx) − cos(x)
x

+ cos(n−1x)
{
A1

x
+ Ā2�(x)x−2

}
dx

= λ

n

∫ ∞

0
A1

cos(λx) + cos(n−1x) − 2 cos(x)
x

dx
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+
∫ ∞

0
A1

cos(x)
x

+ Ā2
cos(n−1x)

x2
�(x)dx

= A1
λ

n
log(λ/n) + λ

n

∫ ∞

0
A1

cos(x)
x

+ Ā2
cos(x)
x2

�(x)dx

+ Ā2
λ

n

∫ ∞

0

cos(n−1x) − cos(x)
x2

�(x)dx

= A1
λ

n
log(λ/n) + λ

n
E sin(|L1|α)

+ Ā2
λ

n

∫ ∞

0

cos(n−1x) − cos(x)
x2

�(x)dx.

The first two terms are easily controlled. We have to focus on the last integral. We
will show that it is finite and bounded. For this aim we need to analyze the behavior
of �(x) near zero. For big x we can simply estimate

∣∣∣∣
∫ ∞

1

cos(n−1x) − cos(x)
x2

�(x)dx
∣∣∣∣ ≤

∫ ∞

1

2

x2
dx = 2 .

And for small ones we get
∣∣∣∣
∫ 1

0

cos(n−1x) − cos(x)
x2

�(x)dx
∣∣∣∣ =

∣∣∣∣
∫ 1

0

cos(n−1x) − cos(x)
x

· �(x)
x

dx
∣∣∣∣

≤ ϑ

∫ 1

0

x|n−1 − 1|
x

dx = ϑ ,

where we assume that |�(x)/x| is bounded by a constant ϑ > 0.
This will finally be justified. Because P(|L1|α > 0) = 1 and by the continuity of

the distribution function of L1 we have

1 = lim
x→0

P(|L1|α > 0) = lim
x→0

{
A1x−1 + Ā2�(x)x−2

}
.

We multiply both sides by x and take the limit as x tends to zero to see

0 = lim
x→0

{
A1 + Ā2�(x)x−1

}
.

And hence limx→0 �(x)/x = −A1/Ā2. As � is continuous and bounded by one,
�(x)/x is also continuous and therefore is bounded on the interval [0, 1] by a constant
we call ϑ . ��
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