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1. Einleitung

Wir wollen uns in dieser Gruppe mit einer der wahrscheinlich verbliiffendsten Aussagen der Mathematik
befassen, dem Banach-Tarski Paradoxon. Es sagt aus, dass eine Kugel in Teile zerlegt werden kann, die,
anders zusammengesetzt, zwei volle Kugeln ergeben, jede gleich grofl wie die urspriingliche!

Dies kann man wie folgt préiziser formulieren:

Banach-Tarski-Paradoxon (1924). Es bezeichne K eine Kugel im R3. Dann gibt es paarweise dis-
junkte Teilmengen Ai, As, ..., Ay, B1, ..., B,, von K und Bewegungen g1, 92, ..., gn, b1, ..., by derart, dass
K = |_|ZL:1 ngz und K = |_|;n:1 thj~

- ‘ ‘,’J A~

N ; ¢ - | K,
S \ 5

N 7

Das Paradoxon geht sogar noch weiter und sagt, dass zwei beliebige beschrinkte Teilmengen des R3
(mit nichtleerem Inneren) ineinander zerlegt werden kénnen. Man kénnte also eine Rosine so zerlegen,
dass man mit den Teilen die gesamte Sonne ausfiillen kann. Der Beweis dieser Aussage erfordert aber
die Entwicklung umfangreicherer Theorien und technische Feinarbeit, welche den Rahmen dieses Kurses

itberschreiten.
. .0.0
— . — ‘

INlustration der stirkeren Version des Banach-Tarski Paradoxons

AT

o

Diese Aussagen klingen hochst paradox und scheinen auf den ersten Blick dem gesunden Menschenver-
stand zu widersprechen. Sie scheinen namlich die Verdopplung von Volumina zu ermdglichen. So sehr
dies auch zunéchst verbliiffen mag, wird sich nach griindlicher Analyse des Beweises des Banach-Tarski
Paradoxons zeigen, dass jenes recht schnell seine (scheinbar) paradoxe Natur verliert und zu einem ganz
gewOhnlichen mathematischen Satz wird, der bewiesen und verstanden werden kann.

Wir werden in dieser Gruppe zunéchst schrittweise den Beweis der obigen Fassung des Banach-Tarski
Paradoxons nachvollziechen und erarbeiten. Dafiir miissen wir insbesondere Erkenntnisse aus der Men-
genlehre, der Gruppentheorie sowie der linearen Algebra erarbeiten und nutzen.

Anschliefflend an den Beweis beschéftigen wir uns mit der Frage, welche Konsequenzen das Paradoxon
sowohl fiir die Mathematik als auch unsere physikalische Realitdt hat. Im Beweis werden wir aufler-
dem auf das sogenannte Auswahlaxiom angewiesen sein, dessen Annehmbarkeit in der Mathematik lange
umstritten war. Steckt in diesem also des Pudels Kern? Finden wir es gemeinsam heraus!
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2. Vorbereitungen
2.1. Grundlagen Gruppentheorie

Der Kern des Beweises beruht auf der Gruppentheorie. Deshalb ist es zun#chst sinnvoll, sich mit der
Definition von Gruppen, Gruppenoperationen sowie Bahn und Stabilisator zu beschéftigen.

Definition 1. Es sei G eine nichtleere Menge mit einer inneren Verkniipfung o. Es heifit (G, o) eine
Gruppe, wenn:

o Assoziativgesetz: Fiir alle a,b,c € G gilt (aob)oc=ao (boc).

o FEzistenz eines neutralen Elements: Es existiert ein e € G mit eoa =a = aoe fiir alle ¢ € G.

e Jedes Element ist invertierbar: Zu jedem a € G existiert ein a=! € G mit a toca=e=aoa .

Eine Gruppe, in welcher das Kommutativgesetz a o b = b o a fiir alle a,b € G gilt, nennt man abelsch.
Im Folgenden lassen wir das Verkniipfungzeichen o weg und schreiben ab anstelle von a o b. Manchmal
ersetzen wir auch o durch - zur besseren Lesbarkeit.

Einfache (nichtleere) Mengen haben selbst keine wirkliche Struktur. Es ist aber moglich, jenen mithilfe
einer Gruppe #dhnliche Struktureigenschaften zu verschaffen. Dies wird ermoglicht durch die Verwendung
von sog. Gruppenoperationen.

Definition 2. Eine Gruppenoperation einer Gruppe G auf einer nichtleeren Menge X ist eine Abbil-
dung
o Gx X=X (a,z) —aex

mit den Eigenschaften:

(1) e ez = z fiir jedes x € X und das neutrale Element e € G.
(2) (ab) ex =a e (bex) fiir alle a,b € G und z € X.

Wir sagen dann auch, dass G auf X operiert bzw. wirkt.

Wir werden, wie auch bei der Gruppenverkniipfung, im Kontext einer Gruppenoperation die Verwendung
von e unterdriicken oder durch - ersetzen.

Definition 3. Sei eine Operation von einer Gruppe G auf X gegeben und sei z € X. Dann heifit
Gz = {gz|g € G} C X Orbit von z unter der Wirkung von G.

Definition 4. Sei eine Operation von einer Gruppe G auf X gegeben und sei x € X. Dann heifit
G, ={g € G| gz =z} C G der Stabilisator von z unter der Wirkung von G.

Definition 5. Eine Gruppenoperation heifit fixpunktfrei, falls der Stabilisator jedes Elementes nur das
neutrale Element enthélt.

Lemma 1. Operiert eine Gruppe G auf X, so ist die Menge {Gx|x € X} aller Orbits eine Partition
von X.

Beweis: Fiir jedes Element © € X gilt z = e-x € Gz, da G auf X operiert. Somit ist klar, dass
X = U,ex Gz. Nun ist noch zu zeigen, dass Gx N Gy # 0 genau dann gilt, wenn Gz = Gy. Falls also
w € Gz N Gy # 0, dann existieren a,b € G mit w = a-x = b-y. Sei nun z = cx € Gz beliebig. Dann
folgt:

a-(ct2)=b-y=z2=(ca ') -y € Gy.
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Damit gilt also Gz C Gy. Analog zeigt man Gy C Gz, sodass insgesamt Gz = Gy gilt. O

2.2. Aquivalenzrelationen

Der Begriff der Aquivalenzrelation ist ein fundamentales Hilfsmittel der Mathematik. Damit kénnen
wir Elemente einer Menge, die sich in einer gewissen Hinsicht gleichen, als gleichwertig bzw. dquivalent
ansehen.

Definition 6. Es sei X eine Menge. Dann heift R C X x X eine Aquivalenzrelation, wenn fiir alle
x,y,2z € R gilt:

o (z,z) € R (Reflexivitéit)

o Aus (z,y) € R folgt (y,z) € R (Symmetrie)

e Aus (z,y) € Rund (y,z) € R folgt (z,2) € R (Transitivitét)

Ist R eine Aquivalenzrelation auf einer Menge X, so schreibt man {iblicherweise anstelle von (z,y) € R
auch x ~ y. Diese Notation werden wir im Folgenden verwenden.

2.3. Auswahlaxiom

Im Beweis des Banach-Tarski Paradoxons werden wir auf das Auswahlaxiom angewiesen sein. Um die
Aussage jenes zu veranschaulichen, betrachten wir folgendes Beispiel:

Es sei M eine Menge von Mengen, also z.B.: M = {[0, 1], [5, 8], [1, 6] }. Wir wollen nun aus jeder Menge, die
in M enthalten ist genau ein Element auswdhlen. Eine Abbildung, die diesen Prozess beschreibt, nennen
wir Auswahlfunktion. In unserem Fall kénnen wir eine solche Auswahlfunktion konkret angeben, z.B.
durch: F([0,2]) =1, F([5,8]) =7, F([1,6]) = 4.

Leider ist es i.A. nicht moglich, bei jeder Menge von Mengen eine solche Auswahlfunktion konkret hin-
zuschreiben. Deshalb muss man die Existenz einer solchen Funktion axiomatisch fordern:

Auswahlaxiom. Fiir jede Menge nichtleerer Mengen gibt es eine Auswahlfunktion.

3. Paradoxe Mengen und freie Gruppen

Die in der Einleitung angedeutete Vorstellung, dass man eine Menge in disjunkte Teilmengen zerlegt und
diese durch geeignete Bewegungen in zwei der urspriinglichen Mengen iiberfithren kann, motiviert die
folgende Definition:

Definition 7. Eine Gruppe G wirke auf einer Menge X und E C X. Dann ist E paradox beziiglich G
(kurz: G-paradox), wenn paarweise disjunkte Teilmengen A4, ..., A,, By, ..., By, von E und
G1s ey Gy M1y oo i, € G existieren, sodass E = | |, ¢;A; und E = |_|;n:1 h;B;.

Bemerkung 1. Mithilfe der nun zur Verfiigung stehenden Begriffe konnen wir bereits das in der Einlei-
tung fomulierte Theorem, zumindest in einer moglichen Form, sehr priagnant formulieren: Jeder Ball im
R3 ist paradox beziiglich der Isometriegruppe Gs auf R3.

Bemerkung 2. Jede Gruppe wirkt durch Linksmultiplikation auf sich selbst. Falls also im Kontext der
vorangegangenen Definition X = F = G gilt, nennt man die Gruppe G paradox.

Wir betrachten nun alle (endlichen) Wérter, die aus den Elementen der Menge {0, 0%, 7,771} gebildet
sind. Wir verlangen zudem, dass diese Worter reduziert sind, d.h. dass zwei zueinander inverse Elemente
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nicht unmittelbar aufeinandertreffen, da man sie ja sonst wegkiirzen kann. Wir fassen alle jene Worter
zusammen zu einer Menge und bezeichnen diese als Fy. Diese Menge weist eine Gruppenstruktur auf,
was man sich leicht plausibel machen kann. Haben wir z.B. das Wort wy; = o277 ! und wy = 70~ ‘707,
so ergibt sich fiir das Produkt

wywy = (oot V) (ro " roT) = o0

Die Elemente von F5 weisen insbesondere keine Relationen untereinander auf, die nicht aus den Grup-
penaxiomen folgen, wie z.B. 077! = 0. Aus diesem Grund nennt man F; eine freie Gruppe.

Der erste entscheidende Schritt fiir den Beweis des Paradoxons ist die einfache Beobachtung, dass die
freie Gruppe etwas erfiillt, was unserer Intuition widerspricht, wie der folgende Satz zeigt.

Satz 1. Die freie Gruppe Fs ist Fy-paradoz.

Beweis: F; ist frei iiber der Menge S = {0, 7}. Fiir z € {0, 7,071,771} sei jeweils W (z) die Menge an

Whoértern, die mit dem Element z beginnt. Es gilt Fy = {e} UW (o) UW (o™ ) U W (r) U W (T~ ).

Sei nun h € F,\W(o~1), dann ist oh € W (o) und h = o~ (ch) € o~ 'W (o). Somit gilt also

F, =W(o~ Y)Y Uo 'W(0). Ersetzt man ¢ durch 7 so erhiilt man analog Fp = W(r~1) U7~ 'W(7). Man
erhélt also, dass Fy paradox ist. U

Damit stellt sich die Frage, wie sich diese Eigenschaft auf Mengen auswirkt, auf denen F5 durch eine
Gruppenwirkung operiert. Insbesondere interessiert uns, ob auch solche Mengen selbst paradox sind,
wenn F5 auf ihnen fixpunktfrei wirkt. Dies fithrt uns zum néchsten zentralen Ergebnis:

Satz 2. Ist G eine paradore Gruppe, die fizpunktfrei auf einer nichtleeren Menge X operiert, so ist X
paradoz beziiglich G.

Beweis: G ist paradox, es existieren also m,n € N, Ay, ..., A,, By, ..., B, paarweise disjunkte Teilmengen
von G und g1, ..., gn, R1, -, by € G, sodass gilt:

G=|]gi4) = |_| h;(B;).

Sei M eine Menge, welche genau ein Element aus jedem Orbit von G enthélt. Die Existenz von M wird
dabei durch das Auswahlaxiom gesichert. Wir zeigen zunéchst, dass

X =|]gM) (1)

geG

gilt, was man wie folgt einsieht:

Sei x € X beliebig. Da M ein Element aus jedem G-Orbit enthélt und die Orbits die Menge X parti-
tionieren, muss genau ein y € M existieren, sodass g - y = z fiir ein g € G und somit « € g(M). Fiir
die Disjunktheit nehmen wir an, dass g(M) N h(M) # 0. Dies ist gleichbedeutend damit, dass z,y € M
existieren, sodass ¢ - = h -y, woraus folgt: + = ¢~ 'h -y € Gy. Somit gehéren x und y zum selben Orbit.
Da aber M per Konstruktion aus jedem G-Orbit nur ein einziges Element enthilt, muss x = y gelten.
Aus x = g~ 'h -  kann aber aufgrund der Tatsache, dass G fixpunktfrei auf X operiert, nur folgen, dass
g 'h =e bzw. g = h gilt.

>, sind wegen

Seien nun A7 = || 4, 9(M) und B} = ngij g(M). Die Mengen Aj,..., Al BY,..., B}
(1) paarweise disjunkte Teilmengen von X, weil Ay, ..., A,, By, ..., By, paarweise disjunkt sind. Damit
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Analog sieht man |_|;.l:1 h; (BJ*) = X. O

Korollar 1. Operiert die freie Gruppe F> auf X fixpunktfrei, so ist X paradox beziiglich F5.

4. Das Hausdorff-Paradoxon

Das Hausdorff-Paradoxon ist einfacher zu zeigen, als das Banach-Tarski-Paradoxon, da es von SO3(R)
nicht verlangt, das sie auf ganz S? fixpunktfrei operiert, sondern bereits S? \ D ausreicht.

Satz 3. Die Gruppe SO3(R) enthdlt eine freie Gruppe, die von zwei Elementen erzeugt wird.

Die freie Gruppe aus Satz 3 ist die von der Menge {¢, p} frei erzeugte Untergruppe von SO3(R), wobei ¢
und p Rotationen um die z-Achse bzw. z-Achse im Gegenuhrzeigersinn mit dem Winkel arccos () sind.
Diese ist natiirlich isomorph (strukturgleich) zur anfangs betrachteten freien Gruppe F5. Jedes Element
dieser freien Gruppe fixiert genau zwei Punkte im R3, wenn es auf die Einheitssphire S? angewendet wird.
Diese Punkte sind die Schnittpunkte der Rotationsachse mit der Sphére. Das ist der Grund, weswegen
wir Satz 2 nicht unmittelbar anwenden konnen, um das Banach-Tarski-Paradoxon zu erhalten.

Stattdessen erhalten wir folgende Aussage, die aufgrund ihrer bedeutsamen Folgerungen in der Mafltheorie

dennoch von grofler Bedeutung ist.

Satz 4 (Hausdorff-Paradoxon). Es gibt eine abzihlbare Teilmenge D C S2, sodass S*\ D paradox beziiglich
SOg(R) 1st.

Beweis: Es wirke die in Satz 3 betrachtete freie Gruppe F auf S2. Jede Rotation verschieden der Identitst
fixiert genau zwei Punkte auf S2, nimlich die Schnittpunkte von S? mit der Rotationsachse. Sei D die
Menge, die alle jene Punkte enthélt. Da F' abzdhlbar ist, ist auch D abzdhlbar. Es verbleibt noch zu
zeigen, dass die Operation von F mit S\ D innerhalb von S?\D abgeschlossen ist. Fiir P € S?\D und
g € F sollte also gelten g(P) € S?\D. Angenommen es giibe ein h € F\{e} mit h(g(P)) = g(P), dann
folgt (g~ 'hg)(P) = P und somit P € D, was einen Widerspruch darstellt. Die anderen geforderten
Eigenschaften sind trivialerweise erfiillt. Also operiert F' fixpunktfrei auf $?\ D und die Behauptung folgt
mit Satz 2. O
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5. Das Banach-Tarski-Paradoxon

Das Ziel dieses Kapitels ist es, die Menge D aus dem Hausdorff-Paradoxon zu eliminieren, um das Banach-
Tarski Paradoxon zu erhalten. Um dies zu tun, reichen unsere Mittel aber noch nicht in Génze aus. Aus
diesem Grund fiihren wir die Zerlegungsiquivalenz ein und beweisen dazu einige wichtige Aussagen.

Definition 8. Es wirke G auf X und A, B C X. Die Mengen A und B nennt man G-iquizerlegbar
(A ~g B), wenn gilt: Fiir A = | |, A; und B = ||, B; gibt es g1,...,gn € G, sodass g;(A;) = B; fiir
alle ¢ < n.

Bemerkung 3. Die Definition der Aquizerlegbarkeit bietet eine alternative Moglichkeit, die Paradoxie
einer Menge zu definieren. Demnach ist E aus Definition 7 genau dann G-paradox, wenn E zwei disjunkte
Teilmengen A und B enthélt, sodass A ~¢ E und B ~¢ F.

Ohne Beweis bemerken wir folgende wichtige Tatsachen.

Lemma 2. Es wirke G auf X. Die Relation A ~g B is eine Aquivalenzrelation auf P(X).

Lemma 3. Sei A ~g B. Dann existiert eine bijektive Funktion f: A — B, sodass fiir jede Teilmenge C
von A gilt, dass C ~¢g f(C) ist.

Lemma 4. Wenn ANC =0, BND =0 und A~g B,C ~g D, dann ist AUC ~g BUD.

Der folgende Satz wird ein wichtiges Hilfsmittel sein, um unserem zentralen Ziel ndher zu kommen.
Satz 5. Es wirke G auf X und E, E' seien G-dquizerlegbare Teilmengen von X. Wenn E paradoz beziiglich

G 1ist, so ist es auch E’'.

Beweis: Da E paradox beziiglich G ist, existieren zwei disjunkte Teilmengen A und B von FE, sodass
A ~g E und B ~¢g E. Zudem gilt nach Voraussetzung auch E ~g E’. Somit erhalten wir:

Angng’undngEng'

Mit Transitivitéit folgt also, dass A ~g E' und B ~¢ E’. Es existiert des Weiteren eine bijektive Funktion
g:E— E' mit A ~g g(4) und B ~¢g g(B). Da g insbesondere injektiv ist, sind die Mengen g(A) und
g(B) disjunkt.

Unter Ausnutzung von Symmetrie erhalten wir also:

E' ~g Ar~gg(A) und E' ~¢ B ~g g(B).
Und somit insgesamt durch Transitivitét:
9(4) ~g E' und g(B) ~¢ E'.
d

Es stehen nun geniigend Mittel zur Verfiigung, um die Menge D aus dem Hausdorff-Paradoxon zu elimi-
nieren.

Entscheidend dafiir ist, dass wir im letzten Abschnitt gesehen haben, dass die Paradoxie von einer Menge
auf zu ihr fiquizerlegbare Mengen vererbt wird. Kénnen wir also zeigen, dass S% und S?\ D #quizerlegbar
beziiglich SO3(R) sind, so {ibertriigt sich die Paradoxie unmittelbar auf S? und wir kénnen das schwache
Banach-Tarski Paradoxon folgern.
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Satz 6. Sei D C S? eine abzihlbare Teilmenge, dann gilt S* ~ S*\D.

Beweis: Sei [ eine (orientierte) Gerade durch den Ursprung, welche disjunkt zur Menge D ist. Dies ist
moglich, weil aufgrund der Abzéhlbarkeit von D mindestens ein Punkt auf der Sphére exitsiert, der nicht
in D ist. Sei A die Menge von Winkeln 6, sodass fiir ein n > 0 und ein P € D gilt, dass p(P) € D ist,
wobei p die Rotation um [ mit dem Winkel nf darstellt. Da D abzéhlbar ist, muss auch A abzihlbar sein.
Denn fiir ein P € D gibt es aufgrund der Abzé&hlbarkeit von D und N héchstens abzéhlbar viele Winkel
0, sodass p(P) € D, wobei p eine Drehung mit Winkel nf ist. Wieder aus der Abzihlbarkeit von D folgt
dann, dass A abzihlbar ist, da die abzéhlbare Vereinigung abzéhlbarer Mengen abzihlbar ist.

S2

D.h., insbesondere kénnen wir § ¢ A wihlen. Sei p die dazugehérige Rotation um ! mit dem Winkel 6.
Dann ist offenbar p"(D) N D = § fiir alle n > 0, denn p™(P) ¢ D fiir beliebige P € D, da ansonsten
0 € A sein miisste nach Konstruktion von A.

Sei des Weiteren D = D U p(D) U p*(D) U ... = U, ey p™(D). Wenden wir p auf D an und nutzen, dass
p*(D)N D = { fiir alle n > 0 gilt, so erhalten wir

p(D) = D\D.
Offensichtlich ist S? = D L S?\ D, daher gilt
S2\D = S*\D U D\D = S*\D U p(D).
Es gilt auBerdem S?\D ~go, S?\D und da p~*(p(D)) = D gilt auch D ~gp, p(D). Somit erhalten wir

insgesamt: o - -
S% = S\DU D ~s0, S*\D U p(D) = S*\D.

Korollar 2. S? ist SO3(R)-paradox.

Bemerkung 4. Da wir keine Einschrinkungen beziiglich des Radius der Sphére gemacht haben, gilt
Korrolar 2 fiir alle Sphéiren im Ursprung mit beliebigem Radius.
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Satz 7. Jeder Ball im R? ist G3-paradox

Beweis: Es geniigt, den Beweis fiir den Einheitsball zentriert im Ursprung zu fiihren, da der Beweis
erneut fiir beliebige Radien funktioniert und Gj insbesondere Rotationen um beliebige Achsen enthélt.
Wir definieren dafiir eine Abbildung ¢ folgendermafien:

@ :P(S?) — P(B\{0}) mit A {ap|pe A, 0<a<l}

Diese Abbildung iibertriigt die paradoxe Zerlegung der Sphire S? auf den Ball ohne Ursprung B\{0}.
Demnach ist B\{0} paradox beziiglich SO3(R) und damit insbesondere G3-paradox.

Es geniigt also zu zeigen, dass B ~¢, B\{0}. Wir nutzen dazu diesselbe Strategie wie im Beweis von Satz
6. Sei p eine Drehung unendlicher Ordnung, d.h. mit dem Winkelmaf$l 77 mit r» € R\Q, um eine Gerade
durch den Punkt P = (3,0,0), die nicht durch den Ursprung geht.
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Sei auBerdem D = {p™(0) |n € N}. Man iiberzeugt sich leicht davon, dass D C B ist. Des Weiteren gilt
insbesondere aufgrund der speziellen Wahl von p

p(D) = D\{0}.
Insgesamt erhalten wir also:
B=B\DUD ~g, B\DUp(D)=B\DUD\{0} = B\{0}.

Somit ist B auch G3-paradox. O

6. Schlussfolgerung

Nachdem wir den Beweis nun vollstédndig nachvollzogen haben, stellt sich berechtigterweise die Frage,
wie man die Aussage des Banach-Tarski-Paradoxons zu interpretieren hat. Dabei stellt sich heraus, dass
die wichtigste Konsequenz in der Einsicht besteht, dass wir nicht allen Teilmengen des R? in sinnvoller
Weise ein Volumen zuordnen kénnen. Unter sinnvoll verstehen wir, dass die Volumenfunktion p fiir alle
A, B C R? wenigstens folgende Eigenschaften erfiillt:

Positivitét: u(A) > 0.

Additivitat: u(AU B) = u(A) + p(B), sofern AN B = .
Bewegungsinvarianz: p(8(A)) = u(A) fiir jede Bewegung p : R3 — R3.

Normiertheit: p([0,1]?) = 1.

Eine Volumenfunktion, die diese Eigenschaften erfiillt, nennen wir Inhalt.

Man kann nun sehr leicht sehen, dass die Forderungen zur Volumendefinition fiir alle Teilmengen des R3
zusammen mit dem Banach-Tarski-Paradoxon zu Widerspriichen fiihrt.

Satz 8. Den Teilmengen aus dem Banach-Tarski-Paradozon kann kein Volumen zugeordnet werden, das
den obigen FEigenschaften geniigt.

Beweis: Sei K die Einheitskugel im R3 mit (K) = 1. Aufgrund der Paradoxie von K existieren paarweise
disjunkte Teilmengen Ay, ..., A,, By, ..., B, von E und g1, ..., gn, A1, ..., Ay € G, sodass

=1 j=1

Damit ergibt sich aber folgender Widerspruch

L= u(K) 2 3 (A + 37 iu(B))

j=1

= ulgi(A)) + > u(hi(By))
=1

Somit kénnen die Mengen Ay, ..., A,, By, ..., B, kein im obigen Sinne betrachtetes Volumen haben. [
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Bemerkung 5. Es ist zu beachten, dass die Eigenschaft einer Menge kein Volumen zu besitzen nicht
heifit, dass das Volumen null ist. Hat eine Menge das Volumen null, so hat sie ja ein Volumen, nur eben
mit der Mafizahl null. Wir haben hier aber wirklich Mengen gefunden, denen wir diese Maf3zahl gar nicht
zuordnen kénnen!

Korollar 3. Es gibt keine endlich-additive, bewegungsinvariante Volumenfunktion auf P(R3) mit
([0, 1) = 1.

Bemerkung 6. Die Frage nach einer Volumenfunktion auf allen Teilmengen des R2, die den eingangs
genannten Eigenschaften gentigt, ist allgemein als das Inhaltsproblem bekannt. Wir haben hier somit
gezeigt, dass Inhaltsproblem fiir n = 3 keine Losung besitzt. Man kann auch zeigen, dass daraus folgt,
dass es auch fiir n > 3 keine Losung geben kann. Interessant ist aber, dass es fiir die Dimensionen n =1
und n = 2 sehr wohl eine Losung gibt. Allerdings sind diese nicht eindeutig bestimmt.
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