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1. Einleitung

Wir wollen uns in dieser Gruppe mit einer der wahrscheinlich verblüffendsten Aussagen der Mathematik
befassen, dem Banach-Tarski Paradoxon. Es sagt aus, dass eine Kugel in Teile zerlegt werden kann, die,
anders zusammengesetzt, zwei volle Kugeln ergeben, jede gleich groß wie die ursprüngliche!
Dies kann man wie folgt präziser formulieren:

Banach-Tarski-Paradoxon (1924). Es bezeichne K eine Kugel im R3. Dann gibt es paarweise dis-
junkte Teilmengen A1, A2, ..., An, B1, ..., Bm von K und Bewegungen g1, g2, ..., gn, h1, ..., hm derart, dass
K =

⊔n
i=1 giAi und K =

⊔m
j=1 hjBj .

Das Paradoxon geht sogar noch weiter und sagt, dass zwei beliebige beschränkte Teilmengen des R3

(mit nichtleerem Inneren) ineinander zerlegt werden können. Man könnte also eine Rosine so zerlegen,
dass man mit den Teilen die gesamte Sonne ausfüllen kann. Der Beweis dieser Aussage erfordert aber
die Entwicklung umfangreicherer Theorien und technische Feinarbeit, welche den Rahmen dieses Kurses
überschreiten.

Illustration der stärkeren Version des Banach-Tarski Paradoxons

Diese Aussagen klingen höchst paradox und scheinen auf den ersten Blick dem gesunden Menschenver-
stand zu widersprechen. Sie scheinen nämlich die Verdopplung von Volumina zu ermöglichen. So sehr
dies auch zunächst verblüffen mag, wird sich nach gründlicher Analyse des Beweises des Banach-Tarski
Paradoxons zeigen, dass jenes recht schnell seine (scheinbar) paradoxe Natur verliert und zu einem ganz
gewöhnlichen mathematischen Satz wird, der bewiesen und verstanden werden kann.
Wir werden in dieser Gruppe zunächst schrittweise den Beweis der obigen Fassung des Banach-Tarski
Paradoxons nachvollziehen und erarbeiten. Dafür müssen wir insbesondere Erkenntnisse aus der Men-
genlehre, der Gruppentheorie sowie der linearen Algebra erarbeiten und nutzen.
Anschließend an den Beweis beschäftigen wir uns mit der Frage, welche Konsequenzen das Paradoxon
sowohl für die Mathematik als auch unsere physikalische Realität hat. Im Beweis werden wir außer-
dem auf das sogenannte Auswahlaxiom angewiesen sein, dessen Annehmbarkeit in der Mathematik lange
umstritten war. Steckt in diesem also des Pudels Kern? Finden wir es gemeinsam heraus!
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2. Vorbereitungen

2.1. Grundlagen Gruppentheorie

Der Kern des Beweises beruht auf der Gruppentheorie. Deshalb ist es zunächst sinnvoll, sich mit der
Definition von Gruppen, Gruppenoperationen sowie Bahn und Stabilisator zu beschäftigen.

Definition 1. Es sei G eine nichtleere Menge mit einer inneren Verknüpfung ◦. Es heißt (G, ◦) eine
Gruppe, wenn:

• Assoziativgesetz: Für alle a, b, c ∈ G gilt (a ◦ b) ◦ c = a ◦ (b ◦ c).

• Existenz eines neutralen Elements: Es existiert ein e ∈ G mit e ◦ a = a = a ◦ e für alle a ∈ G.

• Jedes Element ist invertierbar: Zu jedem a ∈ G existiert ein a−1 ∈ G mit a−1 ◦ a = e = a ◦ a−1.

Eine Gruppe, in welcher das Kommutativgesetz a ◦ b = b ◦ a für alle a, b ∈ G gilt, nennt man abelsch.
Im Folgenden lassen wir das Verknüpfungzeichen ◦ weg und schreiben ab anstelle von a ◦ b. Manchmal
ersetzen wir auch ◦ durch · zur besseren Lesbarkeit.

Einfache (nichtleere) Mengen haben selbst keine wirkliche Struktur. Es ist aber möglich, jenen mithilfe
einer Gruppe ähnliche Struktureigenschaften zu verschaffen. Dies wird ermöglicht durch die Verwendung
von sog. Gruppenoperationen.

Definition 2. Eine Gruppenoperation einer Gruppe G auf einer nichtleeren Menge X ist eine Abbil-
dung

• : G×X → X (a, x) 7→ a • x

mit den Eigenschaften:

(1) e • x = x für jedes x ∈ X und das neutrale Element e ∈ G.
(2) (ab) • x = a • (b • x) für alle a, b ∈ G und x ∈ X.

Wir sagen dann auch, dass G auf X operiert bzw. wirkt.

Wir werden, wie auch bei der Gruppenverknüpfung, im Kontext einer Gruppenoperation die Verwendung
von • unterdrücken oder durch · ersetzen.

Definition 3. Sei eine Operation von einer Gruppe G auf X gegeben und sei x ∈ X. Dann heißt
Gx = {gx | g ∈ G} ⊆ X Orbit von x unter der Wirkung von G.

Definition 4. Sei eine Operation von einer Gruppe G auf X gegeben und sei x ∈ X. Dann heißt
Gx = {g ∈ G | gx = x} ⊆ G der Stabilisator von x unter der Wirkung von G.

Definition 5. Eine Gruppenoperation heißt fixpunktfrei, falls der Stabilisator jedes Elementes nur das
neutrale Element enthält.

Lemma 1. Operiert eine Gruppe G auf X, so ist die Menge {Gx |x ∈ X} aller Orbits eine Partition
von X.

Beweis: Für jedes Element x ∈ X gilt x = e · x ∈ Gx, da G auf X operiert. Somit ist klar, dass
X =

⋃
x∈X Gx. Nun ist noch zu zeigen, dass Gx ∩ Gy ̸= ∅ genau dann gilt, wenn Gx = Gy. Falls also

w ∈ Gx ∩ Gy ̸= ∅, dann existieren a, b ∈ G mit w = a · x = b · y. Sei nun z = cx ∈ Gx beliebig. Dann
folgt:

a · (c−1 · z) = b · y ⇒ z = (ca−1b) · y ∈ Gy.
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Damit gilt also Gx ⊆ Gy. Analog zeigt man Gy ⊆ Gx, sodass insgesamt Gx = Gy gilt. □

2.2. Äquivalenzrelationen

Der Begriff der Äquivalenzrelation ist ein fundamentales Hilfsmittel der Mathematik. Damit können
wir Elemente einer Menge, die sich in einer gewissen Hinsicht gleichen, als gleichwertig bzw. äquivalent
ansehen.

Definition 6. Es sei X eine Menge. Dann heißt R ⊆ X ×X eine Äquivalenzrelation, wenn für alle
x, y, z ∈ R gilt:

• (x, x) ∈ R (Reflexivität)

• Aus (x, y) ∈ R folgt (y, x) ∈ R (Symmetrie)

• Aus (x, y) ∈ R und (y, z) ∈ R folgt (x, z) ∈ R (Transitivität)

Ist R eine Äquivalenzrelation auf einer Menge X, so schreibt man üblicherweise anstelle von (x, y) ∈ R
auch x ∼ y. Diese Notation werden wir im Folgenden verwenden.

2.3. Auswahlaxiom

Im Beweis des Banach-Tarski Paradoxons werden wir auf das Auswahlaxiom angewiesen sein. Um die
Aussage jenes zu veranschaulichen, betrachten wir folgendes Beispiel:

Es seiM eine Menge von Mengen, also z.B.:M = {[0, 1], [5, 8], [1, 6]}. Wir wollen nun aus jeder Menge, die
in M enthalten ist genau ein Element auswählen. Eine Abbildung, die diesen Prozess beschreibt, nennen
wir Auswahlfunktion. In unserem Fall können wir eine solche Auswahlfunktion konkret angeben, z.B.
durch: F ([0, 2]) = 1, F ([5, 8]) = 7, F ([1, 6]) = 4.

Leider ist es i.A. nicht möglich, bei jeder Menge von Mengen eine solche Auswahlfunktion konkret hin-
zuschreiben. Deshalb muss man die Existenz einer solchen Funktion axiomatisch fordern:

Auswahlaxiom. Für jede Menge nichtleerer Mengen gibt es eine Auswahlfunktion.

3. Paradoxe Mengen und freie Gruppen

Die in der Einleitung angedeutete Vorstellung, dass man eine Menge in disjunkte Teilmengen zerlegt und
diese durch geeignete Bewegungen in zwei der ursprünglichen Mengen überführen kann, motiviert die
folgende Definition:

Definition 7. Eine Gruppe G wirke auf einer Menge X und E ⊆ X. Dann ist E paradox bezüglich G
(kurz: G-paradox), wenn paarweise disjunkte Teilmengen A1, ..., An, B1, ..., Bm von E und
g1, ..., gn, h1, ..., hm ∈ G existieren, sodass E =

⊔n
i=1 giAi und E =

⊔m
j=1 hjBj .

Bemerkung 1. Mithilfe der nun zur Verfügung stehenden Begriffe können wir bereits das in der Einlei-
tung fomulierte Theorem, zumindest in einer möglichen Form, sehr prägnant formulieren: Jeder Ball im
R3 ist paradox bezüglich der Isometriegruppe G3 auf R3.

Bemerkung 2. Jede Gruppe wirkt durch Linksmultiplikation auf sich selbst. Falls also im Kontext der
vorangegangenen Definition X = E = G gilt, nennt man die Gruppe G paradox.

Wir betrachten nun alle (endlichen)Wörter, die aus den Elementen der Menge {σ, σ−1, τ, τ−1} gebildet
sind. Wir verlangen zudem, dass diese Wörter reduziert sind, d.h. dass zwei zueinander inverse Elemente

23



nicht unmittelbar aufeinandertreffen, da man sie ja sonst wegkürzen kann. Wir fassen alle jene Wörter
zusammen zu einer Menge und bezeichnen diese als F2. Diese Menge weist eine Gruppenstruktur auf,
was man sich leicht plausibel machen kann. Haben wir z.B. das Wort w1 = σ2τ−1 und w2 = τσ−1τστ ,
so ergibt sich für das Produkt

w1w2 = (σστ−1)(τσ−1τστ) = στστ.

Die Elemente von F2 weisen insbesondere keine Relationen untereinander auf, die nicht aus den Grup-
penaxiomen folgen, wie z.B. στ−1 = σ2. Aus diesem Grund nennt man F2 eine freie Gruppe.

Der erste entscheidende Schritt für den Beweis des Paradoxons ist die einfache Beobachtung, dass die
freie Gruppe etwas erfüllt, was unserer Intuition widerspricht, wie der folgende Satz zeigt.

Satz 1. Die freie Gruppe F2 ist F2-paradox.

Beweis: F2 ist frei über der Menge S = {σ, τ}. Für x ∈ {σ, τ, σ−1, τ−1} sei jeweils W (x) die Menge an
Wörtern, die mit dem Element x beginnt. Es gilt F2 = {e} ⊔W (σ) ⊔W (σ−1) ⊔W (τ) ⊔W (τ−1).
Sei nun h ∈ F2\W (σ−1), dann ist σh ∈W (σ) und h = σ−1(σh) ∈ σ−1W (σ). Somit gilt also
F2 = W (σ−1) ⊔ σ−1W (σ). Ersetzt man σ durch τ so erhält man analog F2 = W (τ−1) ⊔ τ−1W (τ). Man
erhält also, dass F2 paradox ist. □

Damit stellt sich die Frage, wie sich diese Eigenschaft auf Mengen auswirkt, auf denen F2 durch eine
Gruppenwirkung operiert. Insbesondere interessiert uns, ob auch solche Mengen selbst paradox sind,
wenn F2 auf ihnen fixpunktfrei wirkt. Dies führt uns zum nächsten zentralen Ergebnis:

Satz 2. Ist G eine paradoxe Gruppe, die fixpunktfrei auf einer nichtleeren Menge X operiert, so ist X
paradox bezüglich G.

Beweis: G ist paradox, es existieren also m,n ∈ N, A1, ..., An, B1, ..., Bm paarweise disjunkte Teilmengen
von G und g1, ..., gn, h1, ..., hm ∈ G, sodass gilt:

G =

n⊔
i=1

gi(Ai) =

n⊔
j=1

hj(Bj).

Sei M eine Menge, welche genau ein Element aus jedem Orbit von G enthält. Die Existenz von M wird
dabei durch das Auswahlaxiom gesichert. Wir zeigen zunächst, dass

X =
⊔
g∈G

g(M) (1)

gilt, was man wie folgt einsieht:
Sei x ∈ X beliebig. Da M ein Element aus jedem G-Orbit enthält und die Orbits die Menge X parti-
tionieren, muss genau ein y ∈ M existieren, sodass g · y = x für ein g ∈ G und somit x ∈ g(M). Für
die Disjunktheit nehmen wir an, dass g(M) ∩ h(M) ̸= ∅. Dies ist gleichbedeutend damit, dass x, y ∈ M
existieren, sodass g · x = h · y, woraus folgt: x = g−1h · y ∈ Gy. Somit gehören x und y zum selben Orbit.
Da aber M per Konstruktion aus jedem G-Orbit nur ein einziges Element enthält, muss x = y gelten.
Aus x = g−1h · x kann aber aufgrund der Tatsache, dass G fixpunktfrei auf X operiert, nur folgen, dass
g−1h = e bzw. g = h gilt.

Seien nun A∗
i =

⊔
g∈Ai

g(M) und B∗
j =

⊔
g∈Bj

g(M). Die Mengen A∗
1, ..., A

∗
n, B

∗
1 , ..., B

∗
m sind wegen

(1) paarweise disjunkte Teilmengen von X, weil A1, ..., An, B1, ..., Bm paarweise disjunkt sind. Damit
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erhält man:

n⊔
i=1

gi(A
∗
i ) =

n⊔
i=1

gi
⊔
g∈Ai

g(M)

=

n⊔
i=1

⊔
g∈Ai

gi(g(M))

=

n⊔
i=1

⊔
g∈gi(Ai)

g(M)

=
⊔
g∈G

g(M)

= X.

Analog sieht man
⊔n
j=1 hj(B

∗
j ) = X. □

Korollar 1. Operiert die freie Gruppe F2 auf X fixpunktfrei, so ist X paradox bezüglich F2.

4. Das Hausdorff-Paradoxon

Das Hausdorff-Paradoxon ist einfacher zu zeigen, als das Banach-Tarski-Paradoxon, da es von SO3(R)
nicht verlangt, das sie auf ganz S2 fixpunktfrei operiert, sondern bereits S2 \D ausreicht.

Satz 3. Die Gruppe SO3(R) enthält eine freie Gruppe, die von zwei Elementen erzeugt wird.

Die freie Gruppe aus Satz 3 ist die von der Menge {ϕ, ρ} frei erzeugte Untergruppe von SO3(R), wobei ϕ
und ρ Rotationen um die z-Achse bzw. x-Achse im Gegenuhrzeigersinn mit dem Winkel arccos

(
1
3

)
sind.

Diese ist natürlich isomorph (strukturgleich) zur anfangs betrachteten freien Gruppe F2. Jedes Element
dieser freien Gruppe fixiert genau zwei Punkte im R3, wenn es auf die Einheitssphäre S2 angewendet wird.
Diese Punkte sind die Schnittpunkte der Rotationsachse mit der Sphäre. Das ist der Grund, weswegen
wir Satz 2 nicht unmittelbar anwenden können, um das Banach-Tarski-Paradoxon zu erhalten.
Stattdessen erhalten wir folgende Aussage, die aufgrund ihrer bedeutsamen Folgerungen in der Maßtheorie
dennoch von großer Bedeutung ist.

Satz 4 (Hausdorff-Paradoxon). Es gibt eine abzählbare Teilmenge D ⊆ S2, sodass S2\D paradox bezüglich
SO3(R) ist.

Beweis: Es wirke die in Satz 3 betrachtete freie Gruppe F auf S2. Jede Rotation verschieden der Identität
fixiert genau zwei Punkte auf S2, nämlich die Schnittpunkte von S2 mit der Rotationsachse. Sei D die
Menge, die alle jene Punkte enthält. Da F abzählbar ist, ist auch D abzählbar. Es verbleibt noch zu
zeigen, dass die Operation von F mit S2\D innerhalb von S2\D abgeschlossen ist. Für P ∈ S2\D und
g ∈ F sollte also gelten g(P ) ∈ S2\D. Angenommen es gäbe ein h ∈ F\{e} mit h(g(P )) = g(P ), dann
folgt (g−1hg)(P ) = P und somit P ∈ D, was einen Widerspruch darstellt. Die anderen geforderten
Eigenschaften sind trivialerweise erfüllt. Also operiert F fixpunktfrei auf S2\D und die Behauptung folgt
mit Satz 2. □
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5. Das Banach-Tarski-Paradoxon

Das Ziel dieses Kapitels ist es, die Menge D aus dem Hausdorff-Paradoxon zu eliminieren, um das Banach-
Tarski Paradoxon zu erhalten. Um dies zu tun, reichen unsere Mittel aber noch nicht in Gänze aus. Aus
diesem Grund führen wir die Zerlegungsäquivalenz ein und beweisen dazu einige wichtige Aussagen.

Definition 8. Es wirke G auf X und A,B ⊆ X. Die Mengen A und B nennt man G-äquizerlegbar
(A ∼G B), wenn gilt: Für A =

⊔n
i=1Ai und B =

⊔n
i=1Bi gibt es g1, ..., gn ∈ G, sodass gi(Ai) = Bi für

alle i ≤ n.

Bemerkung 3. Die Definition der Äquizerlegbarkeit bietet eine alternative Möglichkeit, die Paradoxie
einer Menge zu definieren. Demnach ist E aus Definition 7 genau dann G-paradox, wenn E zwei disjunkte
Teilmengen A und B enthält, sodass A ∼G E und B ∼G E.

Ohne Beweis bemerken wir folgende wichtige Tatsachen.

Lemma 2. Es wirke G auf X. Die Relation A ∼G B is eine Äquivalenzrelation auf P(X).

Lemma 3. Sei A ∼G B. Dann existiert eine bijektive Funktion f : A→ B, sodass für jede Teilmenge C
von A gilt, dass C ∼G f(C) ist.

Lemma 4. Wenn A ∩ C = ∅, B ∩D = ∅ und A ∼G B,C ∼G D, dann ist A ∪ C ∼G B ∪D.

Der folgende Satz wird ein wichtiges Hilfsmittel sein, um unserem zentralen Ziel näher zu kommen.

Satz 5. Es wirke G auf X und E,E′ seien G-äquizerlegbare Teilmengen von X. Wenn E paradox bezüglich
G ist, so ist es auch E′.

Beweis: Da E paradox bezüglich G ist, existieren zwei disjunkte Teilmengen A und B von E, sodass
A ∼G E und B ∼G E. Zudem gilt nach Voraussetzung auch E ∼G E′. Somit erhalten wir:

A ∼G E ∼G E′ und B ∼G E ∼G E′

Mit Transitivität folgt also, dass A ∼G E′ und B ∼G E′. Es existiert des Weiteren eine bijektive Funktion
g : E → E′ mit A ∼G g(A) und B ∼G g(B). Da g insbesondere injektiv ist, sind die Mengen g(A) und
g(B) disjunkt.
Unter Ausnutzung von Symmetrie erhalten wir also:

E′ ∼G A ∼G g(A) und E′ ∼G B ∼G g(B).

Und somit insgesamt durch Transitivität:

g(A) ∼G E′ und g(B) ∼G E′.

□

Es stehen nun genügend Mittel zur Verfügung, um die Menge D aus dem Hausdorff-Paradoxon zu elimi-
nieren.
Entscheidend dafür ist, dass wir im letzten Abschnitt gesehen haben, dass die Paradoxie von einer Menge
auf zu ihr äquizerlegbare Mengen vererbt wird. Können wir also zeigen, dass S2 und S2\D äquizerlegbar
bezüglich SO3(R) sind, so überträgt sich die Paradoxie unmittelbar auf S2 und wir können das schwache
Banach-Tarski Paradoxon folgern.
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Satz 6. Sei D ⊆ S2 eine abzählbare Teilmenge, dann gilt S2 ∼ S2\D.

Beweis: Sei l eine (orientierte) Gerade durch den Ursprung, welche disjunkt zur Menge D ist. Dies ist
möglich, weil aufgrund der Abzählbarkeit von D mindestens ein Punkt auf der Sphäre exitsiert, der nicht
in D ist. Sei A die Menge von Winkeln θ, sodass für ein n > 0 und ein P ∈ D gilt, dass ρ(P ) ∈ D ist,
wobei ρ die Rotation um l mit dem Winkel nθ darstellt. Da D abzählbar ist, muss auch A abzählbar sein.
Denn für ein P ∈ D gibt es aufgrund der Abzählbarkeit von D und N höchstens abzählbar viele Winkel
θ, sodass ρ(P ) ∈ D, wobei ρ eine Drehung mit Winkel nθ ist. Wieder aus der Abzählbarkeit von D folgt
dann, dass A abzählbar ist, da die abzählbare Vereinigung abzählbarer Mengen abzählbar ist.

D.h., insbesondere können wir θ /∈ A wählen. Sei ρ die dazugehörige Rotation um l mit dem Winkel θ.
Dann ist offenbar ρn(D) ∩ D = ∅ für alle n > 0, denn ρn(P ) /∈ D für beliebige P ∈ D, da ansonsten
θ ∈ A sein müsste nach Konstruktion von A.
Sei des Weiteren D̄ = D ∪ ρ(D) ∪ ρ2(D) ∪ ... =

⋃
n∈N ρ

n(D). Wenden wir ρ auf D̄ an und nutzen, dass
ρn(D) ∩D = ∅ für alle n > 0 gilt, so erhalten wir

ρ(D̄) = D̄\D.

Offensichtlich ist S2 = D̄ ⊔ S2\D̄, daher gilt

S2\D = S2\D̄ ⊔ D̄\D = S2\D̄ ⊔ ρ(D̄).

Es gilt außerdem S2\D̄ ∼SO3
S2\D̄ und da ρ−1(ρ(D̄)) = D̄ gilt auch D̄ ∼SO3

ρ(D̄). Somit erhalten wir
insgesamt:

S2 = S2\D̄ ⊔ D̄ ∼SO3
S2\D̄ ⊔ ρ(D̄) = S2\D.

□

Korollar 2. S2 ist SO3(R)-paradox.

Bemerkung 4. Da wir keine Einschränkungen bezüglich des Radius der Sphäre gemacht haben, gilt
Korrolar 2 für alle Sphären im Ursprung mit beliebigem Radius.
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Satz 7. Jeder Ball im R3 ist G3-paradox

Beweis: Es genügt, den Beweis für den Einheitsball zentriert im Ursprung zu führen, da der Beweis
erneut für beliebige Radien funktioniert und G3 insbesondere Rotationen um beliebige Achsen enthält.
Wir definieren dafür eine Abbildung φ folgendermaßen:

φ : P(S2) → P(B\{0}) mit A 7→ {αp | p ∈ A, 0 < α ≤ 1}

Diese Abbildung überträgt die paradoxe Zerlegung der Sphäre S2 auf den Ball ohne Ursprung B\{0}.
Demnach ist B\{0} paradox bezüglich SO3(R) und damit insbesondere G3-paradox.
Es genügt also zu zeigen, dass B ∼G3 B\{0}. Wir nutzen dazu diesselbe Strategie wie im Beweis von Satz
6. Sei ρ eine Drehung unendlicher Ordnung, d.h. mit dem Winkelmaß rπ mit r ∈ R\Q, um eine Gerade
durch den Punkt P = ( 12 , 0, 0), die nicht durch den Ursprung geht.
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Sei außerdem D = {ρn(0) |n ∈ N}. Man überzeugt sich leicht davon, dass D ⊆ B ist. Des Weiteren gilt
insbesondere aufgrund der speziellen Wahl von ρ

ρ(D) = D\{0}.

Insgesamt erhalten wir also:

B = B\D ⊔D ∼G3 B\D ⊔ ρ(D) = B\D ⊔D\{0} = B\{0}.

Somit ist B auch G3-paradox. □

6. Schlussfolgerung

Nachdem wir den Beweis nun vollständig nachvollzogen haben, stellt sich berechtigterweise die Frage,
wie man die Aussage des Banach-Tarski-Paradoxons zu interpretieren hat. Dabei stellt sich heraus, dass
die wichtigste Konsequenz in der Einsicht besteht, dass wir nicht allen Teilmengen des R3 in sinnvoller
Weise ein Volumen zuordnen können. Unter sinnvoll verstehen wir, dass die Volumenfunktion µ für alle
A,B ⊂ R3 wenigstens folgende Eigenschaften erfüllt:

• Positivität: µ(A) ≥ 0.

• Additivität: µ(A ∪B) = µ(A) + µ(B), sofern A ∩B = ∅.

• Bewegungsinvarianz: µ(β(A)) = µ(A) für jede Bewegung µ : R3 → R3.

• Normiertheit: µ([0, 1]3) = 1.

Eine Volumenfunktion, die diese Eigenschaften erfüllt, nennen wir Inhalt.

Man kann nun sehr leicht sehen, dass die Forderungen zur Volumendefinition für alle Teilmengen des R3

zusammen mit dem Banach-Tarski-Paradoxon zu Widersprüchen führt.

Satz 8. Den Teilmengen aus dem Banach-Tarski-Paradoxon kann kein Volumen zugeordnet werden, das
den obigen Eigenschaften genügt.

Beweis: Sei K die Einheitskugel im R3 mit µ(K) = 1. Aufgrund der Paradoxie vonK existieren paarweise
disjunkte Teilmengen A1, ..., An, B1, ..., Bm von E und g1, ..., gn, h1, ..., hm ∈ G, sodass

K =

n⊔
i=1

giAi =

n⊔
j=1

hjBj

Damit ergibt sich aber folgender Widerspruch

1 = µ(K) ≥
n∑
i=1

µ(Ai) +

m∑
j=1

µ(Bj)

=

n∑
i=1

µ(gi(Ai)) +

m∑
j=1

µ(hj(Bj))

= µ

(
n⊔
i=1

giAi

)
+ µ

 n⊔
j=1

hjBj


= µ(K) + µ(K)

= 2.

Somit können die Mengen A1, ..., An, B1, ..., Bm kein im obigen Sinne betrachtetes Volumen haben. □
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Bemerkung 5. Es ist zu beachten, dass die Eigenschaft einer Menge kein Volumen zu besitzen nicht
heißt, dass das Volumen null ist. Hat eine Menge das Volumen null, so hat sie ja ein Volumen, nur eben
mit der Maßzahl null. Wir haben hier aber wirklich Mengen gefunden, denen wir diese Maßzahl gar nicht
zuordnen können!

Korollar 3. Es gibt keine endlich-additive, bewegungsinvariante Volumenfunktion auf P(R3) mit
µ([0, 1]3) = 1.

Bemerkung 6. Die Frage nach einer Volumenfunktion auf allen Teilmengen des R3, die den eingangs
genannten Eigenschaften genügt, ist allgemein als das Inhaltsproblem bekannt. Wir haben hier somit
gezeigt, dass Inhaltsproblem für n = 3 keine Lösung besitzt. Man kann auch zeigen, dass daraus folgt,
dass es auch für n ≥ 3 keine Lösung geben kann. Interessant ist aber, dass es für die Dimensionen n = 1
und n = 2 sehr wohl eine Lösung gibt. Allerdings sind diese nicht eindeutig bestimmt.
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