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1. Epizykel und ihre mathematische Darstellung

Ein Epizykel (von epi ,auf* und kyklos ,Kreis“) ist ein Kreis, dessen Mittelpunkt sich seinerseits auf
einer Kreisbahn bewegt. Von der Antike bis zur Ablosung des geozentrischen Weltbildes in der friithen
Neuzeit haben Astronomen die von der Erde aus beobachteten Planetenbahnen auf diese Weise zu erkléren
versucht. In der richtigen Konfiguration lassen sich mit hinreichend vielen Epizykeln sogar beliebige
geschossene Kurven beschreiben. Um zu erldutern, wie das funktioniert, fiihren wir zunéchst die nétigen
mathematischen Begriffe ein und leiten dann die Diskrete Fourier-Transformation her, die uns fiir eine
gegebene Kurve die entsprechende Konfiguration von Epizykeln liefern wird.

Definition 1 (Kurve). Eine ebene parametrisierte Kurve ist eine Abbildung
v : [a,b] — C,

die Werte aus dem Parameterbereich [a,b] C R auf Punkte in der komplexen Ebene C abbildet. Wir
bezeichnen auch das Bild von v als Kurve.

Aufgrund der trigonometrischen Beziehungen im Einheitskreis konnen wir diesen beispielsweise als Bild
der Kurve 7 : [0,27] — C mit
v(t) = cost +isint

darstellen. Dabei interpretieren wir y(¢) als einen Vektor der Lange 1, der fiir ¢ € [0, 27] einmal um den
Ursprung rotiert.

Durch die Addition mehrerer solcher Vektoren kénnen wir dann Epizykel parametrisieren.

Beispiel 1 (Mondbahn). Die Erde E umkreise die Sonne S im .
Koordinatenursprung im Abstand 1 einmal, wihrend der Mond BE:
M die Erde wiahrenddessen im Abstand 0.4 zwolfmal umkreise. M< 6 ‘ 55
Dann lisst sich die Bahn der Erde durch E : [0, 27] — C mit : 1

E(t) = 1.5(cost + isint)

und die Bahn des Mondes durch die Kurve M : [0, 27] — C mit

M(t) = E(t) 4+ 0.4( cos(12t) + isin(12t)) s

= 1.5(cost + isint) + 0.4( cos(12t) + isin(12t)) Abbildung 3: Bahn des Mondes M

.. um die Sonne S
parametrisieren.

Im Allgemeinen ist die Kurve B : [0, 27] — C mit

n

B(t) = (Rrcos(w,t + ¢,) + iRy sin(wyt + or))

r=1
eine Parametrisierung von n Epizykeln. Hierbei gibt R, den Betrag, w, die Frequenz und ¢, den Start-
winkel des 7-ten rotierenden Vektors an.

Wir wollen die Parametrisierung vereinfachen und fithren dazu weitere Begriffe ein.

Definition 2 (Die komplexe Exponentialfunktion). Wir definieren die komplexe Exponentialfunktion
exp : C — C durch die Potenzreihe

k 2 23

>N 2
exp(z) ::kZ_OH:1+Z+?+€+M

und schreiben auch e* := exp(z).
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Diese Potenzreihe ist auf ganz C absolut konvergent, wie leicht mit dem Quotientenkriterium zu zeigen
ist. Sie stimmt fiir reelle Zahlen mit der Taylorreihe der reellen natiirlichen Exponentialfunktion zur
Entwicklungsstelle 0 {iberein. Die komplexe Exponentialfunktion ist daher die Fortsetzung der bekannten
reellen Exponentialfunktion auf die komplexen Zahlen.

Satz 1 (Funktionalgleichung der Exponentialfunktion). Fiir beliebige komplezen Zahlen z und w gilt

exp(z) - exp(w) = exp(z + w).

Beweis: Da die Exponentialreihe fiir alle z, w € C konvergiert, kénnen wir das Cauchy-Produkt bilden
und mithilfe des binomischen Lehrsatzes umformen. Es gilt

0 P & wk > n Shn—k
exp(z) - exp(w) = <Z n') (Z k') = Z Z W = 1) (Cauchy Produktformel)

n=0 k=0 n=0 k=0
o n 1 0o 1 n ‘ ‘

= Z Z ] (Z) 2Rk = Z o Z (Z) 2k (Binomialkoeffizient)

n=0 k=0 n=0 " k=0

=1 o
= Z —(z+w)" (Binomischer Lehrsatz)

— nl
= exp(z +w)

Um unsere Parametrisierung zu vereinfachen, beweisen wir nun die beriihmte Fulersche Gleichung:

Satz 2. (Eulersche Gleichung) Fir alle t € R gilt

e = cost + isint.

Beweis: Wir betrachten die Funktion f : R — C mit f(t) = e~ *(cost + isint). Unter der Annahme,
dass die elementaren Ableitungsregeln auch in C funktionieren, leiten wir nach ¢ ab und erhalten

f'(t) = e "(—sint 4 icost) —ie "(cost + isint)
=e (—sint +icost) — e “(icost —sint)

Die Funktion f ist also konstant, und zwar mit dem Wert f(0) = 1. Es gilt also

1 =e "(cost +isint)

& et = cost +isint.

Damit vereinfacht sich die Parametrisierung unserer Epizykel-Kurve B : [0,27] — C zu

n

B(t) =) Rypertter

r=1

bzw. — wenn wir als Vorfaktoren auch komplexe ¢, = R,.e**" zulassen — zu
n
B(t) = E c et
r=1
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2. Nachzeichnen von Kurven mit Epizykeln

Wir mo6chten nun geschlossene Kurven mit Epizykeln nachzeichnen, d. h. wir suchen eine Parametrisierung
der Form

F(t)= Z cpetrt
reN
mit w, € R und ¢, € C, deren Bild einer gegebenen Kurve dhneln soll. Dafiir wihlen wir zunéchst NV

Stiitzstellen xg, x1, ..., zy_1 auf der gegebenen Kurve:

T3] ]
Z2)

Zo)
Z4]

Abbildung 4: Diskretisierung einer geschlossenen Kurve mit N = 8 Stiitzstellen

Die Funktion F soll fiir t € [0, 27| diese Stiitzstellen in dquidistanten Absténden durchlaufen, es soll also

27k fw,. 2Zk
(3 ) = e =g

fir alle £ =0,..., N — 1 gelten.

Durch Uberlegungen zur Periodizitéit der Stiitzstellen und der gesuchten Parametrisierung konnen wir
Gestalt und Anzahl der benétigten Frequenzen einschréinken.

Da die gegebene Kurve geschlossen ist, muss fiir die Parametrisierung F : [0, 27] — C auch F(27) = F(0)

bzw.
§ :CreleQﬂ — § Crezwro — § Cr

reN reN reN

w27

gelten. Das ist genau dann der Fall, wenn e =1 bzw. w27 =0 mod 27 gilt, also fiir w, € Z.

Das lésst sich auch anschaulich geometrisch begriinden: Bei den Summanden der gesuchten Parame-
trisierung handelt es sich mit Ausnahme von w, = 0 um rotierende Vektoren. Diese miissen fiir ¢ = 2w
jeweils wieder in ihre Ausgangsposition bei ¢t = 0 zuriickkehren. Dafiir miissen die Frequenzen ganzzahlige
Vielfache der langsamsten Frequenz 1 sein.

Da also alle Frequenzen ganzzahlig sein miissen, kénnen wir in unserer gesuchten Parametrisierung den
Index r € Z gleich als Variable fiir die Frequenz nutzen. So erhalten wir die vereinfachte Bedingung

2k ip2mk
P ) = 2o =

fiir alle k =0,...,N — 1.

Auflerdem tauchen bei N Stiitzstellen maximal N verschiedene Frequenzen in unserer Parametrisierung
auf. Gédbe es mehr als IV verschiedene Summanden, kénnten wir mehrere Summanden zu einem zusam-
menfassen.
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Es gilt ndmlich

; 2mk .. 2k ; i 2wk
62(T+N)4% _ e 2wk ezr-% .1
.. 2k ; 27k
also e K = i)

Damit erhalten wir beim Summieren

F<—2]7\Tfk) = e 4y CranN - NS Ly Crymn - € TTMN R4

2k

_ iT-% ir-% ire S5y
=..+c e + ..+t Cyn-€ + ..t CrymnN - € + ...

= ...+ ( Z CT+mN) . 67;7"% —+ .

me7Z

d.h. wir kénnen alle Vorfaktoren zu Frequenzen r» mod N zusammenfassen. Anschaulich bedeutet das,
dass N Stiitzstellen nur Informationen fiir N verschiedene Summanden liefern. Um die Kurve genauer
nachzuzeichnen, miissen wir daher die Anzahl der Stiitzstellen erhchen.

Welche N Frequenzen wir verwenden, ist erst einmal nicht festgelegt. Wir rechnen im Folgenden mit
den N Frequenzen 0O,..., N — 1 und betrachten den Einfluss des Frequenzspektrums anschlieflend etwas
genauer.

Mit diesen beiden Einschrankungen gilt es nun also, die Koeffizienten ¢, € C mit

N-1

(%k) ZCT o=y (1)

fiir alle Kk =0,..., N — 1 zu bestimmen.

3. Die diskrete Fourier-Analyse

Im Folgenden leiten wir her, wie sich aus den N Stiitzstellen (g, ..., z;y 1) die N Koeffizienten co, ..., cny -1
ermitteln lassen.

Wir beobachten zunéchst, dass von den Summanden der Ziel-Kurve F : [0,27) — C mit
- Z cre” = coe® + cret 4 coe? 4 . 4 cpeN D

der erste Summand cpe® = ¢ der einzige nicht rotierende Vektor ist. Der Koeffizient ¢y hiingt nicht von
t ab und ist daher konstant. Das fithrt uns zu der Vermutung, dass dieser Summand als ,,Anker® der
Epizykel-Summe der Schwerpunkt aller Stiitzstellen ist.

Satz 3. Der Vorfaktor co € C ist der Schwerpunkt der Stiitzstellen ), ..., x(n_1), d.h. fir alle k =

0,....N =1 gilt
1 N—-1
= N Z Z[k]- (2)
k=0

Beweis. Durch Einsetzen unserer Forderung in die rechte Seite der Behauptung erhalten wir

—1N-1 N—-1N-1 N— N-1
1 ir2ghk
yoi 2 ere Z DI
N

k=0 r=0 =0 k= r=0 k=0
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Zur Berechnung der inneren Summe treffen wir eine Fallunterscheidung:

Fall 1: » = 0 In diesem Fall gilt einfach

N-1 N—-1 N—-1 N-1
E e'" N = E 610 N = E eo = 1=N.
k=0 k=0 k=0 k=0

Fall 2: r #£0
Mit der Summenformel fiir geometrische Summen erhalten wir in diesem Fall

N-1 -1 ir 2% _ i
ir2zk 3 (irzeys _ L= (MR )INTDHL e 1-1 0 0
e = e = — = —— = —— = —— = 0.
P o 1 _ el’l"zﬁ 1 _ e’LT‘% 1 _ el’l‘% 1 _ 627’%

Dieses Resultat halten wir gesondert fest:
Lemma 1. Mit den eingefiihrten Bezeichnungen gilt

N_lem»%_ N, ’I"ZO,
0, r#0.

| N=1oN-
2nk
DI
r=0 k=0
N—1 N-1 N-1
1 ir2zk ir 27k
:N(CO e N + Cr € \>
k=0 r=1 k=0
1 = 1
:N(CO N-i—ZCT'O):N-CoN
r=1
= CO
Somit ist ¢y ist tatsdchlich der Schwerpunkt aller Stiitzstellen. O

Um nun allgemein den m-ten Koeffizienten c,, der Parametrisierung zu bestimmen, sorgen wir dafiir,
dass der zugehérige rotierende Vektor c¢,,e!™! nicht mehr rotiert. Denn dann kénnen wir analog zur
Bestimmung von ¢y vorgehen.

Dies gelingt durch Multiplikation der gesamten Summe mit e~*"¢, denn dann ergibt sich
N-1

e imt Z cTeirt — e—imt (CO + clezt NI Cmezmt 4ot CN_lez(N—l)t)
r=0

_ cOe—zmt S cmeO N cNilez(N—l—m)t.
Dabei wird genau der zu ¢, gehorende Term zu einem konstanten Summanden.
—mit

Wir multiplizieren also beide Seiten unserer Forderung (1)) mit e und erhalten

N-1
E ri 20k —mi2zk
Jj[k] = CT‘ - e N | - e N
r=0
N-1
i 2k )i 2k
:>l‘[k]€ mi2LE cr.e(r m)i 2%
r=0

49



Da diese Gleichung fiir alle £ = 0,..., N — 1 gilt, ist auch der Mittelwert iiber alle k& auf beiden Seiten
gleich. Wir kénnen also wieder die Schwerpunkte betrachten.

Mit Lemma [I] erhalten wir so

N-1 N—-1 N-1
1 ( —mizl’\'[k) _ 1 ( (r—m)i%)
N xm] € N Cpr- €
k=0 k=0 r=0
1 N—-1 N—-1
_ = . J(r—m)i 2z
=¥ (cr D e )
r=0 k=0
1 m—1 N-1
:N( ¢ -0+cy - N+ Z Cr 0)
r=0 r=m+1

Damit haben wir eine Berechnung die die Koeffizienten der gesuchten Parametrisierung gefunden!

Wir iiberpriifen nun noch, dass die Kurve F : [0, 27) — C mit

zum Zeitpunkt ¢ = 2% die j-te Stiitzstelle durchliuft, d.h. dass

21y
F <N> = [

fir alle j =0,..., N — 1 gilt.

Fir t = 2% gilt mit dem ermittelten Ausdruck fiir ¢, tatséchlich

N r=0
N—-1 N—-1
_ < 1 7"7,2}\’,]‘> 6”217\?
= - xw] e
r=0 A[k:O
N-1 N-1
_ 1 i 27—k
—‘N_ xw] (&
k=0 r=0
1 J—1 N-1
=N o) 0+ ag) N+ D ap -0
k=0 k=j+1
= T[]

Dabei nutzen wir, dass analog zu Lemma [1] gilt:

Nz_:le”zw(fjvik)— N, j—k=0&j=k
0, j—k#0&j#k.

r=0

Wir haben also eine Parametrisierung der gewiinschten Form gefunden, die alle Stiitzstellen durchlduft.
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Definition 3 (Diskrete Fourier-Transformation). Die Abbildung, die aus den IV Stiitzstellen x|y, ..., (v _1)
die Fourier-Koeffizienten
N—1

1 —ri2zk
Cr = N kz_o Tlg) - € N

bestimmt, heifit Diskrete Fourier-Transformation (DFT).

Die Inverse Fourier-Transformation (IDFT) rekonstruiert aus diesen Koeffizienten wiederum die Werte

N—1
Tpy = E cn-e"VN,
k=0

4. Umsetzung mit GeoGebra und Python

Nun kénnen wir verschiedene geschlossene Kurve durch Epizyklel approximieren, indem wir auf einer gege-
benen Silhouette in GeoGebra manuell Stiitzstellen wihlen und mit der Diskreten Fourier-Transformation
die Koeffizienten ¢, berechnen lassen. Die Spur der gemé&f} der Inversen Diskreten Fourier-Transformation
zusammengesetzten Epizykel zeichnet dann diese Silhouette nach.

AuBlerdem haben wir einige Animationen mit der Python-Bibliothek Manim erstellt:

Abbildung 5: Die Umrisse der USA mit 4, 8, 16 und 128 Stiitzstellen nachgezeichnet

Zu beachten ist, dass das Frequenzspektrum das Aussehen der erzeugten Kurve stark beeinflusst. Nutzen
wir wie in den Rechnungen die Frequenzen 0, 1, ..., N—1, erhalten wir eine Kurve, die zwar alle Stiitzstellen
durchléduft, aber starkes Aliasing aufweist. Deutlich dhnlicher wird diese Kurve dem gewiinschten Resultat
bei einem um 0 symmetrischen Frequenzspektrum. Offenbar wird die Approximation besser, wenn die
Lénge unserer Kurve kleiner wird.
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Y e =0
Y
- NETSY)

31
Flt)y=)Y cpe F(t) = Z cre’t
r=0 k=-32

Abbildung 6: Aliasing bei hohen Frequenzen
Das lédsst sich erreichen, indem wir die Umlaufzahl unserer Kurve reduzieren. Wenn zwei Vektoren mit
den Frequenzen 11 bzw. ro mit gleichen Vorzeichen rotieren, parametrisiert ihre Summe Kurven mit der
Umlaufzahl 1 + 72, d.h. die Kurve durchlduft r1 + ro Umrundungen im selben Drehsinn. Wenn zwei

Vektoren mit gleicher Frequenz in gegenteiligem Drehsinn rotieren, parametrisiert ihre Summe dagegen
eine Ellipse (mit Umlaufzahl 1).

F(t) = 1e/®H5) 4 26165 F(t) = 1€/ T) 4 2¢1(-2445)
Abbildung 7: Kurven mit unterschiedlicher Umlaufzahl
Das kénnen wir auch nachrechnen. Dazu seien ¢,,, = R,,e’? und c_,, = R_ e (R, R_1, 0,9 € R) die
komplexen Koeffizienten mit
F(t)= Cme™t 4 c_e ™t = R, ! mtte) L g ei(=mity)
Durch Anderung von ¢ bzw. 9 wird das Bild von F nur gedreht. Wir setzen daher ¢ = ¢ = 0.
Wegen cos(—t) = cos(t) und sin(—t) = — sin(¢) fiir alle ¢t € R gilt mit der Eulerschen Formel

Rmemit + R,me_mit
= Ry, (cos(mt) + i - sin(mt)) + R_p, (cos(—mt) + i - sin(—mt))
= Ry, (cos(mt) + ¢ - sin(mt)) + R_,, (cos(mt) — i - sin(mt))
= (R + R_p) cos(mt) + i - (R — R_y,) sin(mt).

Das ist fiir t € [0,27) eine Parametrisierung einer Ellipse mit den Achsenléngen (R, + R_,,) und
(R — R_p,). Fiir R,, = R_,, fillt der Imaginirteil weg, sodass die Ellipse zu einer Strecke wird.
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Dass die Fourier-Summe mit den Frequenzen von —N/2 bis N/2 die gegebene Kurve gut approximiert,
entspricht der Aussage des sogenannten Abtasttheorems.

AWAW/AWAV/A
BV SVANVA

Abbildung 8: Die Stiitzstellen kénnen auf beiden Kurven liegen.

Danach kénnen Signale, die Frequenzen bis fi,.x enthalten, nur dann aus Stiitzstellen eindeutig rekon-
struiert werden, wenn diese mit einer Frequenz von mehr als 2 - fi,.x vorliegen. Daher geniigen unsere N
Stiitzstellen nur zur Rekonstruktion von Summanden mit einer niedrigeren Frequenz als N/2.

5. Die schnelle Fourier-Transformation

Falls die Anzahl der Stiitzstellen eine Zweierpotenz ist, lisst sich die Berechnung der Fourier-Koeffizienten
besonders elegant notieren und effizient durchfithren. Wir setzen zunéchst e~ =: w und schreiben damit

1 N-1 1 N-1
2k ke
cr = N kg_o ‘T[k] .e N — N ]}_O m[k] ‘W Tk.

Das System dieser Gleichungen kénnen wir als Matrix-Vektor-Multiplikation schreiben, wobei wir die
Zeilen so sortieren und die Exponenten unter Ausnutzen von

WRTUN iS5 (RHLN) _ pi2RE | iaml _ iRk ok (lez) (3)
so umformen, dass der Eintrag in der i-ten Zeile und der j-ten Spalte der Matrix gerade w(*=DU=1 jgt,

Fiir N = 8 = 23 konnen wir die Fourier-Koeffizienten c_s, ..., ¢4 zum Beispiel wie folgt berechnen:

W W w® w® w® w® w® WO T[] co
wb Wt w? w? wt w® wb w’ o c_1
0 w? o e T I TR ! 2 s
L WP o° IS B LR R} 2 | ; e s
O Wt OB Wiz W16 20 24 28 - B s
L W W0 LB 20 25 80 35 2 cs
W W W2 8 W2 W30 6 42 - e
S SR U S-S R B O B ) Zp o

Diese DFT-Matriz kann nun auf die markierten Eintridge reduziert werden. Denn wegen konnen
wir in den ungeraden Zeilen die rechte Hélfte der Eintrige durch die linke Hélfte ersetzen. Und in den
geraden Zeilen erhalten wir dann den j-ten Eintrag als Produkt des dariiber liegenden Eintrags und dem
spaltenabhingigen Vorfaktor w/~!, der in der rechten Hilfte zusétzlich mit einem negativen Vorzeichen
versehen wird. Dabei nutzen wir aus, dass w™/2 = —1 gilt, wenn N gerade ist.
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Nun konnen wir die Multiplikation mit einer 8 x 8-Matrix durch zwei Multiplikationen mit derselben
4 x 4-Matrix ersetzen. Dann erhalten wir die Fourier-Koeflizienten in den ungeraden Zeilen durch

w w w w T[] + X4 Co
wo o.)2 w4 w6 ) + 5] 3 ()
e - wd w2 T[2] + X[g] Ca
s o o e T[3] + Z[7] Cc2

W w w w w? (o) — @) c_1
oo I G wh (zpy —z) | g | e
WO Wt W W' w? (22 — @) a c3
wl Wb Wi W8 w® (23 — 2m) ¢

Entscheidend ist nun, dass diese beiden Multiplikationen nun auf dieselbe Weise in jeweils zwei Multipli-
kationen mit einer 2 x 2-Matrix und dann weiter in jeweils vier Multiplikationen mit einer 1 x 1-,Matrix*“
zerlegt werden kann, bei der es sich nur noch um eine einzige Operation handelt. Bei einer N x N-Matrix
benétigen wir dafiir entsprechend log,(NN) Iterationen.

Der Vorteil dieses Verfahrens wird deutlich, wenn man die Anzahl der fiir die Durchfithrung benétigten
Operationen betrachtet: Die Matrix-Vektor-Multiplikation mit einer n x n-Matrix umfasst in jeder der n
Zeilen n Multiplikationen und n—1 Additionen, also insgesamt 2n2 —n Operationen. Die schnelle Fourier-
Transformation mit derselben Matrix umfasst in der ersten Zerlegung 5 Additionen, 4 Subtraktionen
und 5 Multiplikationen, d.h. 37" Operationen, ig der zweiten Zerlegung zweimal % Additionen, 7 Sub-
T

traktionen und % Multiplikationen, d. h. wieder < Operationen usw. Bei insgesamt log,(n) Zerlegungen

ergeben sich insgesamt logy(n) - 3¢ Operationen.

Fiir groBe Matrizen ist die Ersparnis enorm. Fiir N = 229 werden weniger als 0.001% der urspriinglichen
Operationen benotigt. Deshalb wird dieses Verfahren schnelle Fourier-Transformation oder Fast Fourier

Transformation (FFT) genannt.
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