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1. Epizykel und ihre mathematische Darstellung

Ein Epizykel (von epi
”
auf“ und kyklos

”
Kreis“) ist ein Kreis, dessen Mittelpunkt sich seinerseits auf

einer Kreisbahn bewegt. Von der Antike bis zur Ablösung des geozentrischen Weltbildes in der frühen
Neuzeit haben Astronomen die von der Erde aus beobachteten Planetenbahnen auf diese Weise zu erklären
versucht. In der richtigen Konfiguration lassen sich mit hinreichend vielen Epizykeln sogar beliebige
geschossene Kurven beschreiben. Um zu erläutern, wie das funktioniert, führen wir zunächst die nötigen
mathematischen Begriffe ein und leiten dann die Diskrete Fourier-Transformation her, die uns für eine
gegebene Kurve die entsprechende Konfiguration von Epizykeln liefern wird.

Definition 1 (Kurve). Eine ebene parametrisierte Kurve ist eine Abbildung

γ : [a, b] → C,

die Werte aus dem Parameterbereich [a, b] ⊂ R auf Punkte in der komplexen Ebene C abbildet. Wir
bezeichnen auch das Bild von γ als Kurve.

Aufgrund der trigonometrischen Beziehungen im Einheitskreis können wir diesen beispielsweise als Bild
der Kurve γ : [0, 2π] → C mit

γ(t) = cos t+ i sin t

darstellen. Dabei interpretieren wir γ(t) als einen Vektor der Länge 1, der für t ∈ [0, 2π] einmal um den
Ursprung rotiert.

Durch die Addition mehrerer solcher Vektoren können wir dann Epizykel parametrisieren.

Beispiel 1 (Mondbahn). Die Erde E umkreise die Sonne S im
Koordinatenursprung im Abstand 1 einmal, während der Mond
M die Erde währenddessen im Abstand 0.4 zwölfmal umkreise.
Dann lässt sich die Bahn der Erde durch E : [0, 2π] → C mit

E(t) = 1.5(cos t+ i sin t)

und die Bahn des Mondes durch die KurveM : [0, 2π] → C mit

M(t) = E(t) + 0.4
(
cos(12t) + i sin(12t)

)
= 1.5(cos t+ i sin t) + 0.4

(
cos(12t) + i sin(12t)

)
parametrisieren.

Abbildung 3: Bahn des Mondes M
um die Sonne S

Im Allgemeinen ist die Kurve B : [0, 2π] → C mit

B(t) =

n∑
r=1

(
Rr cos(ωrt+ φr) + iRr sin(ωrt+ φr)

)
eine Parametrisierung von n Epizykeln. Hierbei gibt Rr den Betrag, ωr die Frequenz und φr den Start-
winkel des r-ten rotierenden Vektors an.

Wir wollen die Parametrisierung vereinfachen und führen dazu weitere Begriffe ein.

Definition 2 (Die komplexe Exponentialfunktion). Wir definieren die komplexe Exponentialfunktion
exp : C → C durch die Potenzreihe

exp(z) :=

∞∑
k=0

zk

k!
= 1 + z +

z2

2
+
z3

6
+ ...

und schreiben auch ez := exp(z).
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Diese Potenzreihe ist auf ganz C absolut konvergent, wie leicht mit dem Quotientenkriterium zu zeigen
ist. Sie stimmt für reelle Zahlen mit der Taylorreihe der reellen natürlichen Exponentialfunktion zur
Entwicklungsstelle 0 überein. Die komplexe Exponentialfunktion ist daher die Fortsetzung der bekannten
reellen Exponentialfunktion auf die komplexen Zahlen.

Satz 1 (Funktionalgleichung der Exponentialfunktion). Für beliebige komplexen Zahlen z und w gilt

exp(z) · exp(w) = exp(z + w).

Beweis: Da die Exponentialreihe für alle z, w ∈ C konvergiert, können wir das Cauchy-Produkt bilden
und mithilfe des binomischen Lehrsatzes umformen. Es gilt

exp(z) · exp(w) =

( ∞∑
n=0

zn

n!

)( ∞∑
k=0

wk

k!

)
=

∞∑
n=0

n∑
k=0

zkwn−k

k!(n− k)!
(Cauchy Produktformel)

=

∞∑
n=0

n∑
k=0

1

n!

(
n

k

)
zkwn−k =

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
zkwn−k (Binomialkoeffizient)

=

∞∑
k=0

1

n!
(z + w)n (Binomischer Lehrsatz)

= exp(z + w).

□

Um unsere Parametrisierung zu vereinfachen, beweisen wir nun die berühmte Eulersche Gleichung :

Satz 2. (Eulersche Gleichung) Für alle t ∈ R gilt

eit = cos t+ i sin t.

Beweis: Wir betrachten die Funktion f : R → C mit f(t) = e−it(cos t + i sin t). Unter der Annahme,
dass die elementaren Ableitungsregeln auch in C funktionieren, leiten wir nach t ab und erhalten

f ′(t) = e−it(− sin t+ i cos t)− ie−it(cos t+ i sin t)

= e−it(− sin t+ i cos t)− e−it(i cos t− sin t)

= 0.

Die Funktion f ist also konstant, und zwar mit dem Wert f(0) = 1. Es gilt also

1 = e−it(cos t+ i sin t)

⇔ eit = cos t+ i sin t.

□

Damit vereinfacht sich die Parametrisierung unserer Epizykel-Kurve B : [0, 2π] → C zu

B(t) =

n∑
r=1

Rre
iωrt+φr

bzw. – wenn wir als Vorfaktoren auch komplexe cr = Rre
iφr zulassen – zu

B(t) =

n∑
r=1

cre
iωrt.
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2. Nachzeichnen von Kurven mit Epizykeln

Wir möchten nun geschlossene Kurven mit Epizykeln nachzeichnen, d. h. wir suchen eine Parametrisierung
der Form

F (t) =
∑
r∈N

cre
iωrt

mit ωr ∈ R und cr ∈ C, deren Bild einer gegebenen Kurve ähneln soll. Dafür wählen wir zunächst N
Stützstellen x0, x1, ..., xN−1 auf der gegebenen Kurve:

x[0]

x[1]
x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

Abbildung 4: Diskretisierung einer geschlossenen Kurve mit N = 8 Stützstellen

Die Funktion F soll für t ∈ [0, 2π] diese Stützstellen in äquidistanten Abständen durchlaufen, es soll also

F
(2πk
N

)
=
∑
r∈N

cre
iωr

2πk
N = x[k]

für alle k = 0, ..., N − 1 gelten.

Durch Überlegungen zur Periodizität der Stützstellen und der gesuchten Parametrisierung können wir
Gestalt und Anzahl der benötigten Frequenzen einschränken.

Da die gegebene Kurve geschlossen ist, muss für die Parametrisierung F : [0, 2π] → C auch F (2π) = F (0)
bzw. ∑

r∈N
cre

iωr2π =
∑
r∈N

cre
iωr0 =

∑
r∈N

cr

gelten. Das ist genau dann der Fall, wenn eiωr2π = 1 bzw. ωr2π ≡ 0 mod 2π gilt, also für ωr ∈ Z.

Das lässt sich auch anschaulich geometrisch begründen: Bei den Summanden der gesuchten Parame-
trisierung handelt es sich mit Ausnahme von ωr = 0 um rotierende Vektoren. Diese müssen für t = 2π
jeweils wieder in ihre Ausgangsposition bei t = 0 zurückkehren. Dafür müssen die Frequenzen ganzzahlige
Vielfache der langsamsten Frequenz 1 sein.

Da also alle Frequenzen ganzzahlig sein müssen, können wir in unserer gesuchten Parametrisierung den
Index r ∈ Z gleich als Variable für die Frequenz nutzen. So erhalten wir die vereinfachte Bedingung

F
(2πk
N

)
=
∑
r∈Z

cre
ir 2πk

N = x[k]

für alle k = 0, ..., N − 1.

Außerdem tauchen bei N Stützstellen maximal N verschiedene Frequenzen in unserer Parametrisierung
auf. Gäbe es mehr als N verschiedene Summanden, könnten wir mehrere Summanden zu einem zusam-
menfassen.
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Es gilt nämlich

ei(r+N)· 2πk
N = eir·

2πk
N · ei2πk = eir·

2πk
N · 1,

also eir·
2πk
N = ei(r+N)· 2πk

N .

Damit erhalten wir beim Summieren

F
(2πk
N

)
= ...+ cr · eir·

2πk
N + ...+ cr+N · ei(r+N)· 2πk

N + ...+ cr+mN · ei(r+mN)· 2πk
N + ...

= ...+ cr · eir·
2πk
N + ...+ cr+N · eir· 2πk

N + ...+ cr+mN · eir· 2πk
N + ...

= ...+
(∑
m∈Z

cr+mN

)
· eir· 2πk

N + ...,

d. h. wir können alle Vorfaktoren zu Frequenzen r mod N zusammenfassen. Anschaulich bedeutet das,
dass N Stützstellen nur Informationen für N verschiedene Summanden liefern. Um die Kurve genauer
nachzuzeichnen, müssen wir daher die Anzahl der Stützstellen erhöhen.

Welche N Frequenzen wir verwenden, ist erst einmal nicht festgelegt. Wir rechnen im Folgenden mit
den N Frequenzen 0, ..., N − 1 und betrachten den Einfluss des Frequenzspektrums anschließend etwas
genauer.

Mit diesen beiden Einschränkungen gilt es nun also, die Koeffizienten cr ∈ C mit

F
(2πk
N

)
=

N−1∑
r=0

cre
ir 2πk

N = x[k] (1)

für alle k = 0, ..., N − 1 zu bestimmen.

3. Die diskrete Fourier-Analyse

Im Folgenden leiten wir her, wie sich aus den N Stützstellen x[0], ..., x[N−1] die N Koeffizienten c0, ..., cN−1

ermitteln lassen.

Wir beobachten zunächst, dass von den Summanden der Ziel-Kurve F : [0, 2π) → C mit

F (t) =

N−1∑
r=0

cre
rit = c0e

0 + c1e
it + c2e

2it + ...+ c0e
(N−1)it

der erste Summand c0e
0 = c0 der einzige nicht rotierende Vektor ist. Der Koeffizient c0 hängt nicht von

t ab und ist daher konstant. Das führt uns zu der Vermutung, dass dieser Summand als
”
Anker“ der

Epizykel-Summe der Schwerpunkt aller Stützstellen ist.

Satz 3. Der Vorfaktor c0 ∈ C ist der Schwerpunkt der Stützstellen x[0], ..., x[N−1], d. h. für alle k =
0, ..., N − 1 gilt

c0 =
1

N

N−1∑
k=0

x[k]. (2)

Beweis. Durch Einsetzen unserer Forderung (1) in die rechte Seite der Behauptung erhalten wir

1

N

N−1∑
k=0

N−1∑
r=0

cre
ir 2πk

N =
1

N

N−1∑
r=0

N−1∑
k=0

cre
ir 2πk

N =
1

N

N−1∑
r=0

cr

N−1∑
k=0

eir
2πk
N .
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Zur Berechnung der inneren Summe treffen wir eine Fallunterscheidung:

Fall 1: r = 0 In diesem Fall gilt einfach

N−1∑
k=0

eir
2πk
N =

N−1∑
k=0

ei·0·
2πk
N =

N−1∑
k=0

e0 =

N−1∑
k=0

1 = N.

Fall 2: r ̸= 0
Mit der Summenformel für geometrische Summen erhalten wir in diesem Fall

N−1∑
k=0

eir
2πk
N =

N−1∑
k=0

e(ir
2π
N )k =

1− (eir
2π
N )(N−1)+1

1− eir
2π
N

=
1− eir2π

1− eir
2π
N

=
1− 1

1− eir
2π
N

=
0

1− eir
2π
N

= 0.

Dieses Resultat halten wir gesondert fest:

Lemma 1. Mit den eingeführten Bezeichnungen gilt

N−1∑
k=0

eri
2πk
N =

{
N, r = 0,

0, r ̸= 0.

Mit diesem Lemma gilt schließlich

=
1

N

N−1∑
r=0

cr

N−1∑
k=0

eir
2πk
N

=
1

N

(
c0 ·

N−1∑
k=0

eir
2πk
N +

N−1∑
r=1

cr

N−1∑
k=0

eir
2πk
N

)
=

1

N

(
c0 ·N +

N−1∑
r=1

cr · 0
)
=

1

N
· c0 ·N

= c0.

Somit ist c0 ist tatsächlich der Schwerpunkt aller Stützstellen.

Um nun allgemein den m-ten Koeffizienten cm der Parametrisierung zu bestimmen, sorgen wir dafür,
dass der zugehörige rotierende Vektor cme

imt nicht mehr rotiert. Denn dann können wir analog zur
Bestimmung von c0 vorgehen.

Dies gelingt durch Multiplikation der gesamten Summe mit e−imt, denn dann ergibt sich

e−imt ·
N−1∑
r=0

cre
irt = e−imt · (c0 + c1e

it + · · ·+ cme
imt + · · ·+ cN−1e

i(N−1)t)

= c0e
−imt + · · ·+ cme

0 + · · ·+ cN−1e
i(N−1−m)t.

Dabei wird genau der zu cm gehörende Term zu einem konstanten Summanden.

Wir multiplizieren also beide Seiten unserer Forderung (1) mit e−mit und erhalten

x[k] =

N−1∑
r=0

cr · eri
2πk
N | · e−mi 2πk

N

⇒ x[k] · e−mi
2πk
N =

N−1∑
r=0

cr · e(r−m)i 2πk
N .
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Da diese Gleichung für alle k = 0, . . . , N − 1 gilt, ist auch der Mittelwert über alle k auf beiden Seiten
gleich. Wir können also wieder die Schwerpunkte betrachten.

Mit Lemma 1 erhalten wir so

1

N

N−1∑
k=0

(
x[k] · e−mi

2πk
N

)
=

1

N

N−1∑
k=0

(N−1∑
r=0

cr · e(r−m)i 2πk
N

)
=

1

N

N−1∑
r=0

(
cr ·

N−1∑
k=0

e(r−m)i 2πk
N

)
=

1

N

(m−1∑
r=0

cr · 0 + cm ·N +

N−1∑
r=m+1

cr · 0
)

= cm.

Damit haben wir eine Berechnung die die Koeffizienten der gesuchten Parametrisierung gefunden!

Wir überprüfen nun noch, dass die Kurve F : [0, 2π) → C mit

F (t) =

N−1∑
r=0

cre
rit, cr =

1

N

N−1∑
k=0

x[k] · e−ri
2πk
N

zum Zeitpunkt t = 2πj
N die j-te Stützstelle durchläuft, d. h. dass

F

(
2πj

N

)
= x[j]

für alle j = 0, ..., N − 1 gilt.

Für t = 2πj
N gilt mit dem ermittelten Ausdruck für cr tatsächlich

F

(
2πj

N

)
=

N−1∑
r=0

cr · eri
2πj
N

=

N−1∑
r=0

(
1

N

N−1∑
k=0

x[k] · e−ri
2πk
N

)
· eri

2πj
N

=
1

N

N−1∑
k=0

x[k]

N−1∑
r=0

eri
2π(j−k)

N

=
1

N

j−1∑
k=0

x[k] · 0 + x[j] ·N +

N−1∑
k=j+1

x[k] · 0


= x[j].

Dabei nutzen wir, dass analog zu Lemma 1 gilt:

N−1∑
r=0

eri
2π(j−k)

N =

{
N, j − k = 0 ⇔ j = k

0, j − k ̸= 0 ⇔ j ̸= k.

Wir haben also eine Parametrisierung der gewünschten Form gefunden, die alle Stützstellen durchläuft.
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Definition 3 (Diskrete Fourier-Transformation). Die Abbildung, die aus denN Stützstellen x[0], ..., x[N−1]

die Fourier-Koeffizienten

cr =
1

N

N−1∑
k=0

x[k] · e−ri
2πk
N

bestimmt, heißt Diskrete Fourier-Transformation (DFT).

Die Inverse Fourier-Transformation (IDFT) rekonstruiert aus diesen Koeffizienten wiederum die Werte

x[k] =

N−1∑
k=0

cr · eri
2πk
N .

4. Umsetzung mit GeoGebra und Python

Nun können wir verschiedene geschlossene Kurve durch Epizyklel approximieren, indem wir auf einer gege-
benen Silhouette in GeoGebra manuell Stützstellen wählen und mit der Diskreten Fourier-Transformation
die Koeffizienten cr berechnen lassen. Die Spur der gemäß der Inversen Diskreten Fourier-Transformation
zusammengesetzten Epizykel zeichnet dann diese Silhouette nach.

Außerdem haben wir einige Animationen mit der Python-Bibliothek Manim erstellt:

Abbildung 5: Die Umrisse der USA mit 4, 8, 16 und 128 Stützstellen nachgezeichnet

Zu beachten ist, dass das Frequenzspektrum das Aussehen der erzeugten Kurve stark beeinflusst. Nutzen
wir wie in den Rechnungen die Frequenzen 0, 1, ..., N−1, erhalten wir eine Kurve, die zwar alle Stützstellen
durchläuft, aber starkes Aliasing aufweist. Deutlich ähnlicher wird diese Kurve dem gewünschten Resultat
bei einem um 0 symmetrischen Frequenzspektrum. Offenbar wird die Approximation besser, wenn die
Länge unserer Kurve kleiner wird.
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F (t) =

63∑
r=0

cre
rit F (t) =

31∑
k=−32

cre
rit

Abbildung 6: Aliasing bei hohen Frequenzen

Das lässt sich erreichen, indem wir die Umlaufzahl unserer Kurve reduzieren. Wenn zwei Vektoren mit
den Frequenzen r1 bzw. r2 mit gleichen Vorzeichen rotieren, parametrisiert ihre Summe Kurven mit der
Umlaufzahl r1 + r2, d. h. die Kurve durchläuft r1 + r2 Umrundungen im selben Drehsinn. Wenn zwei
Vektoren mit gleicher Frequenz in gegenteiligem Drehsinn rotieren, parametrisiert ihre Summe dagegen
eine Ellipse (mit Umlaufzahl 1).

F (t) = 1ei(2t+
π
4 ) + 2ei(3t+

π
8 ) F (t) = 1ei(2t+

π
4 ) + 2ei(−2t+π

8 )

Abbildung 7: Kurven mit unterschiedlicher Umlaufzahl

Das können wir auch nachrechnen. Dazu seien cm = Rme
iφ und c−m = R−me

iψ (Rm, R−m, φ, ψ ∈ R) die
komplexen Koeffizienten mit

F (t) = cme
mit + c−me

−mit = Rme
i(mt+φ) +R−me

i(−mt+ψ).

Durch Änderung von φ bzw. ψ wird das Bild von F nur gedreht. Wir setzen daher φ = ψ = 0.

Wegen cos(−t) = cos(t) und sin(−t) = − sin(t) für alle t ∈ R gilt mit der Eulerschen Formel

Rme
mit +R−me

−mit

= Rm (cos(mt) + i · sin(mt)) +R−m (cos(−mt) + i · sin(−mt))
= Rm (cos(mt) + i · sin(mt)) +R−m (cos(mt)− i · sin(mt))
= (Rm +R−m) cos(mt) + i · (Rm −R−m) sin(mt).

Das ist für t ∈ [0, 2π) eine Parametrisierung einer Ellipse mit den Achsenlängen (Rm + R−m) und
(Rm −R−m). Für Rm = R−m fällt der Imaginärteil weg, sodass die Ellipse zu einer Strecke wird.
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Dass die Fourier-Summe mit den Frequenzen von −N/2 bis N/2 die gegebene Kurve gut approximiert,
entspricht der Aussage des sogenannten Abtasttheorems.

−π π

Abbildung 8: Die Stützstellen können auf beiden Kurven liegen.

Danach können Signale, die Frequenzen bis fmax enthalten, nur dann aus Stützstellen eindeutig rekon-
struiert werden, wenn diese mit einer Frequenz von mehr als 2 · fmax vorliegen. Daher genügen unsere N
Stützstellen nur zur Rekonstruktion von Summanden mit einer niedrigeren Frequenz als N/2.

5. Die schnelle Fourier-Transformation

Falls die Anzahl der Stützstellen eine Zweierpotenz ist, lässt sich die Berechnung der Fourier-Koeffizienten
besonders elegant notieren und effizient durchführen. Wir setzen zunächst ei

2π
N =: ω und schreiben damit

cr =
1

N

N−1∑
k=0

x[k] · e−ir
2πk
N =

1

N

N−1∑
k=0

x[k] · ω−rk.

Das System dieser Gleichungen können wir als Matrix-Vektor-Multiplikation schreiben, wobei wir die
Zeilen so sortieren und die Exponenten unter Ausnutzen von

ωk+l·N = ei
2π
N (k+l·N) = ei

2πk
N · ei2πl = ei

2πk
N = ωk (l ∈ Z) (3)

so umformen, dass der Eintrag in der i-ten Zeile und der j-ten Spalte der Matrix gerade ω(i−1)(j−1) ist.

Für N = 8 = 23 können wir die Fourier-Koeffizienten c−3, ..., c4 zum Beispiel wie folgt berechnen:

ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω3

ω0 ω2 ω4 ω6

ω0 ω3 ω6 ω9

ω0 ω4 ω8 ω12

ω0 ω5 ω10 ω15

ω0 ω6 ω12 ω18

ω0 ω7 ω14 ω21

ω0 ω0 ω0 ω0

ω4 ω5 ω6 ω7

ω8 ω10 ω12 ω14

ω12 ω15 ω18 ω21

ω16 ω20 ω24 ω28

ω20 ω25 ω30 ω35

ω24 ω30 ω36 ω42

ω28 ω35 ω42 ω49



·



x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]



= 8 ·



c0

c−1

c−2

c−3

c4

c3

c2

c1



.

Diese DFT-Matrix kann nun auf die markierten Einträge reduziert werden. Denn wegen (3) können
wir in den ungeraden Zeilen die rechte Hälfte der Einträge durch die linke Hälfte ersetzen. Und in den
geraden Zeilen erhalten wir dann den j-ten Eintrag als Produkt des darüber liegenden Eintrags und dem
spaltenabhängigen Vorfaktor ωj−1, der in der rechten Hälfte zusätzlich mit einem negativen Vorzeichen
versehen wird. Dabei nutzen wir aus, dass ωN/2 = −1 gilt, wenn N gerade ist.
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Nun können wir die Multiplikation mit einer 8 × 8-Matrix durch zwei Multiplikationen mit derselben
4× 4-Matrix ersetzen. Dann erhalten wir die Fourier-Koeffizienten in den ungeraden Zeilen durch

ω0 ω0 ω0 ω0

ω0 ω2 ω4 ω6

ω0 ω4 ω8 ω12

ω0 ω6 ω12 ω18

 ·


x[0] + x[4]

x[1] + x[5]

x[2] + x[6]

x[3] + x[7]

 = 8 ·


c0

c−2

c4

c2


und die in den geraden Zeilen durch

ω0 ω0 ω0 ω0

ω0 ω2 ω4 ω6

ω0 ω4 ω8 ω12

ω0 ω6 ω12 ω18

 ·


ω0

(
x[0] − x[4]

)
ω1

(
x[1] − x[5]

)
ω2

(
x[2] − x[6]

)
ω3

(
x[3] − x[7]

)

 = 8 ·


c−1

c−3

c3

c1

 .

Entscheidend ist nun, dass diese beiden Multiplikationen nun auf dieselbe Weise in jeweils zwei Multipli-
kationen mit einer 2× 2-Matrix und dann weiter in jeweils vier Multiplikationen mit einer 1× 1-

”
Matrix“

zerlegt werden kann, bei der es sich nur noch um eine einzige Operation handelt. Bei einer N ×N -Matrix
benötigen wir dafür entsprechend log2(N) Iterationen.

Der Vorteil dieses Verfahrens wird deutlich, wenn man die Anzahl der für die Durchführung benötigten
Operationen betrachtet: Die Matrix-Vektor-Multiplikation mit einer n×n-Matrix umfasst in jeder der n
Zeilen nMultiplikationen und n−1 Additionen, also insgesamt 2n2−n Operationen. Die schnelle Fourier-
Transformation mit derselben Matrix umfasst in der ersten Zerlegung n

2 Additionen, n
2 Subtraktionen

und n
2 Multiplikationen, d. h. 3n

2 Operationen, in der zweiten Zerlegung zweimal n4 Additionen, n4 Sub-
traktionen und n

4 Multiplikationen, d. h. wieder 3n
2 Operationen usw. Bei insgesamt log2(n) Zerlegungen

ergeben sich insgesamt log2(n) · 3n
2 Operationen.

Für große Matrizen ist die Ersparnis enorm. Für N = 220 werden weniger als 0.001% der ursprünglichen
Operationen benötigt. Deshalb wird dieses Verfahren schnelle Fourier-Transformation oder Fast Fourier
Transformation (FFT) genannt.
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