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1. Einleitung

Minimalflächen sind landläufig Flächen, die bei vorgegebenem Rand den kleinstmöglichen Flächeninhalt
besitzen. Mathematisch werden sie durch die Forderung charakterisiert, dass ihre mittlere Krümmung
in jedem Punkt null ist. Bereits im 18. Jahrhundert beschäftigten sich Mathematiker wie Euler und
Lagrange mit diesem Problem, das heute als das Plateau-Problem bekannt ist. Die Erforschung von
Minimalflächen verbindet Differentialgeometrie, Variationsrechnung und partielle Differentialgleichungen.
Ziel dieses Berichtes ist es, Kurven, Flächen und Minimalflächen vorzustellen und zentrale Beispiele zu
zeigen.

2. Motivation

Minimalflächen begegnen uns überall in der Natur und Technik: Seifenhäute, Spinnennetze oder die Form
von Flüssigkeitstropfen – sie alle streben nach einer Oberfläche mit möglichst geringem Flächeninhalt.
Dieses Prinzip der Flächenminimierung ist nicht nur ästhetisch faszinierend, sondern auch von großer
praktischer Bedeutung. Ingenieure nutzen es beim Bau von leichten und stabilen Strukturen, Architekten
bei der Gestaltung eleganter Dächer, und in der Materialwissenschaft hilft es, neue Werkstoffe effizient
zu entwickeln. Die Untersuchung von Minimalflächen verbindet somit anschauliche Alltagsphänomene
mit tiefgehender mathematischer Theorie und eröffnet zahlreiche Anwendungen in verschiedenen Wissen-
schaftsbereichen.

3. Kurven und ihre Parametrisierung

In der realen Welt treten Kurven in verschiedener Weise auf, z. B. als Profilkurve technischer Objekte
oder als Spur, die ein Bleistift beim Zeichnen auf Papier hinterlässt. Oft werden alle

”
eindimensionalen“

Punktmengen in der Ebene oder im Raum als Kurven bezeichnet.
”
Eindimensional“ bedeutet hierbei,

dass die Kurve von nur einem Parameter abhängt. In der Physik benutzt man Kurven, wenn man z. B.
die Bewegung eines Massepunktes in Abhängigkeit von der Zeit beschreiben will. Wir verwenden diesen
Kurvenbegriff. Er ist die mathematische Abstraktion der Bewegung eines Punktes in der euklidischen
Ebene oder im euklidischen Raum, die durch die Angabe des Ortes γ(t) zum Zeitpunkt t beschrieben
wird.

Definition 1. Eine parametrisierte Kurve im R3 ist eine zweimal stetig differenzierbare Abbildung
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γ : I ⊂ R → R3 mit
t ∈ I 7−→ γ(t) := (γ1(t), γ2(t), γ3(t)) ∈ R3.

Dabei ist I der Parameterbereich von γ. Das Bild K := γ(I) ⊂ R3 nennt man auch die Spur von γ. γ
heißt dann eine Parametrisierung der Menge K ⊂ R3 und K heißt Kurve.

Beispiel 1. Sei L ⊂ R3 eine Gerade, P,Q ∈ L zwei ver-

schiedene Punkte und v⃗ :=
−−→
PQ = Q− P der Verbindungs-

vektor von P nach Q. Eine Parametrisierung von L ist ge-
geben durch γ : R → R3 mit

γ(t) := P + t · v⃗.

Beispiel 2. Sei Kr := {(x, y) ∈ R3 | x2 + y2 = r2} der
Kreis vom Radius r. Man kann ihn mit Hilfe der trigono-
metrischen Funktionen in der Form γ : [0, 2π] → R3 mit

γ(φ) := (r cosφ, r sinφ), φ ∈ [0, 2π],

parametrisieren.

Beispiel 3. Die Schraubenlinie im R3

Die Kurve γ : I ⊂ R → R3 mit

γ(t) = (r · cos (ω · t) , r · sin (ω · t) , h · t)

heißt Schraubenlinie. Sie beschreibt den Bewegungsverlauf eines Masse-
punktes, der sich auf einem Zylinder vom Radius r mit konstanter Ge-
schwindigkeit h ̸= 0 in die Höhe und konstanter Winkelgeschwindigkeit
ω ̸= 0 um den Zylinder herum bewegt.

Definition 2. Sei γ = (γ1, γ2, γ3) : I ⊂ R → R3 eine parametrisierte Kurve. Dann heißt

γ′(t) :=
(
γ′1(t), γ

′
2(t), γ

′
3(t)

)
= lim
h→0

γ(t+ h)− γ(t)

h

Tangentialvektor von γ im Parameter t ∈ I. Die Kurve γ heißt regulär, wenn γ′(t) ̸= 0⃗ für alle t ∈ I.

Ist γ′(t) ̸= 0⃗, so beschreibt die Gerade

Tanγ(t)K := γ(t) + R · γ′(t)

die Tangente an die Kurve K = γ(I) ⊂ R3 im Kurvenpunkt γ(t).

Satz 1. Sei γ : I ⊂ R → R3 eine reguläre, parametisierte Kurve mit K = γ(I). Dann existiert eine
Umparametrisierung τ : J → I, sodass die Kurve δ := γ ◦ τ : J → R3 mit δ(s) := γ(τ(s)) die Gleichung

||δ′(s)|| = 1 ∀ s ∈ J

erfüllt und K in der gleichen Richtung durchläuft wie γ.
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Beweis: Wir zeigen, dass ein entsprechendes τ existiert.

δ(s) = γ(τ(s))

=⇒ δ′(s) = τ ′(s) · γ′(τ(s))
=⇒ 1 = ∥τ ′(s) · γ′(τ(s))∥ = |τ ′(s)| · ∥γ′(τ(s))∥

=⇒ τ ′(s) = |τ ′(s)| = 1

∥γ′(τ(s))∥
.

Nun nutzen wir die Formel für die Ableitung der Umkehrfunktion einer bijektiven differenzierbaren Funk-
tion f : I → J

(f−1)′(s) =
1

f ′(f−1(s))
.

Wir suchen ein f : I → J mit τ = f−1 und f ′(τ(s)) = ||γ′(τ(s))||. Sei a ∈ I fixiert. Wir betrachten die
Funktion f : I → R, definiert durch

f(t) :=

∫ t

a

||γ′(t̃)||dt̃.

Dann gilt f ′(t) = ||γ′(t)|| > 0. τ := f−1 ist also die gesuchte Umparametrisierung von γ. □

4. Krümmung ebener Kurven

Die Krümmug einer ebenen Kurve γ lässt sich durch die Änderung des Winkels ω zwischen dem Tangen-
tialvektor und einem festen Vektor e⃗1 = (1, 0) beim Durchlaufen der Kurve beschreiben. Diese Änderung
im Winkel wird mit der Geschwindigkeit skaliert, mit der die Kurve durchlaufen wird.

Definition 3. Sei
ω(t) := ∡or(e⃗1, γ

′(t)) ∈ R.

Dann heißt

κ(t) :=
ω′(t)

||γ′(t)||
Krümmung von γ im Parameter t ∈ I.

Die Krümmung κ(t) in einem Punkt γ(t) ist unabhängig von der gewählten Parametrisierung.
Ist δ := γ ◦ τ eine orientierungserhaltende Umparametrisierung von γ, dann gilt

κδ(s) = κγ(τ(s)).

Die Krümmung im Punkt p = γ(t) beschreibt die lokale Lage der Kurve K nahe p bezüglich der Tangente
an K im Punkt p. Sei n⃗(t) der Normalenvektor an K im Punkt γ(t), der durch Drehung von γ′(t) um
90◦ in positive Richtung entsteht.

Im ersten Bild ist κ(t) < 0, der Drehwinkel ω(t) beim Durchlauf von γ also steng monoton fallend (nahe
t). Im zweitem Bild ist κ(t) > 0, der Drehwinkel ω(t) beim Durchlauf von γ also streng monoton wachsend
(nahe t). Im ersten Fall liegt die Kurve (in der Nähe des Parameters t) auf der anderen Seite der Tangente
als der Punkt γ(t) + n⃗(t), im zweiten Fall auf der gleichen Seite.
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Satz 2. Sei γ : I ⊂ R → R2 eine reguläre parametrisierte Kurve. Dann gilt für ihre Krümmung im
Parameter t ∈ I

κ(t) =
1

∥γ′(t)∥3
·Det

(
γ′(t)
γ′′(t)

)
=

1

∥γ′(t)∥3
·Det

(
γ′1(t) γ′2(t)
γ′′1 (t) γ′′2 (t)

)
.

Beweis: Für den Tangentialvektor gilt

γ′(t) = ∥γ′(t)∥ · (cosω(t), sinω(t)
)
.

Für die zweite Ableitung folgt daraus

γ′′(t) =
(
∥γ′(t)∥

)′ · ( cosω(t), sinω(t))+ ∥γ′(t)∥ ·
(
− ω′(t) · sinω(t), ω′(t) · cosω(t)

)
=

(
∥γ′(t)∥

)′ · γ′(t)

∥γ′(t)∥
+ ∥γ′(t)∥ · ω′(t) ·

(
− sinω(t), cosω(t)

)
.

Wenn man die erste und zweite Ableitung in die Matrix einsetzt, erhält man:

κ(t) =
ω′(t)

||γ′(t)||
.

□

Der folgende Satz wird in einem späteren Beweis relevant.

Satz 3. Wird die Kurve γ : I ⊂ R → R2 mit konstanter Geschwindigkeit 1 durchlaufen, d.h. ∥γ′(t)∥ = 1
für alle t ∈ I, so gilt

κ(t) = ⟨γ′′(t), n⃗(t)⟩,

wobei n⃗(t) der Normalenvektor ist, der durch Drehung von γ′(t) um 90◦ in positive Richtung entsteht.

Beweis: Dreht man einen Vektor (x, y) um 90◦ in positive Richtung, so erhält man den Vektor (−y, x).
Da γ′(t) = (γ′1(t), γ

′
2(t)), folgt für den Normalenvektor n⃗(t)

n⃗(t) = (−γ′2(t), γ′1(t)).

Für das Skalarprodukt ergibt sich

⟨γ′′(t), n⃗(t)⟩ = −γ′′1 (t) · γ′2(t) + γ′′2 (t) · γ′1(t)) = Det

(
γ′1(t) γ′2(t)
γ′′1 (t) γ′′2 (t)

)
= κ(t).

□

5. Parametrisierte Flächenstücke und Tangentialebenen

Flächen sind Teilmengen F ⊂ R3, die man durch zwei Parameter (u1, u2) beschreiben kann. F sei also
das Bild einer Abbildung:

f : U ⊂ R2 −→ R3

(u1, u2) ∈ U 7−→ f(u1, u2) =
(
f1(u1, u2), f2(u1, u2), f3(u1, u2)

) .
Dabei soll f bestimmte Differenzierbarkeits- und Regularitätsbedingungen erfüllen.
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Definition 4. Eine 2-mal stetig differenzierbare Abbildung f : U ⊂ R2 → R3 heißt reguläres parametri-
siertes Flächenstück, wenn die beiden Vektoren ∂f

∂u1
(u), ∂f

∂u2
(u) in R3 für jedes u = (u1, u2) ∈ U linear

unabhängig sind. U heißt Parameterbereich von f . Ist F ⊂ R3 das Bild eines regulären parametrisierten
Flächenstücks f , so nennt man f Parametrisierung von F und F Fläche.

Zweimal stetig differenzierbar heißt für f folgendes: Die ersten partiellen Ableitungen von f sind die
folgenden Grenzwerte (falls sie existieren):

∂f

∂u1
(u1, u2) := lim

h→0

f(u1 + h, u2)− f(u1, u2)

h
,

∂f

∂u2
(u1, u2) := lim

h→0

f(u1, u2 + h)− f(u1, u2)

h
.

Die 2-fachen partiellen Ableitungen entstehen, wenn man die Funktionen ∂f
∂uk

wiederum nach u1 bzw. u2
partiell ableitet:

∂2f

∂u1∂uk
(u1, u2) := lim

h→0

∂f
∂uk

(u1 + h, u2)− ∂f
∂uk

(u1, u2)

h
,

∂2f

∂u2∂uk
(u1, u2) := lim

h→0

∂f
∂uk

(u1, u2 + h)− ∂f
∂uk

(u1, u2)

h
.

f heißt zweimal stetig differenzierbar, wenn die Funktionen ∂2f
∂u1∂u1

, ∂2f
∂u2∂u2

, ∂2f
∂u1∂u2

und ∂2f
∂u2∂u1

auf U
existieren und stetig sind.

Die Kurven

δ1 : h ∈ (−ε, ε) ⊂ R 7−→ δ1(h) := f(u1 + h, u2) ∈ F,

δ2 : h ∈ (−ε, ε) ⊂ R 7−→ δ2(h) := f(u1, u2 + h) ∈ F

heißen Koordinatenlinien auf F durch p = f(u1, u2).

Die partiellen Ableitungen ∂f
∂u1

(u1, u2) bzw. ∂f
∂u2

(u1, u2) sind die
Tangentialvektoren an die Koordinatenlinien δ1 bzw. δ2 im Para-
meter h = 0.

Beispiel 4. Eine Ebene

Es sei E ⊂ R3 eine Ebene im Raum, die durch den Punkt P geht
und von zwei linear unabhängigen Vektoren v⃗ und w⃗ aufgespannt
wird, d.h.

E = P + R · v⃗ + R · w⃗.

E kann man parametrisieren durch die Abbildung
f : R2 → R3 mit

f(u1, u2) := P + u1 · v⃗ + u2 · w⃗.
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Beispiel 5. Die Wendelfläche/Helicoid

Sei I ⊂ R ein Intervall und h eine reelle Zahl mit h ̸= 0. Die Fläche

W := {(s cosα, s sinα, h · α) | s ∈ I, α ∈ R}

heißt Wendelfläche oder auch Helicoid. Die Abbildung f : I ×R → R3

mit

f(s, α) := (s cosα, s sinα, h · α) = (0, 0, h · α) + s · (cosα, sinα, 0)

ist eine Parametrisierung von W . Für festes s beschreiben die Punkte
(s cosα, s sinα) einen Kreis mit dem Radius s und h ·α beschreibt die
Höhe.

Beispiel 6. Die Rotationsflächen

Man betrachte eine reguläre parametrisierte Kurve γ : I → R3 in der
(x, z)-Ebene mit der Spur

K := {(γ1(t), 0, γ3(t)) | t ∈ I},

wobei γ1 > 0. Durch Drehung von K um die z-Achse entsteht die Rota-
tionsfläche F mit Profilkurve K.
Man erhält eine Parametrisierung der Rotationsfläche durch
f : I × R → R3 mit:

f(t, α) = (γ1(t) · cosα, γ1(t) · sinα, γ3(t)).

Sei p = f(u1, u2) ein Punkt auf der Fläche F = f(U) und u = (u1, u2). Den von den beiden Tangential-
vektoren ∂f

∂u1
(u) und ∂f

∂u2
(u) an die Koordinatenlinien durch den Punkt p aufgespannten Vektorraum

TpF := R · ∂f
∂u1

(u) + R · ∂f
∂u2

(u)

nennt man Tangentialraum an F im Punkt p. Er spannt eine Ebene durch p auf, die Tangentialebene an
F im Punkt p,

TanpF := p+ TpF.

Nun definieren wir den Einheitsnormalenvektor N⃗(p):

N⃗(p) :=

∂f
∂u1

(u)× ∂f
∂u2

(u)∥∥∥ ∂f
∂u1

(u)× ∂f
∂u2

(u)
∥∥∥ ∈ R3.

Da der Vektor N⃗(p) durch das Vektorprodukt von ∂f
∂u1

(u) und ∂f
∂u2

(u) entsteht, steht er senkrecht zu diesen
beiden Tangentialvektoren. Er hat die Länge eins, da durch die Norm des Vektorprodunktes geteilt wird.
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6. Krümmungsgrößen von parametrisierten Flächenstücken

In diesem Abschnitt werden wir definieren, was die Krümmung einer Fläche überhaupt ist und wie diese
gemessen werden kann. Dafür definieren wir zunächst die Normalenkrümmungen im Punkt p ∈ F in
Richtung eines Einheitsvektors v⃗ ∈ TpF , die die Krümmung einer Schnittkurve auf F in Richtung v⃗ misst.
Daraus entstehen zwei weitere Krümmungen: die Gaußsche Krümmung und die mittlere Krümmung. Was
diese beiden Krümmungsarten bedeuten wird auch in diesem Abschnitt beschrieben.

Wir haben in Abschnitt 4 die Krümmung einer ebenen parametrisierten Kurve definiert. Dies können
wir in unserem Fall ausnutzen. Dabei gehen wir folgenderweise vor: Für einen beliebigen Punkt p ∈ F
wählen wir einen Einheitsvektor v⃗ ∈ TpF . Die beiden Vektoren v⃗ und N⃗(p) spannen die Ebene

Ev⃗ := p+ R · v⃗ + R · N⃗(p)

auf. Dann ist die Schnittmenge
Γv⃗ := Ev⃗ ∩ F

eine Kurve auf F , die gleichzeitig in der Ebene Ev⃗ liegt.

Die Krümmung der ebene Kurve Γv⃗ ⊂ Ev⃗ im Punkt p bezeichnen wir mit κn(v⃗). Diese Krümmung heißt
Normalenkrümmung von F im Punkt p in Richtung v⃗.
Wir werden zeigen, dass es zwei senkrecht stehende Richtungen in TpF gibt, für die die Normalen-
krümmung minimal bzw. maximal unter allen Normalenkrümmungen in p ist. Dazu ist die folgende
explizite Formel für die Normalenkrümmung hilfreich.
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Satz 4. Sei f : U ⊂ R2 → R3 eine Parametrisierung der Fläche F . Dann gilt für die Normalenkrümmung
der Fläche F im Punkt p = f(u1, u2) in Richtung eines Einheitsvektors v⃗ ∈ TpF

κn(v⃗) =

2∑
i,j=1

〈 ∂2f

∂ui∂uj
(u), N⃗(p)

〉
· vi · vj ,

wobei N⃗(p) der Normalenvektor an die Fläche im Punkt p ist und v1, v2 die Komponenten von v⃗ für die
Zerlegung

v⃗ = v1 ·
∂f

∂u1
(u) + v2 ·

∂f

∂u2
(u)

sind.

Beweis: Wir betrachten eine Kurve γ : I ⊂ R → F mit

γ(t) := f(u1(t), u2(t))

und bezeichnen u(t) := (u1(t), u2(t)). Dann gilt nach der zweifachen Anwendung der (multivariablen)
Kettenregel

γ′′(t) =
∂2f

∂u1∂u1
(u(t)) · u′1(t)2 + 2

∂2f

∂u1∂u2
(u(t)) · u′1(t)u′2(t) +

∂2f

∂u2∂u2
(u(t)) · u′2(t)2+

+
∂f

∂u1
(u(t)) · u′′1(t) +

∂f

∂u2
(u(t)) · u′′2(t).

Jetzt nehmen wir das Skalarprodukt ⟨γ′′(t), N⃗(p)⟩. Wir merken direkt, dass aufgrund der Orthogona-

lität von ∂f
∂ui

(u(t)) und N⃗(γ(t)) ⟨ ∂f∂ui
(u(t)), N⃗(γ(t))⟩ = 0 für i = 1, 2 gilt. Folglich ergibt sich für das

Skalarprodukt〈
γ′′(t), N⃗(γ(t))

〉
=

〈
∂2f

∂u21
(u(t)) · (u′1(t))2 + 2

∂2f

∂u1∂u2
(u(t)) · u′1(t)u′2(t) +

∂2f

∂u22
(u(t)) · (u′2(t))2, N⃗(γ(t))

〉
=

2∑
i,j=1

〈
∂2f

∂ui∂uj
(u(t)), N⃗(γ(t))

〉
u′i(t)u

′
j(t).

Wir wählen nun eine Parametrisierung γ : (−ε, ε) ⊂ R → F unserer Schnittkurve Γv⃗ = F ∩ Ev⃗ mit
γ(0) = p, γ′(0) = v⃗ und ∥γ′(t)∥ = 1 für alle t ∈ (−ε, ε) und wenden diese Formel im Parameter t = 0
darauf an. Nach der Kettenregel gilt

γ′(0) =
∂f

∂u1
(u) · u′1(0) +

∂f

∂u2
(u) · u′2(0).

Somit ergibt sich v1 = u′1(0), v2 = u′2(0) und (u1(0), u2(0)) = (u1, u2) = u. Damit erhalten wir für die
Normalenkrümmung im Punkt p in Richtung v⃗

κn(v⃗) = ⟨γ′′(0), N⃗(p)⟩ =
2∑

i,j=1

〈 ∂2f

∂ui∂uj
(u), ⃗N(p)

〉
· vivj .

□

Wir betrachten nun die (2× 2)- Matrix (hij(p)) mit den Einträgen

hij(p) :=
〈 ∂2f

∂ui∂uj
(u), ⃗N(p)

〉
.
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Diese Matrix ist symmetrisch (nach dem Lemma von Schwarz) und für die Normalenkrümmung gilt

κn(v⃗) =

2∑
i,j=1

hij(p) · vivj = h11(p) · v21 + 2h12(p) · v1v2 + h22(p) · v22 .

Nun kann man einen Satz aus der linearen Algebra anwenden, den Satz über die Hauptachsentransfor-
mation, der folgendes besagt:

Es gibt zwei senkrecht aufeinander stehende Einheitsvektoren a⃗1 und a⃗2 in TpF , so dass man κn(v⃗) in
der einfacheren Form

κn(v⃗) = λ1(p) · x2 + λ2(p) · y2

ausdrücken kann, wobei x und y die Komponenten in der Zerlegung

v⃗ = x · a⃗1 + y · a⃗2

von v⃗ und λ1(p), λ2(p) reelle Zahlen mit λ1(p) ≤ λ2(p) sind.
Da v⃗ ein Einheitsvektor ist, gilt x2+ y2 = 1. Durch das Einsetzen von y2 = 1−x2 in die obere Gleichung
kommt man auf

κn(v⃗) = λ1(p) · x2 + λ2(p) · (1− x2) = λ2(p)− x2 · (λ2(p)− λ1(p)).

Dieser Term nimmt für x ∈ [−1, 1] in x = 0 und x = 1 sein Maximum bzw. Minimum an. Es gilt also

λ1(p) = κn(⃗a1) = min{κn(v⃗) | v⃗ ∈ TpF, ∥v⃗∥ = 1},
λ2(p) = κn(⃗a2) = max{κn(v⃗) | v⃗ ∈ TpF, ∥v⃗∥ = 1}.

Definition 5. Die Zahlen λ1(p) und λ2(p) heißen die Hauptkrümmungen von F im Punkt p.
Die Gauß-Krümmung K(p) und die mittlere Krümmung H(p) von F in p sind definiert durch:

K(p) := λ1(p) · λ2(p),

H(p) :=
λ1(p) + λ2(p)

2
.

Unsere Erkenntnisse über die geometrische Bedeutung der Krümmung ebener Kurven können wir nun
anwenden und Aussagen über die lokale Gestalt einer Fläche in der Umgebung eines Punktes mit positiver
bzw. negativer Gauß-Krümmung machen:

Die mittlere Krümmung ist der Mittelwert aller Normalenkrümmungen im Punkt p.

Satz 5. Für die mittlere Krümmung gilt

H(p) =
1

2π
·
∫ 2π

0

κn(v⃗(θ)) dθ,

wobei v⃗(θ) der Einheitsvektor in TpF ist, der aus a⃗1 durch Drehung um den Winkel θ ∈ [0, 2π] entsteht.
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Drückt man die Einheitsvektoren a⃗1 und a⃗2 durch die Tangentialvektoren ∂f
∂u1

(u) und ∂f
∂u2

(u) aus und
setzt dies in die Formel für die Normalenkrümmungen ein, so erhält man folgende explizite Formel für
die Gauß-Krümmung und die mittlere Krümmung.

Satz 6. Seien (hij(p)) und (gij(p)) die (2× 2)-Matrizen mit den Einträgen

hij(p) =
〈 ∂2f

∂ui∂uj
(u), N⃗(p)

〉
und gij(p) =

〈 ∂f
∂ui

(u),
∂f

∂uj
(u)
〉
.

Dann gilt:

K(p) = Det
(
(hij(p)) ◦ (gij(p))−1

)
,

H(p) = Spur
(
(hij(p)) ◦ (gij(p))−1

)
.

Diese Formel erlaubt es uns, aus der Parametrisierung der Fläche die Krümmungen zu bestimmen.

7. Minimalflächen

Definition 6. Eine Fläche mit mittlerer Krümmung H = 0 nennt man Minimalfläche.

Ihre Gauß-Krümmung ist in jedem Punkt kleiner oder gleich Null. Minimalflächen sind in jedem Punkt p

”
gleichmäßig“ in beide Seiten der Tangentialebene gekrümmt – der Mittelwert aller Normalenkrümmun-
gen im Punkt p ist Null.

Die Minimalflächen-Eigenschaft (H = 0) haben z.B. Flächen, die unter allen in eine feste Randkurve
eingespannten Flächen den kleinsten Flächeninhalt haben (daher kommt der Name Minimalfläche).

Beispiel 7. Das Katenoid

Eine hängende Kette kann man durch die Funktion cosh beschreiben. Das Katenoid ist die Rotations-
fläche, deren Profilkurve K die Kettenlinie ist, betrachtet als Graph der Funktion über der z-Achse in
der (z, x)-Ebene, d.h. K ist beschrieben durch die parametrisierte Kurve γ : I ⊂ R → R3 mit

γ(z) =
(
c cosh(z/c), 0, z

)
.

Das Katenoid hat dann die Form

F := {(c cosh(z/c) · cosα, c cosh(z/c) · sinα, z) | z ∈ I, α ∈ [0, 2π)}.

Das Katenoid ist die einzige Minimalfläche unter den (nichtebenen) Rotationsflächen. Ein Zylinder ist
dabei keine Minimalfläche und hat auch einen größeren Flächeninhalt als das Katenoid (siehe Abbildungen
unten).
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Beispiel 8. Die Wendelfläche

Die Wendelfläche

W = {(s cosα, s sinα, hα) | s ∈ I, α ∈ R}

für ein Intervall I in den reellen Zahlen und eine Konstante h ∈ R mit h ̸= 0 ist ebenfalls eine Minimal-
fläche.
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Beispiel 9. Die Scherksche Minimalfläche

Die Scherksche Minimalfläche S ist der Graph der Funk-
tion
h : (−π/2, π/2)× (−π/2, π/2) ⊂ R2 → R mit

h(x, y) := ln(cos y)− ln(cosx),

d.h.

S := { (x, y, ln(cos y)−ln(cosx)) ∈ R3 | x, y ∈ (−π/2, π/2) }.

Beispiel 10. Die Enneper-Fläche

Die Enneper-Fläche ist parametrisiert durch
f : R2 → R3 mit

f(u1, u2) :=
(
u1−

u31
3
+u1u

2
2 , u2−

u32
3
+u2u

2
1 , u

2
1−u22

)
.

Sie ist ebenfalls eine Minimalfläche.

Ausblick: Sei {Fs}s∈(ε,−ε) eine Schar von Flächen Fs und

A : (−ε, ε) ⊂ R → A(s) := Area(Fs)

die Funktion, die jedem s ∈ (ε,−ε) den Flächeninhalt Area(Fs) von Fs zuordnet. Eine Fläche F ist genau
dann eine Minimalfläche, wenn die Funktion A für alle Flächenscharen {Fs} mit F = F0 einen kritischen
Punkt in s = 0 hat, d.h. A′(0) = 0 gilt. Das bedeutet nicht unbedingt, dass A(s) in s = 0 ein Minimum
annimmt. Man kann aber zeigen, dass dies bei hinreichend kleinen Veränderungen von F = F0 gilt. Der
Flächeninhalt von Minimalflächen wird größer, wenn man sie in hinreichend kleinen Bereichen abändert.
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