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1. Einleitung

Minimalflichen sind landldufig Flichen, die bei vorgegebenem Rand den kleinstméglichen Fliacheninhalt
besitzen. Mathematisch werden sie durch die Forderung charakterisiert, dass ihre mittlere Kriimmung
in jedem Punkt null ist. Bereits im 18. Jahrhundert beschéftigten sich Mathematiker wie Euler und
Lagrange mit diesem Problem, das heute als das Plateau-Problem bekannt ist. Die Erforschung von
Minimalflichen verbindet Differentialgeometrie, Variationsrechnung und partielle Differentialgleichungen.
Ziel dieses Berichtes ist es, Kurven, Fliachen und Minimalflichen vorzustellen und zentrale Beispiele zu
zeigen.

2. Motivation

Minimalflichen begegnen uns iiberall in der Natur und Technik: Seifenhdute, Spinnennetze oder die Form
von Fliissigkeitstropfen — sie alle streben nach einer Oberfliche mit moglichst geringem Flidcheninhalt.
Dieses Prinzip der Flichenminimierung ist nicht nur Asthetisch faszinierend, sondern auch von grofler
praktischer Bedeutung. Ingenieure nutzen es beim Bau von leichten und stabilen Strukturen, Architekten
bei der Gestaltung eleganter Décher, und in der Materialwissenschaft hilft es, neue Werkstoffe effizient
zu entwickeln. Die Untersuchung von Minimalflachen verbindet somit anschauliche Alltagsphdnomene
mit tiefgehender mathematischer Theorie und er6ffnet zahlreiche Anwendungen in verschiedenen Wissen-
schaftsbereichen.

3. Kurven und ihre Parametrisierung

In der realen Welt treten Kurven in verschiedener Weise auf, z. B. als Profilkurve technischer Objekte
oder als Spur, die ein Bleistift beim Zeichnen auf Papier hinterlasst. Oft werden alle ,eindimensionalen*
Punktmengen in der Ebene oder im Raum als Kurven bezeichnet. ,Eindimensional“ bedeutet hierbei,
dass die Kurve von nur einem Parameter abhéngt. In der Physik benutzt man Kurven, wenn man z. B.
die Bewegung eines Massepunktes in Abhéngigkeit von der Zeit beschreiben will. Wir verwenden diesen
Kurvenbegriff. Er ist die mathematische Abstraktion der Bewegung eines Punktes in der euklidischen
Ebene oder im euklidischen Raum, die durch die Angabe des Ortes 7(¢) zum Zeitpunkt ¢ beschrieben
wird.

Definition 1. Eine parametrisierte Kurve im R® ist eine zweimal stetig differenzierbare Abbildung



y:ICR— R3 mit
teT— ~(t):= (y1(t),y2(t),y3(t)) € R3.

Dabei ist I der Parameterbereich von 7. Das Bild K := ~(I) C R?® nennt man auch die Spur von v. ~y
heiit dann eine Parametrisierung der Menge K C R? und K heifit Kurve.

Beispiel 1. Sei L C R? eine Gerade, P,Q € L zwei ver-
schiedene Punkte und ¢ := ]@ = @ — P der Verbindungs-
vektor von P nach Q. Eine Parametrisierung von L ist ge-
geben durch v : R — R? mit

v(t) =P+t

oy
-

Beispiel 2. Sei K, = {(z,y) € R® | 22 + y? = r?} der 7(¥P)
Kreis vom Radius r. Man kann ihn mit Hilfe der trigono-
metrischen Funktionen in der Form « : [0, 27] — R3 mit

\j

(T cos (p,TSiH 90)7 ¥ € [07277]7 T

Y(p)

parametrisieren.

Beispiel 3. Die Schraubenlinie im R3

Die Kurve v : I C R — R3 mit
v(t)=(r-cos(w-t), r-sin(w-t), h-t)

heifit Schraubenlinie. Sie beschreibt den Bewegungsverlauf eines Masse-
punktes, der sich auf einem Zylinder vom Radius r mit konstanter Ge-
schwindigkeit h # 0 in die Hohe und konstanter Winkelgeschwindigkeit
w # 0 um den Zylinder herum bewegt.

Definition 2. Sei v = (71,%2,73) : I C R — R3 eine parametrisierte Kurve. Dann heifit

Y (t) = (Vi (),75(1), 4(t) = M}Jw

Tangentialvektor von vy im Parameter t € I. Die Kurve ~ heifit regulir, wenn +/(t) # 0 fiir alle ¢ € 1.

Ist +/(t) # 0, so beschreibt die Gerade

Tan, ) K :=y(t) + R -+/(t)

die Tangente an die Kurve K = y(I) C R3 im Kurvenpunkt ~(t).

Satz 1. Seiy : I C R — R3 cine regulire, parametisierte Kurve mit K = ~(I). Dann existiert eine
Umparametrisierung 7 : J — I, sodass die Kurve § :=~y o1 :J — R3 mit §(s) := v(7(s)) die Gleichung

16'(s)|]|=1 VseJ
erfillt und K in der gleichen Richtung durchliuft wie ~y.



Beweis: Wir zeigen, dass ein entsprechendes 7 existiert.

6(s) =~(7(s))

= 0'(s) =7'(s) -7 (7(s))

= 1 =) ~'V’(T(S))|| =[7"(s)] - IV (7(s))

~EG) ( NIk

Nun nutzen wir die Formel fiir die Ableitung der Umkehrfunktion einer bijektiven differenzierbaren Funk-
tion f: 1 —J
1

(f71)'(s) = )

Wir suchen ein f: I — J mit 7 = f~! und f'(7(s)) = ||/ (7(s))]|. Sei a € I fixiert. Wir betrachten die
Funktion f: I — R, definiert durch
t
- [ 1@l

Dann gilt f/(t) = [|7/(t)|]| > 0. 7 := f~! ist also die gesuchte Umparametrisierung von +. O

4. Kriimmung ebener Kurven

Die Kriimmug einer ebenen Kurve v lisst sich durch die Anderung des Winkels w zwischen dem Tangen-
tialvektor und einem festen Vektor éi = (1,0) beim Durchlaufen der Kurve beschreiben. Diese Anderung
im Winkel wird mit der Geschwindigkeit skaliert, mit der die Kurve durchlaufen wird.

Definition 3. Sei
w(t) = L7 (e1,7'(t)) € R.

Dann heif3t
w'(t)

"0 =

Kriimmung von v im Parametert € 1.

Die Kriimmung x(t) in einem Punkt «(¢) ist unabhiingig von der gewihlten Parametrisierung.
Ist § := 7y o T eine orientierungserhaltende Umparametrisierung von -y, dann gilt

K (s) = K7(7(s)).

Die Kriimmung im Punkt p = (t) beschreibt die lokale Lage der Kurve K nahe p beziiglich der Tangente
an K im Punkt p. Sei 7i(¢) der Normalenvektor an K im Punkt 7(t), der durch Drehung von +/(¢) um
90° in positive Richtung entsteht.

wlky<O ki) >0

i)

TR A%
Im ersten Bild ist x(t) < 0, der Drehwinkel w(t) beim Durchlauf von 7 also steng monoton fallend (nahe
t). Im zweitem Bild ist k(¢) > 0, der Drehwinkel w(t) beim Durchlauf von + also streng monoton wachsend
(nahe t). Im ersten Fall liegt die Kurve (in der Nihe des Parameters t) auf der anderen Seite der Tangente
als der Punkt ~(t) + 7(¢), im zweiten Fall auf der gleichen Seite.
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Satz 2. Seiy : I C R — R? cine requlire parametrisierte Kurve. Dann gilt fiir ihre Kriimmung im
Parametert € I

L o (YO () B
“O = op P (v“(t)) oE P (v{(t) vﬁ(t))'

Beweis: Fiir den Tangentialvektor gilt

V(1) = @) - (cosw(t), sinw(t)).

Fiir die zweite Ableitung folgt daraus

V') = (WO (coswt),sinw(®)) + 1Y (@) - (=o' (t) - sinw(t), o (t) - cosw(t))
(WO T + 0 OO - (= sinw(e) cosw(t).
Wenn man die erste und zweite Ableitung in die Matrix einsetzt, erhélt man:
_ W)
O = o

Der folgende Satz wird in einem spéteren Beweis relevant.

Satz 3. Wird die Kurve v : 1 C R — R? mit konstanter Geschwindigkeit 1 durchlaufen, d.h. |7/ (t)|| =1
fir allet € 1, so gilt

r(t) = (" (1), 7i(1)),

wobei 7i(t) der Normalenvektor ist, der durch Drehung von ~'(t) um 90° in positive Richtung entsteht.

Beweis: Dreht man einen Vektor (x,y) um 90° in positive Richtung, so erhélt man den Vektor (—y, x).
Da ~/(t) = (v1(t),75(¢)), folgt fiir den Normalenvektor 7i(t)

(00 = —1(0) - 4(0) + 95024 (0) = Dt (T ) — et

5. Parametrisierte Flichenstiicke und Tangentialebenen

Flichen sind Teilmengen F' C R3, die man durch zwei Parameter (uj,us) beschreiben kann. F sei also
das Bild einer Abbildung:

f: U C R? — R3
(ur,uz) €U —  f(ur,u2) = (fl(ul,uz)af2(U1,U2)af3(U1,u2)) '

Dabei soll f bestimmte Differenzierbarkeits- und Regularitatsbedingungen erfiillen.
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Definition 4. Eine 2-mal stetig differenzierbare Abbildung f : U C R? — R? heifit requlires parametri-
siertes Fldchenstiick, wenn die beiden Vektoren %(u), aa—f( ) in R3 fiir jedes u = (u1,uz) € U linear
unabhingig sind. U heiit Parameterbereich von f. Ist F C R? das Bild eines reguliren parametrisierten
Flachenstiicks f, so nennt man f Parametrisierung von F und F Fldche.

Zweimal stetig differenzierbar heif3t fiir f folgendes: Die ersten partiellen Ableitungen von f sind die
folgenden Grenzwerte (falls sie existieren):

fur + hyug) — f(ug,ug)

0 .

gu )= h |
8f L fur,ug 4 h) — flug,uz)
ug W) = i h '

Die 2-fachen partiellen Ableitungen entstehen, wenn man die Funktionen % wiederum nach u; bzw. us

partiell ableitet:

’ OF (y + h,u up,u
ﬁ(uhw) iy 2w ( 1 2) — ( L 2)7
Ou1duy h—0 h

2 f L gf (u1,up + h) — 8% ! (uy, us)
(u1,uz) = lim .
uzdu ’ h—0 h

. . . . . . . i i i o2
f heillt zweimal stetig differenzierbar, wenn die Funktionen Sudur dugdny duoe; W Foan auf U

existieren und stetig sind.

Die Kurven

513h€(—€,€)CR — 51(h) f(U1+h ’LLQ) F _Cm’.’:
(SQZhE(—E,E)CR — (52(h) f(ul,U2+h)
heiflen Koordinatenlinien auf F' durch p = f(u1,uz).
Die partiellen Ableitungen —(ul,uQ) bzw. %(U]_,UQ) sind die
Tangentialvektoren an die Koordlnatenlinien 01 bzw. 5 im Para- &
c T

meter h = 0.

Beispiel 4. FEine Ebene

Es sei E C R? eine Ebene im Raum, die durch den Punkt P geht
und von zwei linear unabhéingigen Vektoren ¥ und  aufgespannt
wird, d.h.

E=P+R-7+R-w.

FE kann man parametrisieren durch die Abbildung
f:R? = R3 mit

f(uhu?) ::P“‘Ul U+U211_)'
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Beispiel 5. Die Wendelfliche/Helicoid
Sei I C R ein Intervall und h eine reelle Zahl mit h # 0. Die Fliche

W :={(scosa,ssina,h-«a)|sel acR}

heiit Wendelfliche oder auch Helicoid. Die Abbildung f : I x R — R3
mit

f(s,@) :=(scosa,ssina, h-a) = (0,0,h- @)+ s (cosa,sina,0)

ist eine Parametrisierung von W. Fiir festes s beschreiben die Punkte
(scos a, ssin a) einen Kreis mit dem Radius s und h - « beschreibt die
Hohe.

Beispiel 6. Die Rotationsflichen

Man betrachte eine regulire parametrisierte Kurve v : I — R3 in der
(z, z)-Ebene mit der Spur

K= {(n(),0,73(1)) [ t € I},

wobei 71 > 0. Durch Drehung von K um die z-Achse entsteht die Rota-
tionsfliche F' mit Profilkurve K.

Man erhélt eine Parametrisierung der Rotationsfliche durch
f:IxR—R3 mit:

f(t,a) = (n(t) - cosa,n(t) - sina, y3(t)).

Sei p = f(uy,us2) ein Punkt auf der Fliche F = f(U) und u = (u1,us2). Den von den beiden Tangential-

vektoren %(u und g—f(u) an die Koordinatenlinien durch den Punkt p aufgespannten Vektorraum
1 U2

_n. 9f of

nennt man Tangentialraum an F im Punkt p. Er spannt eine Ebene durch p auf, die Tangentialebene an
F im Punkt p,

TanyF :=p+T,F.

Nun definieren wir den Einheitsnormalenvektor N (p):

Da der Vektor N (p) durch das Vektorprodukt von 8‘8}1 (u) und a%% (u) entsteht, steht er senkrecht zu diesen
beiden Tangentialvektoren. Er hat die Lange eins, da durch die Norm des Vektorprodunktes geteilt wird.

13



Taulo =

6. Kriimmungsgroflen von parametrisierten Fliachenstiicken

In diesem Abschnitt werden wir definieren, was die Kriimmung einer Fliche iiberhaupt ist und wie diese
gemessen werden kann. Dafiir definieren wir zun#chst die Normalenkriimmungen im Punkt p € F in
Richtung eines Einheitsvektors v € T, F, die die Kriimmung einer Schnittkurve auf F' in Richtung ¢ misst.
Daraus entstehen zwei weitere Kriimmungen: die Gaufische Kriimmung und die mittlere Kriimmung. Was
diese beiden Kriimmungsarten bedeuten wird auch in diesem Abschnitt beschrieben.

Wir haben in Abschnitt 4 die Kriimmung einer ebenen parametrisierten Kurve definiert. Dies kénnen
wir in unserem Fall ausnutzen. Dabei gehen wir folgenderweise vor: Fiir einen beliebigen Punkt p € F
wéhlen wir einen Einheitsvektor ¢ € T,,F. Die beiden Vektoren ¢ und N(p) spannen die Ebene

Ey:=p+R-G+R-N(p)

auf. Dann ist die Schnittmenge
I'g:=E;NF

eine Kurve auf F', die gleichzeitig in der Ebene Ej liegt.

Die Kriimmung der ebene Kurve I'y C E im Punkt p bezeichnen wir mit &, (¢). Diese Kriitmmung heifit
Normalenkriimmung von F im Punkt p in Richtung U.
Wir werden zeigen, dass es zwei senkrecht stehende Richtungen in T,F gibt, fiir die die Normalen-
kriimmung minimal bzw. maximal unter allen Normalenkriimmungen in p ist. Dazu ist die folgende
explizite Formel fiir die Normalenkriimmung hilfreich.
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Satz 4. Sei f : U C R? — R3 eine Parametrisierung der Fliche F. Dann gilt fiir die Normalenkriimmung
der Fliche F' im Punkt p = f(u1,u2) in Richtung eines Einheitsvektors v € T,F

CES (5o ) -y,

4,J=

wobei N(p) der Normalenvektor an die Fliche im Punkt p ist und vy, ve die Komponenten von U fir die
Zerlegung

sind.

Beweis: Wir betrachten eine Kurve v: I C R — F mit

Y(t) == f(ui(t),ua(t))

und bezeichnen u(t) := (u(t), u2(t)). Dann gilt nach der zweifachen Anwendung der (multivariablen)
Kettenregel
8 = 5T () -k (07 + 250 e () + 50 () w0+
" Oouy0uq ! Ouy10ug ! 2 OugOug 2
(9f of

gy (W) i () + 5 - (u(®) - uz (D).

Jetzt nehmen wir das Skalarprodukt (v'(t), N(p)). Wir merken direkt, dass aufgrund der Orthogona-
litdt von g—i(u( )) und N (~(t)) (gf (u(t)), N(y(t))) = 0 fir ¢ = 1,2 gilt. Folglich ergibt sich fiir das
Skalarprodukt

- 2 2 2 .
(1), Nr1))) = <§uf (u(0) - (1) + 250 T (u(0) 0k ()0500) + G (u0) - (5007, N () )

= Z <@ulauj (), N(y(t <>>>u;<t>u;<t>.

1,j=1

Wir wéhlen nun eine Parametrisierung v : (—g,6) C R — F unserer Schnittkurve I'y = F' N Ey mit
~7(0) = p, 4/(0) = ¥ und ||/(¢)|| = 1 fiir alle t € (—¢,¢) und wenden diese Formel im Parameter ¢ = 0
darauf an. Nach der Kettenregel gilt

of of

7'(0) = 871(“) ~up (0) + 5 g () - u5(0).

Somit ergibt sich v = 4} (0), va = u5(0) und (u1(0),u2(0)) = (u1,u2) = w. Damit erhalten wir fiir die
Normalenkriimmung im Punkt p in Richtung ¢/

() = (/0. 50) = 3 (o 10 M) - ity

Wir betrachten nun die (2 x 2)- Matrix (h;;(p)) mit den Eintrégen

o) = (o (0. )
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Diese Matrix ist symmetrisch (nach dem Lemma von Schwarz) und fir die Normalenkriimmung gilt

2

ki (0) = Z hij(p) - viv; = ha1(p) - vF + 2h12(p) - v1va + haa(p) - v3.
ij=1

Nun kann man einen Satz aus der linearen Algebra anwenden, den Satz iber die Hauptachsentransfor-
mation, der folgendes besagt:

—»

Es gibt zwei senkrecht aufeinander stehende Einheitsvektoren d@; und @s in T,F, so dass man k£, () in
der einfacheren Form

kn(0) = M (p) - 2% + Xa(p) - 2
ausdriicken kann, wobei x und y die Komponenten in der Zerlegung
v=x-d1+y-as

von ¥ und A1 (p), A2(p) reelle Zahlen mit A1(p) < Aa(p) sind.
Da @ ein Einheitsvektor ist, gilt 22 +y? = 1. Durch das Einsetzen von y? = 1 — 22 in die obere Gleichung
kommt man auf

fn(0) = M(p) - 2 + Xa(p) - (1= 2%) = Xa(p) — 2® - (Ma(p) — M (p))-
Dieser Term nimmt fiir € [—1,1] in 2 = 0 und =z = 1 sein Maximum bzw. Minimum an. Es gilt also

1) = min{k,(0) | 7€ T,F, 7] = 1},
Aa(p) = kin(d@2) = max{r,(7) | 7€ T,F, |7 = 1}.

Definition 5. Die Zahlen \;(p) und A2(p) heiflen die Hauptkrimmungen von F im Punkt p.
Die Gauf-Krimmung K (p) und die mittlere Krimmung H(p) von F in p sind definiert durch:

K(p) := Ai(p) - Aa(p),
Hp) = A1 (p) ;/\z(p).

Unsere Erkenntnisse iiber die geometrische Bedeutung der Kriimmung ebener Kurven kénnen wir nun
anwenden und Aussagen iiber die lokale Gestalt einer Fléche in der Umgebung eines Punktes mit positiver
bzw. negativer Gau-Kriimmung machen:

Klip¥ 0 Klp)<o K(p)=0

ANG)

e
N (f\

- ——

Die mittlere Kriimmung ist der Mittelwert aller Normalenkriimmungen im Punkt p.
Satz 5. Fir die mittlere Krimmung gilt

1

27
H(p) / 1o (5(6)) d,

wobei U(0) der Einheitsvektor in T, F ist, der aus @1 durch Drehung um den Winkel § € [0, 27| entsteht.
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Driickt man die Einheitsvektoren @; und ds durch die Tangentialvektoren aa_qi(“) und g—i(u) aus und

setzt dies in die Formel fiir die Normalenkriimmungen ein, so erhélt man folgende explizite Formel fiir
die GauB-Kriimmung und die mittlere Kriimmung.

Satz 6. Seien (h;;(p)) und (gi;(p)) die (2 x 2)-Matrizen mit den Eintrdgen

) = (o N0 wnd a0) = (5. 2 ).
Dann gilt:
K(p) = Det((hi(p) o (9 () "),
H(p) = Spur((hij(p) o (9:5(p) ")

Diese Formel erlaubt es uns, aus der Parametrisierung der Flache die Kriimmungen zu bestimmen.

7. Minimalflachen

Definition 6. Eine Fliche mit mittlerer Kriimmung H = 0 nennt man Minimalfidche.

Ihre Gau-Kriimmung ist in jedem Punkt kleiner oder gleich Null. Minimalflichen sind in jedem Punkt p
»gleichméfig” in beide Seiten der Tangentialebene gekriimmt — der Mittelwert aller Normalenkriimmun-
gen im Punkt p ist Null.

Die Minimalflichen-Eigenschaft (H = 0) haben z.B. Flichen, die unter allen in eine feste Randkurve

eingespannten Fldchen den kleinsten Flicheninhalt haben (daher kommt der Name Minimalfldiche).

Beispiel 7. Das Katenoid

Eine hiangende Kette kann man durch die Funktion cosh beschreiben. Das Katenoid ist die Rotations-
fliche, deren Profilkurve K die Kettenlinie ist, betrachtet als Graph der Funktion iiber der z-Achse in
der (z,z)-Ebene, d.h. K ist beschrieben durch die parametrisierte Kurve v : I C R — R3 mit

7(z) = (ccosh(z/c),0,z2).
Das Katenoid hat dann die Form
F :={(ccosh(z/c) - cosa, ccosh(z/c) - sina, z) | z € I, € [0, 27) }.
—0.05
-0.10
-0.15

-0.20

GauB-Krimmung von F in p

Das Katenoid ist die einzige Minimalfliche unter den (nichtebenen) Rotationsflichen. Ein Zylinder ist
dabei keine Minimalfléiche und hat auch einen gréBeren Flécheninhalt als das Katenoid (siehe Abbildungen
unten).
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Beispiel 8. Die Wendelfliche

Die Wendelfldche

fiir ein Intervall I in den reellen Zahlen und eine Konstante h € R mit h # 0 ist ebenfalls eine Minimal-

flache.

Flacheninhalt und mittlere Kriummmung

2004 Flacheninhalt 0.10
---- Mittlere Krimmung ;
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W ={(scosa,ssinco, ha) | se€ I,a € R}
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GauB-Krimmung von F in p

Beispiel 9. Die Scherksche Minimalfidche

Die Scherksche Minimalfliche S ist der Graph der Funk- .
tion <
h:(—m/2,m/2) x (—7/2,7/2) C R? = R mit <
h(z,y) := In(cosy) — In(cos z), é
d.h. :
8

S :={(2,y,In(cosy)—In(cosz)) € R® | x,y € (—7/2,7/2) }.
Beispiel 10. Die Enneper-Fliche 2
Die Enneper-Fliche ist parametrisiert durch a
f:R? - R? mit é
€
uf 2 u3 2,2 2 g
flug,ug) = (u1—§+u1u2, u2_§+u2u1 ,ui—u3). g
8

Sie ist ebenfalls eine Minimalflache.

Ausblick: Sei {F,} c(c,—<) eine Schar von Flichen F, und
A:(—g,e) CR — A(s) := Area(Fy)

die Funktion, die jedem s € (g, —¢) den Flicheninhalt Area(F) von Fs zuordnet. Eine Fliche F ist genau
dann eine Minimalfliche, wenn die Funktion A fiir alle Fldchenscharen {Fs} mit F' = Fj einen kritischen
Punkt in s = 0 hat, d.h. A’(0) = 0 gilt. Das bedeutet nicht unbedingt, dass A(s) in s = 0 ein Minimum
annimmt. Man kann aber zeigen, dass dies bei hinreichend kleinen Verdnderungen von F' = Fj gilt. Der
Flacheninhalt von Minimalflichen wird grofler, wenn man sie in hinreichend kleinen Bereichen abéndert.
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