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1. Einleitung

1.1. Das Tautochonenproblem

Früher wurde die Zeit gern mit Pendeluhren gemessen, da Pendel einfache periodisch schwingende Systeme
sind. Man musste nur die Schwingungen zählen, schon wusste man, wie viel Zeit vergangen war. Allerdings
ist das gar nicht so genau, wenn es um längere Zeitspannen geht. Die Periodendauer eines Pendels ist
nicht immer gleich. Sie hängt von der Größe der Auslenkung des Pendels ab.

Um ein sogenanntes tautochrones Pendel zu erhalten, muss man ein klassisches Pendel abändern.

Definition 1 (Tautochronie). Eine ebene Kurve, entlang derer sich ein nur von der Schwerkraft be-
schleunigter Massepunkt bewegt und unabhängig vom Ausgangspunkt stets dieselbe Zeit benötigt, um
zum tiefsten Punkt zu gelangen, heißt tautochron.

Die Begriffe in dieser Definition werden wir Stück für Stück erklären. Zunächst werden wir jedoch über-
prüfen, dass ein einfaches Fadenpendel tatsächlich nicht tautochron ist.

1.2. Das Fadenpendel

Knotet man eine Masse an einen Faden und lässt die Masse an dem Faden frei schwingen, so erhält man
ein reales Fadenpendel. Die Schwerkraft treibt das Pendel an. Aber das ist nicht die einzige Kraft, die in
der Realität auf die Masse einwirkt. Z.B. bremst die Reibung die Schwingung des Pendels.

Ein mathematisches Fadenpendel ist ein idealisiertes Fadenpendel –
also nur ein Modell – mit den folgenden Eigenschaften:

• Es gibt keine Reibungseffekte oder andere Störungen.

• Die komplette Masse ist in einem Punkt konzentriert.

• Das Pendel bewegt sich in einer Ebene und wird nur durch die
Schwerkraft angetrieben.

Bild der Kräfte im Pendel

Für das mathematische Pendel gelten die folgenden Beziehungen.

Gewichtskraft Fg = m · g

Position in Abhängigkeit von Auslenkungswinkel s(φ) = φ · l

Tangentiale Kraft Ft = − sin(φ) · Fg

Ft bewirkt eine Beschleunigung der Masse = m · a

= m · l · φ′′
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Bringen wir diese Formeln zusammen erhalten wir

φ′′ = − sin(φ) · g
l

.

Für kleine Auslenkungen φ gilt näherungsweise sin(φ) ≈ φ. Damit vereinfachen wir unsere Formel.

φ′′ = −φ · g
l

Lösungen dieser linearen Differentialgleichung zweiten Grades sind Sinus- und Kosinusfunktionen. Daher
ist φ(t) eine Linearkombination der folgenden Terme:

sin

(√
g

l
· t+ φ1

)
, cos

(√
g

l
· t+ φ2

)
,

insbesondere scheint das mathematische Pendel mit dieser Vereinfachung tautochron zu sein.

1.3. Experimentelle Überprüfung

Dies sind Messwerte bei einem Pendel der Länge l = 150 cm mit unterschiedlichen Anfangsauslenkungen
in Grad. Angegeben ist jeweils der Mittelwert der Dauer von 10 Pendelschwingungen (in Sekunden).

5° 10° 15° 45° 60°
2,25 2,33 2,35 2,41 2,48

2,31 2,34 2,35 2,43 2,48

2,31 2,34 2,35 2,41 2,49

2,34 2,34 2,35 2,42 2,48

2,33 2,34 2,35 2,42 2,48

Messwerte bei l = 150 cm

5° 10° 15° 45° 60°
[2,28|2,34] [2,34|2,34] [2,35|2,35] [2,41|2,43] [2,48|2,48]

Konfidenzintervalle bei l = 150 cm

Dies sind Messwerte bei einem Pendel der Länge l = 100 cm bzw. l = 50 cm mit unterschiedlichen
Anfangsauslenkungen.

5° 10° 15° 45° 60°
2,16 2,06 2,35 2,20 2,37

Messwerte bei l = 100 cm

5° 10° 15° 45° 60°
1,478 1,484 1,488 1,534 1,568

Messwerte bei l = 50 cm

Länge [cm]

Dauer [s]

50 100 150

1

2

3
Messwerte
Modellfunktion f(x) =

√
x
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Schwingungsdauer in Abhängigkeit von der Fadenlänge

Auslenkung [°]

Dauer [s]

10 20 30 40 50 60

1

2

3 Messung 1
Messung 2
Messung 3

Schwingungsdauer in Abhängigkeit von der Auslenkung

2. Abändern des Fadenpendels

Da wir gesehen haben, dass die Schwingungsdauer eines Fadenpendels mit der Länge und auch mit
der Auslenkung des Fadens zunimmt, liegt es nahe, ein Pendel zu konstruieren, bei dem bei größerer
Auslenkung der Faden verkürzt wird.

Das Pendel schwingt also nicht im freien Raum, sondern umgeben von Kurvenbacken, d.h. Backen, die
entsprechend einer speziellen zu ermittelnden Kurve geformt sind, sodass bei höheremWinkel die effektive
Pendellänge kürzer wird.

2.1. Parametrisierte Kurven und ihre Eigenschaften

Definition 2 (Parametrisierte Kurve). Eine parametrisierte Kurve ist eine mindestens zweimal stetig
differenzierbare Abbildung (d.h. in jeder Komponente mindestens zweimal stetig differenzierbar)

γ : I → R2,
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wobei I ⊂ R ein reelles Intervall ist.

Die lokale Änderung einer parametrisierten Kurve beschreiben wir wie folgt

γ(t+ h)− γ(t)

h
=

(γ1(t+ h), γ2(t+ h))− (γ1(t), γ2(t))

h

=

(
γ1(t+h)−γ1(t)

h
γ2(t+h)−γ2(t)

h

)
h→0−−−→

(
γ′1(t)
γ′2(t)

)
=: γ′(t)

Wir nennen γ′(t) den Tangentialvektor an die parametrisierte Kurve γ : I → R2 im Punkt γ(t). Da der
Vektor in Richtung der Tangente zeigt, gilt für die Tangentengleichung der Tangente an γ im Punkt γ(t)

Tant γ = γ(t) + R · γ′(t).

Definition 3 (Reguläre parametrisierte Kurven). Eine parametrisierte Kurve ist regulär, wenn der Tan-
gentialvektor überall von Null verschieden ist.

Um die Länge einer parametrisierten Kurve zu bestimmen, schätzen wir diese durch die Länge von
Sehnenpolygonen ab.

Sei γ : [a, b] → R2 eine reguläre parametrisierte Kurve. Eine Zerlegung P von [a, b] ist gegeben durch

P = {x0 = a, x1, x2, . . . , xn = b}, mit a = x0 < x1 < · · · < xn = b.

Die Länge des Sehnenpolygons zu γ und P erhalten wir, wenn wir die Längen der Strecken aufsummieren.

L(γ,P) =

n∑
k=1

∥γ(tk)− γ(tk−1)∥

Definition 4 (Länge einer Kurve, rektifizierbare Kurve). Existiert das Supremum der Längen aller
Sehnenpolygone zu γ,

sup {L(γ,P) | P Zerlegung von [a, b]} ,
so nennen wir es die Länge von γ.

L(γ) := sup {L(γ,P) | P Zerlegung von [a, b]}

In diesem Fall heißt γ rektifizierbar.

Natürlich ist es sehr umständlich, so die Länge einer Kurve zu bestimmen. Deswegen suchen wir eine
einfachere Berechnungsmöglichkeit.

Mit der Dreiecksungleichung gilt für immer feiner werdenen Zerlegungen

L(γ,P1) ≤ L(γ,P2) ≤ L(γ,P3) ≤ . . .

Lemma 1 (Cauchy-Schwarz-Ungleichung). Für beliebige Vektoren a⃗ =

(
a1
a2

)
, b⃗ =

(
b1
b2

)
∈ R2 gilt

|⟨⃗a, b⃗⟩| ≤ ∥a⃗∥ · ∥⃗b∥.
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Beweis: In Koordinaten geschrieben sieht die zu zeigende Gleichung wie folgt aus.

|a1b1 + a2b2| ≤
√
a21 + a22 ·

√
b21 + b22

Da beide Seiten nicht-negativ sind, quadrieren wir die Ungleichung und formen weiter äquivalent um.

(a1b1 + a2b2)
2 ≤ (a21 + a22)(b

2
1 + b22)

⇐⇒ a21b
2
1 + 2a1b1a2b2 + a22b

2
2 = a21b

2
1 + a21b

2
2 + a22b

2
1 + a22b

2
2

⇐⇒ 2a1b1a2b2 ≤ a21b
2
2 + a22b

2
1

⇐⇒ 0 ≤ a21b
2
2 − 2a1b1a2b2 + a22b

2
1

⇐⇒ 0 ≤ (a1b2 − a2b1)
2

Dies ist eine wahre Aussage, womit die Cauchy-Schwarzsche-Ungleichung bewiesen ist. Nebenbei sehen
wir, dass Gleichheit genau dann besteht, wenn Vektor a⃗ ein Vielfaches von b⃗ ist. □

Nun wollen wir die Zerlegungen immer feiner werden lassen und im Grenzübergang von der Summe zum
Integral übergehen.

Das Integral einer vektorwertigen Funktion f : [a, b] → R2 definieren wir komponentenweise.∫ b

a

f(t) dt :=

(∫ b
a
f1(t) dt∫ b

a
f2(t) dt

)

Lemma 2. Sei f : [a, b] → R2 stetig, so gilt

∥∥∥∥∥
∫ b

a

f(t) dt

∥∥∥∥∥ ≤
∫ b

a

∥f(t)∥ dt.

Beweis: Wir setzen ∫ b

a

f(t) dt =: v =

(
v1
v2

)
Damit können wir schreiben

∥v∥2 =
∥∥∥∫ ba f(t) dt∥∥∥2 = v21 + v22

= v1 ·
∫ b
a
f1(t) dt+ v2 ·

∫ b
a
f2(t) dt

=
∫ b
a

(
v1f1(t) + v2f2(t)

)
dt.

Mit der Cauchy-Schwarz-Ungleichung erhalten wir

∫ b
a
(v1f1(t) + v2f2(t)) dt ≤

∫ b
a
∥v∥ · ∥f(t)∥ dt

= ∥v∥ ·
∫ b
a
∥f(t)∥ dt

Wir teilen durch die Norm von v und erhalten die gewünschte Ungleichung∥∥∥∥∥
∫ b

a

f(t) dt

∥∥∥∥∥ ≤
∫ b

a

∥f(t)∥ dt.

□
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Satz 1 (Berechnung der Länge von stetig differenzierbaren Kurven). Sei γ : [a, b] → R2 eine stetig
differenzierbare Kurve. Dann ist γ rektifizierbar und

L(γ) =

∫ b

a

∥γ′(t)∥ dt.

Beweis:

Im ersten Schritt zeigen wir, dass
∫ b
a
∥γ′(t)∥ dt eine obere Schranke für L(γ,P) für jede Zerlegung

P = {t0, t1, . . . , tn} von [a, b] ist.

Dazu nutzen wir den Hauptsatz der Differential- und Integralrechnung.

L(γ,P) =

n∑
k=1

∥γ(tk)− γ(tk−1)∥
HS
=

n∑
k=1

∥∥∥∥∥
∫ tk

tk−1

γ′(t) dt

∥∥∥∥∥
Mit dem gerade gezeigten Lemma gilt

n∑
k=1

∥∥∥∥∥
∫ tk

tk−1

γ′(t) dt

∥∥∥∥∥ ≤
n∑
k=1

∫ tk

tk−1

∥γ′(t)∥ dt =
∫ b

a

∥γ′(t)∥ dt.

Im zweiten Schritt zeigen wir, dass tatsächlich Gleichheit besteht, die obere Schranke also tatsächlich das
Supremung ist.

Dazu betrachten wir eine Hilfsfunktion.

ℓ : [a, b] −→ R,
t 7→ ℓ(t) := L(γ|[a,t])

Wir bestimmen die Ableitung über den Differenzenquotienten,

ℓ(t+ h)− ℓ(t)

h
=
L(γ|[t,t+h])

h
.

Es gilt

∥γ(t+ h)− γ(t)∥ ≤ L(γ|[t,t+h]) ≤
∫ t+h

t

∥γ′(s)∥ds

und damit

∥∥∥∥γ(t+ h)− γ(t)

h

∥∥∥∥ ≤
L(γ|[t,t+h])

h
≤ 1

h

∫ t+h

t

∥γ′(s)∥ ds

Im Limes h→ 0+ ergibt sich mit dem Hauptsatz der Differential- und Integralrechnung

∥γ′(t)∥ ≤ lim
h→0+

L(γ|[t,t+h])
h

≤ ∥γ′(t)∥.

Analoge Betrachtungen für h→ 0− ergeben diese Abschätzung auch in diesem Fall und es folgt mit dem
Sandwich-Lemma

ℓ′(t) = ∥γ′(t)∥
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Nach dem Hauptsatz der Integralrechnung gilt damit

L(γ) = ℓ(b) = ℓ(b)− ℓ(a)︸︷︷︸
=0

=

∫ b

a

ℓ′(t) dt =

∫ b

a

∥γ′(t)∥ dt.

□

3. Evolventen

Da sich bei unserem Pendel ein Faden an einer Kurvenbacke
”
abwickeln“ soll, betrachten wir nun Kurven,

die auf eine solche Art entstehen.

Definition 5 (Evolvente). Die Evolvente zu einer Kurve γ : I ⊂ R −→ R2 mit dem Startpunkt γ(t0) ist
die Kurve et0 , die der Endpunkt eines um die Kurve gewickelten Fadens, der in γ(t0) endet, beschreibt,
wenn sich der Faden straff abwickelt. Man nennt eine solche Kurve Evolvente von γ mit Startpunkt γ(t0),

et0(t) = γ(t)− L(γ|[t0,t]) ·
γ′(t)

||γ′(t)||

(lat. evolvere – herauswickeln)

Beispiel 1 (Evolvente eines Kreises). Bei einem Kreis ist die Evolvente mit Startpunkt (cosφ, sinφ)
gegeben durch

et0(t) = (cosφ, sinφ)− φ ·
(
− sinφ
cosφ

)
.

4. Zykloiden

Eine Zykloide entsteht, wenn
ein Kreis an einer Kurve abge-
rollt wird und dabei die Spur
eines Punktes, der mit dem
Kreis fest verbunden ist, ver-
folgt wird.

Beispiel einer Zykloide

Wir betrachten hier gewöhnliche Zykloiden, bei denen der Rollkreis auf einer Geraden abrollt und der
Punkt P auf dem Rollkreis liegt.

Wir entwickeln die Beschreibung dieser Kurve Stück für Stück. Dabei sei M der Mittelpunkt des Roll-
kreises, welcher durch den Abrollwinkel φ parametrisiert werden kann, M = (r · φ,−r). Außerdem gilt
für den Vektor von M nach P

P −M = r ·
(
− sinφ
cosφ

)
.

Die Zykloide ergibt sich dann durch

γZ = M + (P −M)

= r · (φ,−1) + r ·
(
− sinφ
cosφ

)
= r · (φ− sinφ,−1 + cosφ)
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Beispiel 2 (Astroide).

Eine Astroide ist eine Zykloide, bei der der Roll-
kreis innerhalb eines anderen Kreises abgerollt
wird und der Radius des Rollkreises ein Viertel des
Radius des Leitkreises ist.
In der Animation kann man sich durch Betätigen
des ersten Schiebereglers eine Astroide zeichnen
lassen. Die anderen Schieberegler verändern die
verschiedenen Parameter so, dass weitere Zykloi-
den entstehen.
Geogebra-Animation zu Astroiden

Astroide

5. Tautochrones Pendel

Wir werden nun nachvollziehen, dass zykloidenförmige Kurvenbacken tatsächlich ein tautochrones Pendel
entstehen lassen.

Wir parametrisieren die Kurvenbacken durch eine nach oben geöffnete Zykloide wie folgt

γZ(φ) = r(φ,−1) + r

(
− sinφ
cosφ

)
, mit φ ∈ [π, 2π].

Dann gilt

γ′Z(φ) = r

(
1− cosφ
− sinφ

)
und ||γ′Z(φ)|| = r

√
(1− cosφ)2 + sin2 φ = 2r

√
1− cosφ

2
.

Mit der trigonometrischen Identität
√

1−cosφ
2 =

∣∣sin φ
2

∣∣ können wir dies einfacher ausdrücken,

||γ′Z(φ)|| = 2r sin
φ

2

und erhalten für die Länge der Zykloide

L(γZ |[ϕ,φ]) =
∫ φ

π

||γ′Z(t)||dt = −4r cos
φ

2
.

Damit bestimmen wir nun eine Parametrisierung der Evolventen der Zykloide mit Startpunkt im lokalen
Minimum.
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eπ(φ) = γZ(φ)−
L(γZ |[π,φ])
||γ′Z(φ)||

· γ′Z(φ)

= r(φ,−1) + r

(
− sinφ
cosφ

)
+

4r cos φ2
2r sin φ

2

· r
(
1− cosφ
− sinφ

)
= r

(
φ− sinφ+ 2 ·

cos φ2
sin φ

2

· (1− cosφ),−1 + cosφ− 2 ·
cos φ2
sin φ

2

· sinφ
)

Zeichnet man diese Evolvente der Zykloide, so liegt der Verdacht nahe, dass es sich um eine verschobene
Zykloide handelt – genauer verschoben entlang der x-Achse um rπ und entlang der y-Achse um −2r.
D.h., diese Kurve müsste mit der Kurve

γz(φ− π) +

(
rπ
−2r

)
= r ·

(
φ+ sin(φ),−3− cos(φ)

)
übereinstimmen.

Dies lässt sich mit trigonometrischen Identitäten bestätigen. Die Evolvente ist also ebenfalls eine Zykloide.

Nun beweisen wir, dass die Zykloide tatsächlich tautochron ist.

Satz 2 (Tautochronie der Zykloiden). Die Zykloide ist tautochron.

Beweis: Nach dem Energieerhaltungssatz gilt

Ekin(φ) + Epot(φ) = const = Epot(φ0) also
1

2
mv2 +mg(y(φ)− y(φ0)) = 0.

Wir stellen nach der Geschwindigkeit, also der Ableitung des Weges nach der Zeit, um

v =
ds

dt
=
√
2g(y(φ0)− y(φ)) und damit dt =

1√
2g(y(φ0)− y(φ))

ds.

Um integrieren zu können, müssen wir noch ds durch dφ darstellen. Mit der Bogenlänge der Zykloide ist

ds

dφ
= ||γ′Z(φ)|| = 2r sin

φ

2
und folglich ds = 2r sin

φ

2
dφ.

Damit können wir schreiben

dt =
2r sin φ

2√
2g(y(φ0)− y(φ))

dφ.

Integration vom Startpunkt φ0 bis zum tiefsten Punkt bei π liefert ein Viertel der Periodendauer.

1

4
Tφ0

=

∫ π

φ0

2r sin φ
2√

2g(y(φ0)− y(φ))
dφ

Wir setzen y(φ) = r(cosφ− 1) ein,

1

4
Tφ0

=

√
2

√
g
r

∫ π

φ0

sin φ
2√

r(cosφ0 − 1− (cosφ− 1))
dφ,
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und nutzen die Identitäten cosφ0 − cosφ = 2 cos2 φ0

2 − 2 cos2 φ2 .

1
4Tφ0

=

√
2r

√
g

∫ π

φ0

sin φ
2√

2 cos2 φ0

2 − 2 cos2 φ2
dφ

=

√
2r

√
g

1√
2 cos2 φ0

2

∫ π

φ0

sin φ
2√

1− cos2
φ0
2

cos2 φ
2

dφ

Wir substituieren x :=
cos φ

2

cos
φ0
2

, dx =
− 1

2 sin φ
2

cos
φ0
2

dφ.

1
4Tφ0 = (−4)

√
2r

√
g

1√
2 cos φ0

2

∫ π

φ0

− 1
2 sin

φ
2√

1− cos2
φ0
2

cos2 φ
2

dφ

=
−2
√
g

√
r

∫ 0

1

1√
1− x2

dx

=
2
√
r

√
g

∫ 1

0

1√
1− x2

dx

= 2

√
r

g

[
arcsin(x)

]1
0

= 2

√
r

g
· π
2

Damit erhalten wir für die Periodendauer des Zykloidenpendels Tφ0
= 16π

√
r
g und mit l = 4r ergibt sich

die Periodendauer, die wir auch näherungsweise für das mathematische Pendel bestimmt hatten

Tφ0 = 2π

√
l

g
.

Insbesondere ist Tφ0 unabhängig von φ0 und das Zykloidenpendel tautochron. □

10 20 30 40 50 60
1.75
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Schwingungsdauer in Abhängigkeit vom Auslenkungswinkel bei einem realen Zykloidenpendel

Unsere Messdaten an einem realen Zykloidenpendel bestätigen hinreichnd genau die Theorie, auch wenn
in der Realität die Reibung Einfluss auf die Schwingungsdauer hat, was wir in der Theorie nicht beachtet
haben.
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