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1. Einleitung

1.1. Das Tautochonenproblem

Friither wurde die Zeit gern mit Pendeluhren gemessen, da Pendel einfache periodisch schwingende Systeme
sind. Man musste nur die Schwingungen zihlen, schon wusste man, wie viel Zeit vergangen war. Allerdings
ist das gar nicht so genau, wenn es um léngere Zeitspannen geht. Die Periodendauer eines Pendels ist
nicht immer gleich. Sie hangt von der Gréle der Auslenkung des Pendels ab.

Um ein sogenanntes tautochrones Pendel zu erhalten, muss man ein klassisches Pendel abéndern.

Definition 1 (Tautochronie). Eine ebene Kurve, entlang derer sich ein nur von der Schwerkraft be-
schleunigter Massepunkt bewegt und unabhéngig vom Ausgangspunkt stets dieselbe Zeit benttigt, um
zum tiefsten Punkt zu gelangen, heifit tautochron.

Die Begriffe in dieser Definition werden wir Stiick fiir Stiick erkldren. Zunéchst werden wir jedoch iiber-
priifen, dass ein einfaches Fadenpendel tatséichlich nicht tautochron ist.

1.2. Das Fadenpendel

Knotet man eine Masse an einen Faden und ldsst die Masse an dem Faden frei schwingen, so erhélt man
ein reales Fadenpendel. Die Schwerkraft treibt das Pendel an. Aber das ist nicht die einzige Kraft, die in
der Realitéit auf die Masse einwirkt. Z.B. bremst die Reibung die Schwingung des Pendels.
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Ein mathematisches Fadenpendel ist ein idealisiertes Fadenpendel — (,E}
also nur ein Modell — mit den folgenden Eigenschaften: -lF

e Es gibt keine Reibungseffekte oder andere Stérungen.

e Die komplette Masse ist in einem Punkt konzentriert. .
' (F,
e Das Pendel bewegt sich in einer Ebene und wird nur durch die . ol
Schwerkraft angetrieben. E, Ruheposition
il If"

Bild der Krifte im Pendel

Fiir das mathematische Pendel gelten die folgenden Beziehungen.

Gewichtskraft F, = m-g
Position in Abhéngigkeit von Auslenkungswinkel s(p) = ¢-1
Tangentiale Kraft F, = —sin(yp)-F,
F; bewirkt eine Beschleunigung der Masse = m-a

= m-l-¢"
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Bringen wir diese Formeln zusammen erhalten wir

Fiir kleine Auslenkungen ¢ gilt niherungsweise sin(¢) ~ ¢. Damit vereinfachen wir unsere Formel.

l

Losungen dieser linearen Differentialgleichung zweiten Grades sind Sinus- und Kosinusfunktionen. Daher
ist () eine Linearkombination der folgenden Terme:

sin(ﬁ-t+@1), cos(ﬁ-t—&—g@),

insbesondere scheint das mathematische Pendel mit dieser Vereinfachung tautochron zu sein.

1.3. Experimentelle Uberpriifung

Dies sind Messwerte bei einem Pendel der Lénge | = 150 cm mit unterschiedlichen Anfangsauslenkungen
in Grad. Angegeben ist jeweils der Mittelwert der Dauer von 10 Pendelschwingungen (in Sekunden).

5° 10° 15° | 45° | 60°
2,25 | 2,33 | 2,35 | 2,41 | 2,48
2,31 | 2,34 | 2,35 | 2,43 | 2,48 5° 10° 15° 45° 60°
2,31 | 2,34 | 2,35 | 2,41 | 2,49 (2,28]2,34] | [2,34]2,34] | [2,35]2,35] | [2,41]|2,43] | [2,48|2,48]
2,34 | 2,34 | 2,35 | 2,42 | 2,48 Konfidenzintervalle bei [ = 150 cm
2,33 | 2,34 | 2,35 | 2,42 | 2,48
Messwerte bei [ = 150 cm
Dies sind Messwerte bei einem Pendel der Lénge [ = 100cm bzw. | = 50 cm mit unterschiedlichen
Anfangsauslenkungen.
5° 10° 15° | 45° | 60° 5° 10° 15° 45° 60°
2,16 | 2,06 | 2,35 | 2,20 | 2,37 1,478 | 1,484 | 1,488 | 1,534 | 1,568
Messwerte bei [ = 100 cm Messwerte bei [ = 50 cm
Dauer [s]
3 =€
—— Messwerte
—— Modellfunktion f(z) = /z
2 =€
1 =€
| | | Lénge [cm]
50 100 150
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Schwingungsdauer in Abhangigkeit von der Fadenlange

Dauer [s]
3T —— Messung 1
--- Messung 2
o——O—————_—_______ * ____-j Messung 3
9 1 ® - - - --0-
@ - @ - - LSRR @ Y
1 =4

i i i i % | Auslenkung [°]
10 20 30 40 50 60

Schwingungsdauer in Abhéngigkeit von der Auslenkung

2. Abdndern des Fadenpendels

Da wir gesehen haben, dass die Schwingungsdauer eines Fadenpendels mit der Linge und auch mit
der Auslenkung des Fadens zunimmt, liegt es nahe, ein Pendel zu konstruieren, bei dem bei grolerer
Auslenkung der Faden verkiirzt wird.

Das Pendel schwingt also nicht im freien Raum, sondern umgeben von Kurvenbacken, d.h. Backen, die
entsprechend einer speziellen zu ermittelnden Kurve geformt sind, sodass bei hoherem Winkel die effektive
Pendelldnge kiirzer wird.

2.1. Parametrisierte Kurven und ihre Eigenschaften

Definition 2 (Parametrisierte Kurve). Eine parametrisierte Kurve ist eine mindestens zweimal stetig
differenzierbare Abbildung (d.h. in jeder Komponente mindestens zweimal stetig differenzierbar)

v: 1 —R?

o8



wobei I C R ein reelles Intervall ist.

Die lokale Anderung einer parametrisierten Kurve beschreiben wir wie folgt

A+ =) (nE+h), e+ h) — (n(t),72(f))
h h
'yl(t+’z) 71 (t)
’Yz(t-‘rh) Y2(t)
h—0 ’Yé t )
Vst
= ()

Wir nennen 7/(¢) den Tangentialvektor an die parametrisierte Kurve v : I — R? im Punkt v(¢). Da der
Vektor in Richtung der Tangente zeigt, gilt fiir die Tangentengleichung der Tangente an v im Punkt ~(t)

Tanyy = 7(t) + R -7/'(t).

Definition 3 (Regulire parametrisierte Kurven). Eine parametrisierte Kurve ist regulér, wenn der Tan-
gentialvektor iiberall von Null verschieden ist.

Um die Lénge einer parametrisierten Kurve zu bestimmen, schétzen wir diese durch die Lange von
Sehnenpolygonen ab.

Sei v : [a, b] — R? eine reguliire parametrisierte Kurve. Eine Zerlegung P von [a, b] ist gegeben durch

P={xg=a,z1,22,..., 2, =b}, mita=z¢<z1 < - <5 =0.

Die Lénge des Sehnenpolygons zu v und P erhalten wir, wenn wir die Langen der Strecken aufsummieren.

P) = lIv(tr) = y(tr-1)l|
k=1

Definition 4 (Lénge einer Kurve, rektifizierbare Kurve). Existiert das Supremum der Lingen aller
Sehnenpolygone zu -+,
sup {L(v,P) | P Zerlegung von [a, b|},

so nennen wir es die Lénge von ~.

L(v) =sup{L(,P) | P Zerlegung von [a,b]}
In diesem Fall heifit v rektifizierbar.

Natiirlich ist es sehr umsténdlich, so die Lange einer Kurve zu bestimmen. Deswegen suchen wir eine
einfachere Berechnungsmoglichkeit.

Mit der Dreiecksungleichung gilt fiir immer feiner werdenen Zerlegungen

L(’y’ Pl) S L(77P2) S L(77P3) S

Lemma 1 (Cauchy-Schwarz-Ungleichung). Fiir beliebige Vektoren @ = <Zl) . b= ( 1) € R? gilt
(@, B)| < llall - 1[5]]-
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Beweis: In Koordinaten geschrieben sieht die zu zeigende Gleichung wie folgt aus.

Jasbs + azba| < \Ja? + a3 - /63 + 13
Da beide Seiten nicht-negativ sind, quadrieren wir die Ungleichung und formen weiter dquivalent um.

(a1b1 + agbz)® < (af + a3)(b] + b3)

<= a3b} +2a1brazby +a3b3 = a?b? + a2b3 + adb? + a3b3
< 2a1b1agby < afb% + a%b%

< 0 < a%b% — 2a1biasbs + a%b%
e 0 < (albg — a2b1)2

Dies ist eine wahre Aussage, womit die Cauchy-Schwarzsche-Ungleichung bewiesen ist. Nebenbei sehen
wir, dass Gleichheit genau dann besteht, wenn Vektor @ ein Vielfaches von b ist. O

Nun wollen wir die Zerlegungen immer feiner werden lassen und im Grenziibergang von der Summe zum
Integral iibergehen.

Das Integral einer vektorwertigen Funktion f : [a,b] — R? definieren wir komponentenweise.

b b
_ (), A@)dt
IR (ﬂ’ ) dt)

a

Lemma 2. Sei f : [a,b] — R? stetig, so gilt

’ [ sy
/abf(t) dt = v = (Z;)

b 2 2 2
fa f(t) dtH = v} 403
v [P A At +va - [0 fa(t)dt

= f: ('Ulfl (t) =+ ’Ugfg(t)) dt.

b
< [ s

Beweis: Wir setzen

Damit kénnen wir schreiben

Jol? = |

Mit der Cauchy-Schwarz-Ungleichung erhalten wir

SPll - @) de
ol - S21L£ ()]l dt

Wir teilen durch die Norm von v und erhalten die gewiinschte Ungleichung

| /a"f@ a

[P0 fa(8) + vafo(t)) dt

IN

b
< / 1£(0)] .
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Satz 1 (Berechnung der Linge von stetig differenzierbaren Kurven). Sei v : [a,b] — R? eine stetig
differenzierbare Kurve. Dann ist v rektifizierbar und

b
L(y) = / I/ (8)] dt.

Beweis:

Im ersten Schritt zeigen wir, dass f: |Iv/(t)|| dt eine obere Schranke fiir L(v,P) fiir jede Zerlegung
P = {to,t1,...,tn} von [a,b] ist.

Dazu nutzen wir den Hauptsatz der Differential- und Integralrechnung.

tr
/ v (t) dt
th—1

n

L3 P) =Y Inte) = v(ten)l 0
k=1

k=1

Mit dem gerade gezeigten Lemma gilt

tr
| v
th—1

Im zweiten Schritt zeigen wir, dass tatséichlich Gleichheit besteht, die obere Schranke also tatséchlich das
Supremung ist.

n
k=1

n t b
< @l = [ Il
> [ wons= [

th—1

Dazu betrachten wir eine Hilfsfunktion.

l:fa,b) — R,
to= Ut =L ay)

Wir bestimmen die Ableitung iiber den Differenzenquotienten,

Ot +h)—0t)  LOVern)

h h

Es gilt

t+h
Iyt + 1) = 20l < L)) < / /()] ds

und damit

Y(t+h) — () L(vlite4n) 1 /t"’h ,
< 2 < = d
H 3 < T < o [ I ) s
Im Limes h — 0% ergibt sich mit dem Hauptsatz der Differential- und Integralrechnung

L(V|it,+n))
! < . 3 < ! .
V@l < Jim —— == < v @

Analoge Betrachtungen fiir h — 0~ ergeben diese Abschéitzung auch in diesem Fall und es folgt mit dem
Sandwich-Lemma
Ct) =11+l
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Nach dem Hauptsatz der Integralrechnung gilt damit

b b
L) = ) = 60) ~ o) = [ et = [ @)
=0

3. Evolventen

Da sich bei unserem Pendel ein Faden an einer Kurvenbacke ,,abwickeln“ soll, betrachten wir nun Kurven,
die auf eine solche Art entstehen.

Definition 5 (Evolvente). Die Evolvente zu einer Kurve v : I C R — R? mit dem Startpunkt (o) ist
die Kurve ey, die der Endpunkt eines um die Kurve gewickelten Fadens, der in v(ty) endet, beschreibt,
wenn sich der Faden straff abwickelt. Man nennt eine solche Kurve Evolvente von « mit Startpunkt v(¢o),

et0(t) =90 = L0lw) Ty

(lat. evolvere — herauswickeln)

Beispiel 1 (Evolvente eines Kreises). Bei einem Kreis ist die Evolvente mit Startpunkt (cos ¢, sin ¢)
gegeben durch

. —sin
ety (t) = (cos p,sinp) — - < cos f) :

4. Zykloiden

Eine Zykloide entsteht, wenn

ein Kreis an einer Kurve abge- ‘ = £l
rollt wird und dabei die Spur
eines Punktes, der mit dem ; :

Kreis fest verbunden ist, ver-

folgt wird.
Wir betrachten hier gewohnliche Zykloiden, bei denen der Rollkreis auf einer Geraden abrollt und der

Punkt P auf dem Rollkreis liegt.

Beispiel einer Zykloide

Wir entwickeln die Beschreibung dieser Kurve Stiick fiir Stiick. Dabei sei M der Mittelpunkt des Roll-
kreises, welcher durch den Abrollwinkel ¢ parametrisiert werden kann, M = (r - ¢, —r). Aulerdem gilt
fiir den Vektor von M nach P )
P—M=r (‘Sm“o>.
CoS ¥

Die Zykloide ergibt sich dann durch

vz = M+ (P-M)

T ).

CoS
= r-(p—sing, —1+ cosyp)
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Beispiel 2 (Astroide).

Eine Astroide ist eine Zykloide, bei der der Roll-
kreis innerhalb eines anderen Kreises abgerollt
wird und der Radius des Rollkreises ein Viertel des
Radius des Leitkreises ist.

In der Animation kann man sich durch Betétigen

des ersten Schiebereglers eine Astroide zeichnen 0
lassen. Die anderen Schieberegler verdndern die
verschiedenen Parameter so, dass weitere Zykloi-
den entstehen.

Geogebra-Animation zu Astroiden

Astroide

5. Tautochrones Pendel

Wir werden nun nachvollziehen, dass zykloidenférmige Kurvenbacken tatséchlich ein tautochrones Pendel

entstehen lassen.

Wir parametrisieren die Kurvenbacken durch eine nach oben gedffnete Zykloide wie folgt

Yz(p) =1(p, =1) + 7 (g?f) ; mit ¢ € [r, 27).

Dann gilt

1 —cos . 1 —cos
o) = (2o ) wnd 1Pl = /(1 = cos) s p = 20y L2252

Mit der trigonometrischen Identitét 4/ H% = |sin %’ kénnen wir dies einfacher ausdriicken,

P
Iy (@)l = 2rsin 2

und erhalten fiir die Lénge der Zykloide

@
Y
Liozlo) = [ In5(®lldt = ~areos 2.

™

Damit bestimmen wir nun eine Parametrisierung der Evolventen der Zykloide mit Startpunkt im lokalen

Minimum.
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https://www.geogebra.org/m/rkbwhfhr

L(7Z|[ﬂ,tp]) /

ex(p) = vz(p) — m Yz ()
_ B —singp 4r cos £ (1—cosgp
= 7r(p, 1)+r<cos<p)+2rsin“2" r( sing

ino 42 cos & i )14 5 cos ¥ .
= -5 . (1 =cosg),—1+cosp—2- - sin
rleosine+2 o %), P2 G Sy

Zeichnet man diese Evolvente der Zykloide, so liegt der Verdacht nahe, dass es sich um eine verschobene
Zykloide handelt — genauer verschoben entlang der z-Achse um r7 und entlang der y-Achse um —2r.
D.h., diese Kurve miisste mit der Kurve

wlo=m+ (5] = (- sinte), -3 - costi)
iibereinstimmen.

Dies lésst sich mit trigonometrischen Identitdten bestétigen. Die Evolvente ist also ebenfalls eine Zykloide.

Nun beweisen wir, dass die Zykloide tatséichlich tautochron ist.

Satz 2 (Tautochronie der Zykloiden). Die Zykloide ist tautochron.

Beweis: Nach dem Energieerhaltungssatz gilt

1
Exin (@) + Epot (@) = const = Epei(00) also §mv2 +mg(y(p) — y(go)) = 0.

Wir stellen nach der Geschwindigkeit, also der Ableitung des Weges nach der Zeit, um

ds 1
V= — = — un ami d = ds'
3 = V20((%0) — y(p)) und damit d NOCOETC)

Um integrieren zu kénnen, miissen wir noch ds durch dy darstellen. Mit der Bogenldnge der Zykloide ist

d
£ = ||y ()| = 2r sin% und folglich ds = 2r sin % de.

Damit kénnen wir schreiben

2rsin £

~ V29(%0) - u(®)

Integration vom Startpunkt ¢ bis zum tiefsten Punkt bei 7 liefert ein Viertel der Periodendauer.

lT /Tr 27 sin % d
1. _ o
477 Joo 290y (e0) — y(9))

dt dep.

Wir setzen y(¢) = r(cos — 1) ein,

/’T sin% d
r ©s
oo V/r(cospo — 1 (cosg — 1)

64



und nutzen die Identitéiten cos gy — cos @ = 2cos? £2 — 2 cos %.

17 \V2r /"r sin £
1ie0 T 2 %o 77
\/Z] %o \/2005 — 2cos

/ sin “’
f V2 C082 %o o2 0
cos? “’
. . cos £ sin
Wir substituieren z := —2-, do = 3 2 de.
cos £

COS ——

%)

T (4)\/27" 1 /’f —%sinQ ap
oo \[ \@COb% o /1 cos?
T cos?
2 o 1

Al A

=

[N M‘Q

2&?/0 N

- 2\/Z[arcsm(m)};
_ 2\/2 .

Damit erhalten wir fiir die Periodendauer des Zykloidenpendels T, = 167r\/§ und mit [ = 4r ergibt sich

die Periodendauer, die wir auch néherungsweise fiir das mathematische Pendel bestimmt hatten

l
T,, = 27T\/;.

Insbesondere ist Ty, unabhéngig von ¢o und das Zykloidenpendel tautochron. O

. 1.85

A,

g

=

9

éo 1.8 % ° § |
S

&0

=

B

=

Q

o5

1. | | | | | |
[ 10 20 30 40 50 60

Ausklenkungswinkel [°]

Schwingungsdauer in Abhéngigkeit vom Auslenkungswinkel bei einem realen Zykloidenpendel

Unsere Messdaten an einem realen Zykloidenpendel bestétigen hinreichnd genau die Theorie, auch wenn
in der Realitdt die Reibung Einfluss auf die Schwingungsdauer hat, was wir in der Theorie nicht beachtet
haben.
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