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1. Einleitung

In der Schule haben wir uns ausfiihrlich mit Funktienen y = f(x) in einer Variablen x befasst. Viele
Probleme aus Wirtschaft, Technik und Wissenschaft lassen sich aber durch Funktionen in einer Varia-
blen nicht 16sen. Bei den meisten praktischen Problemen der realen Welt treten Funktionen mehrerer
Variabler auf und es geht um die Beschreibung des Zusammenhangs zwischen mehreren Eingangsva-
riablen x1, ..., z, (den sogenannten unabhiingigen Variablen) und m Ausgangsvariablen yi, ...,y (den
sogenannten abhingigen Variablen).

Die Abbildung unten zeigt einige Beispiele:

reellwertige Funktion vektorwertige Funktion reellwertige Funktion vektorwertige Funktion
in einer Variablen in einer Variablen in zwei Variablen in zwei Variablen
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Wir haben uns in unserer Arbeitsgruppe diese Woche speziell mit reellwertigen Funktionen in mehreren
Verénderlichen beschiftigt. Wir haben uns Grundkenntnisse der Differentialrechnung fiir solche Funktio-
nen erarbeitet und diese auf einige Beispiele angewandt.

Einen besonderer Fokus lag dabei auf der Veranschaulichung der genannten Begriffe fiir Funktionen
y = f(z,y) in 2 reellen Variablen  und y .

2. Grundlagen

2.1. Vektorrechnung

Da die Vektorrechnung grundlegend fiir die Betrachtung reellwertiger Funktionen mehrerer Verénderlicher
ist, beschéftigten wir uns zundchst mit den Grundlagen der Vektorrechnung.

Definition 1. (Verbindungsvektor)

Seien A = (a1,...,an) und B = (by,...,b,) zwei Punkte aus R™. Das Gebilde ¥ fiir welches gilt, dass ¢/
die gerichtete Strecke zwischen A und B ist, heiffit Vektor von A nach B.

U1
Schreibweise: 7= | : | = A—B)7 mit v; =b; —a; firi =1,...,n.

Up

Definition 2. (Rechenoperationen mit Vektoren)
Die Addition und Subtraktion zweier Vektoren, sowie die Multiplikation eines Vektors mit einer reellen
Zahl (Skalar genannt) erfolgt komponentenweise.

Definition 3. (Betrag eines Vektors)
Fiir einen Vektor @ € R™ heifit

|d| = \/af—ka%—l—...—i-a%
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Betrag (bzw. Norm) des Vektors d@. Ein Vektor mit Betrag 1 heifit normiert. Der Betrag eines Vektors
beschreibt die Lange des Vektors vom Fufpunkt bis zur Spitze.

Definition 4. (Skalarprodukt)
Das Skalarprodukt zweier Vektoren d,b € R™ ist definiert als:

&'-gzal~b1+a2~b2+...+an~bn

-,

Das Skalarprodukt zweier Vektoren beschreibt den Winkel ¢ = £(d,b) € [0, ] zwischen den Vektoren @
und b. Es gilt folgender Satz:

Satz 1. Seien Ei,l;e R™ zwei Vektoren. Dann gilt:

1 (Winkeldarstellung des Skalarproduktes)
a-b=/|al-|b|-cosy, wobei~y der Einschlusswinkel von @ und b mit 0° < v < 180° ist.

2 (Folgerung aus 1. fiir v =90°)
albsad b=0.

2.2. Matrizen

Definition 5. (Matrizen)

Eine m x n -Matrix A ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Unter der Transpo-
nierten A7 von A versteht man diejenige Matrix, die man erhilt, wenn man die Zeilen und Spalten von
A vertauscht.

ai1 0 Qin a1 Am

Am,1 = Ammn A1pn  *° Amn
A heifit symmetrisch, wenn A = A7,

Definition 6. (Addition und Subtraktion zweier Matrizen)

Die Addition und Subtraktion zweier Matrizen erfolgt wieder komponentenweise. Dazu miissen ihre
Zeilen- und Spaltenzahl iibereinstimmen.

Ebenfalls erfolgt die Multiplikation einer Matrix mit einer reellen Zahl komponentenweise.

Definition 7. (Multiplikation zweier Matrizen)

Eine (m x n) Matrix A und eine (n x k) Matrix B werden miteinander multipliziert, indem man die
Zeilen von A mit den Spalten von B komponentenweise multipliziert, d.h. jeweils das Skalarprodukt jeder
Zeile von A mit jeder Spalte von B bildet. Dazu muss die Spaltenzahl von A mit der Zeilenzahl von B
iibereinstimmen und es ensteht eine m x k& Matrix.

Fiir 2x2-Matrizen definieren wir noch die sogenannte Determinante der Matrix.

Definition 8. (Determinante einer 2x2 Matrix)
Die Determinante einer 2 x 2 Matrix A ist definiert durch:

a a
det(A) = det(< 11 1’2>) =aj1-a2—0a12°0a21

az1 a2
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2.3. Kurven

Definition 9. (Kurven)

Eine stetige vektorwertige Abbildung 7: ¢t € T = [t1,t2] C R — 7(¢t) C B € R™ heifit Weg. Als Kurve
C bezeichnet man die Bildmenge eines Weges und schreibt: C : 7(t), ¢ € [t1,t2]. t ist der Parameter der
Kurve C und 7" ihr Parameterbereich.

Definition 10. (Ableitung einer parametrisierten Kurve)
Sei 7(t) = (21(t), x2(t), ..., 2, (t))T : t € T C R — R" eine parametrisierte Kurve. Dann heifit der Vektor
seiner komponentenweisen Ableitungen nach ¢

dr(t)

P(t) = = = (0, 2500), 2 (6)" = lim £ h) =)

h—0

Tangentialvektor von 7(t) im Parameter t € T.
Fiir die Ableitung einer Kurve nach einem Parameter wird i.A. auch die Bezeichnung

F(t), statt 7 (t)

verwendet.
3. Funktionen mehrere Variablen

Definition 11. (Funktionen mehrerer Variablen)

Eine Abbildung f : & = (z1,...,2,) € D C R"* — y = f(Z) € R heiit reellwertige Funktion in n
Verénderlichen (bzw. Variablen) (z1, ..., zy).

(z1,...,zp) sind die unabhéngigen Variablen, y ist die abhéingige Variable. D ist der Definitionsbereich.
Die Menge B = {f(Z)|Z € D} der Bildwerte von f heifit Bildbereich.

Definition 12. (Hohenlinien)

Sei f:(r,y) € D CR? — 2 = f(z,y) € R eine reellwertige Funktion in 2 Variablen z,y.

Eine c-Hohenlinie ist die Menge aller Punkte P = (x,y), die denselben Funktonswert ¢ haben, d.h. fiir
die gilt f(P) = c.

Da Hohenlinien darstellen, an welchen Stellen
die Funktion bestimmte Funktionswerte c er-
reicht, helfen sie auch Extrempunkte zu finden.
Durch sie kann man Intervalle um die Extrem-
punkte ablesen. In der Abbildung sieht man
die Funktion f(z,y) =z -e~* =¥ und ihre zu-
gehorigen Hohenlinien.
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4. Richtungsableitungen

Die Richtungsableitung ist der Anstieg einer Tangenten an f(P,) iiber einer Richtungsgeraden
Po+ Ad, A e R.
Der Anstieg einer Sekanten zwischen f(Py + Ad@) und f(Fp) lésst sich in der Form:

f(Po+ Ad) — f(Py)
A
darstellen. Der Anstieg der Tangente an f im Punkt P, ist dann der Grenzwert des Sekantenanstiegs fiir
A gegen Null.

Definition 13. (Richtungsableitung)
Sei f: D CR™ — R eine reellwertige Funktion. Sei Py € D und f in einer Umgebung U C D von P,
stetig. Sei @ € R ein Vektor der Linge 1. Dann heiit der Grenzwert (falls er existiert)

of f(Po+ ) — f(Po)

—(Py) = li
8&'( ) ,\13% A

Richtungsableitung von f im Punkt Py in Richtung des Vektors a.

Beispiel 1. Sei f(z,y) = 4—2%—y2%. Wir bestimmen
den Anstieg der Tangenten an f(z,y) im Punkt

Py = (0;1) in Richtung des Vektors @ = <_01

Wir erhalten wegen
Tangente anf an der Stelle Po

in Richtung des Vektors a2

0 —1 —A
o () (3)- (3
Sc\h;iﬁkulve 1 0 1

o( 5 )=f(Poti7)
{

Xy
- F a) — f(F
;o 9 (py) = tim LT FAD) = J(P)
angentialebene oa A—=0 A
) -\ 1) — f(0,1
X P=Po+X7 ¢ -Umgebung um Po = )1\11% f( ))\ /0.1)
_(_)\)2 _12 12
e G R SR g )
A—0 A
=limA=0
A—=0

Die Tangente an f(P) im Punkt Py = (0; 1) in Richtung des Vektors @ verlduft im Beispiel also waagerecht.

5. Partielle Ableitungen und Gradient
5.1. Partielle Ableitung

Die partielle Ableitung ist ein Spezialfall der Richtungsableitung mit einem Richtungsvektor @, der parallel
zu den Koordinatenachsen ist. Es wird nur nach einer Variablen z; abgeleitet, die anderen Variablen
werden dabei als Konstanten betrachtet.

Definition 14. (Partielle Ableitung)

Seien y = f(x1,...,2,) und Py = (29, ...,22). Der Grenzwert
of ) f(x(f,...7;v?_1,x?+)\,x?+1,...7x91)—f(Po)
o2, (Po) = fu,(Fo) = lim ;y

heifit partielle Ableitung 1. Ordnung von f nach z; an der Stelle P.
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Beispiel 2. Sei f(z1,22) = x1 - 72 + 2. Wir leiten nach den Variablen 1, x5 ab.

0
égz(xl,xg)::xg—k2m1
0

achz(Il’Iz) =1

5.2. Gradient

Alle partiellen Ableitungen erster Ordnung an der Stelle Py fasst man zu einem Vektor zusammen, dieser
wird Gradient genannt.

Definition 15. (Gradient)
Als Gradient von f and der Stelle Py bezeichnet man den Vektor der partiellen Ableitungen 1. Ordnung
von f an der Stelle Py:

of

— (P,
8x1( 0>
grad f(Py) = :
of

o, (Fo)

Beispiel 3. Sei f(z,y) = 4 — 22 — y%. Wir bestimmen den Gradienten von f.

%(w,y) = —2x %(ﬂc,y) =2y
—2x 0
grad f(x,y) = grad f(Py) =
—2y —2

Der Gradientenvektor
in P ist liinger; die
Funktion steigt dort
steiler an.

aximum

Sichtbare Eigenschaften des Gradienten:

1. Der Gradientenvektor in einem Punkt P, zeigt in die Richtung des steilsten Anstiegs von f vom Punkt
P, aus betrachtet.

2. Der Gradientenvektor in einem Punkt Py steht senkrecht zum Tangentenvektor an die Hohenlinie im
Punkt F,.

5.3. Die verallgemeinerte Kettenregel

Die Kettenregel besagt, wie wir eine Funktion f in mehreren Variablen iiber einer Kurve 7(¢) ableiten
konnen.
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Satz 2. (Kettenregel fir die Verkettung von Funktionen in
mehreren Verdnderlichen)

Seien f : & € Dy CR"™ — f(Z) € R eine Funktion aus dem
R" in R und 7:t € Dy CR — 7(t) € Dy C R" eine Kurve

-

im Definitionsbereich von f. Seien weiterhin innerhalb einer t > r(t)
Umgebung des Kurvenpunktes &y = 7(to) die Funktionen f(Z)
und ihre partiellen Ableitungen %(f) ) e %(f) definiert
und stetig. Auflerdem sei 7(t) in to differenzierbar. g(t)
Dann ist die zusammengesetzte Funktion f( +(t))
g(t) = f(7(t)) in to differenzierbar und es gilt: r

d =~ 9 dr; . dar

1 0) = 30 2710 G 00 = grad 1600 - Gt ()

Mit Hilfe der Kettenregel haben wir die folgenden Eigenschaften des Gradienten bewiesen.

5.4. Eigenschaften des Gradienten

Satz 3. Sei f: Dy CR™ — f(Z) € R eine Funktion aus R™ in R und seien innerhalb einer Umgebung von

Py die Funktion f(Z) und ihre partiellen Ableitungen aaf—g), . %fT(f) definiert und (jede als Funktionen
von n Verdnderlichen) stetig. Sei @ ein Vektor der Linge 1. Dann gilt:

0

O (P) = gmad (o) -

Beweis: Sei 7(t) = Py + t - @ Dann gilt 9 (t) = @, da man eine Kurve #(t) komponentenweise nach ¢
ableitet. Weiterhin gilt #(0) = Py. Nun folgt sofort aus der Kettenregel (1)) mit g(¢t) = f(7(¢)) und to = 0:

o () = L(5(7(0) = radd F(7(0)) - 7 (0) = srad [(Py) -
U

Satz 4. Seien die Voraussetzungen von Satz @ erfillt und grad f(Py) # 0. Dann zeigt der Vektor
grad f(Pp) in Richtung des steilsten Anstieges von f vom Punkt Py aus betrachtet.

Satz 5. Sei f: Dy CR? — R in einer Umgebung des Punktes Py differenzierbar.
Sei M. = {(z,y) € Ds|f(z,y) = ¢} eine c-Hohenlinie von f mit Py € M,. Sei M, durch die Kurve
Te(t), t1 <t <ty beschreibbar, diese in einer Umgebung des Punktes Py nach t differenzierbar und es
gelte ro.(tg) = Py. Dann gilt:

dry

grad f(Fy) L E(tO)
5.5. Tangentialebene

Wir benutzen die Tangentialebene, um f(P) fir Punkte P € D in der Nihe eines Punktes Py € D zu
approximieren.

Ansatz. Die allgemeine Ebenengleichung in R? lautet, auch fiir die Tangentialebene,
T(z,y) =ax+by+c

Wir kénnen Eigenschaften von Tangenten auf die Tangentialebene iibertragen:
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1. T(Py) = f(Po) (Funktion f und Ebene T beriihren sich im Punkt Pp)
2. %(PO) = %(Po) (Im Punkt P haben f und T den gleichen Anstieg in x—Achsenrichtung)

3. ?TZ(PO) = %{;(Po) (Im Punkt Py haben f und T den gleichen Anstieg in y— Achsenrichtung)
Aus der zweiten und dritten Bedingung folgt direkt a = %(Po) und b = %(PO). Durch Einsetzen in die

Ebenengleichung ergibt sich dann ¢ = f(Py) — %(Po) X — %(PO) -yo. Also folgt fiir die Tangentialebene
an f an einem Punkt Py:

Tr,(z,y) = fo(Po) - (z — o) + fy(Fo) - (y — wo) + f(Fo)
TPO(P) = f(Po) + grad f(Po) . POP
Definition 16. Fiir eine in Py € D C R™ differenzierbare Funktion f : D — R heifit die Ebene
Tp,(P) = f(Py) +grad (o) - oP

Tangentialebene von f an der Stelle Fp.

Wir kénnen f(P) in einer Umgebung des Punk-
tes Py durch Tp,(P) anndhern. Je weiter aber
P von P, entfernt ist, desto grofer ist der Feh-
ler der Approximation. Wir schreiben fiir die
Approximation:

F(P) = f(Po) + gradf(Py) - PoP

Deswegen benétigen wir eine genauere Formel zur Bestimmung von f(P) ausgehend von f(FPp).

6. Hessematrix

Definition 17. (Hesse-Matrix)
Die Matrix der 2. partiellen Ableitungen von f an der Stelle P,

0% f 0% f

8x18x1 O) 81'185En (PO)
H(PRy) = : : :
0% f 0% f

0x, 011 (Po) -+ 02,0z, (Fo)

heifit Hesse-Matrix von f in Fp.

Durch den folgenden Satz von Schwarz ist die Hesse-Matrix symmetrisch.

Satz 6. (Satz von Schwarz)

Sei D eine offene Menge im R™ und f : D C R™ — R eine Funktion. Falls alle partiellen Ableitungen der
Ordnung < k existieren und stetig sind, so sind alle partiellen Ableitungen bis zur Ordnung k unabhdngig
von der Reihenfolge des Differenzierens.
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7. Taylor-Polynome

Satz 7. Sei I = (xg —e,x0+¢) und f : I — R eine (k + 1)-mal stetig differenzierbare Funktion auf I.
Dann ezistiert fiir alle x € I eine Zahl & zwischen x und g, so dass sich f(x) wie folgt darstellen lisst:

) (4
@0+ + T (ot oa — aol¥)

f (1:'30) (SL’—.’Eo)l-f— f é‘,‘EO)

f(@) = f(zo) +

o(|z — xo|¥) ist ein Ausdruck fiir den gilt:

ok
fm ez @l)
|z—z0|—0 |x — xo‘k

d.h. das o(|z — z0|*) strebt schneller gegen 0 als |z — xo|*; folglich wird die Approximation f(z) ~ Tk 4,
mit wachsendem £k immer besser.

Der Satz von Taylor gilt auch allgemein fiir reellwertige Funktionen in n > 1 Variablen:

Satz 8 (Satz von Taylor).

Sei f: U CR™ = R eine auf der offenen Menge U k + 1 mal stetig differenzierbare Funktion (das heifit,
alle partiellen Ableitungen von f existieren bis zur Ordnung k + 1 und sind stetig). Seien Py und P zwei
Punkte aus U, fir die die gesamte Strecke von Py bis P in U liegt. Dann gilt:

(a) f(P) = f(Py)+ grad f(Py)- BoP + o(|PyP|)
(b) F(P) = f(Po)+ grad f(Py)- PoP + L(PoP)" H(Fy)(PoP) + o|PoPJ?)

8. Extremwerte

Definition 18. (Extremwerte)
Sei f: D C R™ — R eine Funktion in n Verdnderlichen. Der Punkt Py € D heif3t striktes lokales Minimum
(Maximum) von f, falls gilt:

f(Po) é) f(P)

fiir alle Punkte P € D mit Py # P, die in einer e-Umgebung U.(Fy) um den Punkt Py liegen. Wir
sprechen von einem globalen Minimum (Maximum), wenn die jeweilige Ungleichung auf dem gesamten
Definitionsbereich von f gilt.

Um solche Punkte zu bestimmen, wird bei Funktionen mit einer Variablen eine notwendige und eine
hinreichende Bedingung benétigt. Bei Funktionen mit mehreren Variablen ist das genauso. Um fiir diese
Funktionen eine notwendige Bedingung zu formulieren, benotigt man zuerst den Begriff der stationéren
Punkte.

Definition 19. (Stationire Punkte)
Sei f: D CR™ — R. Dann heifilen Punkte Py € D mit grad f(Pp) = 0 stationéire Punkte von f.

Satz 9. (Notwendiges Kriterium)
Ein Extrempunkt ist immer ein stationdrer Punkt. An jedem Extrempunkt (Py) gilt also:

grad f(Py) = 0
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Da dieses Kriterium aber nur notwendig und nicht hinreichend ist, ist nicht jeder Punkt der dieser
Bedingung erfiillt auch ein Extrempunkt. Sattelpunkte erfiillen ebenfalls das notwendige Kriterium.

Um eine hinreichende Bedingung aufzustellen, benttigt man den Begriff der Definitheit von Matrizen.

Definition 20. (Definitheit von Matrizen)
Eine n x n-Matrix A heifit positiv (bzw. negativ) definit, falls fiir alle Vektoren A € R™ ungleich dem

Nullvektor gilt:
7T AR >

Satz 10. (Hinreichende Bedingung)
Sei D eine offene Menge und f : D C R™ — R. Weiterhin nehmen wir an, dass auf D alle partiellen
Ableitungen von f bis zur 2. Ordnung existieren und stetig sind. Sei Py € D. Dann gilt: Wenn

1. grad f(Py) =0 (Py ist ein stationdrer Punkt) und

2. Hesse-Matriz H(Py) ist negativ (bzw. positiv) definit,
so nimmt f in Py ein striktes lokales Mazimum (bzw. striktes lokales Minimum) an.

Beweisidee. Dieser Satz wird mithilfe vom Satz von Taylor bewiesen. Nach Taylor gilt ndmlich

F(P) = f(Py) + (grad f(P0))" - FoP 4+ BT - H(P) RGP + o (|BPP)
=0

S 0

Dao <|P0P|2) schneller als quadratisch gegen 0 geht und (PyP)T - H(Py) - PyP nur quadratisch gegen 0

geht, folgt fiir alle Punkte P in einer gewissen e-Umgebung von Py:

f(P) é) f(Po)

und damit die Behauptung des Satzes.

9. Determinantenkriterium fiir R?

Die hinreichende Bedingung fiir die Uberpriifung eines Extremwertes benétigt die positive/negative De-
finitheit der Hesse-Matrix. Die positive Definitheit einer Hesse-Matrix zu bestimmen ist nicht immer
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einfach, vor allem im R", n > 2. Fiir den R? lisst sich hierfiir aber das Determinantenkriterium verwen-
den:

Die Hesse-Matrix der 2. partiellen Ableitungen in P = (x,y) hat folgende Gestalt:
% f % f
= (B0 250)

o 8?2
g4 (P)  FL(P)

2
und ihre Determinante ist det(H(P)) = ‘if(P) . ﬂ(P) - ( " f (P)) . Diese benétigt man fiir das

Determinantenkriterium:
Satz 11. Determinantenkriterium

Wenn det(H (FPy)) > 0 und %(Po) > 0, so ist H(Py) positiv definit.
82

2
Wenn det(H (Pp)) > 0 und aTJ;(PO) <0, so ist H(Py) negativ definit.
Hieraus ergibt sich eine neue hinreichende Bedingung

Satz 12. (Hinreichendes Extremwertkriterium fir f(x,y))

(a) Wenn grad f(Py) = 0, det(H(Py)) > 0, so ist Py ein lokales Mazimum von f fiir
(b) Wenn grad f(Py) = 0, det(H(Py)) > 0, so ist Py ein lokales Minimum von f fiir

(P0)<O

2f
9L (Py) > 0.

Andere Fille: Ist grad f(Py) = 0 und det(H(Py)) < 0, so liegt in Py ein Sattelpunkt vor.
Wenn det(H (FPy)) = 0, so ldsst sich mit diesem Kriterium keine Aussage iiber den Punkt Py treffen und
erfordert eine komplexere Betrachtung.

10. Beispiele

Beispiel 1. Es sollen die Extrempunkte der Funktion f(z,y) = ze~(**+¥") bestimmt werden.
Fiir die notwendige Bedingung wird folgendes Gleichungssystem gelost:

gf () = (1-227) @) =0
%(m,y) — —2zy. e (V) —

Da die e-Funktion immer positiv ist, ergibt sich hierraus = = j:% und y = 0. Die zu iiberpriifenden

Punkte sind also Pl(%, 0) und Pg(—%, 0).
Aufgrund des Satzes von Schwarz miissen wir nur die unterschiedlichen partiellen Ableitungen 2. Grades
berechnen.

§ 2
%(%y) = —da - e @) 4 (1 - 20%)(~22) - e~ (H)
Xz

2
%(x,y) =8y e @) oy (—2py) . e @Y 4 gp2y? . o (@FHYY)

41



P O
0xdy »Y = Oyox

(2.y) = 206~ +9") 2qy(~2y) . e~

Setzt man die Punkte P; und P ein, so erhélt man fiir die Hesse-Matrizen

P = | V2 ) und H(By) = | V2 )
—e
V2 V2
Die Determinanten beider Hessematrizen sind > 0. In In der ersten Matrix H(P;) ist %(z, y) negativ,

in H(P,) positiv.

Daraus folgt: P, = P(\/Li; 0) ist ein lokales Maximum und P» = P(—\%; 0) ist ein lokales Minimum.

3
0.49
2
0.27
1
> 0 0.05
-1
-0.17
-2
-0.39
-3
-3 -2 -1 o 1 2 3
X

Abbildung 1: Die betrachtete Funktion Abbildung 2: Hohenliniendiagramm der Funktion

_1
2

Beispiel 2. Es soll der Quader mit der minimalen Oberfliche gefunden werden, welcher ein bestimmtes
Volumen V; hat. Es soll also das Minimum der Funktion

f(a,b,¢) =2(ab+ ac+ bc)

unter der Nebenbedingung abc = V| gefunden werden. Diese Funktion wird mithilfe der Nebenbedingung
auf eine Funktion f : R? — R reduziert:

f(b,c)zQ(%—!—bc—F %)

Um Punkte zu finden, an denen der Gradient verschwindet, muss folgendes Gleichungssystem gelost
werden:

O pey—o(-Yo )= O pey=a( Yo ip) =
%(b,c)—2< b2+c)—0 und 86(b,c)—2< 02+b>_0

Durch das Losen dieses Gleichungssystems ergibt sich b = /Vp, ¢ = ¢/Vp.
Fiir die hinreichende Bedingung wird die Hesse-Matrix mit den 2. partiellen Ableitungen aufgestellt:
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Partielle Ableitungen:

Hesse-Matrix:

P _ v
ov? b3 4V, 9
0*f _ 4V Hi(bo)=| U
92~ B f(7) 5 4720
an B 82f _ C
Obde  Ocdb

Setzt man b = ¢ = /Vj ein, so ergibt sich:

I’If<;1 Z) = det(Hf):1674:12>0

Da % =4 > 0 ist, folgt, dass es sich beim Punkt P(/Vp; +/Vo) um ein lokales Minimum der reduzierten
Funktion f(b,c) handelt.

Aus der Nebenbedingung folgt dann auch a = /Vy. Der optimale Quader, der mit minimaler Oberfliiche
das Volumen V,, besitzt, ist also ein Wiirfel mit der Kantenlinge /V;.
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