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1. Einleitung

In der Schule haben wir uns ausführlich mit Funktienen y = f(x) in einer Variablen x befasst. Viele
Probleme aus Wirtschaft, Technik und Wissenschaft lassen sich aber durch Funktionen in einer Varia-
blen nicht lösen. Bei den meisten praktischen Problemen der realen Welt treten Funktionen mehrerer
Variabler auf und es geht um die Beschreibung des Zusammenhangs zwischen mehreren Eingangsva-
riablen x1, . . . , xn (den sogenannten unabhängigen Variablen) und m Ausgangsvariablen y1, . . . , ym (den
sogenannten abhängigen Variablen).

Die Abbildung unten zeigt einige Beispiele:

Wir haben uns in unserer Arbeitsgruppe diese Woche speziell mit reellwertigen Funktionen in mehreren
Veränderlichen beschäftigt. Wir haben uns Grundkenntnisse der Differentialrechnung für solche Funktio-
nen erarbeitet und diese auf einige Beispiele angewandt.

Einen besonderer Fokus lag dabei auf der Veranschaulichung der genannten Begriffe für Funktionen
y = f(x, y) in 2 reellen Variablen x und y .

2. Grundlagen

2.1. Vektorrechnung

Da die Vektorrechnung grundlegend für die Betrachtung reellwertiger Funktionen mehrerer Veränderlicher
ist, beschäftigten wir uns zunächst mit den Grundlagen der Vektorrechnung.

Definition 1. (Verbindungsvektor)
Seien A = (a1, . . . , an) und B = (b1, . . . , bn) zwei Punkte aus Rn. Das Gebilde v⃗ für welches gilt, dass v⃗
die gerichtete Strecke zwischen A und B ist, heißt Vektor von A nach B.

Schreibweise: v⃗ =

v1...
vn

 =
#    »

AB, mit vi = bi − ai für i = 1, . . . , n.

Definition 2. (Rechenoperationen mit Vektoren)
Die Addition und Subtraktion zweier Vektoren, sowie die Multiplikation eines Vektors mit einer reellen
Zahl (Skalar genannt) erfolgt komponentenweise.

Definition 3. (Betrag eines Vektors)
Für einen Vektor a⃗ ∈ Rn heißt

|⃗a| =
√
a21 + a22 + ...+ a2n
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Betrag (bzw. Norm) des Vektors a⃗. Ein Vektor mit Betrag 1 heißt normiert. Der Betrag eines Vektors
beschreibt die Länge des Vektors vom Fußpunkt bis zur Spitze.

Definition 4. (Skalarprodukt)

Das Skalarprodukt zweier Vektoren a⃗, b⃗ ∈ Rn ist definiert als:

a⃗ · b⃗ = a1 · b1 + a2 · b2 + ...+ an · bn

Das Skalarprodukt zweier Vektoren beschreibt den Winkel φ = ∡(⃗a, b⃗) ∈ [0, π] zwischen den Vektoren a⃗

und b⃗. Es gilt folgender Satz:

Satz 1. Seien a⃗, b⃗ ∈ Rn zwei Vektoren. Dann gilt:

1 (Winkeldarstellung des Skalarproduktes)

a⃗ · b⃗ = |⃗a| · |⃗b| · cos γ, wobei γ der Einschlusswinkel von a⃗ und b⃗ mit 0o ≤ γ ≤ 180o ist.

2 (Folgerung aus 1. für γ = 90o)

a⃗ ⊥ b⃗ ⇔ a⃗ · b⃗ = 0 .

2.2. Matrizen

Definition 5. (Matrizen)
Eine m×n -Matrix A ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Unter der Transpo-
nierten AT von A versteht man diejenige Matrix, die man erhält, wenn man die Zeilen und Spalten von
A vertauscht.

A =

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

 , AT =

a1,1 · · · am,1
...

. . .
...

a1,n · · · am,n


A heißt symmetrisch, wenn A = AT .

Definition 6. (Addition und Subtraktion zweier Matrizen)
Die Addition und Subtraktion zweier Matrizen erfolgt wieder komponentenweise. Dazu müssen ihre
Zeilen- und Spaltenzahl übereinstimmen.
Ebenfalls erfolgt die Multiplikation einer Matrix mit einer reellen Zahl komponentenweise.

Definition 7. (Multiplikation zweier Matrizen)
Eine (m × n) Matrix A und eine (n × k) Matrix B werden miteinander multipliziert, indem man die
Zeilen von A mit den Spalten von B komponentenweise multipliziert, d.h. jeweils das Skalarprodukt jeder
Zeile von A mit jeder Spalte von B bildet. Dazu muss die Spaltenzahl von A mit der Zeilenzahl von B
übereinstimmen und es ensteht eine m× k Matrix.

Für 2x2-Matrizen definieren wir noch die sogenannte Determinante der Matrix.

Definition 8. (Determinante einer 2x2 Matrix)
Die Determinante einer 2× 2 Matrix A ist definiert durch:

det(A) = det(

(
a1,1 a1,2
a2,1 a2,2

)
) = a1,1 · a2,2 − a1,2 · a2,1
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2.3. Kurven

Definition 9. (Kurven)
Eine stetige vektorwertige Abbildung r⃗ : t ∈ T = [t1, t2] ⊂ R → r⃗(t) ⊆ B ∈ Rn heißt Weg. Als Kurve
C bezeichnet man die Bildmenge eines Weges und schreibt: C : r⃗(t), t ∈ [t1, t2]. t ist der Parameter der
Kurve C und T ihr Parameterbereich.

Definition 10. (Ableitung einer parametrisierten Kurve)
Sei r⃗(t) = (x1(t), x2(t), . . . , xn(t))

T : t ∈ T ⊂ R → Rn eine parametrisierte Kurve. Dann heißt der Vektor
seiner komponentenweisen Ableitungen nach t

r⃗′(t) =
dr⃗(t)

dt
:=
(
x′1(t), x

′
2(t), . . . , x

′
n(t)

)T
= lim
h→0

r⃗(t+ h)− r⃗(t)

h

Tangentialvektor von r⃗(t) im Parameter t ∈ T .
Für die Ableitung einer Kurve nach einem Parameter wird i.A. auch die Bezeichnung

˙⃗r(t), statt r⃗′(t)

verwendet.

3. Funktionen mehrere Variablen

Definition 11. (Funktionen mehrerer Variablen)
Eine Abbildung f : x⃗ = (x1, ..., xn) ∈ D ⊆ Rn → y = f(x⃗) ∈ R heißt reellwertige Funktion in n
Veränderlichen (bzw. Variablen) (x1, ..., xn).
(x1, ..., xn) sind die unabhängigen Variablen, y ist die abhängige Variable. D ist der Definitionsbereich.
Die Menge B = {f(x⃗)|x⃗ ∈ D} der Bildwerte von f heißt Bildbereich.

Definition 12. (Höhenlinien)
Sei f : (x, y) ∈ D ⊆ R2 → z = f(x, y) ∈ R eine reellwertige Funktion in 2 Variablen x, y.
Eine c-Höhenlinie ist die Menge aller Punkte P = (x, y), die denselben Funktonswert c haben, d.h. für
die gilt f(P ) = c.

Da Höhenlinien darstellen, an welchen Stellen
die Funktion bestimmte Funktionswerte c er-
reicht, helfen sie auch Extrempunkte zu finden.
Durch sie kann man Intervalle um die Extrem-
punkte ablesen. In der Abbildung sieht man
die Funktion f(x, y) = x · e−x2−y2 und ihre zu-
gehörigen Höhenlinien.
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4. Richtungsableitungen

Die Richtungsableitung ist der Anstieg einer Tangenten an f(P0) über einer Richtungsgeraden
P0 + λa⃗, λ ∈ R.
Der Anstieg einer Sekanten zwischen f(P0 + λa⃗) und f(P0) lässt sich in der Form:

f(P0 + λa⃗)− f(P0)

λ
darstellen. Der Anstieg der Tangente an f im Punkt P0 ist dann der Grenzwert des Sekantenanstiegs für
λ gegen Null.

Definition 13. (Richtungsableitung)
Sei f : D ⊆ Rn → R eine reellwertige Funktion. Sei P0 ∈ D und f in einer Umgebung U ⊆ D von P0

stetig. Sei a⃗ ∈ R ein Vektor der Länge 1. Dann heißt der Grenzwert (falls er existiert)

∂f

∂a⃗
(P0) = lim

λ→0

f(P0 + λa⃗)− f(P0)

λ

Richtungsableitung von f im Punkt P0 in Richtung des Vektors a⃗.

Beispiel 1. Sei f(x, y) = 4−x2−y2. Wir bestimmen
den Anstieg der Tangenten an f(x, y) im Punkt

P0 = (0; 1) in Richtung des Vektors a⃗ =

(
−1
0

)
.

Wir erhalten wegen

P0 + λ · a⃗ =

(
0
1

)
+ λ

(
−1
0

)
=

(
−λ
1

)

∂f

∂a⃗
(P0) = lim

λ→0

f(P0 + λa⃗)− f(P0)

λ

= lim
λ→0

f(−λ, 1)− f(0, 1)

λ

= lim
λ→0

4− (−λ)2 − 12 − (4− 12)

λ

= lim
λ→0

λ = 0

Die Tangente an f(P ) im Punkt P0 = (0; 1) in Richtung des Vektors a⃗ verläuft im Beispiel also waagerecht.

5. Partielle Ableitungen und Gradient

5.1. Partielle Ableitung

Die partielle Ableitung ist ein Spezialfall der Richtungsableitung mit einem Richtungsvektor a⃗, der parallel
zu den Koordinatenachsen ist. Es wird nur nach einer Variablen xi abgeleitet, die anderen Variablen
werden dabei als Konstanten betrachtet.

Definition 14. (Partielle Ableitung)
Seien y = f(x1, ..., xn) und P0 = (x01, ..., x

0
n). Der Grenzwert

∂f

∂xi
(P0) = fxi(P0) = lim

λ→0

f(x01, ..., x
0
i−1, x

0
i + λ, x0i+1, ..., x

0
n)− f(P0)

λ

heißt partielle Ableitung 1. Ordnung von f nach xi an der Stelle P0.
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Beispiel 2. Sei f(x1, x2) = x1 · x2 + x21. Wir leiten nach den Variablen x1, x2 ab.

∂f

∂x1
(x1, x2) = x2 + 2x1

∂f

∂x2
(x1, x2) = x1

5.2. Gradient

Alle partiellen Ableitungen erster Ordnung an der Stelle P0 fasst man zu einem Vektor zusammen, dieser
wird Gradient genannt.

Definition 15. (Gradient)
Als Gradient von f and der Stelle P0 bezeichnet man den Vektor der partiellen Ableitungen 1. Ordnung
von f an der Stelle P0:

grad f(P0) =


∂f

∂x1
(P0)

...
∂f

∂xn
(P0)

 .

Beispiel 3. Sei f(x, y) = 4− x2 − y2. Wir bestimmen den Gradienten von f .

∂f

∂x
(x, y) = −2x

∂f

∂y
(x, y) = −2y

grad f(x, y) =

−2x

−2y

 grad f(P0) =

 0

−2



Sichtbare Eigenschaften des Gradienten:
1. Der Gradientenvektor in einem Punkt P0 zeigt in die Richtung des steilsten Anstiegs von f vom Punkt
P0 aus betrachtet.
2. Der Gradientenvektor in einem Punkt P0 steht senkrecht zum Tangentenvektor an die Höhenlinie im
Punkt P0.

5.3. Die verallgemeinerte Kettenregel

Die Kettenregel besagt, wie wir eine Funktion f in mehreren Variablen über einer Kurve r⃗(t) ableiten
können.
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Satz 2. (Kettenregel für die Verkettung von Funktionen in
mehreren Veränderlichen)
Seien f : x⃗ ∈ Df ⊆ Rn → f(x⃗) ∈ R eine Funktion aus dem
Rn in R und r⃗ : t ∈ Dr⃗ ⊆ R → r⃗(t) ∈ Df ⊆ Rn eine Kurve
im Definitionsbereich von f . Seien weiterhin innerhalb einer
Umgebung des Kurvenpunktes x⃗0 = r⃗(t0) die Funktionen f(x⃗)
und ihre partiellen Ableitungen ∂f

∂x1
(x⃗) , ..., ∂f

∂xn
(x⃗) definiert

und stetig. Außerdem sei r⃗(t) in t0 differenzierbar.
Dann ist die zusammengesetzte Funktion
g(t) = f(r⃗(t)) in t0 differenzierbar und es gilt:

dg

dt
(t0) =

n∑
i=1

∂f

∂xi
(r⃗(t0)) ·

dri
dt

(t0) = grad f(r⃗(t0)) ·
dr⃗

dt
(t0) (1)

Mit Hilfe der Kettenregel haben wir die folgenden Eigenschaften des Gradienten bewiesen.

5.4. Eigenschaften des Gradienten

Satz 3. Sei f : Df ⊆ Rn → f(x⃗) ∈ R eine Funktion aus Rn in R und seien innerhalb einer Umgebung von

P0 die Funktion f(x⃗) und ihre partiellen Ableitungen ∂f(x⃗)
∂x1

, ..., ∂f(x⃗)
∂xn

definiert und (jede als Funktionen
von n Veränderlichen) stetig. Sei a⃗ ein Vektor der Länge 1. Dann gilt:

∂f

∂a⃗
(P0) = grad f(P0) · a⃗.

Beweis: Sei r⃗(t) = P0 + t · a⃗. Dann gilt dr⃗
dt (t) = a⃗, da man eine Kurve r⃗(t) komponentenweise nach t

ableitet. Weiterhin gilt r⃗(0) = P0. Nun folgt sofort aus der Kettenregel (1) mit g(t) = f(r⃗(t)) und t0 = 0:

∂f

∂a⃗
(P0) =

d

dt
(f(r⃗(0))) = grad f(r⃗(0)) · dr⃗

dt
(0) = grad f(P0) · a⃗

□

Satz 4. Seien die Voraussetzungen von Satz 3 erfüllt und grad f(P0) ̸= 0⃗. Dann zeigt der Vektor
grad f(P0) in Richtung des steilsten Anstieges von f vom Punkt P0 aus betrachtet.

Satz 5. Sei f : Df ⊆ R2 → R in einer Umgebung des Punktes P0 differenzierbar.
Sei Mc = {(x, y) ∈ Df |f(x, y) = c} eine c-Höhenlinie von f mit P0 ∈ Mc. Sei Mc durch die Kurve
r⃗c(t), t1 ≤ t ≤ t2 beschreibbar, diese in einer Umgebung des Punktes P0 nach t differenzierbar und es
gelte r⃗c(t0) = P0. Dann gilt:

grad f(P0) ⊥
dr⃗c
dt

(t0)

5.5. Tangentialebene

Wir benutzen die Tangentialebene, um f(P ) für Punkte P ∈ D in der Nähe eines Punktes P0 ∈ D zu
approximieren.

Ansatz. Die allgemeine Ebenengleichung in R2 lautet, auch für die Tangentialebene,

T (x, y) = ax+ by + c

Wir können Eigenschaften von Tangenten auf die Tangentialebene übertragen:
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1. T (P0) = f(P0) (Funktion f und Ebene T berühren sich im Punkt P0)

2. ∂T
∂x (P0) =

∂f
∂x (P0) (Im Punkt P0 haben f und T den gleichen Anstieg in x−Achsenrichtung)

3. ∂T
∂y (P0) =

∂f
∂y (P0) (Im Punkt P0 haben f und T den gleichen Anstieg in y−Achsenrichtung)

Aus der zweiten und dritten Bedingung folgt direkt a = ∂f
∂x (P0) und b =

∂f
∂y (P0). Durch Einsetzen in die

Ebenengleichung ergibt sich dann c = f(P0)− ∂f
∂x (P0) ·x0− ∂f

∂y (P0) ·y0. Also folgt für die Tangentialebene
an f an einem Punkt P0:

TP0
(x, y) = fx(P0) · (x− x0) + fy(P0) · (y − y0) + f(P0)

TP0
(P ) = f(P0) + grad f(P0) ·

#      »

P0P

Definition 16. Für eine in P0 ∈ D ⊆ Rn differenzierbare Funktion f : D → R heißt die Ebene

TP0
(P ) = f(P0) + gradf(P0) ·

#      »

P0P

Tangentialebene von f an der Stelle P0.

Wir können f(P ) in einer Umgebung des Punk-
tes P0 durch TP0

(P ) annähern. Je weiter aber
P von P0 entfernt ist, desto größer ist der Feh-
ler der Approximation. Wir schreiben für die
Approximation:

f(P ) ≈ f(P0) + gradf(P0) ·
#      »

P0P

Deswegen benötigen wir eine genauere Formel zur Bestimmung von f(P ) ausgehend von f(P0).

6. Hessematrix

Definition 17. (Hesse-Matrix)
Die Matrix der 2. partiellen Ableitungen von f an der Stelle P0

H(P0) =


∂2f

∂x1∂x1
(P0) · · · ∂2f

∂x1∂xn
(P0)

...
. . .

...
∂2f

∂xn∂x1
(P0) · · · ∂2f

∂xn∂xn
(P0)


heißt Hesse-Matrix von f in P0.

Durch den folgenden Satz von Schwarz ist die Hesse-Matrix symmetrisch.

Satz 6. (Satz von Schwarz)
Sei D eine offene Menge im Rn und f : D ⊆ Rn → R eine Funktion. Falls alle partiellen Ableitungen der
Ordnung ≤ k existieren und stetig sind, so sind alle partiellen Ableitungen bis zur Ordnung k unabhängig
von der Reihenfolge des Differenzierens.

38



7. Taylor-Polynome

Satz 7. Sei I = (x0 − ε, x0 + ε) und f : I → R eine (k + 1)-mal stetig differenzierbare Funktion auf I.
Dann existiert für alle x ∈ I eine Zahl ξ zwischen x und x0, so dass sich f(x) wie folgt darstellen lässt:

f(x) = f(x0) +
f

′
(x0)

1!
(x− x0)

1 +
f

′′
(x0)

2!
(x− x0)

2 + · · ·+ f (k)(x0)

k!
(x− x0)

k + o(|x− x0|k)

o(|x− x0|k) ist ein Ausdruck für den gilt:

lim
|x−x0|→0

o(|x− x0|k)
|x− x0|k

= 0,

d.h. das o(|x− x0|k) strebt schneller gegen 0 als |x− x0|k; folglich wird die Approximation f(x) ≈ Tk,x0

mit wachsendem k immer besser.

Der Satz von Taylor gilt auch allgemein für reellwertige Funktionen in n ≥ 1 Variablen:

Satz 8 (Satz von Taylor).
Sei f : U ⊂ Rn → R eine auf der offenen Menge U k+ 1 mal stetig differenzierbare Funktion (das heißt,
alle partiellen Ableitungen von f existieren bis zur Ordnung k + 1 und sind stetig). Seien P0 und P zwei
Punkte aus U , für die die gesamte Strecke von P0 bis P in U liegt. Dann gilt:

(a) f(P ) = f(P0) + grad f(P0) ·
#      »

P0P + o(| #      »

P0P |)

(b) f(P ) = f(P0) + grad f(P0) ·
#      »

P0P + 1
2 (

#      »

P0P )
TH(P0)(

#      »

P0P ) + o(| #      »

P0P |2)

8. Extremwerte

Definition 18. (Extremwerte)
Sei f : D ⊆ Rn → R eine Funktion in n Veränderlichen. Der Punkt P0 ∈ D heißt striktes lokales Minimum
(Maximum) von f , falls gilt:

f(P0)
<
(>) f(P )

für alle Punkte P ∈ D mit P0 ̸= P , die in einer ε-Umgebung Uϵ(P0) um den Punkt P0 liegen. Wir
sprechen von einem globalen Minimum (Maximum), wenn die jeweilige Ungleichung auf dem gesamten
Definitionsbereich von f gilt.

Um solche Punkte zu bestimmen, wird bei Funktionen mit einer Variablen eine notwendige und eine
hinreichende Bedingung benötigt. Bei Funktionen mit mehreren Variablen ist das genauso. Um für diese
Funktionen eine notwendige Bedingung zu formulieren, benötigt man zuerst den Begriff der stationären
Punkte.

Definition 19. (Stationäre Punkte)
Sei f : D ⊆ Rn → R. Dann heißen Punkte P0 ∈ D mit grad f(P0) = 0⃗ stationäre Punkte von f .

Satz 9. (Notwendiges Kriterium)
Ein Extrempunkt ist immer ein stationärer Punkt. An jedem Extrempunkt (P0) gilt also:

grad f(P0) = 0⃗
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Da dieses Kriterium aber nur notwendig und nicht hinreichend ist, ist nicht jeder Punkt der dieser
Bedingung erfüllt auch ein Extrempunkt. Sattelpunkte erfüllen ebenfalls das notwendige Kriterium.

Um eine hinreichende Bedingung aufzustellen, benötigt man den Begriff der Definitheit von Matrizen.

Definition 20. (Definitheit von Matrizen)

Eine n × n-Matrix A heißt positiv (bzw. negativ) definit, falls für alle Vektoren h⃗ ∈ Rn ungleich dem
Nullvektor gilt:

h⃗TAh⃗ >
(<) 0.

Satz 10. (Hinreichende Bedingung)
Sei D eine offene Menge und f : D ⊆ Rn → R. Weiterhin nehmen wir an, dass auf D alle partiellen
Ableitungen von f bis zur 2. Ordnung existieren und stetig sind. Sei P0 ∈ D. Dann gilt: Wenn

1. grad f(P0) = 0⃗ (P0 ist ein stationärer Punkt) und

2. Hesse-Matrix H(P0) ist negativ (bzw. positiv) definit,

so nimmt f in P0 ein striktes lokales Maximum (bzw. striktes lokales Minimum) an.

Beweisidee. Dieser Satz wird mithilfe vom Satz von Taylor bewiesen. Nach Taylor gilt nämlich

f(P ) = f(P0) + (grad f(P0))
T · #      »

P0P︸ ︷︷ ︸
= 0

+
1

2

#      »

P0P
T ·H(P0)

#      »

P0P︸ ︷︷ ︸
<

(>) 0

+ o
(
| #      »

P0P |2
)

Da o
(
| #      »

P0P |2
)
schneller als quadratisch gegen 0 geht und (

#      »

P0P )
T ·H(P0) ·

#      »

P0P nur quadratisch gegen 0

geht, folgt für alle Punkte P in einer gewissen ε-Umgebung von P0:

f(P ) <
(>) f(P0)

und damit die Behauptung des Satzes.

9. Determinantenkriterium für R2

Die hinreichende Bedingung für die Überprüfung eines Extremwertes benötigt die positive/negative De-
finitheit der Hesse-Matrix. Die positive Definitheit einer Hesse-Matrix zu bestimmen ist nicht immer
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einfach, vor allem im Rn, n > 2. Für den R2 lässt sich hierfür aber das Determinantenkriterium verwen-
den:

Die Hesse-Matrix der 2. partiellen Ableitungen in P = (x, y) hat folgende Gestalt:

H(P ) =

(
∂2f
∂x2 (P )

∂2f
∂x∂y (P )

∂2f
∂y∂x (P )

∂2f
∂y2 (P )

)

und ihre Determinante ist det(H(P )) = ∂2f
∂x2 (P ) · ∂

2f
∂y2 (P ) −

(
∂2f
∂x∂y (P )

)2
. Diese benötigt man für das

Determinantenkriterium:

Satz 11. Determinantenkriterium

Wenn det(H(P0)) > 0 und ∂2f
∂x2 (P0) > 0, so ist H(P0) positiv definit.

Wenn det(H(P0)) > 0 und ∂2f
∂x2 (P0) < 0, so ist H(P0) negativ definit.

Hieraus ergibt sich eine neue hinreichende Bedingung

Satz 12. (Hinreichendes Extremwertkriterium für f(x, y))

(a) Wenn grad f(P0) = 0⃗, det(H(P0)) > 0, so ist P0 ein lokales Maximum von f für ∂2f
∂x2 (P0) < 0.

(b) Wenn grad f(P0) = 0⃗, det(H(P0)) > 0, so ist P0 ein lokales Minimum von f für ∂2f
∂x2 (P0) > 0.

Andere Fälle: Ist grad f(P0) = 0⃗ und det(H(P0)) < 0, so liegt in P0 ein Sattelpunkt vor.
Wenn det(H(P0)) = 0, so lässt sich mit diesem Kriterium keine Aussage über den Punkt P0 treffen und
erfordert eine komplexere Betrachtung.

10. Beispiele

Beispiel 1. Es sollen die Extrempunkte der Funktion f(x, y) = xe−(x2+y2) bestimmt werden.
Für die notwendige Bedingung wird folgendes Gleichungssystem gelöst:

∂f

∂x
(x, y) = (1− 2x2) · e−(x2+y2) = 0

∂f

∂y
(x, y) = −2xy · e−(x2+y2) = 0

Da die e-Funktion immer positiv ist, ergibt sich hierraus x = ± 1√
2
und y = 0. Die zu überprüfenden

Punkte sind also P1(
1√
2
, 0) und P2(− 1√

2
, 0).

Aufgrund des Satzes von Schwarz müssen wir nur die unterschiedlichen partiellen Ableitungen 2. Grades
berechnen.

∂2f

∂x2
(x, y) = −4x · e−(x2+y2) + (1− 2x2)(−2x) · e−(x2+y2)

∂2f

∂y2
(x, y) = 8xy · e−(x2+y2) − 2y · (−2xy) · e−(x2+y2) + 4x2y2 · e−(x2+y2)
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∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) = −2xe−(x2+y2) − 2xy(−2y) · e−(x2+y2)

Setzt man die Punkte P1 und P2 ein, so erhält man für die Hesse-Matrizen

H(P1) =

− 4√
2
e−

1
2 0

0 − 2√
2
e−

1
2

 und H(P2) =


4√
2
e−

1
2 0

0
2√
2
e−

1
2


Die Determinanten beider Hessematrizen sind > 0. In In der ersten Matrix H(P1) ist

∂2f
∂x2 (x, y) negativ,

in H(P2) positiv.
Daraus folgt: P1 = P ( 1√

2
; 0) ist ein lokales Maximum und P2 = P (− 1√

2
; 0) ist ein lokales Minimum.

Abbildung 1: Die betrachtete Funktion Abbildung 2: Höhenliniendiagramm der Funktion

Beispiel 2. Es soll der Quader mit der minimalen Oberfläche gefunden werden, welcher ein bestimmtes
Volumen V0 hat. Es soll also das Minimum der Funktion

f(a, b, c) = 2(ab+ ac+ bc)

unter der Nebenbedingung abc = V0 gefunden werden. Diese Funktion wird mithilfe der Nebenbedingung
auf eine Funktion f : R2 → R reduziert:

f(b, c) = 2

(
V0
b

+ bc+
V0
c

)

Um Punkte zu finden, an denen der Gradient verschwindet, muss folgendes Gleichungssystem gelöst
werden:

∂f

∂b
(b, c) = 2

(
−V0
b2

+ c

)
= 0 und

∂f

∂c
(b, c) = 2

(
−V0
c2

+ b

)
= 0

Durch das Lösen dieses Gleichungssystems ergibt sich b = 3
√
V0, c =

3
√
V0.

Für die hinreichende Bedingung wird die Hesse-Matrix mit den 2. partiellen Ableitungen aufgestellt:
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Partielle Ableitungen:

∂2f

∂b2
=

4V0
b3

∂2f

∂c2
=

4V0
c3

∂2f

∂b∂c
=

∂2f

∂c∂b
= 2

Hesse-Matrix:

Hf (b, c) =

4V0
b3

2

2
4V0
c3



Setzt man b = c = 3
√
V0 ein, so ergibt sich:

Hf =

(
4 2
2 4

)
⇒ det(Hf ) = 16− 4 = 12 > 0

Da ∂2f
∂b2 = 4 > 0 ist, folgt, dass es sich beim Punkt P ( 3

√
V0;

3
√
V0) um ein lokales Minimum der reduzierten

Funktion f(b, c) handelt.
Aus der Nebenbedingung folgt dann auch a = 3

√
V0. Der optimale Quader, der mit minimaler Oberfläche

das Volumen Vo besitzt, ist also ein Würfel mit der Kantenlänge 3
√
V0.
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