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ABSTRACT

A classical scheme for multiplying polynomials is given by the Cauchy product
formula. Faster methods for computing this product have been developed using
circular convolution and fast Fourier transform algorithms. From the numerical point
of view the Chebyshev expansion of polynomials is preferred to the monomial form.
We develop a direct scheme for multiplication of polynomials in Chebyshev form as
well as a fast algorithm using discrete cosine transforms. This approach leads to a new
convolution operation and a new type of circulant matrices, both related to the
discrete cosine transform. Extensions to bivariate polynomial products are also
discussed. © Elsevier Science Inc., 1997

1. INTRODUCTION

In order to compute the product of two polynomials of degree n given in
monomial form the Cauchy product formula can be used. The number of real
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multiplications is @(n?). Using the fast multiplication of polynomials in
monomial form (based on circular convolution and fast Fourier transforms)
we can realize this product with only @(nlog n) real multiplications (see
(1, 2D.

From a point of view of numerical analysis polynomials in Chebyshev
form are more stable than polynomials in monomial form. Therefore polyno-
mials in Chebyshev form are often used in numerical analysis, especially in
spectral and collocation methods (see [3, 4].

In the following we describe a new method of fast polynomial multiplica-
tion in Chebyshev form by using a new convolution related to the type I
discrete cosine transform (DCT-1) defined by formulas (3.2)—(3.3). Note that
for the integration and differentiation of polynomials in Chebyshev form
algorithms of linear complexity are known (see [3, p. 68; 5, p. 134 {].

Very often the Clenshaw algorithm is used for the evaluation of polynomi-
als in Chebyshev form see [6, 4, 5, p. 134]. This requires &#(n) multiplications
for each polynomial value. We propose the simultaneous evaluation of
polynomials at the grid Gy = {cosCum/N): u = 0,..., N} by means of the
DCT-I of length N + 1 with N a power of 2. This gives N polynomial
values with #(N log N) real multiplications.

Note that polynomial interpolation on the grid Gy has good simultaneous
approximation properties in the following sense: Let py denote the polyno-
mial of degree N which interpolates a given function f € C—1,1] at the
grid Gy. Then we have (see [7, 8]

2
If — pulle < (2 + ;log N)inf{llf— qlls : g € My},

If" — pylle < (2 + 2log N)inf{IIf’ —qglle:q € HN_I}.

For an error estimate in a weighted Sobolev norm see [3, p. 295 f].

An important application of polynomial multiplication in the form de-
scribed here occurs when Galerkin—Petrov methods are used (see [3, 4]).

We remark that our method can be easily adapted to polynomial division
which arises in rational approximation (see [4]).

Similar to the known fast multiplication algorithms for polynomials in
monomial representation, which lead to circular convolutions and circulant
matrices, our approach induces a new type of convolution and circulant
matrices related to the DCT-1.
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The introduced convolution is a modification of both circular convolution
and cross correlation. We give a computation scheme for the convolution
based on fast DCT-I algorithms, which we also derive.

The outline of our paper is as follows. In Section 2 we describe a direct
multiplication scheme for polynomials in Chebyshev form, which needs
@&(n*) real multiplications for two polynomials of degree n. Based on evalua-
tion and interpolation schemes for polynomials in Chebyshev form on the
grid Gy with N >2n + 1 we derive in Section 3 an identity for the
coefficients of the product of two polynomials of degree n involving the
DCT-1. If we use fast DCT-I algorithms, then only #(n log n) multiplica-
tions are necessary to compute the polynomial product. In Section 4 we use
this result for the definition of a convolution * related to DCT-1. We discuss
the close connection between the convolution i the circular convolution and
cross correlation. Note that * has all the usual properties of a product
operation. Section 5 is devoted to shifts and circulant matrices induced in a
natural way by . We derive properties of these circulant matrices, especially
a diagonalization property with respect to DCT-I. In Section 6 we outline a
fast algorithm for DCT-I of length N + 1, where N is a power of 2.
Applying the divide-and-conquer technique the DCT-I of length N + 1 can
be recursively reduced to DCT-I and type III DCT (see formula (6.2)) of
half length. Finally, we extend the previous concept to the multiplication of
bivariate polynomials in Chebyshev form.

2. MULTIPLICATION OF POLYNOMIALS IN CHEBYSHEV FORM

We define the Chebyshev polynomials (of first kind) on I :==[-1,1] in
the standard way

T,(x) = cos(k arccos x) - (k€ N,, x €1). (2.1)
From the definition we obtain for x € I
IT,(x)l <1, (2.2)

To(x) =1, T(x) =x,

Te(x) = 23T,(x) = To_(x) (ke N). (23)
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By (2.3) it follows that T} is a polynomial of exact degree k. Therefore
every real polynomial p, of degree < n can be represented in the Cheby-
shev form

a n
po=5 + Lali (4 €R). (2.4)
k=1

From the numerical point of view the representation (2.4) is more stable
than the monomial representation of p,.
By standard trigonometric identities it is easy to show the relation

oT T, = Tyy + Tuey (K 1EN,). (2.5)

Note that (2.3) is obtained in the case [ = 1. Using (2.5), we derive the
following multiplication rule for polynomials in Chebyshev form.

ProposiTioN 2.1.  Let n € N. Let p,, q,, be given in the Chebyshev form
b, .
po=75* Lol  q,= 3 7 L b T, (2.6)
k=1

with a;, b, € R (k=0,...,n). Then the product r,, = p,q, has the
Chebyshev form

Foy = 73 + Z Cka (2'7)
2 k=1
with
agh, + 2 Z ab, k=0,
/=
k n—k
2c, =1 Yar_ b+ 2 (ab . +ab), k=1,....,n—1,

=0 =1

Y a_ by, k=n,..., 2n.
I=k—n

(2.8)
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Proof. Using (2.5), we getforl =1,...,n

2p,T; = a,T; + Z ;(2T)T,)
j=

n
_aOTl+ Z ] _]+l+ ElajT|j—l|

j=1 j=
n+l! -1 n—1
=Y T+ Yo, Th+a+ Z a4 Ty
k=1 k=1
Hence,
n+l! -1
2p. 0T = X ar BT + X a_bT, + ajb,
k=1 k=1
n—1
+ Z ak+lblTk. (29)
k=1
Moreover we have
ayb, =
p.by = - Y ab,T,. (2.10)
k=1

Summing up Eq. (2.9) for [ = 1,..., n and (2.10), we obtain

n n+l
2p,.q, =( )+ Zboaka"‘ Y X bT,
=1 I=1k=I
n n—1n-1
+ ) Eal DT+ Y Y a b T,
1=2 k=1 I=1 k=1

We change the order of summation in the following way:

n n k 2n n

X=X X+ X .

I=1 k=l k=11=1 k=n+1l=k—-n
n I-1 n—1 n n—1n-1 n—1n—k
1 X = Y. L X=X
=2 k=1 k=11=k+1 =1 k= k=1 1=

This completes the proof. [ ]
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3. POLYNOMIAL COMPUTATIONS INVOLVING THE DISCRETE
COSINE TRANSFORM

In order to evaluate a polynomial p, given by (2.4) on the grid
Gy = {t,(LN) = cos( [.L‘IT/N):[.L:O,...,N} (3.1)

with N > n + 1, we have to compute the expressions

pkar
pn(t‘(LN))—EO Zakcos (np=0,...,N).
k=1
This can be written in matrix form as
p = Cya, (3.2)

where

() e

a=(a)r_, R  (g,=0 (k=n+1,..,N)), (3.3)

N
“kﬂ.) e R(N+1)X(A'+l)

Cl = (sN,kcos—
w, k=0

with ey o =&y y=1/2 and ey, =1 (k =1,...,N — 1). The transfor-
mation (3.2) is called type I discrete cosine transform of length N + 1
(DCT-KN + 1)) (see [2, p. 229]. In order to construct the inverse of C},
we need the following

LEMMA 3.1. For N € N and u € Z we have

il kum (N u = 0mod 2N
g N KCOS - {0 otherwise. (34)

>
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Proof. This follows immediately from the known identity [9, p. 71]

cos(x/2)

N
kgo ey rcos(kx) = sin( Nx) m

(x e R\ 27Z). |

Using the relation
2cos x cos y = cos(x — y) + cos(x + y) (x,y €R), (3.5)

we get from (3.4) the following orthogonality relations

2 N jkm  klmw )
NSN’lk§O€N‘kCOSVCOST= ;1 (j.l=0,...,N),
ie.,
ry7! 2 I
(cy) = ~ G- (3.6)
Now we can rewrite relation (3.2) as
2
a=—C\p- (3.7

N

This illustrates that the polynomial interpolation problem with knot grid (3.1)
can also be solved with DCT-I(N + 1). As we show in Section 6, the
DCT-I(N + 1) can be efficiently evaluated by fast algorithms if N is a
power of 2.

Applying these ideas, we compute the product of polynomials

4y z b
pn=E+Zaka’ qv=—2_+

b, T, (3.8)
k=1 =1

k
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in the following way. Set r,, , == p,q, with

n+v

C
0
LT E + E cka‘
k=1

(3.9)

Choose N > n + v + 1 (as a power of 2). The polynomial r,, , is uniquely

determined by

rn+ v(t:LN)) = pn(t/,(LN))qu(thN))

Introducing the vectors

we have by (3.2)

Furthermore, (3.10) can be written as the componentwise product

a=(ay,....a,,0,...,0) € RV*1,
b= (by.....b,,0,....00" € RN*1,
¢ = (CorererCryrr0,...,0) € RV

N

P = (Pu(t")),p S BYT

N

a= () R

N
— (N) N+1
r = (rn+y(t# ))“xo eR ,

q=CLb, r

p=Cha,

r = P°q.

Inserting (3.12) into this equation, we have

Clc = (Cla)o(CLb).

(p=0,...,N).

Cjec.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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By (3.6), this yields the following result:

ProPOSITION 3.1. Let N > n + v+ 1. Let p, and q, be given polyno-
mials of degree n and v, respectively. Assume that p, and q, are given in
Chebyshev form (3.8). Then the coefficient vector ¢ of the productr, . , = p,q,
can be computed by DCT-I(N + 1) as

2
- —CL((Cha)+ (Chb)). (3.15)

Comparing with the direct computation in Proposition 2.1, the main ad-
vantage of the above transform method is the lower arithmetic complexity. In
order to compute a product of two polynomials of degree n by Proposition
2.1 directly, we need & (n?) real multiplications. If we use fast DCT-I(N + 1)
algorithms, where N > 2n + 1 is a power of 2, then @(N log N) real
multiplications are sufficient to compute the product of two polynomials of
degree n.

4. CONVOLUTION RELATED TO DCT-I

Briefly we recall the circular convolution property of the discrete Fourier
transform of length N (DFT(N)). The Fourier matrix of order N is defined
as

= (exp(—2mijk/N)) 2.
Then the circular convolution property of DFT(N) reads (see [1, 2])

Fy(x*y) = (Fyx)=(Fyy)

or

1_
xny = F((Fyx) o (Fyy)), (4.1)
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where x = (2, )0y = (y - € RY and

N—~1 N-1

k
xry = | Yxiy g+ X XYy
=0 I=k+1 k=0

Note that (4.1) has the same structure as (3.15). Our aim is to define a new
convolution related to DCT-I(N + 1).
In the following we simplify the right side of (3.15) with arbitrary vectors
= (g ) Lo, b=(b,)N_, € R¥*L Then the (I + 1)st component of (3.15)
reads as follows

jkm mkmw  klw

N

Y ey ey & a;b, cos—cos cos—.
N, k“N,j®N,m

-0 N N N

2

NiZoj

it

m
Using

jkm  mkw  klw

4 cos ——COoS cos——
N N

km ] km ]
—cosW(]+m—)+cosW(]—m+)
km : kw :
+cosW(—]+m+ )+cos——N—(]+m+ )
we obtain

>

j=0

ka
En.jEN mC ):, ey, k(cos—(] +m 1)
0 " k=0

El["]z

1
2N
gy z e ml

+cosw(j~m+ )+cosTV~(—]+m )

kar
+cos—N—(j+m+l) . (4.2)
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11
From (3.4) it follows that for j, m,l = 0,..., N we have
ZaN!kcosW(]’+m—l)= orj=m=N,l=0,
k=0 0, otherwise,
N kar N, j—m+ =0
Y &y xcos— (]—m+l) orj=l=N,m=0,
k=0 0, otherwise,
N kar N, —j +m+1=0
ZankcosW(~j+m+l)= orl=m=N,j=0,
k=0 0, otherwise,
N ko N, j+m+1=2N
Y ey cos—(j+m+1) = orj=m=1=0,
k=0 N :
0, otherwise.
Inserting the above identities into (4.2) we obtain
N-1
¢ = E Z EN,jSI\ 1—-j Jbl -j + Z En. 18\' j+la bj+1
j=0 j=0
N N
+ ZaN‘jaN_jvlajbj—l + X 8.’\',j8N.2N—j—Iajb2.\’~jAl)
]=l j=N—l
1 {11 -1 -1 N
=-| Yab_;+ Z b+ Zab R a'bov—-—l)-
9| J a;9; : jY2N—j
j=0 j=N-Il+1
(4.3)

Especially, for I = 0 and | = N we have

N

ZaN}J}’

Z £y Jajb N
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Note that ¢, (1 <1 < N — 1) possesses the following form

i
2

Z a i bm

(j.myes

c; =

with the index set
SF={(.m)€{0,....N}:j+m=1IVj+m=2N—1
vm —j=lvm—j=—l}.

A graph of % is shown in Fig. 1.
Therefore we define the convolution related to DCT-I(N + 1) by

e =axb:=(a)L,
where ¢; is given by (4.3).

By our construction of the convolution related to DCT-I(N + 1) we have
the following convolution property

CL(a*b) = (Cla)o(CLb) (4.4)

0 { N -1

Fic. 1. Index set ..
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for all a,b € RY*'. Hence, the operation * is commutative, assoc1at1ve and
distributive. It is eas1ly checked that (28, J) _ o is the unit element of x.

If N>2n+ 1, then for a =(a,,...,qa,,0,...,00T € R¥*! and b =
(bo,...,bn,O,...,O)T € RY*! we obtain

c = a+*bh

withe = (¢y, ..., ¢5,,0,...,00T € RV*! where ¢, (k = 0,...,2n) are given
as in Proposition 2.1. :

Now we discuss the connection between the convolution * and the
circular convolution *. Given two vectors a=(a)L, and b =(b)7,, we
form the even extensions x = (x )= Nl and y = (yj)jzfo_l of a and b by
setting  x, = a,, Yo =by, x;=1xyx_;=a;, Y, =y, =b (j=
I,...,N). Let z := x*y = (2,)fY; !. Then

k 2N-1
I Exjykq"*' )» XiYon-—j+k (k=0,....2N — 1).
j=0 j=k+1

Note that z;, = z,y_; (k=1,...,N = 1). For k =0,..., N, we have

k
= Z(lbk —j + Z ab
j=0 j=k+1
N+k 2N-1
+ X agn_jb;_ + > aan_ban k-,
j=N+1 J=N+k+1
k N
= Za]b,_j+ Y a]bjfk
j=0 j=k+1
N-k-1
+ Z abyy oyt Z
J=N—k

i.e., by (4.3) we have z;, = 2¢, (k = 0,..., N), where

c= (ck),)j:() = a+bh.
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A similar computation shows that the cross correlation w = (w)iY; ' =

cor(x, y) defined by

ON-k-1 IN -1
wy = Z XiYpyy T Z XiYk+j—2oN
j=0 j=2N-k

equals the circular convolution

cor(x,y) = x*y.

. ) . . (e .
Therefore the operation * is a suitable modification for both the cross
correlation and the circular convolution.

5. SHIFTS AND CIRCULANT MATRICES RELATED TO DCT-I

The circular convolution is strongly connected to circular shifts and
circulant matrices (see [10]). In the following we introduce suitable modifica-
tions of these concepts for the DCT-I setting.

We define P, € RV DXNFD 1y

m

N N
Py = (aj.k)_j,k:()’ Py = (5j~N*k)j,k=0’
and for m=1,..., N — 1 by
m
l
_ . _
1 1
3 3
1
m-— |3z
P"l = ( 5.1)
. 1| < N-m
1 1
3 2
1
T
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Blank spaces in the matrix P, denote zero entries. These matrices are called
shift matrices related to DCT-I(N + 1).

The shift matrices P,, (m = 1,..., N — 1) operate as follows on a vector
b = (bj)f’:O e RV

@Difl<m<N/2

(b, +b,,), 1=0,...,m,
(®.b), = { 3(b,_. + b,..1). l=m+1,...,N—-m, (5.2
$(Bon-m-1 + b)), I=N-m+1,...,N,

G) if N/2+1<m<N-1

%(bm—l+bm+[), l=0,...,N—m,
(B.b), = { 3(bn_) + ban_m_1), I=N-m+1,...,m, (5.3)
é(bl—m+b2N—m_l), l=m+1,...,N.

It can be shown by direct computation with (4.3) that for m = 0,..., N:
e,.*b=¢, P.b (5.4)

where e,, = (8, )L, € R¥"! are the unit vectors.
Applying the definition (5.1) of P,, we obtain the following formula for the
shifted unit vectors:

Pmej = é(e[m—jl + emin(m+j,2N—m—j)) (]’ m = O’ e N)

Now we define circulant matrices related to DCT-I(N + 1) by setting
fora = (aj);v=0 e RN+

N
circja = Y, ey, ja; P (5.5)
j=0

In the case N =4, a circulant matrix related to DCT-I(5) reads as
follows:

a 2a 2a 2a a
0 1 2 3 4

a a, +a a ta a, +a a
1 0 2 1 3 2 4 3
circja = 3 ay a +ta; aytay a +taz; a,
a ay,+‘a, a ta; ay,+a, a

a, 2a, 2a, 2a, a,

with arbitrary vector a = (aj)f=0 € R5.
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Using (5.4), the relation to the convolution * is as follows:

N
= ) &y ;4,Pb = (circ,a)b (5.6)
j=0

fora—(a NobeRYYL
In the fé)llowmg we describe the main properties of circulant matrices
related to DCT-I(N + 1):

PrOPOSITION 5.1. For a,b € R¥'! a € R we have:
(i) a*b = (circ,a)b = (circ,b)a.

(i) circ,(a + b) = circ,a + circ;b.

(i) circ,(@a) = a circ,a.

(iv) Ncirc;a = 2C}\,(diagﬁ)C}\, with a = (3);_, = Cya.

(v) circ;a is invertible iff 4, # 0 for k =0,..., N. Then we have
Ncirc a)~ 12 gt y(diagd)~'Cy},.

(vi) (circ,a)circ;b) = circ ,(a*b)

Proof. From (5.6) and from the commutativity of * it follows that (i)
holds. Using (i) and the bilinearity of % we obtain (ii) and (iii). Next we show
the diagonalization property (iv). By (4.4), we have

C! (a*b) = (diaga)CLb
Using (1) we get
CL (circ,a)b = (diagh)CLb
for all b € R¥* . Therefore
C} (circ;a) = (diaga)Cy (5.7)

which is by (3.6) equivalent to (iv). By (iv), circ,a is invertible iff diaga is
invertible. This is the case iff all diagonal entries @; are nonzero. By the
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associativity of * we have

(a*b)*c = a*(b*c)
for arbitrary a,b,c € RV*'. Applying (i) we obtain

(circl(aib) )c = (circ;a)(circ;b)c

forallc € RY*!; i.e., (vi) is fulfilled. This completes the proof. n

Note that all circulant matrices related to DCT-I(N + 1) form a commu-
tative algebra in RVH+DX(N+D

The shift matrices related to DCT-I(N + 1) have the following prop-
erties:

PROPOSITION 5.2. Form,n =90,..., N we have:
(@) ey P, = circje,,.
(i) NP, = 2C}, (diag(cos(mkm/N)}_)CL,.
(lll) 2PmPn = P|m—n\ + Pmin(m+n,2N~m—n)'
Proof. The first property follows immediately from (5.5). In order to
show (ii), note first that by (3.3) we have

mkﬂ)lo (5.8)

a2 — ! -
e, =Cye, = eN,m(cos

From property (i) and (5.7), (5.8) we conclude that

ey +CyP. = Cl (circye,,)

It

(diagé,, )Cy

mkm\ N .
Cy,
k=0

aN‘m(djag(cos N

i.e., (ii) is valid by (3.6).

From (ii) we obtain

op P ZCI il o kmw  nkw\?Y c
wP = 5 Cx ag cochosN ]G
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By (3.5) we have

mkmw  nkm Lk lkm
2 cos cos = Cos + cos

N N N N

with I, == |[m — n| and [, := min{m + n,2N — m — n}. Note that [,1, €
{0,..., N}. This completes the proof of (ii). [ ]

6. FAST DCT-ALGORITHMS

In order to describe fast DCT algorithms we assume that N is a power of
2,ie., N =21 with t € N\ {1}.

We recall that the DCT-I(N + 1) is a mapping of R¥*! into itself
defined by DCT-I(N + 1Xa) = Cya = a with

N ik
Eij =y aN,kakcos]— (j=0,...,N), (6.1)
k=0 N

where a = (¢, )}_,,4 = (ﬁj);vxo-
The type 111 DCT of length N, = 2' (DCT-III(N,)) is a mapping of R™
into itself defined by

Nl (2j + 1)k=
g = Yy Ex, K BRCOS T (j=0,....,N,—1). (6.2)
k=0

In the following we describe a procedure for computing the DCT-I(N +
1) in real arithmetic. (see [M]). For a computation with discrete Fourier
transforms in complex arithmetic see [2, p. 238].

Applying the divide-and-conquer technique we obtain:

PROPOSITION 6.1. Let N =2*! N, = 2' with t € N\ {1} be given.
Then the DCT-I(N + 1) of a data vector a = (g )}_, € RY*' can be
computed recursively by the transforms DCT-I(N, + 1) and DCT-III(N,)
as follows:

Forj=0,..., N, we have

a3 =



FAST POLYNOMIAL MULTIPLICATION

and forj =0,..., N, — 1 we have

boyr = £
with
(f])ji‘o = f= DCT-I(N, + 1)(f)
(g),-,' = &=DCT-UL(N,)(g)
where

N
f=(a+ay 1),

N{—-1
g=(a —ay_ )il -

Proof. For j=0,..., N, we obtain from (6.1) and
CosT———— = cos = (I=0,....,N,-1)

that

N -1 il
A JT j
dy; = Y €N, 181005 o= + (—D’ay,
=0 1

N—1 N
J(N=UOm
+ Z Ey, [yn_jCOS—™
S N,
al jlm
= Yoy (o + aN—l)COSV'
=0 1

For j = 0,..., N; — 1 we conclude similarly using (6.1) and

(2j + 1)(N - D (2j + Dlx
COS = —CoOsS—
N N
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that
N1 (2j + Diw
‘32]+1 = X le,l(al - aN—l)COST-
=0
This completes the proof. ]

In the following we describe a fast algorithm for DCT-III(N,) in real
arithmetic (see [11]). A complex algorithm of (6.2) based on the discrete
Fourier transform can be found in [2, p. 142 f].

First we set h) == &y ;g (I =0,..., N, — 1). Substituting

- s j=0,...,N, — 1,
7 gN—zj—l j=Ny,...., N, =1

with N, = N, /2, we obtain the simplified DCT-III(N,):

- N1 4j + V)lnw
h; = Yy h,cosL% (j=0,...,N, = 1). (6.3)
=0

Using the divide-and-conquer technique, we form

Np—1 (4j + VYo M) (4j + (N, + n)w

fzj = ZO hncos——N-— + Y hy, ., ,c0s
ne

Hence we obtain by (3.5)

Nl (4 + Lynm
h, = —_

hy + ngl (h, = hy,_,)cos N

4i+ D71 No— 1 4j + 1)(N, + n) 7
+2cos£—]—)—(—th+ Yy hNZMcos( J )(Nz ) .

4 2

n=1
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Now the factors cos(4j + 1X7/4) (j =0,..., N, — 1) possess only two
different values, namely

4j + 1)m .
cosg—-]—4——)— = (-1)°'—

for j =25 j,27 (G, € {0, 1, 7=0,...,t = ).
This leads to the first step of our radix 2 algorithm:

ALGORITHM 6.1.  Simplified DCT-1II(N,)

Input: N, = 2' (¢ € N\{1}), b, e R(j =0,...,N, — D.
Step 1: For i, = 0,1 compute

vz
Bl = by + (= 1) hy, o

hyi=hy = hy oyt (“1)"hy, V2 (n=1...,Ny— 1)
with I, = (iy).

After step 1 we obtain

- Np—1 (4j + Dnw
— I, —_—
h; = Y hlicos N

n=0

(6.4)

forall j €{0,..., N, — 1} with j, = i,. So we have divided our original sum
(6.3) of length N1 into two sums of half length N,. If we apply the same
technique repeatedly then we get for 7=2,...,¢:

[

Step 7: Foralliy,...,i._; = 0,1 compute
Bl = Bl + (=) Ry (L),

hyr = byt = b, + 2= 1) g v(L)
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with
T—-2

L= (i, 1,.... 1), (L) = Zikzk’

k=0
y(IL_,) = C05(4( Iy, + 1)77/2”1-

After step ¢ we have
Output: ilj = h{ with j = (1,),.

7. MULTIPLICATION OF BIVARIATE POLYNOMIALS
IN CHEBYSHEV FORM

Now we extend the previous concept to bivariate polynomials. Let p, ,
be a given bivariate polynomial in Chebyshev form

pn,n(x* y) = Z Z SN‘I\-SN‘lak,lTk(x)Tl(y) (71)

k=01=0

where N > n + 1.
The values of p, , at the bivariate grid Gy X Gy, where Gy is defined
by (3.1) can be written in matrix form as

P =cCLA(CL) (7.2)

with
P (p, (60.60)) 0 A= (@ )) e (7.3)

where a; ;=0 for k > n or [ > n. The matrix C} is given in (3.3). Note
that the nght hand side of (7.2) is the bivariate DCT-I of size (N + 1) X
(N + 1) (DCT-I(N + 1) X (N + 1)) of A.

For given values of p, , at Gy X Gy the Chebyshev coefficients a; ; can
be computed by

4
A=—3C\P(Cy) (74)
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This method of solving Eq. (7.2) is also used in the tensor product method of
interpolation [12, p. 341 f]. Formula (7.4) can be efficiently computed by
performing row and column transforms of P with a fast DCT-I(N + 1)
algorithm if N is chosen as a power of 2. Another solution based on the
Clenshaw algorithm has been proposed in [13). Our method based on the
DCT—I(N + 1) gives a lower operation count, though.

In the following we develop a method to compute the polynomial product

r2n,2n(x’ y) = pn.n(x’ y)qﬂ,n(x’ !/)

where p,  is given in Chebyshev form (7.1) and where

tton) = £ L eson b BTy (i€ R) (79

2n  2n

Ton 2a( %, y) = EO lggN,kaN,lck,lTk(x)Tl(y) (ck.1 €R) (76)

with N > 2n + 1. The polynomial r,, ,, is uniquely determined by

Panan( B 6 = P (880, 6 W(8V 68V)  (pow =0, N).

(7.7)

We want to write these relations as a matrix equation. Let A, P be as in (7.3)

and

B = (bk,l)lzcv,l=0’ C:= (Ck,l)llcv,l=0

where we set by ;==0if k >norl>nand ¢, ,==0if k >2n orl > 2n.
Let

Q= (gu a8 60 Ly Ro= (ra a6, 58M)) .
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Then we have
P=CLA(CY). Q=cCLB(C}), R=cLic(cl)" (78)
and by (7.7)
R =P-Q (7.9)

where o denotes the elementwise product of matrices. Inserting (7.8) into
(7.9) we get

cic(ch)' = (cha(ck)')-(ciB(ck)").
By (3.6) we obtain the following result:

PROPOSITION 7.1.  Let N > 2n + 1. Let p, , and q,, , be given bivariate
polynomials in Chebyshev form (7.1) and (7.5), respectively. Then the
product ry, 5. =p, .4, , possesses the Chebyshev form (71.6) with coeffi-
cients c; ; given by

Cc-= %c}v((c}vA(c;)T)o(clNB(c}v)T))(c;)T. (7.10)

Not? that (7.10) can be used as a definition for a bivariate convolution
C = A *B related to the bivariate DCT-I(N + 1) X (N + 1)).

8. CONCLUSION

Polynomials of high degree restricted on [—1,1] can be numerically
stable evaluated if they are represented in Chebyshev form. In this setting the
problem naturally arises to form products of such polynomials. Standard
trigonometric identities yield formulas for the product of two Chebyshev
polynomials and thus of Chebyshev expansions. We have given an alternative
approach using fast algorithms of discrete cosine transforms which improves
significantly the operation count for computing polynomial products. The
approach yields a variant of the convolution operation and of circulant
matrices, whose properties we have investigated. As we have shown the
approach can be easily extended to cover bivariate polynomials.
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