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A b s t r a c t - - S e v e r a l  factorization properties of Chebyshev are reported here. Studying the eu- 
clidean division of two Chebyshev, we observe that  the remainder .is either zero or (up to a sign) 
another Chebyshev polynomial. This lead to explicit computation of the greatest common divisor of 
two Chebyshev. We also obtain conditions for determining when a Chebyshev polynomial is divisi- 
ble by another. Observing the modular representation over prime fields, we find two infinite sets of 
fields Zp where a given Chebyshev polynomial factors completely into linear factors. We discuss how 
to obtain the factors. (~) 2005 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - C h e b y s h e v  polynomials, Polynomial factorization, Greatest common divisor, Modu- 
lar roots, Primitive root. 

1. I N T R O D U C T I O N  

Chebyshev are of great importance in many areas of mathematics, particularly approximation 
theory. Numerous articles and books have been written about this topic. Analytical properties 
of Chebyshev are well understood, but algebraic properties less so. Some examples of algebraic 
properties of Chebyshev studied may be seen in the references [1-3]. Other examples of algebraic 
properties for Chebyshev include the work of Hsiao [4], who gave a complete faetorization of 
Chebyshev of the first kind T~(x), determining which roots should be grouped together to yield 
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irreducible factors with integer coefficients. Extending this result, Rivlin [5] adapts Hsiao's proof 
for the Chebyshev of the second kind U~(x). 

Reported here are several decomposition properties of Chebyshev including factorization and 
divisibility. Conditions for determining when a Chebyshev polynomial is divisible by another are 
developed. It  is also shown that  the remainder produced by Euclidean division of two Chebyshev 
is again a Chebyshev polynomial, up to a sign. This fact leads to a direct computation of the 
greatest common divisor of two Chebyshev. Presented also is the factorization of Chebyshev over 
finite fields. Given any Chebyshev polynomial of degree n, two infinite sets of primes p are found 
such that  the polynomial can be factored into n linear factors over Zp. Procedures for finding 
the modular roots are also discussed. 

Let's begin with some basic definitions and properties of Chebyshev. 

2. C H E B Y S H E V  P O L Y N O M I A L S  

The Chebyshev of the first kind Tn(X) may be defined by the following recurrence relation. Set 

To(x) = 1 and Tl(x) = x, then 

T~(x)=2xT~_I(x)  -T~_~(x) ,  n = 2 , 3 ,  . . . .  (i) 

Alternatively, they may be defined as 

T~(x) =cosn(arccosx) ,  (2) 

where 0 < arccosx _< ~r. The roots of Tn(x) are real, distinct, within the interval [0,1], and given 
by the closed formula, 

(2k - 1) 7r 
~k = c o s  k = 1 ,  . .  n. (3) 

It  is easy to see also that  the roots ~k are symmetric with respect to the line x = 0. In other 
words, if ~ is a root of T~(x), then so is -~ .  For factorization purposes, the decomposition 
properties, 

T.,,n(x) = T~(Tn(x)), .~,n >_ O, (4) 

1 
T,~(x)T~(x) : ~ (Tm+~(x) + TH~_, I (x)),  m, n >_ O, (5) 

are useful. They can be proven using trigonometric identities [5, p. 5]. We can also define T-n(x) 
as follows, 

T_~ (x) = cos -n(arccos  x) : cos n(arecos x) : T~ (x). (6) 

The Chebyshev of the second kind are defined by setting Uo(x) = 1, Ul(x) = 2x, and the 

recurrence relation, 
Un(x) --- 2xUn_l(x) - Un-2(x), n = 2, 3 . . . .  (7) 

They may also be defined by 

~ +  1 T.+l(x ) = sin ((n + 1) arccosx) V~(x) sin(a~ocosx) (S) 

It  is easy to see that  U~(x) is an integral polynomial of degree n. Its roots are all real, distinct, 
symmetric with respect to the line x = 0 and are given by the expression, 

kTr 
k = 1 , . . . , n .  (9) r]k = COS n -}- 1 ' 
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Useful decomposition properties for the U polynomials include the following [6, p. 97], 

U m n _ l ( x )  = 

1 = + 

m, n > 0, (10) 

m, n > 0. (11) 

To extend the definition of Chebyshev of the second kind for negative n, we notice that  for n > 1, 

1 1 1 J X - - - T '  - 1T'_(n_l)(X)-  1 T i ~ _ l ) ( ) = - U n _ 2 ( x ) .  (12) U_,~(x) - n  4- 1 -,~+1 n - n - 

For convenience, we define U_l(x) = 0. 
There are many fascinating properties of the Chebyshev and the reader is encouraged to refer 

to the excellent books by Rivlin [5] and Suyder [6]. 

3. D I V I S I O N  P R O P E R T I E S  

The division properties of Chebyshev Tn(x)  and U,~(x) are characterized. Criteria to determine 
when a Chebyshev polynomial is divisible by another are given. We also prove that  Chebyshev 
axe (essentially) closed under division. Specifically, we show that  the remainder of the division 
of two Chebyshev is, up to a sign, another Chebyshev polynomial. These results lead to the 
computation of the greatest common divisor (gcd) of two Chebyshev. 

3.1. Div i so r s  of  Tn(x)  

The following property may be proven by applying the decomposition property (4). 

PROPERTY 1. Let n > 1 be an integer. If h is any odd divisor of n, then Tn/h(X) is a divisor of 

Let Tin(x) and Tn(x)  be two Chebyshev of the first kind. Performing the Euclidean division, 
we obtain integral quotient and remainder polynomials q(x) and r(x) satisfying 

T ~ ( x ) = q ( x ) T n ( x )  + r ( x ) ,  deg(r) < deg(Tn). (13) 

The q(x) and r(x)  can be determined using the following result. 

PROPERTY 2. Let m _> n be two positive integers. The polynomials q(x) and r(x)  satisfying the 

Euclidean division (13) are given by 

1 

q(x) : 2 ~-~(--1)k-t'lTm_(2k_l)n(X), 
k=l  

r(x)  = (-1)lTIm_2~nl(X), 

where l >_ 1 is the unique integer satisfying Im - 2ln I < n, if there is such an 1. Otherwise, 

l--1 
k-t-1 q(x) ~--- 2 Z ( - - 1 )  Tm_(2k_l)n(X ) 4- ( - - 1 ) / - 1 ,  

k=l 

r ( x ) = 0 ,  

where l satisfies m = (2l - 1)n. 
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PROOF. Replucing rn by rn - n in equation (5), and using the extended definition (6), we have 

Tin(x) = 2Tn(~)T~_~,(x) - Tm-2n(X), integers m, n. (14) 

Let l be the smallest positive integer satisfying Irn - 2In I <_ n. Applying the decomposition 
formula (14) 1 - 1 times, we deduce 

= + . . .  + 

If Irn - 2In I < n, then deg(T~(x)) < deg(Tm-(2t-2)n(x)) and  so we apply property (14) once 
more, proving the first case. On the other hand, if m = ( 2 / -  1)n, then rn - { 2 / -  2)n = n. It  
follows tha t  r(x)  = 0 and the second case is proved. | 

From the above property, we see that  the remainder of two Chebyshev of the first kind is either 
zero or another Chebyshev of the first kind (up to a sign). We may also deduce from Proper ty  2 

tha t  if T,~(x) is a divisor of T,~(x) then n is a divisor of m and m / n  is odd. This statement may 
be seen as the converse of Proper ty  1. The following theorem summarizes the results. 

THEOREM 1. For integers 0 < n < m, Tn(x) is a divisor of Tin(x) if and only i f m  -= ( 2 / -  1)n 
for some integer l >_ 1. Otherwise, the remainder of  the Euclidean division of Tin(x) by T,~(x) is 
given by r(x) = (-1)ZTl,~_2,~l(x), where 1 is the unique integer satisfying }m - 2nil < n. 

THEOREM 2. Let m, n be positive integers and g = gcd(m, n). Let n = gnl and m = gml .  I f  nl  
and ml  ere odd, then 

gcd(T~(x),  T~(x)) = Tgcd(,~,~)(x) = Tg(x), 

otherwise 
gcd(T,~(x), T~(x)) = 1. 

PROOF. By Theorem 1~ all polynomiM remainder sequence are Chebyshev, and so the 

gcd(T (x), 

is a Chebyshev polynomial. Hence, we need only to consider the common factors Th(x) of Tn(x) 
and T,~(x). Let  h be a common factor of m and n, say n = hnl  and m = hml .  By Theorem 1, 
we see that  the only common factors of T~(x) and T,~(x) are those Th(x) whose cofactors n l  
and ml  are odd. As Tg(x) is the highest degree polynomial satisfying these conditions, the result 

is proved. 

In particular, 

COROLLARY 1. 

COROLLARY 2. 

we can state the following. 

I[rn and n are odd, then gcd(T,~(x), Tn(x)) = Tgod(m.n)(x). 

/ f r n  or n / s  a power d t w o  and m ~ n, then ged(Tm(x) , r , , (x ) )  = 1. 

3.2.  D i v i s o r s  of  U,,(x) 

By applying the decomposition property (10), we obtain the following. 

PROPERTY 3. U,~(x) is a divisor of Um if there exists an integer I > 0, such tha t  rn = In + t - 1. 

pRoo , urn(x) = (x) = (x)) | 

To determine the Euclidean division of U,~ by U~, we use the extended definition for negative 
indices of Chebyshev and apply equation (11) with m replaced by n + 1 and n replaced by n - m 

and obtain 
Um(X) = 2Tm_n(x)Un(x) - U2n--m(X), integers m, n. (15) 
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Because U - l ( x )  = 0, the above works for 2n - m -- - 1 .  For m -- n, the formula still holds 

and can be writ ten as U,~(x) -~ (2Tm_n(X) - -  1)Un(x). Also, notice tha t  2n - m < n and if 

2n - m _> - 1 ,  we have the remainder and quotient determined. 
If, on the other hand, 2n - m < - 2 ,  we may apply the extended definition for U2~-m(x). 

Summarizing, we have 

{ 2Tm_~(x)U~(x) - U2 . . . .  if n < m < 2n + 1, 

Urn(x) = 2Tm_n(x)Un(x) + Um-2~-2, if 2n + 2 <_ m < 3n + 2. 
(16) 

If m > 3n + 2, we apply again the formula given by equation (15). In general, we have the 

following. 

P R O P E R T Y  4. Let m > n be two positive integers. Let 

~ =  T r t - - n  

Then, 
l 

Urn(x) = 2U~(x)~_Tm_(2k+l)n_2k(Z ) -- U2<z÷l)+21_m(X ). 
k=0 

When (re - n ) / (2n  + 2) is an integer, that  is, re = (2l + 1)n + 2l, the above equation can be 

rewritten as 
l 

and we have zero remainder. If re = (2l + 2)n + 2l + 1, we again have zero remainder because 
U_l(x)  = 0. In all other eases, the first term of the equations given in Proper ty  4 determines 
the quotient of the Euclidean division of U~ by U,~, while the second term gives the (nonzero) 
remainder. 

Using the extended definition (12), we have proved the following. 

THEOREM 3. Let m >_ n be two positive integers. U,~(x) is a multiple of Us(x) if  and only i f  
re -- (1 + 1)n + l for some integer 1 >>_ O. Otherwise, the remainder of the Euclidean division of 
urn(z) by V~(~) is g ive ,  by r(~) = --U2(z+I)n+2*-m(~), ~here 

l =  r e - n  

E X A M P L E .  Consider re = a3 and n = 4.  We have 

l =  L~lre-n = 2 ,  

determining that  

u33(x) = 2V4(x)(T~9(x) + T~9(x) + Tp(x) ) - U_5(z).  

This sets the remainder as -U_~(x) ,  which is, by equation (12), equal to Ua(x). 

THEOREM 4. Let m and n be two nonnegative integers, g = gcd(re + 1 ,n  + 1). Then, 

gcd(U~(x), V~(~)) = g~_l(~).  

PROOF. Using Theorem 3, we see tha t  Ug_l(x) divides both  Urn(x) and U~(x). Since Theorem 3 
implies tha t  the gcd is a Chebyshev polynomial of the second kind, let us now suppose that  
Uh(x) is a common factor of Urn(x) and U,~(x). By Theorem 3, h satisfies m = (h + 1)/1 + h and 
n -- (h + 1)/2 + h, for some integers 11 >_ 0 and 12 >_ 0. These two equations may be rewritten as 
m + l  -- ( h + l ) ( / 1  + 1) and n + l  -- ( h +  1)(/2 q- 1). B y t h e  definition o f g  = g c d ( m ÷  1,nq- 1), we 
notice tha t  h + 1 <_ g, which proves that  Ug-1 (x) is the Chebyshev polynomial of highest degree 
dividing both  Urn(x) and U~(x). I I  
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COROLLARY 3. I f  m -~ 1 Or n ~- 1 is p r i m e  and n ?t m ,  then gcd(U~(x), Urn(x)) = 1. 

4.  M O D U L A R  F A C T O R I Z A T I O N  

We now consider the factorization of Chebyshev over finite fields Zp. Specifically, we show the 
existence of primes p for which the T~(x) (or Un(X)) factors into linear factors in Zp. Let ~k be 
the roots of T~(x) defined in equation (3), for k = 1 , . . . ,  n, for some some fixed n. Notice tha t  
5k = cos(2~/4n)(2k - 1), or 

~k : (ei(21r/4n))2k--1-~ (e-i(27r/4n))2k-i  W 2k-1 ~- W-2k+ 1 

2 2 ' 

where w = e ~2"/4~ is a primitive complex (4n) th root of unity. Consider the field Q(w), the 
rationals adjoined by w. We know by definition tha t  

Q(w) = {(ao/bo) + (al/bl)W ÷ . . .  + (as_l/bs_l)wS-l  : aj, bj C Z } ,  

where s = [Q(w) : Q] is the degree of the extension field Q(w) over Q. It  is well known tha t  
s = ¢(4n). As a remark,  we observe tha t  Learner 's  result [7] shows tha t  [Q(w) : Q(w+l /w)]  = 2. 
Let p be an odd prime. We define 

¢ ~ ( w )  = { ( a o / b o )  + (al/bl)~ + . . .  + (a~-l/bs_1)~-i : aj,b e Z, p ~ j } .  

It  is easy to see tha t  Q~p(W) is a ring. Moreover, all the powers of w, including negative ones, 
belong to Q~p(W). Let  GF(q) be a finite field of characteristic p with q elements (q is some power 
of p). Let us assume tha t  GF(q) has a primitive (4n) th root of unity 8. Defining the natural  ring 

homomorphism,  
• : g  >Zp, 

by kO(a) = a mod p, we can extend ~ to the polynomial ring Q~p(W)[X] onto GE(q)[x] in the 
following way, 

O(a/b) = O(a)/qt(b), 

• (~) = o, 

• (x)  = x.  

We see now tha t  

(T~ (x)) = • (2 ~-1 (x - ¢ ~ ) . . - ( x  - ~,))  

0-2,~+1 

- • (2) /" (2F -1 (5 

Since the quantities, 

~(2) ' 

are well defined in GF(q), we see tha t  q2(T~(x)) has all its roots in GF(q) .  Hence, we can find n 
linear factors of T~ (x) modulo an odd prime p if either one of the following circumstances occur. 

(i) The  field Zp itself has a primitive (4n) th root of unity. 
(ii) GF(q), a field with characteristic p, has a primitive (4n) th root  of unity and all the 

quantities ~23-1 _ ~-2j+1, j = 1 , . . . ,  n, belong to the ground field Zp. 
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The  first s i tua t ion  is solved by the following. 

LEMMA 1. Let  n and K be posit ive integers. I f  p = 4 n K  + 1 is pr ime,  then Zp has a pr imi t ive  

( 4 n )  th root of unity. 

PROOF. A well known result  s ta tes  t ha t  Zp has a pr imit ive  M th root  of uni ty  if and only if M 

divides p - 1. | 

For deal ing with  the  second si tuat ion,  we need a technical  lemma. 

LEMMA 2. Let  p be a prime. Let  c~ e G F ( p  2) be a root o f  the irreducible polynomial  f ( x )  = 

x 2 + ax  + b over Zp. For any c, d E Zp, we have 

( c +  da)  p+I = e 2 - cda + d2b E Zp. 

PROOF. As the a r i thmet ic  is done modulo p, we have 

p+l  

(c nc da)p+l : j~.o (P  + l ) c J  J 

= c p+l + (p + 1) c p da + (p + 1) c (da)  p + (da) v+l 

= c 2 + cda  + cdc~ p -4- d2c~ p+I  . 

The last  equal i ty  is a consequence of Fe rma t ' s  l i t t le  theorem. Observing t ha t  a p is the  other  

dis t inct  root  of f ( x ) ,  we see tha t  - a  : a + ap, b = c~ p + I  and the resul t  follows. | 

LEMMA 3. Le t  rt and K be posi t ive integers. I f  p = 4 n K  - 1 is pr ime,  then G F ( p  2) has a 

pr imi t ive  (4n )  th root o f  uni ty  0 and all the quantit ies 0 2j-a - 0 -2j+1,  j = 1 , . . . ,  n, belong to the  

ground field Zp. 

PROOF. From the fact t ha t  4n divides p2 _ 1 follows the  existence of 0, a pr imit ive  (4rt) th r o o t  

of uni ty  in GF(p2) .  Let  f ( x )  = x 2 + ax  + b be an irreducible polynomial  in Zp[x] and let  a be 

a root  of f ( x ) .  Considering the ar i thmet ic  of G F ( p  2) = Zp(a) ,  we denote  0 = c + da ,  for some 

e,d  E Z v and compute  0 -1 = (c - da - d a ) / ( c  2 - cda + d2b). I t  follows t ha t  

0_i_0--1 =C-4- 
e - ad 

c 2 - c da + d 2b + a  d - c 2 _ c d a + d 2 b  . 

To show tha t  0 + 0 -1 6 Zp it suffices to  show tha t  c 2 - cda + d2b --- 1. By the technical  Lemma 2 

above, we observe t ha t  0 p+l = c 2 - cda + d2b. As p + 1 = 4 n K  and 0 is a pr imi t ive  (4n) th root  

of unity, i t  follows t ha t  c 2 - cda + d2b -- 1. From the ident i ty  

follows tha t  all the  other  quanti t ies 0 2 j -1  "~ 0 - ( 2 j - l )  belong to Zp. | 

THEOREM 5. Let  n > 2 be an integer. For ali the infinitely m a n y  posi t ive integers K for which 

p -- 4 n K  4- 1 is a pr ime number,  Tn(x) has n roots  in Zp. 

PROOF. By the results  of Lemmas 1 and 3, i t  remains to show tha t  there  are infinitely many  
primes of the  form p = 4 n K  + 1 and p = 4 n K  - 1. This  follows from Dir ichlet ' s  theorem 1 for 

(/, m) = (1, 4n) and for (l, m) = ( - 1 , 4 n ) ,  respectively. | 

l I f  1 and m are integers with gcd(/, m) = 1, then there are infinitely many prime numbers p satisfying p -= 
I (mod m).  
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EXAMPLE. Consider T6(x) = 32 Z 6 - -  48 x 4 + 18 x 2 - 1. Primes of the form p = 4nK + 1, include 

p = 73, for K = 3 and primes of the form p = 4nK - 1 include p = 23, for K = 1. We have 

T6(x) ~ 3 2  (x + 30) (x T 59) (x +16)  (x +14)  (x T 43) (x + 57) (mod 73) (17) 

T6(x) -= 9 (x + 19) (x + 4) (x + 10) (x + 9) (x + 14) (x + 13) (rood 23) (18) 

The modular properties of the polynomials U~ (x) are similar to those of the polynomials Tn (x). 
Observing that  

w k + w -k  
r/k = 2 ' k = 1 , . . . , n ,  

where w = e 2~ri/2(n+l) is a primitive complex (2n + 2) th root of unity, one can show the following. 

THEOREM 6. Let n >_ 2 be an integer. For aII the infinitely many positive integers K for which 
p = 2(n + 1)K ± 1 is a prime number, U~(x) has n roots in Z v. 

5. F I N D I N G  T H E  M O D U L A R  R O O T S  

The problem of finding the modular roots of the Chebyshev T~,(x) has been reduced to that 
of finding a primitive (4n) th root of unity in GF(q), where either q --- p = 4nK + 1 or q --- p2 = 
(4nK - 1) 2, where p is some prime number and K is a natural number. We first consider the 

case, q = p = 4nK + 1. 
A possible approach is to find a primitive element/3 E GF(q) and then take 0 = ~(q-1)/an. 

The density of primitive elements in GF(q) ensures that a simple search procedure choosing, at 
random, a small number of elements is an efficient probabilistic procedure. In fact, the expected 
number of multiplications rood p is O((logp)/(log log p)2), meaning that  the search procedure is 
O(((log p)4 /(log log p))2) bit operations [8]. 

However, the existence of an efficient deterministic search procedure is much harder and has 
been considered elsewhere. We summarize next the results relevant to this note. 

Improving on results of Wang [9], Shoup [10] proved that  if the extended Riemann hypothesis 
(ERH) holds, then the least primitive root modp is in O(logp) 6. Improving on this, Bach [8] 
shows that, assuming the ERH, the least primitive root modp  is in O((logp)6/(log logp)3). Bach 
also describes an algorithm to compute a set of size O((logp)4(loglogp) -3) which needs to be 
searched for a primitive element (not necessarily the least). This type of result immediately gives 
an efficient search procedure for primitive roots modulo p; it shows how to construct a small set 
of elements of Zp, one of which generates all the nonzero elements mod p. In fact, this can be 
done in O ((log p) ~ / (log log p) 3) bit operations [8]. 

As an example, consider T6(x) and p = 73 = 4 × 6 × 3 + 1. We are looking for the 24 th root of 
unity in Z73. The first primitive element of Zp is/3 = 5. The corresponding primitive 24 th root 
of unity is 0 = 572/24 = 53 = 52 (mod 73). The actual factorization of T6(x) (mod 73) is given 

above by equation (17). 
We consider now the case p = 4nK - 1, where the extension field GF(p 2) = GF(q) has a 

primitive (4n) th root of unity 9, which we wish to find. Shoup [10] shows that,  assuming the 
ERH, there is a deterministic polynomial time algorithm for primitive roots in GF(pU), with no 

restrictions on p. 
We consider here an alternative probabilistic procedure for the case where p = 4nK - 1. It is 

well known that  - 1  is a square modulo p if and only i fp  --- 1(rood 4). Hence, for p --- 4nK - 1, 
we see that  the polynomial x 2 + 1 is irreducible in Zp. Therefore, we may consider GF(p 2) as 
the Gaussian integers, with arithmetic done modulo p. 

The result of Lemma 2 gives us a key for a search procedure. We find solutions c, d E Zv to the 
equation c 2 + d 2 = 1. Compute the order t of the element/3 = c + id E Zp (~ iZp. Notice that  t 
always divides p +  1, by Lemma 2. If 4n divides t, then we take 0 -- fit/an as ore" primitive (4n) th 
root of unity. We repeat the search until 4n divides t .  Since p + 1 divides p2 _ 1, we know that 
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Algorithm Ml:toots(n, K) 

INPUT: Integers, n, K 
OUTPUT: Roots of T~(x) rood 4nK - 1 
MRoots-1 p =- 4nK  - 1 

MRoots-2 Choose randomly c and d E GF(p) 

MRoots-3 Compute a --= c 2 -t- d 2 rood p 

MRoots-4 If a ¢ 1 then GO TO Mroots-2 
MRoots-5 Compute the order t of a E GF(p 2) 

MRoots-6 If 4n divides t then 0 = (c + id) t/4n else go back to MRoots-2 

MRoots-7 for k = 1 to n do 
0 2 k - 1  ~- 0--2k+ 1 

output (k -- mod p 
2 

Figure 1. A randomized algorithm for roots of Tn(x). 

there exist elements of order p + 1 in Zp (~ i~p  and this search will terminate. This algorithm is 
shown in Figure 1. 

As the number of primitive elements is ¢(q - 1), it follows that  average number of trials the 
algorithm MRoots  performs is bounded by (q - 1) /¢(q - 1). I t  has the advantage of testing a 
prior necessary condition, and such arithmetic is done modulo p, not  in G F ( p 2 ) .  

Similar algorithms may be implemented for finding the linear factors of Un, the Chebyshev of 

the second kind. I t  suffices to replace Step MRoot-1 with p = 2(n + 1)K - 1 and the condition "if 
4n divides t" in step MRoots-6 by "if 2n + 2 divides t". Step MRoots-7 also should compute r/k 
instead of (k. 

As an example, we take U3(x) and p = 23 = 2(3 + 1)3 - 1. Solutions (c, d) to c 2 + d 2 = 1 
(mod p) include (4, 10), (8, 11), (9, 9), (10, 19), (11, 15). The respective orders of the corresponding 
elements are 24, 12, 8, 24, 3 and we may take 0 = (4 + 10i) 24/s = 14 + 9i as the primitive 8 TM root 
of unity. The corresponding roots are 14, 0, 9. 

6. CONCLUSION 

In this paper, several algebraic properties of Chebyshev polynomials of the first and second 
kind have been presented. Also, tests for deciding when a Chebyshev polynomial is divisible 
by another have been presented. Further, it has been shown tha t  the remainder produced by 
Euclidean division of two Chebyshev polynomials is, up to a sign, another Chebyshev polynomial, 
leading to the determination of the greatest common divisor of two Chebyshev. 

In addition, this paper has discussed the problem of factorizing Chebyshev polynomials over 
finite fields. I t  has been shown that,  given any Chebyshev polynomials, two infinite sets of 

primes p can be found such that  Z~ contains all the roots of the polynomial. Finally, procedures 
for computing the modular roots have been discussed. 
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