
1

Semiautomatic Differentiation for Efficient
Gradient Computations

David M. Gay

Optimization and Uncertainty Estimation Department
Sandia National Laboratories ??

dmgay@sandia.gov

Summary. Many large-scale computations involve a mesh and first (or sometimes
higher) partial derivatives of functions of mesh elements. In principle, automatic
differentiation (AD) can provide the requisite partials more efficiently and accu-
rately than conventional finite-difference approximations. AD requires source-code
modifications, which may be little more than changes to declarations. Such simple
changes can easily give improved results, e.g., when Jacobian-vector products are
used to solve nonlinear equations iteratively. When gradients are required (say, for
optimization) and the problem involves many variables, “backward AD” in theory
is very efficient, but when carried out automatically and straightforwardly, may
use a prohibitive amount of memory. In this case, applying AD separately to each
element function and manually assembling the gradient pieces — semiautomatic dif-
ferentiation — can deliver gradients efficiently and accurately. This paper concerns
on-going work; it compares several implementations of backward AD, describes a
simple operator-overloading implementation specialized for gradient computations,
and compares the implementations on some mesh-optimization examples. Ideas from
the specialized implementation could be used in fully general source-to-source trans-
lators for C and C++.

Key words: Semiautomatic differentiation, backward AD, RAD package,
operator overloading, mesh elements, manual assembly, Jacobian-vector prod-
ucts, C/C++ source-to-source, TFad.

1.1 Introduction

Many large-scale computations concern partial differential equations (PDEs)
based on physical systems and thus involve discretizations that approximate

??Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the United States Department of Energy under contract
DE-AC04-94AL85000. This document is released as SAND Number 2004-4688P and
is to appear in [8].



2 David M. Gay

physical objects on meshes. Such discretizations generally yield systems of
nonlinear equations whose residuals involve the elements of a mesh. As a
PDE model matures, interest often grows in optimizing some aspects of the
model, i.e., of solving optimization problems with PDE constraints. Like the
constraint residuals, the objectives are generally sums of contributions from
functions of the mesh elements.

For solving both discretized PDEs themselves and optimization problems
involving them, partial derivatives (or approximations to them) are required.
Conventionally, these partials are often approximated by finite differences,
but finite differences have several drawbacks. Finding suitable step sizes that
balance truncation and round-off error can be tricky, and the overall error
in a finite-difference approximation can contribute to computational difficul-
ties. Moreover, when partials with respect to many variables are required,
finite differences can be slow. Automatic differentiation (AD) provides a more
accurate and often faster alternative to finite differences.

As Griewank [18] showed in a survey that appeared in 1989, AD has been
reinvented many times. His more recent book [19] tells much more about AD
than we will discuss here. Of primary interest here are first derivatives, which
may be computed either by forward AD, in which one recurs the desired
partials while carrying out each operation in the expression of interest, or
by backward AD, in which one first evaluates an expression, then visits its
operations again in reverse order to recur partials (so-called adjoints) of the
final expression result with respect to the result of each operation.

Forward AD works well when only a few independent variables are in-
volved, but its complexity can grow with the number of independent vari-
ables. In particular, when there is only one independent variable, forward AD
can efficiently and conveniently compute derivatives of high order. Nonlinear
equations can be solved by matrix-free Newton-Krylov methods, which sim-
ply use Jacobian-vector products. Such computations effectively involve just
one independent variable, and are well handled by forward AD. (For example,
TFad [3] works well in some applications at Sandia National Labs [5].)

When there are many independent variables, as is often the case in op-
timization problems, backward AD is attractive for computing gradients. It
delivers function and gradient in time proportional to that required for a func-
tion evaluation alone. Unfortunately, when used straightforwardly, backward
AD may require memory proportional to the number of operations in the func-
tion evaluation, which may appear prohibitive in large-scale computations.

The rest of this paper is organized as follows. The next section gives more
discussion of computations on a mesh. Section 1.3 reviews some currently
available ways to implement AD. Section 1.4 describes a new, simple, special-
ized implementation of backward AD by operator overloading in C++. Some
timing results on mesh-optimization objectives appear in Sect. 1.5. Section
1.6 discusses implications for source-to-source transformation of C and C++,
and Sect. 1.7 offers concluding remarks.



1 Semiautomatic Differentiation for Efficient Gradient Computations 3

1.2 Action on a Mesh

As mentioned in Sect. 1.1, many large-scale computations involve meshes. For
optimization problems whose objectives and constraints involve sums of func-
tions of mesh elements, one can use backward AD to compute (separately) the
contributions of each mesh element to the objective and constraint gradients
and manually assemble these pieces into the overall gradients, an approach
sketched in [1]. Preliminary investigations suggest that this approach should
work well in some problems of interest at Sandia, such as mesh optimization
(moving interior mesh points to improve the quality of a given mesh) and
PDE-constrained optimization. Only a few kinds of mesh elements appear in
such problems, making it feasible to treat each separately, either by opera-
tor overloading or by source transformation and optimization of routines that
compute the element functions. This results in what might be called semiauto-
matic differentiation: combining use of an AD tool with manual assembly. An
advantage of this approach is that it greatly reduces the memory requirements
of backward AD.

1.3 Some AD Alternatives

Straightforward use of AD is facilitated by various tools, such as those listed
on the autodiff web site [4]. These tools work with computations expressed
in a suitable programming language, such as C++ or Fortran 95, or a special-
purpose language, such as MATLAB [25] or AMPL [10, 11], and use several
implementation techniques, as sketched below.

1.3.1 Operator Overloading

Perhaps the most straightforward implementation technique is operator over-
loading in languages that support it, such as C++ and Fortran 90. An excel-
lent, general, and often used example for C++ is ADOL-C [20, 21]. Use of
ADOL-C requires some simple source modifications, which are typical of the
sort of modifications needed by AD tools that work with conventional pro-
gramming languages. Variables with respect to which derivatives are required,
and all variables computed from them, must be given a special type. When
such “active” variables appear in an “active section,” delimited in ADOL-C
by trace on and trace off statements, ADOL-C records arithmetic oper-
ations on the variables in a “tape,” a data structure that summarizes the
computation. Subsequently the tape can be “played” to carry out various AD
computations. (Forward AD using the operator-overloading approach does
not require use of a tape, but ADOL-C gains flexibility and generality from
its use of tapes.) With ADOL-C, a special syntax involving <<= indicates as-
signment of input values to the input variables, and another syntax involving
>>= indicates assignment of output values, partial derivatives of which can



4 David M. Gay

be computed subsequently by AD. The process of recording a tape is some-
what slow (as indicated by the timings in Sect. 1.5), but once a tape has been
recorded, it can be reused with different values of the input variables, so long
as all logical expressions involving active variables come out the same as dur-
ing the taping. Reusing a previously recorded tape is faster than recording a
new one, as illustrated in Sect. 1.5.

1.3.2 Source Transformation

Source transformation is an implementation technique that can give faster
execution than straightforward operator overloading. The idea is for a tool
to rewrite a computation expressed in given imperative language, such as
C or Fortran, giving a more elaborate computation in the same language
that carries out the original computation along with automatic differentiation
thereof. An early general-purpose instance of this approach is Kedem’s use [23]
of the AUGMENT preprocessor [9] to carry out forward AD or computation
of Taylor coefficients for computations expressed in Fortran 66. AUGMENT
effectively implemented operator overloading via source transformation and
did not attempt to optimize the computations. ADIFOR [6, 7] is a more recent
effort that addresses Fortran 77 and does backward AD within statements
while carrying out forward AD overall, thus often achieving greater efficiency
than a simple forward AD computation would give. ADIFOR does not use a
tape, which also helps make its forward-mode computations faster than those
of ADOL-C. A still more recent effort is TAF [29], a commercial successor
to TAMC [17] that addresses Fortran 95 and with which several speakers
reported impressive numerical results at the Fourth International Conference
on Automatic Differentiation [2].

1.3.3 Special Compiler

A variant of source transformation is to have the compiler itself recognize
special types and statements that cause AD computations. The NAGWare
Fortran 95 compiler [26, 27] provides an example of this approach.

1.3.4 Implicit Domain Knowledge

Special-purpose languages can exploit automatic differentiation without the
small syntactic burden imposed on users of general-purpose programming lan-
guages. For example, users of the AMPL language for mathematical program-
ming [10, 11] merely express objectives and constraints in a mathematical no-
tation without indicating anything about the partial derivatives that a solver
might need. The system deduces “active” variables behind the scenes and
arranges AD computations where needed.



1 Semiautomatic Differentiation for Efficient Gradient Computations 5

1.3.5 Interpreted Evaluations

Interpreted evaluations are an implementation technique that offers consider-
able flexibility at some cost of speed. Rather than compiling problem-specific
machine code, one uses expression representations that are constructed and
evaluated easily “on the fly.” There are many ways to handle the details
(and the distinction between compiled and interpreted evaluations can be-
come murky). One can define a virtual machine in the style of Pascal or Java.
Logically equivalent to a virtual machine is the list of 4-tuples of integers that
GlobSol [22] uses, the first indicating an operation, the latter three operands.

Another logically equivalent form of interpreted evaluation is to use func-
tion pointers in an expression graph. Because of its convenience, this is the
approach taken by AMPL and its solver-interface library [14]. Timings involv-
ing this approach appear below, so sketching some more of its details seems
appropriate. Each operation is represented by a structure with pointers to
operands and to a function that carries out the operation and stores partial
derivatives for use in reverse AD. For example, a binary operation in a setting
where function and gradient are desired may have the form (in C notation)

struct expr {
real (*op)(expr*);
expr *L, *R; /* left and right operands */
real dL, dR; /* left and right partials */
};

and the op in an expr for a multiplication operation might be

real OPMULT(expr *e) {
e->dR = (*e->L->op)(e->L);
e->dL = (*e->R->op)(e->R);
return e->dR * e->dL;
}

In reality, there may be other fields and auxiliary variables and a different
layout that considers alignment, but this illustrates the gist of the approach.

With this latter approach, when setting up the data structures, one can
arrange for the backwards computation of adjoint values to be carried out
by a very simple loop, as illustrated by Fig. 1.1, in which a derp describes a
der ivative propagation operation. The initial assignment of 1. reflects that the
partial of the final result f with respect to itself is 1, i.e., ∂f

∂f = 1. Each iteration
of the loop in Fig. 1.1 updates the adjoint corresponding to an operand of one
of the operations in the computation. Both d->a and d->c point to adjoints,
and d->b points to a partial derivative; unary * dereferences pointers, so *d->a
is the adjoint to which d->a points. Thus “*d->a += *d->b * *d->c” adds
the product of *d->b and *d->c to the adjoint *d->a.



6 David M. Gay

void derprop(derp *d) {
*d->b = 1.;

do *d->a += *d->b * *d->c;

while(d = d->next);

}

Fig. 1.1. Backward propagation of adjoints in the AMPL/solver interface library.

1.3.6 Optimized Compiled Evaluations with nlc

For solving nonlinear programming problems, the above style of interpreted
evaluations often suffices when the times taken by other parts of the computa-
tion dominate the times taken to carry out function and gradient evaluations.
In some settings such interpreted evaluations may be too slow, so it is inter-
esting to ask about the extent to which the evaluations can be made faster
by generating and compiling problem-specific source code. For example, doing
a multiplication directly rather than invoking OPMULT will save call-overhead
time, and the computations carried out by derprop often involve adding zero
to a number or multiplying a number by one and thus present opportuni-
ties for optimization when we generate problem-specific source code. The nlc
program [15] carries out such code optimizations in the process of writing C
or Fortran to compute function and gradient values for the objectives and
constraints expressed in a “.nl” file, which AMPL writes to convey problem
information to solvers. The test results in Sect. 1.5 below include times from
C produced by nlc.

One drawback of nlc is that AMPL only expresses primitive-recursive func-
tions, i.e., those that can be turned into in straight-line code (with no loops —
only forward branches). Imported functions provide an escape hatch that per-
mits anything to be computed, but AMPL’s imported functions must provide
partial derivatives with respect to their arguments for use in AD computa-
tions.

1.4 The RAD Package for Reverse AD

It seems interesting to ask how efficiently we can carry out function and
gradient evaluations with an implementation of operator overloading in C++
that is specialized for such computations. To this end, I have written a simple
backwards AD package, RAD (for Reverse AD), that consists of a header file,
rad.h, and a source file of auxiliary functions; see [28]. When a function is
evaluated, RAD sets up data structures that permit the backwards AD sweep
to take a form similar to that in Fig. 1.1. This form is shown in Fig. 1.2, in
which each aval is an adjoint value and *d->a is a partial derivative.



1 Semiautomatic Differentiation for Efficient Gradient Computations 7

for(; d; d = d->next)

d->c->aval += *d->a * d->b->aval;

Fig. 1.2. Inner loop of RAD ’s ADcontext::Gradcomp();

One target use for RAD is computing a sum of functions defined on mesh
elements, with a separate evaluation of function and gradient on one mesh
element before moving on to the next one, and with manual summing of the
element gradients into the overall gradient. Because of this goal, memory is
allocated in large chunks that are not freed, but are retained for reuse on
subsequent mesh elements, thus reducing the overhead of allocating small
objects and eliminating the overhead of freeing them.

With RAD, “active” variables that appear in function evaluations have
type ADvar. Independent ADvar variables — inputs with respect to which par-
tial derivatives are desired — are simply assigned numeric values. Dependent
ADvar variables are computed from expressions involving independent ones,
previously computed dependent ones, and any other numeric values with re-
spect to which partial derivatives are not needed. Dependent ADvar variables
may be updated as desired, and all ADvar variables may participate in loops
and function calls without restriction. Once the dependent ADvar variable rep-
resenting the function result has been assigned its (final) value, one invokes

ADcontext::Gradcomp();
to cause the backwards AD sweep and reclamation of memory used for the
computation just completed. Because the memory is not freed, the last value
assigned to an ADvar v and the corresponding adjoint value (computed by
ADcontext::Gradcomp()) remain available as v.val() and v.adj(), respec-
tively, until the next assignment to an ADvar, which will start reusing the
allocated memory.

What enables ADvar values to be updated is that an ADvar is implemented
as a pointer to a structure that contains fields for the val() and adj() val-
ues of the ADvar’s current value and for partial derivatives associated with
the operation that gave the val field its value. In Fig. 1.2, d->c->aval and
d->b->aval are adj() fields and d->a points to a partial derivative. When
an ADvar is updated, it is adjusted to point to a new structure.

As an example on which we report timings in Sect. 1.5, Fig. 1.3 shows
source for a function, phi1(x,g), that returns a quality measure, φ1(A), for
an element of a three-dimensional mesh [12, 13] and stores its gradient in the
second argument. The function φ1(A) is given by

φ1(A) =
3 det(AW−1)2/3

‖ AW−1 ‖2
F

, (1.1)

in which the 3× 3 matrix A has the form



8 David M. Gay

A = [v1 − v0, v2 − v0, v3 − v0],

where v0, v1, v2, and v3 are four vertices of a mesh element. The 3 × 3 ma-
trix W is constant for each kind of mesh element and represents an ideal
shape; the source in Fig. 1.3 deals with one kind of mesh element, and the
multiplication AW−1 is computed in the assignments to the aw array. The
coordinates of the vi appear in successive components of the incoming xx ar-
ray. Note how the gradient components are read out after the invocation of
ADcontext::Gradcomp() and how f.val() is returned as the function value.

1.5 Test Results

Here we report comparative timings of some alternative ways of carrying out
function and gradient evaluations by backwards AD. The timings were done
on two Linux machines, Desktop with a 3 GHz Intel Xeon processor having
512 MB of cache, and Laptop with a 1.6 GHz Intel Pentium M processor
having no cache. Compilation was with g++ -O or gcc -O, and the same
binaries ran on both machines. The reason for showing results from these two
machines is to illustrate that architectural details (such as cache) can affect
relative timings.

Table 1.1 shows timings for the function f = φ1 given by (1.1). The timings
are relative to the time for computing f alone by C++ code similar to that
in Fig. 1.3, with “ADvar” replaced by “double” and without references to g
or ADcontext::Gradcomp(). The time per function or function and gradient
evaluation behind each table entry was computed in a separate timing loop
that ran for several seconds. (On Desktop, the computations should all have
been running in the cache. This seems fair, as we would try to organize the
evaluation of a mesh objective so much of the inner loop would involve data
and instructions from the cache.)

Table 1.1. Relative times for f = φ1

Desktop Laptop

Compiled f 1. 1.
f +∇f by RAD (§1.4) 11.0 10.1
f +∇f by nlc (§1.3.6) 1.35 1.53
ADOL-C taped f (§1.3.1) 4.83 5.54
" taped f +∇f 14.5 14.9

The last two lines of Table 1.1 are for ADOL-C evaluating a previously
recorded tape. The computation of f from the tape looks quite efficient. That
RAD outperforms ADOL-C when computing f and ∇f confirms that spe-
cialized operator overloading for AD can be worthwhile. The nlc evaluations



1 Semiautomatic Differentiation for Efficient Gradient Computations 9

double phi1(double *xx, double *g) {

ADvar aw[3][3], det, f, x[4], y[4], z[4];

int i, j;

static double one_over_root3 = sqrt(1./3.),

two_over_root3 = sqrt(4./3.),

one_over_root6 = sqrt(1./6.),

root_3_halves = sqrt(3./2.);

for(i = j = 0; i < 12; i += 3, j++) {

x[j] = xx[i];

y[j] = xx[i+1];

z[j] = xx[i+2]; }

for(i = 1; i <= 3; i++) {

x[i] -= x[0];

y[i] -= y[0];

z[i] -= z[0]; }

aw[0][0] = x[1]; aw[1][0] = y[1]; aw[2][0] = z[1];

aw[0][1] = two_over_root3*x[2] - one_over_root6*x[1];

aw[1][1] = two_over_root3*y[2] - one_over_root6*y[1];

aw[2][1] = two_over_root3*z[2] - one_over_root6*z[1];

aw[0][2] = root_3_halves*x[3] - one_over_root6*(x[1] + x[2]);

aw[1][2] = root_3_halves*y[3] - one_over_root6*(y[1] + y[2]);

aw[2][2] = root_3_halves*z[3] - one_over_root6*(z[1] + z[2]);

for(f = 0., i = 0; i < 3; i++)

for(j = 0; j < 3; j++)

f += aw[i][j]*aw[i][j];

det = aw[0][0]*aw[1][1]*aw[2][2]

+ aw[1][0]*aw[2][1]*aw[0][2]

+ aw[2][0]*aw[0][1]*aw[1][2]

- aw[2][0]*aw[1][1]*aw[0][2]

- aw[1][0]*aw[0][1]*aw[2][2]

- aw[0][0]*aw[2][1]*aw[1][2];

f = 3*pow(det, 2./3.) / f;

ADcontext::Gradcomp();

for(i = j = 0; i < 12; i += 3, j++) {

g[i] = x[j].adj();

g[i+1] = y[j].adj();

g[i+2] = z[j].adj(); }

return f.val();

}

Fig. 1.3. Source for phi1(x,g) corresponding to (1.1).



10 David M. Gay

look remarkably efficient, delivering on the promise of AD to compute f and
∇f in a small multiple of the time for computing f alone.

Some of the overhead in evaluating φ1 and ∇φ1 is masked by the time
taken by the pow invocation in Fig. 1.3, i.e., by raising det(AW−1) to the
power 2/3. We can eliminate this overhead by dealing with φ2 = (φ1/3)3, i.e.,

φ2(A) =
det(AW−1)2

‖ AW−1 ‖6
F

. (1.2)

Using φ2 for mesh optimization (the problem giving rise to φ1) is not nec-
essarily desirable because φ2 penalizes “large” elements much more than φ1

does, but it is interesting to see how the values in Table 1.1 change when
the overhead of exponentiation goes away. Table 1.2 gives relative timings for
(1.2); the overheads for all the variants of computing ∇f go up but are qual-
itatively similar to those in Table 1.1, and the nlc evaluations still give f and
∇f in less than thrice the time of computing f alone.

Table 1.2. Relative times for f = φ2 = (φ1/3)3

Desktop Laptop

Compiled f 1. 1.
f +∇f by RAD 37.8 27.2
f +∇f by nlc 2.54 2.13
ADOL-C taped f 16.6 13.7
" taped f +∇f 55.6 40.0

We conclude this section by showing timings on a more elaborate mesh-
quality function [24], µ1(A), defined by (1.3)–(1.5):

τ = det(AW−1), (1.3)

h =
1
2
(τ +

√
τ2 + 4δ2), (1.4)

µ1(A) = h−2/3 ‖ AW−1 − I ‖2
F . (1.5)

The 3× 3 matrices A and W in (1.3) and (1.5) are as in (1.1), and δ in (1.4)
is a constant. Note that evaluating f = µ1 involves extra overhead from both
exponentiation and a square-root computation.

Relative timings for f = µ1 appear in Table 1.3. All times are for evalua-
tions of f and ∇f . The “Compiled f” times are for hand-coded function and
gradient evaluations. They factor A, compute det(A) from the factorization,
and use the identity

∂ log det A

∂t
= trace

(
A−1 ∂A

∂t

)
in computing ∇f , in part because this machinery is useful in computing ∇2f ,
a matter discussed briefly in Sect. 1.7 below. Even with the factorization,



1 Semiautomatic Differentiation for Efficient Gradient Computations 11

etc., done with inline, loop-free code, the calculation is slightly slower than
the corresponding one derived by applying nlc to the AMPL model shown in
Fig. 1.4, so the times in Table 1.3 are relative to these nlc times.

var xyz{i in 0..2, j in 0..2};

var winv{0..2, 0..2}; # really a constant param

var delta := .1; # really a constant param

var aw{i in 0..2, j in 0..2} = sum{k in 0..2} xyz[i,k]*winv[k,j];

var det = aw[0,0]*aw[1,1]*aw[2,2]

+ aw[1,0]*aw[2,1]*aw[0,2]

+ aw[2,0]*aw[0,1]*aw[1,2]

- aw[2,0]*aw[1,1]*aw[0,2]

- aw[1,0]*aw[0,1]*aw[2,2]

- aw[0,0]*aw[2,1]*aw[1,2];

var h = 0.5 * (det + sqrt(det^2 + 4*delta^2));

var mu1a = 0.5 * sum{i in 0..2, j in 0..2}

(aw[i,j] - if i == j then 1)^2;

minimize mu1: mu1a / h^(2/3);

Fig. 1.4. AMPL model for µ1.

Table 1.3. Relative times for f = µ1 and ∇f

Desktop Laptop

Hand-coded 1.07 1.12
ASL 11.3 11.6
ASL for ∇2f 13.0 13.4
RAD 9.14 7.06
nlc 1. 1.
ADOL-C new tape 55.0 37.7
ADOL-C old tape 15.4 14.1

The ASL times are for interpreted evaluations of Fig. 1.4 with the
AMPL/solver interface library, as in Sect. 1.3.5. When set up to do Hessian
computations, these evaluations incur the extra overhead during function eval-
uations of storing some second partial derivatives. This overhead is reflected
in the “ASL for ∇2f” line of Table 1.3.

The “ADOL-C new tape” times in Table 1.3 show the cost with ADOL-
C of recording a tape. These times are to be contrasted with those in the
“ADOL-C old tape” line for reusing a previously recorded tape, and with
those in the RAD line for overloading specialized to f and ∇f .



12 David M. Gay

1.6 Implications for Source Transformation

The optimizations done by the nlc program could also be done (at least
on straight-line code) by a source-to-source translator or special compiler
that focused on automating gradient computations. The gap between the
times for RAD and nlc in Table 1.3 reflects the opportunities mentioned in
Sect. 1.3.6 for optimization in such transformations. Of course, like RAD,
such transformations should handle completely general source, with only
the usual limitations on AD computations. (For example, AD applied to
“(x == 3 ? 5 : x + 2)” would compute 0 rather than 1 for the derivative at
x = 3.) The approach taken in RAD could work well in such transformations,
at least as long as sufficient memory is available. This approach would present
various opportunities to further reduce overheads by computing some things
at compile (or transformation) time and thus to speed up the computations.

1.7 Concluding Remarks

One motivation for this work was to research AD approaches that might work
well on an objective function defined on elements of a mesh, particularly
when the objective is the sum of functions computed on individual mesh
elements. Although the memory required for straightforward backward AD
could be prohibitive on large meshes, little memory may be needed to compute
a function and its gradient on an individual mesh element, and assembling
the individual mesh-element gradients into an overall objective gradient “by
hand” may be straightforward. Thus we obtain a reliable and efficient way
to carry out function and gradient evaluations for some problems (albeit not
necessarily for problems with objectives or constraints that involve integration
over time — unless time is treated analogously to the spacial dimensions).

An AD approach introduced in this paper is the RAD package for function
and gradient computations via operator overloading in C++. Since it is fully
general and easy to use, RAD may find uses in various applications. The
implementation techniques described in Sect. 1.4 could prove useful in special
source-to-source translators or compilers meant to facilitate AD computations.

A growing number of nonlinear programming solvers use Hessians (matri-
ces of second partials), so it is of interest to see how easily we can arrange
for their efficient computation. The interpreted Hessian evaluations offered by
the AMPL/solver interface library [15, 16] are convenient but not very fast.
For example, for the function f = µ1 given by (1.5), hand-coded evaluations
of f , ∇f , and ∇2f run about 100 times faster than computations with the
AMPL/solver interface library. It would be interesting to see how much these
computations could be sped up by an extension of nlc that addressed Hessian
computations along with functions and gradients.

Acknowledgment. I thank Scott Mitchell and the referees and editors for their
helpful comments on the manuscript.



1 Semiautomatic Differentiation for Efficient Gradient Computations 13

References

1. Jason Abate, Steve Benson, Lisa Grignon, Paul D. Hovland, Lois C. McInnes,
and Boyana Norris. Integrating AD with object-oriented toolkits for high-
performance scientific computing. In George Corliss, Christèle Faure, Andreas
Griewank, Laurent Hascoët, and Uwe Naumann, editors, Automatic Differenti-
ation of Algorithms: From Simulation to Optimization, Computer and Informa-
tion Science, chapter 20, pages 173–178. Springer, New York, NY, 2002.

2. The 4th International Conference on Automatic Differentiation, 2004. http:

//www.autodiff.org/ad04/.
3. Pierre Aubert, Nicolas Di Césaré, and Olivier Pironneau. Automatic differen-

tiation in C++ using expression templates and application to a flow control
problem. Computing and Visualization in Science, 3:197–208, 2001.

4. Autodiff web site. http://www.autodiff.org/Tools/index.php.
5. Roscoe A. Bartlett (rabartl@sandia.gov). Private communication, 2004.
6. Christian H. Bischof, Alan Carle, George F. Corliss, Andreas Griewank, and

Paul D. Hovland. ADIFOR: Generating derivative codes from Fortran programs.
Scientific Programming, 1:11–29, 1992.

7. Christian H. Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. AD-
IFOR 2.0: Automatic differentiation of Fortran 77 programs. IEEE Computa-
tional Science & Engineering, 3(3):18–32, 1996.

8. H. Martin Bücker, George F. Corliss, Paul Hovland, Uwe Naumann, and Boyana
Norris, editors. Automatic Differentiation: Applications, Theory, and Implemen-
tations, volume 50 of Lecture Notes in Computational Science and Engineering.
Springer, New York, NY, 2005.

9. Fred D. Crary. A versatile precompiler for nonstandard arithmetics. ACM
Trans. Math. Software, 5(2):204–217, 1979.

10. Robert Fourer, David M. Gay, and Brian Kernighan. A modeling language for
mathematical programming. Management Science, 36(5):519–554, 1990.

11. Robert Fourer, David M. Gay, and Brian Kernighan. AMPL: A Modeling Lan-
guage for Mathematical Programming. Duxbury Press, 2003. Second edition;
ISBN 0-534-38809-4.

12. Lori Freitag, Patrick Knupp, Todd Munson, and Suzanne Shontz. A compari-
son of optimization software for mesh shape-quality improvement problems. In
Proceedings of the 11th International Meshing Roundtable, Ithaca, NY, 2002.
http://www.imr.sandia.gov/papers/imrll/freitag.pdf.

13. Lori Freitag Diachin, Patrick Knupp, Todd Munson, and Suzanne Shontz. A
comparison of inexact newton and coordinate descent mesh optimization tech-
niques. In Proceedings of the 13th International Meshing Roundtable, Williams-
burg, VA, 2004. http://www.imr.sandia.gov/papers/imrll/freitag.pdf.

14. David M. Gay. Automatic differentiation of nonlinear AMPL models. In
A. Griewank and G. Corliss, editors, Automatic Differentiation of Algorithms:
Theory, Implementation, and Application, pages 61–73. SIAM, 1991.

15. David M. Gay. Hooking your solver to AMPL. Numerical Analysis Manuscript
No. 93-10, AT&T Bell Laboratories, Murray Hill, NJ, 1993, revised 1997. http:
//www.ampl.com/REFS/hooking2.ps.gz.

16. David M. Gay. More AD of nonlinear AMPL models: Computing Hessian infor-
mation and exploiting partial separability. In Martin Berz, Christian Bischof,
George Corliss, and Andreas Griewank, editors, Computational Differentiation
: Techniques, Applications, and Tools, pages 173–184. SIAM, 1996.



14 David M. Gay

17. Ralf Giering and Thomas Kaminski. Recipes for adjoint code construction.
ACM Trans. Math. Software, 24(4):437–474, 1998.

18. A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors,
Mathematical Programming, pages 83–107. Kluwer Academic Publishers, 1989.

19. A. Griewank. Evaluating Derivatives, Principles and Techniques of Algorithmic
Differentiation, volume 19 of Frontiers in Applied Mathematics. SIAM, 2000.

20. A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: A package for
the automatic differentiation of algorithms written in C/C++. ACM Trans.
Math Software, 22(2):131–167, 1996.

21. Andreas Griewank, David Juedes, Hristo Mitev, Jean Utke, Olaf Vogel, and
Andrea Walther. ADOL-C: A package for the automatic differentiation of algo-
rithms written in C/C++. Technical report, Institute of Scientific Computing,
Technical University Dresden, 1998. Version 1.8, ftp://ftp.math.tu-dresden.
de/pub/ADOLC/ADOLC 1.8/adolc 1.8.ps.gz.

22. Baker Kearfott. Rigorous Global Search: Continuous Problems, volume 23 of
Nonconvex Optimization and its Applications. Kluwer, 1996.

23. Gershon Kedem. Automatic differentiation of computer programs. ACM Trans.
Math. Software, 6(2):150–165, 1980.

24. Patrick Knupp (pknupp@sandia.gov). Private communication, 2004.
25. MATLAB web site. http://www.mathworks.com.
26. NAG. Automatic differentiation: Differentiation enabled Fortran compiler tech-

nology. http://www.nag.co.uk/nagware/research/ad overview.asp.
27. U. Naumann and J. Riehme. Computing adjoints with the NAGWare Fortran

95 compiler. In Bücker et al. [8], pages xxx–yyy.
28. URL for downloading the RAD package for reverse AD. http://endo.sandia.

gov/∼dmgay/rad.tar.gz.
29. TAF web site. http://www.fastopt.de/.


