
Derivative Convergence forIterative Equation Solvers�Andreas Griewank and Christian Bischof, Argonne National Laboratory,George Corliss, Marquette University,Karen Williamson, Rice UniversityMarch 30, 1999Abstract When nonlinear equation solvers are applied to parameter-dependent problems, theiriterates can be interpreted as functions of these variable parameters. If they exist, the derivativesof these iterated functions can be recursively evaluated by the forward mode of automatic di�eren-tiation. Then one may ask whether and how fast these derivative values converge to the derivativeof the implicit solution function, which may be needed for parameter identi�cation, sensitivitystudies, or design optimization.It is shown here that derivative convergence is achieved with an R-linear or possibly R-superlinearrate for a large class of memory-less contractions or secant updating methods. For a wider class ofmulti-step contractions, we obtain R-linear convergence of a simpli�ed derivative updating scheme,which is more economical and can be easily generalized to second higher derivatives. We also for-mulate a constructive criterion for derivative convergence based on the implicit function theorem.All theoretical results are con�rmed by numerical experiments on small test examples.Keywords. Derivative convergence, automatic di�erentiation, implicit functions, preconditioning,Newton-like methods, secant updates.1 Introduction and Assumptions on F (x; t) = 0Many functions of practical interest are de�ned implicitly as solutions to di�erential or algebraicequations. The values of these functions are typically evaluated by iterative procedures with a vari-able number of steps and various, often discontinuous, adjustments. The corresponding computerprograms contain branches, and the results are often strictly speaking not everywhere di�eren-tiable in the data. Then one may ask if and how automatic di�erentiation can still be expectedto yield derivative values that are reasonable approximations to the underlying implicitly de�nedderivatives.Automatic, or computational, di�erentiation is a chain rule based technique for evaluating thederivatives of functions de�ned by algorithms, usually in the form of computer programs writtenin Fortran, C, or some other high level language. If the program can theoretically be unrolled intoa �nite sequence of arithmetic operations and elementary function calls, then derivatives can bepropagated recursively. Exceptions arise when there is a division by zero or one of the elementaryfunctions is evaluated at a point of nondi�erentiability. These local contingencies are easily detected�This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38. 1



and arise only in marginal situations where the undi�erentiated evaluation algorithm is alreadypoorly conditioned. For a general review of the theory, implementation and application of automaticdi�erentiation, see [4].Rather than as a practical problem for automatic di�erentiation, one can also view the questionraised here as a purely theoretical one, namely, whether the iterates generated for parameter-dependent problems converge not only pointwise, but also with respect to some Sobolev norminvolving derivatives with respect to the parameters. This theoretical aspect will not be fullyexplored here, as only pointwise convergence of the derivatives is established. Throughout we willanalyze the situation where a nonlinear systemF (x; t) = 0 with F : IRn � IR 7! IRnis solved for x(t) for �xed t by an iteration of the formxk+1 = �k(xk; t) � xk � PkF (xk; t) : (1)We wish to compute the total derivatives x0(t) = dx(t)=dt. Without loss of generality, we haverestricted our framework to the case of a single scalar parameter t 2 IR since multivariate derivativescan always be constructed from families of univariate derivatives [1]. Total derivatives with respectto t will be denoted by primes, and partial derivatives (with x kept constant) by the subscript t.In this paper, we consider two approaches to computing the desired implicitlyde�ned derivative x0(t). The \simpli�ed" approach treats the Pk as if they were inde-pendent of xk. The \fully di�erentiated" approach di�erentiates the entire iterativealgorithm.The rest of this section discusses some of the practical and theoretical pitfalls of using automaticdi�erentiation in the computation of x0(t).Obviously, any sequence fxkgk�0 for which F (xk; t) never vanishes exactly can be written inthe form (1), unless we place some restriction on the n � n matrices Pk and thus the sequence ofiteration functions �k. The assumptions on the Pk that we will make are quite natural and almostnecessary for a numerically stable iterative process.Assumption 1 (Regularity) For some �xed t the iteration converges to a solution, so thatxk ! x� = x(t) with F (x(t); t) = 0 :Moreover, on some ball with radius � > 0 centered at (x(t); t) the function F is jointly Lipschitz-continuously di�erentiable and has a nonsingular Jacobian Fx(x; t) = @F (x; t)=@x with respect tox, so that for two constants c0, L, and all kx� x(t)k < �kF�1x (x; t)k; k[Fx(x; t); Ft(x; t)]k � c0 ;and k[Fx(x; t); Ft(x; t)]� [Fx(x�; t); Ft(x�; t)]k � Lkx� x�k ;where we may use l2 norms without loss of generality.Under this assumption, local convergence is guaranteed for Newton's method with Pk = Fx(xk; t)�1or for the Picard iteration with Pk = I if the spectral radius of (I � Fx) is less than one. If thiscondition is not met by the original system F = 0, one might try to �nd a �xed preconditioner2



Pk = P so that (I � P Fx) is contracting. Alternatively, one may select Pk as a function of xk, forexample by performing an incomplete triangular decomposition so that we can writePk = P (xk; t) :Then we will refer to the iteration (1) as a memory-less contraction provided the following conditionis met.Assumption 2 (Contractivity) The discrepanciesDk = [I � Pk Fx(xk; t)]satisfy �k � kDkk � � < 1 (2)with respect to some induced matrix norm so that in the limit�� � limk �k � � :For the class of methods satisfying this contractivity assumption (which includes Newton'smethod with analytical Jacobians or divided di�erence approximations), derivative convergence ofthe derivatives can be obtained easily. As an immediate consequence of Assumptions 1 and 2, wenote that by standard argumentskPkk � c0(1+�) and kP�1k k � c0=(1� �) : (3)In the case of secant methods [5], the condition (2) is usually imposed for k = 0 and deduced fork > 1 to guarantee local convergence. If one assumes a certain kind of uniform linear independencefor the sequence of the search directions, it can be shown [6] that �� = 0. This is a su�cient, butby no means necessary, condition for Q-superlinear convergence. It can be enforced by taking so-called special steps [7] for the sole purpose of reducing the discrepancy Dk. We will see that �� = 0implies R-superlinear rather than just R-linear convergence of the derivatives. Hence, the extraexpense of special updating steps might be justi�ed on parameter dependent problems. Secantmethods are not memory-less because the preconditioners Pk are computed recursively from stepto step. Therefore, they must be considered as functions of all previous points xk and of the initialchoice P0. Since in formula (1), the matrix Pk must also absorb step multipliers, this functionaldependence need not be smooth and may have discontinuities. In that case, the transition from xkto xk+1 may also be nondi�erentiable, so that the classical chain rule is not directly applicable.Even when x0; P0, and all subsequent Pk are smooth functions of t, it may be uneconomicalto calculate the corresponding derivatives explicitly. For example in the case of Newton's method,the explicit calculation of derivatives would involve the propagation of derivatives through thetriangular decomposition of the Jacobian, a process that involves n3=3 arithmetic operations in thedense case. However, we know from the implicit function theorem thatFx(x(t); t) x0(t) = �Ft(x(t); t) : (4)In particular, this means that x0(t) is de�ned in terms of the �rst derivatives of F alone and doesnot depend on the second derivatives Fxx and Fxt . Yet these tensors come implicitly into playif derivatives with respect to x are propagated through the Newton iteration function �k(xk; t) =xk � Fx(xk; t)�1F (xk; t). The same applies to any other iteration where the preconditioner Pkdepends in some way on derivatives of F with respect to x or t. Therefore, we will examine a3



simpli�ed derivative recurrence, where the Pk are considered as (piecewise) constants with respectto the total di�erentiation of the recurrence (1) with respect to t. We call this the simpli�esapproach.On the other hand, it may be di�cult to determine which quantities in a complicated nonlinearequation solver need to be di�erentiated and which can be considered as constants because theybelong to the calculation of the preconditioner Pk. This distinction must then be conveyed tothe automatic di�erentiation software by suitably annotating the code or retyping some of itsvariables. Therefore, one may prefer to adopt a black box approach and di�erentiate the wholeiterative algorithm as though it were a straight line code. This is what we call the fully di�erentiatedapproach. Also, the derivative x0k = dxk=dt of the iterate xk that is �nally accepted does representthe local tangent of the approximate solution set, which should be close to the exact solution curveif the convergence occurs with some degree of uniformity.For either the simpli�ed or fully di�erentiated approach, it seems pretty clear that the derivativescannot converge faster than the iterates themselves, unless the problem is linear or has some othervery special structure. We will show for Newton's method and for secant updating methods that thederivatives converge R-quadratically and R-linearly, respectively. Especially in the case of secantupdating methods, we must therefore expect that the derivatives may lag behind the iterates duringthe �nal approach to the solution. Fortunately, we can constructively check the accuracy of anyderivative approximation so that a premature termination can be avoided if accurate derivativevalues are required.Gilbert showed in [3] that the derivatives dxk=dt converge in the limit to the desired tangentx0 = x0(t), provided the spectral radius of @�(x; t)=@x is less than one in the vicinity of (x�; t).This fundamental result has removed some serious doubts regarding the general applicability ofautomatic di�erentiation. It has been veri�ed on several large codes, including cases where theassumptions of Gilbert's theorem do not appear to be satis�ed. Therefore, we wish to relax thehypothesis and avoid derivatives that are not needed either from a theoretical or from a practicalpoint of view. We will also establish rates of convergence, provide a practical stopping criterion,and extend the theory to higher derivatives and multi-step contractions.The paper is organized as follows. In the next section, we motivate the simpli�ed and fullydi�erentiated derivative recurrences and develop some basic mathematical relations. In Section3, we establish R-linear derivative convergence for the simpli�ed recurrence under Assumptions 1and 2 alone and for the fully di�erentiated recurrence under the additional assumption that theupdate function of the Pk satis�es a certain di�erentiability condition. Section 4 contains somegeneralizations. The paper concludes with a summary and discussion in Section 5.2 Simpli�ed and Fully Di�erentiated RecurrencesAs we have indicated above, the basic recurrence (1) can be interpreted as one step of a Picard, orRichardson, iteration on the preconditioned nonlinear systemFk(x; t) � Pk F (x; t) = 0: (5)Provided Pk is nonsingular, as we will assume throughout, the solution set of each Fk = 0 is exactlythe same as that of the original system F = 0. Consequently, the implicitly de�ned functionx(t) and its derivatives are independent from the sequence of preconditioners Pk. Their iterativeevaluation certainly need not depend on the derivatives of Pk, which may not even exist.Di�erentiating equation (5) with respect to t with Pk considered a constant, one obtains theequation de�ning x0(t) Pk Fx(x(t); t) x0(t) = �Pk Ft(x(t); t) : (6)4



In the following formulae, we will often suppress the dependence on t, which should be understood.Applying the Richardson iteration to the preconditioned linear system (6) of equations evaluatedat the \current" iterate xk, one obtains the recurrence~x0k+1 = ~x0k � Pk [Fx(xk; t) ~x0k + Ft(xk; t) ] : (7)Here the tilde over ~x0k indicates that these approximations to the derivative x0(t) are in general notthe derivatives of the xk with respect to t, which may or may not exist. Subtracting the actualimplicitly de�ned derivative x0� � �Fx(x�; t)�1Ft(x�; t); :from both sides, we �nd that ~x0k+1 � x0� = Dk(~x0k � x0�) + r0k ; (8)where r0k � Pk[Fx(xk; t)x0� + Ft(xk; t)] = O(kXk � x�k) : (9)Since the perturbation r0k tends to zero, equation (8) looks very much like a contraction and promisesconvergence of the x0k to x0�.If the Pk are at least locally smooth functions of t so that the matrices P 0k = dPk(x(t))=dt arecontinuous, then the derivatives x0k = x0k(t) exist and satisfy the recurrencex0k+1 = x0k � Pk [Fx(xk; t)x0k + Ft(xk; t)]� P 0k F (xk; t) ; (10)which can be rewritten in the contractive form asx0k+1 � x0� = Dk(x0k � x0�) + r0k � P 0kF (xk; t) : (11)We refer to equation (7) as the simpli�ed recurrence and to equation (10) as the fully di�erentiatedrecurrence. The label update will be avoided to reduce the danger of confusion with the Jacobianand Hessian update formulas that lie at the heart of secant methods.Provided the P 0k stay bounded or do not blow up too fast with increasing k, the last term in thelinear recurrence (11) becomes more and more negligible as the residual F (xk; t) approaches zero.In the remainder, we will analyze equation (7) as a special case of equation (10) with Pk consideredas constant on some neighborhood of the current t. Obviously the two stage iteration de�ned by (1)and (10) can only be stationary at the (locally) unique �xed point (xk; x0k) = (x�; x0�). In general,the iteration (10) will never reach this �xed point exactly. However, the derivative approximationsx0k can have no limit other than the correct value x0�, unless the P 0kF (xk; t) converge by someuke to a nonzero vector. This possibility would seem rather remote and can only occur if kP 0kktends to in�nity exactly at the same rate as the reciprocal 1=kF (xk; tk. Note, that this cannothappen in the simpli�ed derivative recurrence (7) for which P 0k � 0 by de�nition. In the case ofthe full recurrence applied to secant methods, the Q-superlinear convergence rate ensures that theperturbation P 0kF (xk; t) tends to zero R-linearly, as we will show in the proof of Proposition 2 inSection 3.In general, we expect that the derivatives x0k exhibit roughly the same convergence behavior asthe iterates xk. To justify this optimism, we note that by Taylor's theoremPkF (xk; t) = PkFx(xk; t) (xk � x�)� rk ;where rk = �Pk[F (xk; t)� Fx(xk; t)(xk � x�)] = O(kxk � x�k2) : (12)5



Consequently, the iterates xk de�ned by (1) satisfy the contractive recurrencexk+1 � x� = Dk(xk � x�) + rk : (13)Hence we have essentially the same leading term in (8), (11), and (13). Taking norms, one obtainskxk+1 � x�k � kDkkkxk � x�k+ krkk ;so that the errors kxk � x�k converge Q-linearly because of the contractivity assumption:limk kxk+1 � x�kkxk � x�k � �� :No matter how a derivative approximation x0k was generated, its quality can be checked byevaluating the directional derivativeF 0(xk; t; x0k) � @F (xk + � x0k; t+ �)@� �����=0 (14)= Fx(xk; t)x0k + Ft(xk; t) : (15)This vector can be evaluated cheaply in the forward mode of automatic di�erentiation, withoutthe need to form the (potentially very large) Jacobian Fx(xk; t). Note that PkF 0(xk; t; x0�) = r0kas de�ned in (9). When F 0(xk; t; x0k) vanishes exactly, x0k represents the tangent of the perturbedsolution set F�1(Fk) � fx 2 IRn : F (x; t) = F (xk; t)g :If F 0(xk; t; x0k) does not vanish, one can substitute into the right hand side of (7) or (10) to im-prove the approximation. In general, the x0k can only be as good approximations to x0� as the xkapproximate x�. Abbreviating�k � kxk � x�k and �k � kx0k � x0�kand setting �k � (Lc1 + kP 0kk)�k with c1 � 2(c20 + 1) ; (16)one can bound the derivative errors as follows.Lemma 1 The regularity and contractivity imposed by Assumptions 1 and 2 imply that�k � 1(1� �)kPkF 0(xk; t; x0k)k+ Lc0c1�k=2 ; (17)�k+1 � �k�k + c0�k ; and kr0kk � c1c0L�k ; (18)for all �k < � .Proof. First we show that the function Fx(x; t)�1Ft(x; t) : IRn ! IRn with t �xed has theLipschitz constant Lc0c1=2 at x�.kFx(x; t)�1Ft(x; t)� Fx(x�; t)�1Ft(x�; t)k� kFx(x; t)�1[Ft(x; t)� Ft(x�; t)]k+ k[Fx(x; t)�1 � Fx(x�; t)�1]Ft(x�; t)k� c0L kx� x�k+ kFx(x; t)�1kkFx(x�; t)� Fx(x; t)kkF�1x (x�; t)kkFt(x�; t)k� c0L kx� x�k+ c0Lkx� x�kc0 c0 = c0L (c20+ 1)kx� x�k :6



By de�nition of F 0(xk; t; x0k) in (14), we havex0k � x0� = F�1x (xk; t)F 0(xk; t; x0k)� �Fx(xk; t)�1Ft(xk; t) + x0�� :After taking norms and using the Lipschitz constant just derived, we get�k � kF�1x (xk; t)F 0(xk; t; x0k)k+ c0L c1�k=2 :The inverse F�1x (xk; t) in the �rst term on the right hand side can be replaced by Pk noting thatby the Banach Perturbation Lemma [8] and the de�nition of Dk in Assumption 2kF�1x (xk; t)P�1k = k(I �Dk)�1k � 1=(1� kDkk) ;which establishes the �rst assertion.To prove the third inequality, we derive from (9) by taking normskr0kk = kPkFx(xk; t)x0� + PkFt(xk; t)k� kPk[Fx(xk; t)� Fx(x�; t)]kkx0�k+ kPk[Ft(xk; t)� Ft(x�); t)k� kPkkL(c20 + 1)�k � 2c0L(c20 + 1)�k = Lc0c1�k :Here we have used that kx0�k � kF�1x (x�; t)kkFt(x�; t)k � c20 by Assumption 1. The last inequalityfollows since kPkk = k(I � Dk)F�1x k � (1 + �)c0 as a consequence of Assumption 2. Finally wederive from (11) �k+1 � �k�k + kr0kk+ kP 0kF (xk; t)k� �k�k + (Lc0c1 + kP 0kkc0)�k� �k� + c0�k ;where we have used that c0 is a bound on the Jacobian Fx and hence a Lipschitz-constant for F ,so that kF (x; t)k = kF (x; t)� F (x�; t)k � c0�k.The �rst equation of Lemma 1 provides us with a constructive stopping criterion for the deriva-tive iteration, provided we can make some reasonable assumption regarding the sizes of L, c0, and�, which are also needed to bound kxk � x�k in terms of kF (xk; t)k or kPkF (xk; t)k. The secondinequality is the key to our convergence analysis in the following section.3 Derivative Convergence for Q-linear MethodsFirst we will consider memory-less methods, where we may assume that Pk = P (xk; t) is continu-ously di�erentiable near (x; t) so that for some c2 and all �k < �kP 0kk = kPxx0k + Ptk � c2(�k + 1) : (19)This relation holds trivially with c2 = 0 for simpli�ed iteration (7), where P 0k = 0.Proposition 1 Under Assumptions 1 and 2, the condition (19) impliesR-linear or R-superlinearconvergence for the derivative recurrence (10). That islimk kx0k � x0�k1=k � ��: (20)7



Moreover, for all su�ciently small weights ! > 0, the Sobolev normskxk � x�k+ !kx0k � x0�kconverge Q-linearly to zero. If furthermore �k � ckxk � x�k, then we have R-quadratic conver-gence in that limk kx0k � x0�k1=2k < 1 ;which applies for Newton's method, in particular.Proof. Substituting (19) into the de�nition (16), we obtain�k � (Lc1 + c2)�k + c2�k�k ;so that by (18) �k+1 � (�k + c0c2�k)�k + c3�k ;where c3 = c0(Lc1 + c2). Because of (12) and (13), we have by standard arguments�k+1 � �k�k + Lc0�2k:Combining the last two inequalities for any !, one obtains the ratio(�k+1 + !�k+1)(�k + !�k) � (�k + !c3 + Lc0�k)�k + !(�k + c0c2�k)�k(�k + !�k)� �k + !c3 + c0(Lc0 + c2)�k :The last bound has a limit superior equal to �� + !c3, since we already know that the �k convergeto zero. This limiting ratio implies Q-linear convergence of the Sobolev norm, provided we chose0 < ! < (1� ��)=c3. Consequently, the linear R-factor of the sequence f�kgk is less than or equalto any ��+c3!, and thus is not greater than ��,as asserted in (20). With the additional assumptionon �k, we have for some c4 �k+1 � c4(�k + 1)�k ;which means that the convergent sequence f�kg is bounded by a multiple of the Q-quadraticallyconvergent sequence f�k�1g.Proposition 1 shows that for memory-less contractions, the fully di�erentiated recurrence (10)yields R-linear convergence and potentially R-superlinear convergence, a possibility which can onlyoccur if the iterates themselves converge superlinearly. The same convergence rates are achievedby the simpli�ed derivative recurrence (7), even when the preconditioners are updated recursivelyand are not di�erentiable. In the important case of Newton's method, either derivative recurrenceconverges R- quadratically, which seems a rather satisfactory result.Roughly speaking, we can claim in all these cases that the derivatives are converge satisfactorilywhenever the iterates xk converge in a reasonably rapid and stable fashion. The simplest conditionunder which the xk; x0k, and ~x0k must all converge linearly to their respective limits is that theshifted Jacobians Dk = [I � Pk Fx(xk; t)] converge to a limit whose spectral radius is less thanone. This condition was implied by the hypothesis of Gilbert's theorem but must be consideredquite restrictive. For example, the condition does not hold for Broyden's method nor for otherpopular quasi- Newton schemes, where Pk = �kB�1k . Here, �k is a step multiplier, and Bk is anapproximation to the inverse Jacobian Fx(xk; t), which is not guaranteed to converge to Fx(f(x); t)or to any other limit. However, under the usual assumption for local convergence of secant updating8



methods, it can be shown that �k ! 1:0 and that kDkk < 0:5 in the l2 norm for all k. Then itfollows from Proposition 1 that the simpli�ed recurrence (7) must converge to the unique limit x0�.This does not necessarily apply in case of the fully di�erentiated recurrence (10) because a priorinothing is known about the existence or the size of the P 0k.The di�erentiability of the secant updates is in question because they contain rank one termsof the form yk=kskk, where both di�erence vectorssk � xk+1 � xk and yk � F (xk+1; t)� F (xk; t) � Fx(x�; t) skconverge to zero. To prove that the matrix derivatives kP 0kk do not blow up too fast, we make theobservation that all classical updates and many other possible schemes can be written in the formPk+1 = U(Pk; xk; t; sk; yk) ; (21)where the update functionU : IRn�n � IRn � IR� IRn � IRn 7! IRn�nhas the following property.Assumption 3 (Lipschitzian Update) There exist constants c � 1, � < 1, � < 1, and  < 1such that the domain conditionskPk ; kP�1k < c ; kx� x�k ; ksk < � ; and kPy � sk < �ksk (22)imply that U is di�erentiable at the point (P; x; t; s; y), and its partial derivatives satisfykUPk ; kUxk ; kUtk �  ; and kUsk ; kUyk � =ksk ; (23)where P may be restricted to the open cone of symmetric positive de�nite matrices in IRn�n.The crucial point here is that the partial derivatives with respect to s and y are only bounded by amultiple of the reciprocal step size 1=ksk, which allows unbounded growth of the matrix derivativeskP 0kk. The key observation of the following proof is that the Q-superlinear convergence ratelimk kxk+1 � x�k=kxk � x�k = 0 (24)implies that the residuals kFkk decline just a bit faster than the kP 0kkmay grow. Before we formulatethe second major result, let us briey show that the Broyden update and the DFP formula whichdo not explicitly depend on (x; t) satisfy the condition above.Lemma 2 The Broyden update functionU(P; s; y) = P + (s� Py)sTPsTPyand the Davidon-Fletcher-Powell (?) formulaU(P; s; y) = P � PyyTPyTPy + ssTyTssatisfy Assumption 3 with all norms k � k induced by the Euclidean vector norm.9



Proof. For the nonsymmetric Broyden update, � is arbitrary, and � may be any number betweenzero and 1. Then we derive from the last domain condition in Assumption 3 that s 6= 0 and thatkyk = kP�1Pyk � ckPyk � c(1 + �)ksk < 2ckskas well as kskkykc � kskkPyk � sTPy = sT (Py � s) + sT s � (1� �) jsk2 :In particular, kyk � ksk(1 � �)=c. Now let P (�) � P + � _P , and compute the derivative _U ofU(P (�); s; y) at � = 0. Then we have by the chain rule with s and y kept constant_U = _P � _PysTP + (s� Py)sT _P. (sTPy)� (s � Py)sTP (sT _Py)=(sTPy)2 ;so that by the triangle inequality in the L2 normk _Uk � k _Pk � �1 + �kykkP Tsk+ ksk2 + kskkPyk� =(sTPy)+ (ksk+ kPyk)kP Tskkskkyk=(sTPy)2�� k _Pk � [1 + (2c2+ 1 + 2c2)=(1� �) + (1 + 2c2)2c2=(1� �)2] :Since the direction _P is arbitrary, this shows that the derivative UP is uniformly bounded asrequired. Similarly, we �nd for the di�erentiation in some direction _sk _Uk � k _sk � �(kPTsk+ ks� PykkPk)=(sTPy) + (ksk+ kPyk)kP TskkPyk=(sTPy)2�� (k _sk=ksk) � [(1 + 1 + 2c2)c=(1� �) + (2 + 2c2)2c3)=(1� �)2] ;which implies that Usksk is indeed uniformly bounded. Finally, we derive in the direction _yk _Uk � k _yk � �kPkkP Tsk=(sTPy) + (ksk+ kPyk)kP TskkP T skj=(sTPy)2�� (k _yk=ksk) � [c2=(1� �) + (c+ 2c2)c2=(1� �)2] ;which ensures that Uyksk is indeed uniformly bounded.For the DFP formula, we must impose the restriction � < 0:2 c�2. Then we haveyTs = yTPP�1s � sTP�1s� kPy � skkP�1kksk � (1=c� c�)ksk2 � 0:8ksk2=c ;where we have used the assumed positive de�niteness of P to boundsTP�1s � ksk2=kPk � ksk2=c :As an immediate consequence, we haveyTPy � yTs � yT (s� Py) � 0:8ksk2=c� �kykksk � (0:8=c� �2c)ksk2 � 0:4ksk2=c :The rest of the argument is almost the same as the Broyden update. We �nd by di�erentiating insome direction _P with s and y held constant_U = _P � [ _PyyTP + PyyT _P ]=(yTPy)� [PyyTP ](yT _Py)=(yTPy)2 ;so that after taking normsk _Uk � k _Pk �1 + 2kykkPyk2:5c=ksk2+ kPyk2kyk26:25c2=ksk4�� k _Pk �1 + 20c4 + 100c8� � k _Pk(1 + 10c40)2 :10



The derivatives with respect to y and s can be bounded by multiples of ksk�1 in exactly the samefashion.Since Assumption 3 can also be veri�ed for the BFGS update, it applies for a wide range ofmethods. Now we obtain for these updating methods almost the same result as in the memory-lesscase. The rather stringent restriction � � 0:2c�2 used in the proof for the DFP formula could beavoided if other conditions were placed on yTs and yTPy. This would make perfect sense in thecontext of convex optimization, but we did not introduce them here because of our primary focusis on the nonlinear equations case.Proposition 2 Under Assumptions 1, 2, and 3 with � and � su�ciently small, the fully di�eren-tiated recurrence (10) yields R-linear or R-superlinear derivative convergence:limk kx0k � x0�k1=k � �� :Moreover, limk [kP 0kkkxk � x�k] 1k � �� ;which limits the potential growth the P 0k relative to the decline of the errors kxk � x�k.Proof. Di�erentiating (21), we obtain by the chain rule and the triangular inequality using (23)1 P 0k+1 � 1 kUP P 0k + Ux x0k + Ut + Us s0k + Uy y0kk� kP 0kk+ �k + kx0�k+ 1 + (ks0kk+ ky0kk)=kskk :To bound the last two terms, we note that by (18) of Lemma 3ks0kk = kx0k+1 � x0kk � �k+1 + �k� (1 + �)�k + c0�k � 2�k + c0�k :Similarly, we �nd ky0kk = kF 0(xk+1; t; x0k+1)� F 0(xk; t; x0k)k� kFx(xk+1; t)x0k+1 � Fx(xk; t)x0kk+ kFt(xk+1; t)� Ft(xk; t)k� kFx(xk+1; t)(x0k+1 � x0�)k+ kFx(xk; t)(x0k � x0�)k+k[Fx(xk+1; t)� Fx(xk+1; t)]x0�k+ L(�k+1+ �k)� c0(�k+1 + �k) + (c20 + 1)L(�k+1+ �k)� 2c0�k + c20�k + �k � (c20 + 1)(�k + �k) :Adding the last two inequalities and noting that kskk � �k � �k+1 � 0:9(1� �)�k, we �nd that forsome c5, (ks0kk+ ky0kk)=kskk � c5(�k + �k)=�k :Now, since �k is bounded, and �k=�k is bounded away from zero, the �rst four terms in (25), andan additional Lc1 can be subsumed into the last bound, with c5 growing to some c6 so thatLc1 + kP 0k+1k � c6(�k + �k)=�k :After multiplication by �k+1, we get�k+1 � qk(�k + �k) with qk � c6�k+1=�k ! 0 :11



Adding ! > �� times this inequality to the bound (18), we �nd that(c0�k+1 + !�k+1)(c0�k + !�k) � c0(qk + !)�k + (c0qk + !�k)�k(c0�k + !�k) � max��k + c0qk! ; qk + !� :Since the limit superior of the maximum is !, and one may choose ! arbitrarily close to ��, we haveshown that the sequences f�kgk and f�kgk both have a linear R-factor no greater than ��. The lastassertion follows directly from the de�nition of �k in (16).This result applies to all standard classical secant methods and suggests that the rate at whichthe derivatives x0k converge is the same whether or not the Jacobian updating procedure is di�eren-tiated. That this conclusion is only valid if the line- search eventually becomes inactive, so that alllater steps are of unit length. On one hand, this means that the fully di�erentiated, or black box,approach is reasonably safe. On the other hand, it appears that implicitly de�ned derivatives canbe obtained at a much reduced cost by deactivating the Pk, i.e. treating them as constants as inthe simpli�ed updating scheme. Also, the theoretical possibility that the P 0k generated in the fullydi�erentiated update may grow unbounded is numerically worrisome as it may lead to exponentoverows.4 Numerical Results and Higher Derivative RecurrencesOur very limited numerical experience con�rm the theoretical results. We found only a moderategrowth of the P 0k for our test case, the Davidon-Fletcher-Powell (DFP) secant method. However,there is clear evidence that the convergence of the �rst derivatives x0k lags signi�cantly behindthe convergence of the iterates xk themselves. In the case of secant methods this phenomenon ismuch more pronounced than for Newton's method, where the d�th derivative can be shown tolag roughly d steps behind the functional iterate. We have also propagated higher derivatives forsecant methods and found that they converge in a staggered fashion and at about the same ratewhether or not Pk is deactivated.Our numerical experiments were conducted on the test functionF (x; t) � rxf(x; t) with f(x; t) � 12 �xTHx+ tkxk4� ;where H = [1=(i+ j � 1)] is the Hilbert matrix of order n, and kxk denotes the Euclidean norm.Since the unique solution x� = 0 is independent of the parameter t, all derivatives x0�; x00�; : : :x(j)�must also vanish, which makes monitoring their errors exceedingly simple. The approximate inverseHessian was initialized as P0 = diag(i)i=1;:::;n, which is somewhat \smaller" than the exact inverseH�1. Consequently, the inverse form of the DFP update takes a very long time before Pk and theresulting steps sk = �PkF (xk; t) become large enough to achieve superlinear convergence. Thestarting point was always the vector of ones x0 = e, and the parameter was set to t = 1.Andreas, please check that I translated correctly. The text said: Here xn; gn and delrepresent the Euclidean (Frobenius) norms of xk � x� = xk, ??? F (xk; t) and ~Dk = I � PkH ,respectively. Note that ~Dk is not exactly equal to Dk since we have neglected the nonquadraticterm. The quantities xpn; gpn, and Apn represent the Euclidean norms of the derivatives x0k,F 0(xk; t; x0k) and P 0k. I translated that as:kxk � x�k kx0k � x0�k kF (xk; t)k kF 0(xk; t; x0k)k k ~Dk = I � PkHk P 0kxn xpn gn gpn del Apn12



In this version, I leave these as tables. Work is in progress to make graphs.First let us consider the fully di�erentiated iteration without line search for n = 2.kxk � x�k kx0k � x0�k kF (xk; t)k kF 0(xk; t; x0k)k k ~Dk = I � PkHk P 0k1.41421 0 7.32196 5.65685 1.20185 05.91138 5.65685 420.315 1602.43 1.37905 .1228971.28415 0.322443 5.81274 7.4073 1.37919 .1265351.23993 0.530983 5.07422 8.79846 1.35374 .3537441.14152 0.906449 4.05979 9.46657 1.28473 .4517040.775852 1.39968 1.50164 2.30642 1.24288 .5232190.583841 1.49961 0.707141 1.90673 1.17944 .3524580.440021 1.24741 0.275981 1.30797 1.18538 .4892820.364655 0.93575 0.124256 0.81024 1.32074 1.696990.317938 0.668433 0.090391 0.528703 1.51918 2.941760.273088 0.362568 0.080089 0.388196 1.51109 3.208750.218102 0.151102 0.072478 0.20315 1.30079 5.731890.157636 0.304182 0.061558 0.070792 1.11790 8.483620.089584 0.502993 0.044328 0.231856 1.61169 10.39280.025795 0.439793 0.023258 0.329356 2.56209 16.51020.019691 0.222841 0.008383 0.196591 2.73134 24.34880.021733 0.342188 0.004685 0.097266 1.06296 28.83970.019112 0.357521 0.001751 0.068149 1.72589 23.34370.013577 0.263456 0.001214 0.017659 2.71993 85.23340.007314 0.201841 0.001688 0.023696 1.62204 37.35400.002504 0.075257 0.001454 0.027388 1.07995 28.07880.000738 0.022724 0.000829 0.021418 1.98608 41.59080.000852 0.015869 0.00029 0.008764 0.638348 16.64420.000429 0.012485 4.22336e-05 0.002265 1.00812 39.24529.91147e-05 0.003677 1.42962e-05 0.000317 0.515883 24.82417.86743e-06 0.00047 4.41258e-06 0.000169 0.338774 8.763055.6655e-07 1.87742e-05 4.20846e-07 2.09424e-05 0.193667 2.945166.65702e-08 3.48841e-06 1.13056e-08 8.30216e-07 0.093476 5.809601.89371e-09 1.24304e-07 1.95901e-10 9.38562e-09 0.054466 2.901431.39032e-11 1.24812e-09 6.57715e-12 4.52763e-10 0.024018 0.641633As we can see, the convergence is pretty sloppy.
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Here are the results for the simpli�ed operation.kxk � x�k kx0k � x0�k kF (xk; t)k kF 0(xk; t; x0k)k k ~Dk = I � PkHk P 0k1.41421 0 7.32196 5.65685 1.20185 05.91138 5.65685 420.315 1602.43 1.37905 01.28415 41.5058 5.81274 259.676 1.37919 01.23993 79.8816 5.07422 270.158 1.35374 01.14152 3.55943 4.05979 10.3051 1.28473 00.775852 1.41966 1.50164 2.83181 1.24288 00.583841 0.962748 0.707141 1.24517 1.17944 00.440021 0.732391 0.275981 0.663272 1.18538 00.364655 0.596066 0.124256 0.443747 1.32074 00.317938 0.499531 0.090391 0.320956 1.51918 00.273088 0.39534 0.080089 0.25424 1.51109 00.218102 0.280469 0.072478 0.209113 1.30079 00.157636 0.185415 0.061558 0.167374 1.11790 00.089584 0.102318 0.044328 0.123206 1.61169 00.025795 0.086137 0.023258 0.077214 2.56209 00.019691 0.128427 0.008383 0.04098 2.73134 00.021733 0.123338 0.004685 0.027106 1.06296 00.019112 0.107983 0.001751 0.010115 1.72589 00.013577 0.076062 0.001214 0.006931 2.71993 00.007314 0.040747 0.001688 0.009568 1.62204 00.002504 0.014017 0.001454 0.008199 1.07995 00.000738 0.004168 0.000829 0.00468 1.98608 00.000852 0.004811 0.00029 0.00164 .638348 00.000429 0.002422 4.22336e-05 0.000238 1.00812 09.91147e-05 0.000559 1.42962e-05 8.07039e-05 .515883 07.86743e-06 4.44117e-05 4.41258e-06 2.49092e-05 .338774 05.6655e-07 3.1982e-06 4.20846e-07 2.3757e-06 .193667 06.65702e-08 3.75792e-07 1.13056e-08 6.38209e-08 .093476 01.89371e-09 1.06901e-08 1.95901e-10 1.10587e-09 .054466 01.39032e-11 7.8484e-11 6.57715e-12 3.71284e-11 .024018 0Suppose we introduce a line search that performs exactly one parabolic interpolation on thefunction value at each step. Then we get the much more rapid convergence pattern, even when
14



n = 3 kxk � x�k kx0k � x0�k kF (xk; t)k kF 0(xk; t; x0k)k k ~Dk = I � PkHk P 0k1.73205 0.000000 12.5518 10.3923 1.66700 0.0000001.67068 0.134673 11.4076 11.7444 1.65588 0.0616890.882142 0.160312 2.07124 2.12777 1.60236 0.1227520.546038 0.505207 1.09251 1.76371 1.57634 0.5501040.189388 0.526785 0.215538 0.670052 1.41861 0.7512830.132772 0.467438 0.020972 0.118908 1.45088 0.761260.048901 0.340127 0.011613 0.075559 1.34129 14.94350.026949 0.058005 0.002710 0.030825 1.28867 2.312770.026500 0.052905 0.000121 0.001371 1.18469 5.696420.026237 0.059376 0.000119 0.001903 1.27383 124.3530.010553 0.046969 0.000037 0.000273 0.671322 487.0700.000444 0.006700 0.000005 0.000337 0.315553 233.3460.00001 0.001317 0.000001 0.000032 0.904784 935.704Here the P 0k actually show signs of blowing up, at least temporarily. Note that PropositionAgain ???? we get pretty much the same for the simpli�ed iteration.kxk � x�k kx0k � x0�k kF (xk; t)k kF 0(xk; t; x0k)k k ~Dk = I � PkHk P 0k1.73205 0 12.5518 10.3923 1.667 01.67068 0.050909 11.4076 8.41106 1.65588 00.882142 0.914877 2.07124 3.35272 1.60236 00.546038 1.14635 1.09251 1.81314 1.57634 00.189388 0.260913 0.215538 0.081441 1.41861 00.132772 0.1987 0.020972 0.041101 1.45088 00.048901 0.03018 0.011613 0.026022 1.34129 00.026949 0.008106 0.00271 0.001544 1.28867 00.0265 0.005859 0.000121 0.000594 1.18469 00.026237 0.00603 0.000119 0.000737 1.27383 00.010553 0.527305 3.07888e-05 .107082 0.671322 00.000444 0.169617 5.43704e-06 .047119 0.315553 01.01274e-05 .014605 4.55601e-07 .002665 0.904784 02.14482e-08 .005679 1.31503e-08 .000455 0.010328 0This seems to work signi�cantly worse than the fully di�erentiated formula.We can also do higher derivatives! For the simpli�ed recurrence, where Pk is deactivated, thefollowing informal argument establishes the convergence of the higher derivatives x(j) � djx(t)=dtj .Di�erentiating equation (6) j < m times with respect to t, we obtain the following linear systemfor the (j + 1)-st derivative from Leibnitz's rule:Pk Fx(x(t); t) x(j+1) = �Pk � @j@tj [Ft(x(t); t)] + jXi=1  ji! @j�i@tj�i [Fx(x(t); t)] x(i)(t)! : (25)Here we have assumed that F (x; t) is m times jointly Lipschitz-continuously di�erentiable. Replac-ing the x(i)(t) by approximations ~x(i)k for i = 0; 1; : : : ; j, one may interpret the right hand side as avector function �PkR(j)k � �PkR(j)k �t; xk; ~x0k; : : : ; ~x(j)k � :15



While this may seem a very messy expression, the residual vectorsFx(xk(t); t) x(i+1)k + Rk(i); for i = 0; 1; : : : ; jcan be evaluated simultaneously for any given t and (~x(i)k )i=0;1;:::;j+1 by one forward sweep of auto-matic di�erentiation [2]. The complexity of this Taylor series propagation is O(j2) times that of onefunction evaluation F (x; t) if ordinary polynomial arithmetic is used. This asymptotic complexitybound can be reduced to O(j log j) through the use of the fast Fourier transform, but that is onlylikely to pay o� when j is signi�cantly larger than 10. As a generalization of (7), one may nowiterate for j = 0; 1; : : : ; m� 1 and k = 0; 1; : : :~x(j+1)k+1 = ~x(j+1)k � Pk hFx(xk(t); t) ~x(j+1)k + R(j)k i :This family of linear recurrences is again of the form (7) with the same leading linear term. Byinduction, one sees that if all ~x(i)k for i < j converge to the correct values x(i)� , then the R(j)k convergeto the right hand side of (25), and the ~x(j+1)k can only converge to the unique �xed point x(j+1)� ofits recurrence. The linear R-factor is again at least ��, but the higher derivatives tend to convergein a staggered fashion. This can be seen from the following numerical result listing the �rst �vederivatives of the residual vector rf(x; t) for the fully di�erentiated case with n = 3 and the
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parabolic line-search.7.83333 6 0 0 0 07.08333 6 0 0 0 06.78333 6 0 0 0 0twas the gprimes7.13467 6.85996 -0.962535 0.98677 -0.916888 0.7431496.43292 6.76028 -0.812404 0.79177 -0.687363 0.4939166.15208 6.72086 -0.753236 0.715227 -0.597693 0.397123twas the gprimes0.886147 0.672907 -0.189995 0.217294 -0.24017 0.2559081.25420 1.29606 -0.117537 0.134092 -0.143875 0.1451631.38987 1.54753 -0.090792 0.103094 -0.10765 0.103067twas the gprimes0.891133 1.51001 0.164555 -0.195075 -0.941908 0.0187130.509296 0.764193 0.021875 0.168406 -0.060258 -0.168290.374261 0.496541 -0.061992 0.306359 0.276555 -0.224844twas the gprimes0.164546 0.478306 0.089422 -0.085411 -0.59197 -1.260690.109936 0.361055 0.299476 0.056043 -0.759126 -1.799160.085412 0.29972 0.345063 0.144632 -0.762659 -2.04218twas the gprimes-0.008084 -0.022728 -0.027573 0.088714 0.19331 1.023410.012005 0.072649 0.18933 0.069657 -0.562832 -1.285110.015177 0.09135 0.257746 0.160079 -0.719024 -2.32696twas the gprimes-0.01141 -0.074535 -0.022343 0.303165 -1.94998 -0.275344-0.002153 -0.00544 0.06202 0.015314 -1.02746 1.791320.000161 0.011139 0.088279 0.011372 -0.747106 1.49802twas the gprimes-0.002072 -0.025347 -0.009128 0.636675 -1.65201 -17.6312-0.001456 -0.014561 0.026911 0.507209 -1.23151 -10.3558-0.000964 -0.009782 0.030917 0.401505 -0.97309 -7.31494twas the gprimes6.61736e-05 0.001204 0.005172 -0.155942 -2.27729 -8.48942-7.21583e-05 -0.000599 -0.010462 -0.137604 -0.792678 1.885767.03952e-05 -0.000268 -0.010349 -0.117287 -0.404242 3.53261twas the gprimes-3.33856e-05 0.001891 -0.033072 0.470508 -4.84217 29.4543-6.47562e-05 -9.33634e-05 -0.003983 0.06335 -0.659946 4.035839.38961e-05 0.000187 0.001207 0.022922 -0.684854 12.1638twas the gprimes3.01871e-06 0.00024 -0.0079 0.301536 -10.2752 286.043-2.06109e-05 -9.00923e-05 1.74332e-05 0.000638 -0.598232 19.63542.26722e-05 9.44013e-05 0.000976 -0.033317 0.746131 -21.3334twas the gprimes4.74285e-06 -0.000331 0.007024 0.000395 -6.43432 274.870-2.22328e-06 -2.8461e-05 0.000697 -0.034716 0.751035 2.71493-1.45734e-06 5.71076e-05 -0.000316 -0.039082 1.98018 -44.6845twas the gprimes4.3987e-07 -2.90034e-05 0.000314 0.064775 -3.00928 10.35491.00937e-09 1.87743e-06 0.000254 -0.002493 -0.643611 31.7758-1.18683e-07 1.24001e-05 -1.18975e-05 -0.016062 0.419384 10.9830twas the gprimes-1.02756e-08 -3.51394e-07 2.65193e-05 1.56227e-05 0.052186 2.28158-6.54673e-09 -2.45985e-07 1.3307e-05 -0.000239 0.02279 1.05645-4.94796e-09 -1.96442e-07 8.7106e-06 -0.000259 0.01367 0.688247twas the gprimes2.08674e-14 -3.59231e-12 1.44608e-10 5.35997e-09 -6.41324e-07 1.70758e-05-1.22144e-14 1.16154e-12 2.54699e-11 -2.96268e-09 3.49667e-08 7.43312e-06-7.46959e-15 1.04402e-12 -2.22569e-11 -1.93236e-09 1.2068e-07 1.22141e-06twas the gprimes-3.09903e-21 7.57404e-19 -8.27213e-17 4.16208e-15 8.37858e-14 -2.7802e-11-5.21598e-23 -5.17119e-21 2.23995e-19 1.25407e-16 -1.40735e-14 1.75745e-137.82988e-22 -2.28244e-19 2.72083e-17 -1.52728e-15 -6.73074e-15 7.76273e-12twas the gprimes3.59914e-35 -4.03191e-33 -5.00147e-31 -4.57714e-29 2.002e-26 -5.32617e-261.75615e-35 -1.19257e-33 -4.10523e-31 -3.73276e-29 8.52541e-27 -5.31212e-251.37604e-35 -7.55469e-34 -2.9993e-31 -3.36023e-29 4.76868e-27 -5.5547e-25twas the gprimes
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Now we repeat the same calculation but this time with the Pk deactivated. same �rst compo-nents as before left o� here
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6 0 0 0 06 0 0 0 06 0 0 0 0twas the gprimes4.82302 -0.476248 0.014832 -0.000152 04.86433 -0.477479 0.014851 -0.000152 04.88085 -0.477971 0.014858 -0.000152 0twas the gprimes-0.74458 -0.149644 0.243524 -0.033263 0.001018-2.04741 0.322835 1.43921 -1.08683 0.247745-2.54841 0.50425 1.91978 -1.50616 0.345771twas the gprimes-1.74185 1.88132 -0.576298 -5.40806 12.0342-0.498205 0.380387 0.224032 -1.65358 -1.23878-0.072187 -0.148079 0.573789 -0.360719 -6.28715twas the gprimes0.080149 -0.796362 0.726776 2.13653 -3.352620.000382 -0.235109 -0.26597 1.91018 -2.05038-0.014447 -0.07221 -0.52796 1.72746 -1.75125twas the gprimes0.015076 -0.082498 0.363468 -0.195027 -2.55240-0.024026 0.102362 -0.240598 0.028066 0.487509-0.029745 0.141692 -0.393884 0.169606 0.878855twas the gprimes0.023012 -0.026744 -0.646409 0.854433 8.473700.010335 -0.019941 -0.280996 0.081682 5.445240.006388 -0.014289 -0.171545 -0.105063 4.17312twas the gprimes0.00153 0.001505 -0.044115 0.170653 -0.1191170.000189 0.002171 -0.009163 0.153992 -0.664591-7.9969e-05 0.003118 -0.004485 0.121157 -0.631163twas the gprimes-0.000589 0.00128 0.013065 0.020891 -0.373877-5.30096e-05 -0.000384 0.002598 0.00451 -0.051935.60423e-05 0.000492 -0.002736 -0.005069 0.046773twas the gprimes0.000731 -0.001247 -0.017088 -0.027953 0.4725496.89644e-05 -0.00063 -0.000428 0.000175 0.037797-6.17383e-05 0.000673 -0.00024 -0.000497 -0.01686twas the gprimes-0.106291 0.15094 2.38140 4.53559 -56.3123-0.010134 0.017547 0.462909 0.184754 -22.01050.008124 0.00277 -0.130307 -0.720322 -1.09736twas the gprimes0.046164 -0.070342 -0.905865 -2.1639 16.64080.009385 -0.011191 -0.495743 -0.000487 23.66360.000995 -0.008303 -0.174044 0.28883 12.1396twas the gprimes-0.001048 0.001722 0.068507 -0.056817 -4.47033-0.001811 0.002815 0.056185 -0.027472 -1.00815-0.00165 0.002772 0.043859 0.204671 -1.29037twas the gprimes0.000322 -0.000601 -0.011861 -0.086866 0.8751130.000261 -0.000396 -0.008499 0.015181 0.1321430.000189 -0.000291 -0.006215 0.007085 0.123282twas the gprimes9.94626e-08 5.99748e-09 -1.31699e-06 0.000153 -0.000938-7.69777e-08 3.39944e-08 1.16524e-06 -8.19726e-05 0.000504-3.6543e-08 3.38989e-09 7.75403e-07 -5.09072e-05 0.000298twas the gprimes3.89188e-12 -7.13945e-12 -2.97149e-11 -9.4999e-10 3.04427e-09-1.94237e-13 -6.2007e-15 -2.65301e-11 -2.90848e-10 3.36712e-09-1.29028e-12 1.93793e-12 -2.33133e-11 -8.53551e-11 3.15576e-09twas the gprimes7.58893e-21 -3.29539e-21 7.63927e-19 8.06228e-18 -9.72396e-174.85194e-21 -2.12822e-21 4.86296e-19 5.13489e-18 -6.19466e-173.66588e-21 -1.6065e-21 3.67566e-19 3.88102e-18 -4.6819e-17
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Now let's look at the fully di�erentiated two-dimensional case without line-search
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5.5 4 0 0 0 04.83333 4 0 0 0 0twas the gprimes-320.917 -1200.06 -1700.89 -1077.33 -256 0-271.435 -1061.91 -1569.33 -1034.67 -256 0twas the gprimes4.67786 5.44726 -1.45861 1.11283 -0.395316 -0.6239633.45045 5.01951 -0.726664 0.177179 0.558952 -1.34465twas the gprimes3.26335 4.44532 -0.889732 -0.053159 0.989838 -1.518023.88565 7.59289 0.031227 -1.92695 3.24290 -3.28712twas the gprimes2.47489 6.34817 0.753541 -5.97338 10.1578 -5.593583.21819 7.02258 -4.10746 1.08170 12.7960 -42.4326twas the gprimes0.827821 2.23056 5.32941 11.3574 -281.202 -3302.631.25285 -0.586674 -6.81129 162.758 823.975 -1904.46twas the gprimes0.356472 1.83922 3.21208 -33.3711 -346.410 -1103.890.610718 -0.502897 -2.07225 107.693 303.251 -3036.61twas the gprimes0.084493 1.21808 2.10769 -43.2238 -285.768 553.0300.262729 -0.476498 -0.920708 66.7940 181.473 -2161.95twas the gprimes-0.031288 0.733451 1.67876 -35.5955 -215.420 776.1250.120252 -0.344295 -1.19784 40.9095 185.144 -1269.87twas the gprimes-0.067232 0.512487 1.50108 -36.0887 -206.375 1449.610.060419 -0.12994 -1.78263 15.5821 205.082 202.420twas the gprimes-0.076023 0.377545 2.81489 -26.4187 -352.445 -242.3840.025196 0.090309 -0.753557 -6.14754 19.6118 956.143twas the gprimes-0.072478 0.171229 3.15421 -12.3705 -342.268 -1014.177.81512e-05 0.109319 0.03917 -10.9744 -44.7461 1129.44twas the gprimes-0.060281 -0.040077 3.26064 7.17298 -292.524 -2593.32-0.012473 0.058355 1.13385 -6.18375 -159.940 -120.768twas the gprimes-0.04182 -0.224528 2.61024 28.2915 -175.017 -4286.53-0.014698 -0.057833 1.43948 7.78921 -165.436 -1792.90twas the gprimes-0.021053 -0.30123 0.430609 42.0019 203.048 -4791.62-0.009885 -0.133176 0.547738 19.9491 34.0736 -2744.82twas the gprimes-0.006728 -0.167877 -1.22758 12.7669 395.634 2268.76-0.005002 -0.102301 -0.3233 10.7935 171.086 51.4143twas the gprimes-0.003258 -0.07252 -0.439088 4.29992 113.951 663.303-0.003366 -0.064819 -0.172193 5.57870 80.0809 164.661twas the gprimes-0.000465 -0.044861 -0.752186 4.57146 190.366 281.806-0.001688 -0.051301 -0.371678 6.53508 115.538 -327.682twas the gprimes0.001144 0.009397 -0.213261 -0.572651 20.4547 -575.554-0.000405 -0.014951 -0.083641 3.00288 12.8360 -944.511twas the gprimes0.001652 0.023567 -0.304768 -4.16291 85.0163 615.2900.000346 -0.002467 -0.186728 1.28649 57.3413 -588.332twas the gprimes0.001344 0.026022 -0.201215 -6.65196 53.8446 1855.120.000553 0.008541 -0.099522 -1.61132 24.9600 184.212twas the gprimes0.00072 0.019335 -0.115194 -7.44171 39.1138 2877.110.000411 0.009214 -0.088538 -3.14412 33.9231 1060.21twas the gprimes0.000226 0.007239 -0.063674 -4.23249 26.7773 2249.430.000182 0.004941 -0.05534 -2.57133 23.3617 1240.54twas the gprimes1.44718e-05 0.001479 0.007334 -1.41519 -9.89849 1024.303.96768e-05 0.001714 -0.009437 -1.33958 1.66060 854.263twas the gprimes-1.42931e-05 -0.000295 0.009905 0.148228 -7.06325 -21.4243-2.97136e-07 0.000116 0.001215 -0.188104 -1.66564 187.259twas the gprimes-4.088e-06 -0.00016 0.002907 0.186629 -1.82131 -156.624-1.66104e-06 -5.22127e-05 0.001436 0.053144 -1.20569 -38.4201twas the gprimes-3.55831e-07 -1.81801e-05 0.000275 0.029578 -0.087879 -32.5270-2.24712e-07 -1.03955e-05 0.000195 0.016176 -0.108666 -17.1300twas the gprimes-7.15396e-09 -5.98016e-07 -4.56765e-07 0.001219 0.016943 -1.58594-8.75432e-09 -5.75878e-07 4.5849e-06 0.001125 0.006527 -1.42411twas the gprimes1.92165e-10 7.92982e-09 -3.25494e-07 -1.55344e-05 0.00046 0.019886-3.8078e-11 -5.02074e-09 -5.57164e-08 1.30375e-05 0.000321 -0.020216twas the gprimes6.15105e-12 4.30257e-10 -5.59351e-09 -1.10212e-06 -4.88337e-06 0.0017372.32886e-12 1.40974e-10 -3.19693e-09 -3.5789e-07 2.04568e-06 0.000571twas the gprimes4.18379e-14 3.51343e-12 -2.26634e-11 -1.03499e-08 -1.35996e-07 1.79823e-052.57801e-14 2.03622e-12 -2.0622e-11 -5.96625e-09 -5.55714e-08 1.04011e-05twas the gprimes5.97684e-17 6.95205e-15 7.97224e-14 -2.14145e-11 -7.29332e-10 3.61622e-087.03731e-17 7.00357e-15 1.54727e-14 -2.19412e-11 -5.17542e-10 3.89333e-08twas the gprimes-9.65337e-20 -7.20372e-18 1.76962e-16 2.58426e-14 -1.02182e-13 -5.60029e-112.14513e-20 3.46095e-18 8.90506e-17 -1.17129e-14 -6.13804e-13 1.99343e-11twas the gprimes-2.03083e-22 -2.1224e-20 2.3723e-22 7.88497e-17 1.85739e-15 -1.61991e-13-7.64759e-23 -7.26176e-21 6.12401e-20 2.78423e-17 3.93825e-16 -6.1046e-14twas the gprimes-8.76989e-26 -1.04134e-23 -7.48166e-23 4.09977e-20 1.37168e-18 -8.4707e-17-5.3951e-26 -6.13615e-24 -2.2684e-23 2.44301e-20 7.13483e-19 -5.203e-17twas the gprimes-7.89564e-30 -1.19311e-27 -3.03399e-26 4.45871e-24 2.66519e-22 -7.25953e-21-9.27429e-30 -1.24623e-27 -1.9938e-26 4.92671e-24 2.2593e-22 -9.46532e-21twas the gprimes7.95106e-34 8.705e-32 -6.24746e-31 -4.14985e-28 -7.45992e-27 1.10847e-24-1.77941e-34 -3.48732e-32 -1.45976e-30 1.29102e-28 1.14595e-26 -1.48087e-25twas the gprimes1.0488e-37 1.46284e-35 2.18946e-34 -6.57637e-32 -3.03738e-30 1.42801e-283.94817e-38 5.12922e-36 3.76218e-35 -2.43136e-32 -8.74185e-31 5.9569e-29
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Here we have the simpli�ed derivative recurrence on the same problem.
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5.5 4 0 0 0 04.83333 4 0 0 0 0twas the gprimes-320.917 -1200.06 -1700.89 -1077.33 -256 0-271.435 -1061.91 -1569.33 -1034.67 -256 0twas the gprimes4.67786 105.528 2936.08 -5961.48 -208775 -1.14961e+063.45045 237.267 8009.74 182950 1.31217e+06 4.88335e+06twas the gprimes3.26335 219.285 11658.5 1.37659e+06 1.375e+08 1.02074e+103.88565 -157.795 -1809.82 555769 9.64855e+06 -4.95981e+09twas the gprimes2.47489 8.83482 -3272.66 -487306 -7.3468e+07 -6.89382e+093.21819 -5.30480 -10171.1 -256851 5.45768e+07 5.90549e+09twas the gprimes0.827821 0.756555 249.520 -26979.6 -1.00104e+07 -1.13448e+091.25285 -2.72888 -1564.18 5885.69 1.45899e+07 2.13254e+09twas the gprimes0.356472 0.499834 277.224 -10109.6 -5.27303e+06 -6.78685e+080.610718 -1.14045 -530.066 4464.79 5.64325e+06 8.64373e+08twas the gprimes0.084493 0.444293 240.769 -5263.44 -3.53796e+06 -4.98388e+080.262729 -0.492477 -200.729 2868.58 2.48968e+06 3.7449e+08twas the gprimes-0.031288 0.357054 175.593 -3243.15 -2.40779e+06 -3.54419e+080.120252 -0.263484 -107.532 1804.12 1.41712e+06 2.11234e+08twas the gprimes-0.067232 0.285099 130.544 -2267.58 -1.74953e+06 -2.62736e+080.060419 -0.147414 -61.0968 1036.68 811373 1.22627e+08twas the gprimes-0.076023 0.251072 110.741 -1868.17 -1.46968e+06 -2.2365e+080.025196 -0.040014 -14.2995 197.947 178782 2.96799e+07twas the gprimes-0.072478 0.206519 88.5443 -1451.07 -1.16432e+06 -1.79635e+087.81512e-05 0.032841 17.0677 -315.289 -233430 -3.3957e+07twas the gprimes-0.060281 0.157502 66.2374 -1072.01 -867589 -1.34634e+08-0.012473 0.056631 26.1979 -440.133 -347220 -5.29505e+07twas the gprimes-0.04182 0.110328 46.5033 -753.296 -609283 -9.45131e+07-0.014698 0.054841 24.6963 -405.935 -325045 -5.00814e+07twas the gprimes-0.021053 0.066038 28.8677 -471.733 -379256 -5.85937e+07-0.009885 0.040013 18.2375 -299.520 -239968 -3.69868e+07twas the gprimes-0.006728 0.031365 14.5621 -238.954 -191555 -2.95374e+07-0.005002 0.026374 12.4127 -206.538 -163995 -2.51191e+07twas the gprimes-0.003258 0.018817 8.93589 -149.884 -118359 -1.80585e+07-0.003366 0.01951 9.26797 -155.548 -122783 -1.87286e+07twas the gprimes-0.000465 0.002712 1.28907 -21.7026 -17094.8 -2.60365e+06-0.001688 0.009745 4.62797 -77.1399 -61178.8 -9.36361e+06twas the gprimes0.001144 -0.006557 -3.11219 51.4888 41044.6 6.30476e+06-0.000405 0.002245 1.06284 -16.9906 -13868.5 -2.16537e+06twas the gprimes0.001652 -0.009356 -4.43654 72.4861 58281.7 9.00646e+060.000346 -0.002004 -0.951784 15.8878 12587.9 1.92529e+06twas the gprimes0.001344 -0.007579 -3.59271 58.4452 47132.8 7.29861e+060.000553 -0.003127 -1.48272 24.1854 19468.1 3.01083e+06twas the gprimes0.00072 -0.004064 -1.92671 31.3733 25284.1 3.91352e+060.000411 -0.00232 -1.09966 17.9090 14431.5 2.23357e+06twas the gprimes0.000226 -0.001276 -0.605057 9.85487 7940.75 1.22893e+060.000182 -0.001029 -0.48785 7.94596 6402.56 990873twas the gprimes1.44718e-05 -8.17037e-05 -0.038733 0.630894 508.336 78669.43.96768e-05 -0.000224 -0.106184 1.72943 1393.54 215671twas the gprimes-1.42931e-05 8.06864e-05 0.03825 -0.622963 -501.984 -77690.7-2.97136e-07 1.67884e-06 0.000796 -0.012975 -10.4485 -1616.38twas the gprimes-4.088e-06 2.3077e-05 0.01094 -0.17817 -143.571 -22220.2-1.66104e-06 9.37669e-06 0.004445 -0.072394 -58.3360 -9028.56twas the gprimes-3.55831e-07 2.00869e-06 0.000952 -0.015508 -12.4968 -1934.11-2.24712e-07 1.26851e-06 0.000601 -0.009794 -7.89191 -1221.41twas the gprimes-7.15396e-09 4.03845e-08 1.91446e-05 -0.000312 -0.251248 -38.8851-8.75432e-09 4.94186e-08 2.34273e-05 -0.000382 -0.307453 -47.5838twas the gprimes1.92165e-10 -1.08478e-09 -5.14249e-07 8.37525e-06 0.006749 1.04451-3.8078e-11 2.14952e-10 1.019e-07 -1.65958e-06 -0.001337 -0.206972twas the gprimes6.15105e-12 -3.4723e-11 -1.64607e-08 2.68085e-07 0.000216 0.0334342.32886e-12 -1.31466e-11 -6.23224e-09 1.015e-07 8.17899e-05 0.012658twas the gprimes4.18379e-14 -2.36177e-13 -1.11962e-10 1.82345e-09 1.46935e-06 0.0002272.57801e-14 -1.4553e-13 -6.89896e-11 1.12359e-09 9.05398e-07 0.00014twas the gprimes5.97684e-17 -3.37396e-16 -1.59945e-13 2.60493e-12 2.09907e-09 3.24869e-077.03731e-17 -3.9726e-16 -1.88324e-13 3.06712e-12 2.47151e-09 3.82511e-07twas the gprimes-9.65337e-20 5.44938e-19 2.58332e-16 -4.20729e-15 -3.39027e-12 -5.24706e-102.14513e-20 -1.21094e-19 -5.74056e-17 9.34928e-16 7.53373e-13 1.16598e-10twas the gprimes-2.03083e-22 1.14641e-21 5.43467e-19 -8.8511e-18 -7.13229e-15 -1.10385e-12-7.64759e-23 4.31711e-22 2.04656e-19 -3.3331e-18 -2.68584e-15 -4.15682e-13twas the gprimes-8.76989e-26 4.95065e-25 2.3469e-22 -3.82224e-21 -3.07999e-18 -4.76685e-16-5.3951e-26 3.04556e-25 1.44377e-22 -2.35138e-21 -1.89476e-18 -2.93249e-16twas the gprimes-7.89564e-30 4.45713e-29 2.11294e-26 -3.44121e-25 -2.77296e-22 -4.29165e-20-9.27429e-30 5.23539e-29 2.48188e-26 -4.04208e-25 -3.25714e-22 -5.04101e-20twas the gprimes7.95106e-34 -4.48841e-33 -2.12777e-30 3.46536e-29 2.79242e-26 4.32177e-24-1.77941e-34 1.00448e-33 4.76184e-31 -7.7553e-30 -6.24929e-27 -9.6719e-25twas the gprimes1.0488e-37 -5.92054e-37 -2.80668e-34 4.57106e-33 3.6834e-30 5.70073e-283.94817e-38 -2.22876e-37 -1.05656e-34 1.72076e-33 1.3866e-30 2.14601e-28twas the gprimes
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Hopefully we have we learned from these numerical examples, bla, bla, bla.5 Convergence Results for Multi-Step ContractionsUnfortunately, there are many other methods of great practical importance that are not one stepcontractive in the sense that most or all of the Dk have a spectral radius greater than or equal toone. For example, this is true for any iterative method that keeps some components of xk �xed ateach step, like cyclic reduction or any form of alternating projections. In those cases, one wouldstill hope that over a cycle of iterations, a signi�cant contraction is achieved in the following sense.Assumption 4 The preconditioners Pk are chosen uniformly bounded, so thatkPkk+ kP�1k k � c0 <1 for allk ; (26)and there exists an induced matrix norm and a cycle length m > 0 such that�m � limj kDj+m �Dj+m�1 � � �Dj+2 �Dj+1k 1m < 1 : (27)We will argue at the end of this section that any method for which this condition is not metwould appear to be numerically unstable.Proposition 3 Under Assumptions 1 and 3, the iterations (1) and (7) converge with a linearR-factor no less than �� = infm �m < 1to their respective limits x� and x0�. Thus, we havelimk kxk � x�k1=k � �� ; and limk k~x0k � x0�k1=k � �� : (28)Proof. Abbreviating bxk � xk � x� and with rk as de�ned in (12), we have by (13)bxk+m = 0@ mYj=1Dk+m�j1A bxk + mXi=10@m�iYj=1 Dk+m�j1A rk+i�1 (29)over a cycle ofm steps. Because of the assumed convergence of the xk and (26), theDi are uniformlybounded in norm by (1 + c0)2, so that by (27) for any " and su�ciently large k, we havekbxk+mk � (�m + ")m kbxkk+ max0�i<m krk+ik mXi=1(1 + c20)i�1� (�m + ")m kbxkk+ max0�i<m krk+ik(1 + c20)m=c20 : (30)Because of (13), the assumed convergence, and the uniform boundedness of the Di, the bxk grow atmost linearly. Therefore, for some constant c7 = c7(m)krk+jk � c7kbxkk2 for 0 � j < m : (31)Hence we have by (29) for �xed mlimk kbxk+mk /k bmkk � (�m + ")m ;24



which ensures m-step Q-linear convergence with limiting ratio no greater than �mm since � may bechosen arbitrarily small. This implies the R-linear convergence assertion for the xk by well-knownresults ([9]) and by taking the in�mum of �m over m.For the derivatives, we obtain from (7) for the bx0k � x0k � x0� the recurrencebx0k+m = 0@ mYj=1Dk+m�j1A bx0k + mXi=1 0@m�iYj=1 Dk+m�j1A r0k+i�1 ; (32)where r0k is as de�ned in (9). Since the last bound in Lemma 1 was proven without any referenceto Assumption 2, it can be used here to derive form the R-linear convergence of the xk that forsome constant c8 = c8(m; ")max0<i<m kr0k+ik(1 + c20)m=c20 � c8(�m + �)k+m : (33)Substituting this bound into the \primed" version of (30) and then dividing by (�m + ")k+m, weobtain the inequality kbx0k+mk(�m + ")k+m � kbx0k(�m + ")k � c8 :Summing for k = im over i = 0, 1, : : :, j � 1, we obtainkbx0j ck �(�m + ")j c � kbx00k+ j c8 :Since the c j�th root of the right-hand side converges to one, we obtain the asserted result, namelythat the x0k converge with the same linear R-factor �� to x0�.As we have noticed above, the xk may converge superlinearly. In those cases, the recurrence forx0k will soon be almost exactly linear, so that one may seriously consider accelerating the derivativeconvergence by Richardson extrapolation. Since we have a constructive test on the quality of theseextrapolated derivatives, it should be easy to determine the best candidate.Finally, let us briey examine the possibility that an iterative method of the general formachieves convergence but that assumption (27) is never satis�ed. Then the equation (30) suggeststhat a small perturbation �xk = �xk of the iterate xk in the direction of the largest singular value ofDk+m �Dk+m�1 � � �Dk+2 �Dk+1 will not be damped out over an arbitrarily large number m of steps.This would indicate that the method is numerically rather unstable. We can not make this claimrigorously, because the perturbation �xk might alter the Dk+j in such a fortuitous way that it isdamped out after all. For example, it is currently not clear whether conjugate direction methodscan be interpreted in the form (1) such that (27) is satis�ed. Derivative convergence has beenobserved for the classical conjugate gradient method, but this experimental observation cannot besupported by Proposition 1 and its corollaries.AcknowledgmentsThe authors are indebted to John Dennis and Alan Carle for their insistence that the black boxdi�erentiation be analyzed.References[1] Christian Bischof, George Corliss, and Andreas Griewank. Structured second- and higher-order derivatives through univariate Taylor series. Preprint MCS{P296{0392, Mathematics and25
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