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Abstract When nonlinear equation solvers are applied to parameter-dependent problems, their
iterates can be interpreted as functions of these variable parameters. If they exist, the derivatives
of these iterated functions can be recursively evaluated by the forward mode of automatic differen-
tiation. Then one may ask whether and how fast these derivative values converge to the derivative
of the implicit solution function, which may be needed for parameter identification, sensitivity
studies, or design optimization.

It is shown here that derivative convergence is achieved with an R-linear or possibly R-superlinear
rate for a large class of memory-less contractions or secant updating methods. For a wider class of
multi-step contractions, we obtain R-linear convergence of a simplified derivative updating scheme,
which is more economical and can be easily generalized to second higher derivatives. We also for-
mulate a constructive criterion for derivative convergence based on the implicit function theorem.
All theoretical results are confirmed by numerical experiments on small test examples.

Keywords. Derivative convergence, automatic differentiation, implicit functions, preconditioning,
Newton-like methods, secant updates.

1 Introduction and Assumptions on F(x,t) =0

Many functions of practical interest are defined implicitly as solutions to differential or algebraic
equations. The values of these functions are typically evaluated by iterative procedures with a vari-
able number of steps and various, often discontinuous, adjustments. The corresponding computer
programs contain branches, and the results are often strictly speaking not everywhere differen-
tiable in the data. Then one may ask if and how automatic differentiation can still be expected
to yield derivative values that are reasonable approximations to the underlying implicitly defined
derivatives.

Automatic, or computational, differentiation is a chain rule based technique for evaluating the
derivatives of functions defined by algorithms, usually in the form of computer programs written
in Fortran, C, or some other high level language. If the program can theoretically be unrolled into
a finite sequence of arithmetic operations and elementary function calls, then derivatives can be
propagated recursively. Exceptions arise when there is a division by zero or one of the elementary
functions is evaluated at a point of nondifferentiability. These local contingencies are easily detected
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and arise only in marginal situations where the undifferentiated evaluation algorithm is already
poorly conditioned. For a general review of the theory, implementation and application of automatic
differentiation, see [4].

Rather than as a practical problem for automatic differentiation, one can also view the question
raised here as a purely theoretical one, namely, whether the iterates generated for parameter-
dependent problems converge not only pointwise, but also with respect to some Sobolev norm
involving derivatives with respect to the parameters. This theoretical aspect will not be fully
explored here, as only pointwise convergence of the derivatives is established. Throughout we will
analyze the situation where a nonlinear system

F(z,t) = 0 with F :IR" x IR — IR"
is solved for z(t) for fixed ¢ by an iteration of the form
Try1 = Pr(ag,t) = xp — Pl (2, 1) . (1)

We wish to compute the total derivatives 2'(t) = dx(t)/dt. Without loss of generality, we have
restricted our framework to the case of a single scalar parameter ¢ € IR since multivariate derivatives
can always be constructed from families of univariate derivatives [1]. Total derivatives with respect
to t will be denoted by primes, and partial derivatives (with = kept constant) by the subscript t.

In this paper, we consider two approaches to computing the desired implicitly
defined derivative 2'(t). The “simplified” approach treats the P, as if they were inde-
pendent of x;. The “fully differentiated” approach differentiates the entire iterative
algorithm.

The rest of this section discusses some of the practical and theoretical pitfalls of using automatic
differentiation in the computation of z'(¢).

Obviously, any sequence {xj}g>o for which F(x,t) never vanishes exactly can be written in
the form (1), unless we place some restriction on the n X n matrices P, and thus the sequence of
iteration functions ®;. The assumptions on the P, that we will make are quite natural and almost
necessary for a numerically stable iterative process.

Assumption 1 (Regularity) For some fized t the iteration converges to a solution, so that
ry — x, = z(t) with F(z(t),t)=0.

Moreover, on some ball with radius p > 0 centered at (x(t),t) the function F is jointly Lipschitz-
continuously differentiable and has a nonsingular Jacobian F,(z,t) = 0F(x,t)/0x with respect to
x, so that for two constants ¢, L, and all ||z — z(t)]| < p

1 (Ol e, 6), B, ]| < o

and
I[Fe(, 1), Bz, 0)] = [Fo(zat), Bz, ]| < Lz — 2.,

where we may use [, norms without loss of generality.

Under this assumption, local convergence is guaranteed for Newton’s method with P, = F,(,t)7"
or for the Picard iteration with P, = I if the spectral radius of (I — F},) is less than one. If this
condition is not met by the original system I = 0, one might try to find a fixed preconditioner



P, = P so that (I — P F}) is contracting. Alternatively, one may select Pj as a function of z;, for
example by performing an incomplete triangular decomposition so that we can write

Then we will refer to the iteration (1) as a memory-less contraction provided the following condition
is met.

Assumption 2 (Contractivity) The discrepancies

satisfy
e = || Di]] € 6<1 (2)

with respect to some induced matriz norm so that in the limit

For the class of methods satisfying this contractivity assumption (which includes Newton’s
method with analytical Jacobians or divided difference approximations), derivative convergence of
the derivatives can be obtained easily. As an immediate consequence of Assumptions 1 and 2, we
note that by standard arguments

1Pell < eo(14s) and |27 < eo/(1=6). (3)

In the case of secant methods [5], the condition (2) is usually imposed for £ = 0 and deduced for
k > 1 to guarantee local convergence. If one assumes a certain kind of uniform linear independence
for the sequence of the search directions, it can be shown [6] that 6. = 0. This is a sufficient, but
by no means necessary, condition for Q-superlinear convergence. It can be enforced by taking so-
called special steps [7] for the sole purpose of reducing the discrepancy D;. We will see that 6, = 0
implies R-superlinear rather than just R-linear convergence of the derivatives. Hence, the extra
expense of special updating steps might be justified on parameter dependent problems. Secant
methods are not memory-less because the preconditioners P, are computed recursively from step
to step. Therefore, they must be considered as functions of all previous points x; and of the initial
choice Py. Since in formula (1), the matrix P, must also absorb step multipliers, this functional
dependence need not be smooth and may have discontinuities. In that case, the transition from z;,
to 241 may also be nondifferentiable, so that the classical chain rule is not directly applicable.

Even when x4, Py, and all subsequent P, are smooth functions of ¢, it may be uneconomical
to calculate the corresponding derivatives explicitly. For example in the case of Newton’s method,
the explicit calculation of derivatives would involve the propagation of derivatives through the
triangular decomposition of the Jacobian, a process that involves n®/3 arithmetic operations in the
dense case. However, we know from the implicit function theorem that

Fo(x(t),0)2'(t) = —F(x(1),1). (4)

In particular, this means that z'(¢) is defined in terms of the first derivatives of F' alone and does
not depend on the second derivatives F, and F,; . Yet these tensors come implicitly into play
if derivatives with respect to & are propagated through the Newton iteration function ®(zy,t) =
xy — Fo(ag,t)" F(ay,t). The same applies to any other iteration where the preconditioner P
depends in some way on derivatives of I’ with respect to z or t. Therefore, we will examine a



simplified derivative recurrence, where the P, are considered as (piecewise) constants with respect
to the total differentiation of the recurrence (1) with respect to . We call this the simplifies
approach.

On the other hand, it may be difficult to determine which quantities in a complicated nonlinear
equation solver need to be differentiated and which can be considered as constants because they
belong to the calculation of the preconditioner P,. This distinction must then be conveyed to
the automatic differentiation software by suitably annotating the code or retyping some of its
variables. Therefore, one may prefer to adopt a black box approach and differentiate the whole
iterative algorithm as though it were a straight line code. This is what we call the fully differentiated
approach. Also, the derivative ) = dx;/dt of the iterate x; that is finally accepted does represent
the local tangent of the approximate solution set, which should be close to the exact solution curve
if the convergence occurs with some degree of uniformity.

For either the simplified or fully differentiated approach, it seems pretty clear that the derivatives
cannot converge faster than the iterates themselves, unless the problem is linear or has some other
very special structure. We will show for Newton’s method and for secant updating methods that the
derivatives converge R-quadratically and R-linearly, respectively. Especially in the case of secant
updating methods, we must therefore expect that the derivatives may lag behind the iterates during
the final approach to the solution. Fortunately, we can constructively check the accuracy of any
derivative approximation so that a premature termination can be avoided if accurate derivative
values are required.

Gilbert showed in [3] that the derivatives dz;/dt converge in the limit to the desired tangent
2’ = 2/(t), provided the spectral radius of d®(z,t)/0z is less than one in the vicinity of (z.,1).
This fundamental result has removed some serious doubts regarding the general applicability of
automatic differentiation. It has been verified on several large codes, including cases where the
assumptions of Gilbert’s theorem do not appear to be satisfied. Therefore, we wish to relax the
hypothesis and avoid derivatives that are not needed either from a theoretical or from a practical
point of view. We will also establish rates of convergence, provide a practical stopping criterion,
and extend the theory to higher derivatives and multi-step contractions.

The paper is organized as follows. In the next section, we motivate the simplified and fully
differentiated derivative recurrences and develop some basic mathematical relations. In Section
3, we establish R-linear derivative convergence for the simplified recurrence under Assumptions 1
and 2 alone and for the fully differentiated recurrence under the additional assumption that the
update function of the P, satisfies a certain differentiability condition. Section 4 contains some
generalizations. The paper concludes with a summary and discussion in Section 5.

2 Simplified and Fully Differentiated Recurrences

As we have indicated above, the basic recurrence (1) can be interpreted as one step of a Picard, or
Richardson, iteration on the preconditioned nonlinear system

Fe(az,t) = P F(a,t) = 0. (5)

Provided P, is nonsingular, as we will assume throughout, the solution set of each F} = 0 is exactly
the same as that of the original system F = 0. Consequently, the implicitly defined function
x(t) and its derivatives are independent from the sequence of preconditioners Pj. Their iterative
evaluation certainly need not depend on the derivatives of P,, which may not even exist.
Differentiating equation (5) with respect to ¢t with P, considered a constant, one obtains the
equation defining z'(¢)
Py Fo(x(t),t)a'(t) = =P, Fy(z(1),1) . (6)



In the following formulae, we will often suppress the dependence on ¢, which should be understood.
Applying the Richardson iteration to the preconditioned linear system (6) of equations evaluated
at the “current” iterate x;, one obtains the recurrence

Ty = & — By [Folwe, t) & + Fi(ag,1)] (7)

Here the tilde over &/, indicates that these approximations to the derivative 2'(¢) are in general not
the derivatives of the z; with respect to ¢, which may or may not exist. Subtracting the actual
implicitly defined derivative

2l = —F(a.,0) 7 Fa,,t);.
from both sides, we find that
Fppr —al = Dp(# —a2l) + 7, (8)
where
re = PelFo(, )l + Bz, t)] = O(| X —2.]) . (9)

Since the perturbation 7, tends to zero, equation (8) looks very much like a contraction and promises
convergence of the 2/, to z..

If the P, are at least locally smooth functions of ¢ so that the matrices P, = dP,(z(t))/dt are
continuous, then the derivatives z} = 2/ () exist and satisfy the recurrence

Thpr = T — Py [Fo(ap, )y + Fy(xp, )] — Py Fag, 1), (10)
which can be rewritten in the contractive form as

= Dp(a), —al)+r, — P{F(a,t). (11)

/ /
xk+1 — T,

We refer to equation (7) as the simplified recurrence and to equation (10) as the fully differentiated
recurrence. The label update will be avoided to reduce the danger of confusion with the Jacobian
and Hessian update formulas that lie at the heart of secant methods.

Provided the P/ stay bounded or do not blow up too fast with increasing &, the last term in the
linear recurrence (11) becomes more and more negligible as the residual F(zy,t) approaches zero.
In the remainder, we will analyze equation (7) as a special case of equation (10) with P, considered
as constant on some neighborhood of the current ¢. Obviously the two stage iteration defined by (1)
and (10) can only be stationary at the (locally) unique fixed point (zy,2}) = (z.,2%). In general,
the iteration (10) will never reach this fixed point exactly. However, the derivative approximations
2}, can have no limit other than the correct value 7, unless the P/F(x,t) converge by some
fluke to a nonzero vector. This possibility would seem rather remote and can only occur if || FP;]]
tends to infinity exactly at the same rate as the reciprocal 1/||F(xy,t||. Note, that this cannot
happen in the simplified derivative recurrence (7) for which P = 0 by definition. In the case of
the full recurrence applied to secant methods, the Q-superlinear convergence rate ensures that the
perturbation P]F(z;,t) tends to zero R-linearly, as we will show in the proof of Proposition 2 in
Section 3.

In general, we expect that the derivatives «} exhibit roughly the same convergence behavior as
the iterates x;. To justify this optimism, we note that by Taylor’s theorem

PkF(xkvt) = PkFx(wkvt) (wk - $*) — Tk

where
e = =P [F(ag,t) — Fo(ag, (2, — 2%)] = Oy, — 2.]]?) - (12)



Consequently, the iterates z; defined by (1) satisfy the contractive recurrence
Tpyr — T = Dip(ap —aa)+ 718 (13)
Hence we have essentially the same leading term in (8), (11), and (13). Taking norms, one obtains
[@er = 2ull < N[ Dellller = @]l 4 [lrell
so that the errors ||z, — .|| converge Q-linearly because of the contractivity assumption:

i s =l
e 2.

No matter how a derivative approximation z) was generated, its quality can be checked by
evaluating the directional derivative
OF(zp +Tal,t+7)

Feta}) = . (14)
7=0

= Fo(ap, ), + Fi(ag,t) . (15)

This vector can be evaluated cheaply in the forward mode of automatic differentiation, without
the need to form the (potentially very large) Jacobian F,(z;,t). Note that P F'(zy,t,2),) = 7}
as defined in (9). When F'(x;,t,2}) vanishes exactly, @} represents the tangent of the perturbed
solution set

FUE) = {2z € IR" : F(x,1) = F(ay,1)}

If F'(xy,t,2) does not vanish, one can substitute into the right hand side of (7) or (10) to im-
prove the approximation. In general, the 2/, can only be as good approximations to 2/, as the z;
approximate x,. Abbreviating

pr = lleg — il and e = |2y -2l

and setting

o

me = (Ley +||Pipe with ¢ = 2(ca+1), (16)

one can bound the derivative errors as follows.

Lemma 1 The reqularity and contractivity imposed by Assumptions 1 and 2 imply that

1 , ,
(1 — 5)HPkF (Jfkat»%)H + Lcoclpk/2 s (17)

IN

My

prsr < Sppr At comi . and ||ry]] < eicoLpy (18)
forall ppy < p .

Proof. First we show that the function F,(x,t)"'Fi(z,t) : IR" — IR" with ¢ fixed has the
Lipschitz constant Lege; /2 at x,.

1Fo (e, )7 Fi(w, 1) = Fy(@e, )7 e, 1|

1Fs (e, )7 [Filw, 1) = B, O]l 4 [I[Fe(e, )71 = B, 0)7 ] Fy(aa, )
co Llle = aull + 1 Fo(a, )1 Feas 1) = Eua, O (e, Ol Fla, O
co L||z — 2] + coll|z — 2.lcoco = eo L (cg + 1)||z — a.]| -

AN VAN VAN



By definition of F'(z,t,2}) in (14), we have
afy — ol = F7N g, O)F (wp, t,2h) — [Fo(ag, )7 Fi(ay, t) + 2] .
After taking norms and using the Lipschitz constant just derived, we get
o < IF @) Pty @)l + o Leape/2

The inverse F!'(z,t) in the first term on the right hand side can be replaced by P, noting that
by the Banach Perturbation Lemma [8] and the definition of D in Assumption 2

1 e, OPH = (I = D)™ < 1/ (1= [IDx]])

which establishes the first assertion.
To prove the third inequality, we derive from (9) by taking norms

| Pete(@p, ) + Pr iy, U]
| Ps[Fo (@, t) = Fo(aa, O]+ | Pl (2, 8) — Fe(2), O]
| Pl L (i + 1)py, < 2¢0L(ci + 1)py, = Legeipy -

7]

<
<

Here we have used that [|z.|| < ||F7 (@, ||| Fi(z., t)]| < ¢ by Assumption 1. The last inequality
follows since ||Py|| = ||(I — Dp)F7 Y| < (1 4 6)co as a consequence of Assumption 2. Finally we
derive from (11)

Sppir + |7l + [[PeE (e, )]
O + (Leocr + || Pelleo)pr
oppt + ot

M4

AN VAN VAN

where we have used that ¢y is a bound on the Jacobian F, and hence a Lipschitz-constant for F,
so that | F(z, 0| = [ F(z,1) — F(za,t)]| < copr B

The first equation of Lemma 1 provides us with a constructive stopping criterion for the deriva-
tive iteration, provided we can make some reasonable assumption regarding the sizes of I, ¢¢, and
6, which are also needed to bound ||z} — .|| in terms of || F(zy,t)|| or || P F (2, 1)||. The second
inequality is the key to our convergence analysis in the following section.

3 Derivative Convergence for Q-linear Methods

First we will consider memory-less methods, where we may assume that P, = P(xy,t) is continu-
ously differentiable near (z,t) so that for some ¢y and all p, < p

1Bl = [[Peay + Pl < oo +1) (19)
This relation holds trivially with ¢, = 0 for simplified iteration (7), where P} = 0.

Proposition 1 Under Assumptions 1 and 2, the condition (19) implies R-linear or R-superlinear
convergence for the derivative recurrence (10). That is

I, (|} — 2 '/* < 6. (20)



Moreover, for all sufficiently small weights w > 0, the Sobolev norms
ler — .|l + wllz), — ]]

converge Q-linearly to zero. If furthermore 8, < c||zy — x.||, then we have R-quadratic conver-
gence in that

_— k

limy |2, —22||"* < 1,

which applies for Newton’s method, in particular.
Proof. Substituting (19) into the definition (16), we obtain

me < (Ley + ¢9)pr + captepre

so that by (18)
e < (8 4 cocapr )pe + c3pi

where ¢3 = ¢o(Ley + ¢2). Because of (12) and (13), we have by standard arguments

prr1 < Sxpr + Leopi.

Combining the last two inequalities for any w, one obtains the ratio

(Prs1 +wliryr) < (05 + wes + Leopr ) pr + w(0r + cocapr ) in
(pr + wpr) B (pr + wpir)
< by Fwes +eo(Leg + ea)py,

The last bound has a limit superior equal to é, 4+ wecs, since we already know that the p; converge
to zero. This limiting ratio implies Q-linear convergence of the Sobolev norm, provided we chose
0 < w < (1=246.)/cs. Consequently, the linear R-factor of the sequence {y}, is less than or equal
to any 6, + caw, and thus is not greater than 6. ,as asserted in (20). With the additional assumption
on 6;, we have for some ¢,

g1 < ca(pr + 1)p

which means that the convergent sequence {yu;} is bounded by a multiple of the Q-quadratically
convergent sequence {p,_1}. |

Proposition 1 shows that for memory-less contractions, the fully differentiated recurrence (10)
yields R-linear convergence and potentially R-superlinear convergence, a possibility which can only
occur if the iterates themselves converge superlinearly. The same convergence rates are achieved
by the simplified derivative recurrence (7), even when the preconditioners are updated recursively
and are not differentiable. In the important case of Newton’s method, either derivative recurrence
converges R- quadratically, which seems a rather satisfactory result.

Roughly speaking, we can claim in all these cases that the derivatives are converge satisfactorily
whenever the iterates z; converge in a reasonably rapid and stable fashion. The simplest condition
under which the zj,2%, and &) must all converge linearly to their respective limits is that the
shifted Jacobians D, = [I — P, F.(z,t)] converge to a limit whose spectral radius is less than
one. This condition was implied by the hypothesis of Gilbert’s theorem but must be considered
quite restrictive. For example, the condition does not hold for Broyden’s method nor for other
popular quasi- Newton schemes, where P, = a;B;'. Here, a; is a step multiplier, and By is an
approximation to the inverse Jacobian Fj(zy,t), which is not guaranteed to converge to F.(f(z),1)
or to any other limit. However, under the usual assumption for local convergence of secant updating



methods, it can be shown that a;, — 1.0 and that ||Dy|| < 0.5 in the I, norm for all k. Then it
follows from Proposition 1 that the simplified recurrence (7) must converge to the unique limit 2.
This does not necessarily apply in case of the fully differentiated recurrence (10) because a priori
nothing is known about the existence or the size of the P/.

The differentiability of the secant updates is in question because they contain rank one terms
of the form y;/||sk||, where both difference vectors

Sp = Tppr— . and Yy = F($k+1at)_F($kat) ~ Fx(w*at)sk

converge to zero. To prove that the matrix derivatives || P;|| do not blow up too fast, we make the
observation that all classical updates and many other possible schemes can be written in the form

Py = U(Pr, oty s6,0) (21)
where the update function
U : IR"" x IR" X IR X IR" x IR" +— IR""
has the following property.

Assumption 3 (Lipschitzian Update) There exist constants ¢ > 1, p < 00, § < 1, and v < o
such that the domain conditions

1P P~ < e fle = aul s sl < p, and [Py = s|| < é]ls] (22)
imply that U is differentiable at the point (P, z,t,s,y), and its partial derivatives satisfy
IURN S WU MUl <y s and (U (U< 2/l (23)
where P may be restricted to the open cone of symmetric positive definite matrices in IR"*".

The crucial point here is that the partial derivatives with respect to s and % are only bounded by a
multiple of the reciprocal step size 1/||s||, which allows unbounded growth of the matrix derivatives
||Pf||. The key observation of the following proof is that the Q-superlinear convergence rate

lim [z 41 = 2.][/lJ2x — 2]l = 0 (24)

implies that the residuals || F};|| decline just a bit faster than the || P}|| may grow. Before we formulate
the second major result, let us briefly show that the Broyden update and the DFP formula which
do not explicitly depend on (z,t) satisfy the condition above.

Lemma 2 The Broyden update function

(s — Py)s' P

P =P+—7—
U(P,s,y) L—y
and the Davidon-Fletcher-Powell (?) formula

Pyy" P ss”
y"Py  yTs

UP,s,y) = P—

satisfy Assumption 3 with all norms || - || induced by the Euclidean vector norm.



Proof. For the nonsymmetric Broyden update, p is arbitrary, and é may be any number between
zero and 1. Then we derive from the last domain condition in Assumption 3 that s # 0 and that

lyll = 1P~ Py|l < cl| Pyll < e(1+6)ls]| < 2¢]s]]

as well as
Isllllylle > [Is[[[|[ Pyll > s" Py = " (Py — s) + sTs > (1= 6) |s[]*.

In particular, ||y > ||s||(1 — 6)/c. Now let P(r) = P + 7P, and compute the derivative U of
U(P(T),s,y) at 7 = 0. Then we have by the chain rule with s and y kept constant

U=P—Pys" P+ (s— Py)sTP/ (sTPy) — (s — Py)sT P(sT Py)/(sT Py)?,
so that by the triangle inequality in the L, norm

[l

IN

121 (L4 (P sl =+ (sl + sl Pyl /(s7 Py)
+ (sl + 1Py sl syl (s™ Py)*)
< P+ (22 + 14263 /(1= 6) 4 (1 + 2¢%)2¢% /(1 - 6)7] .

Since the direction P is arbitrary, this shows that the derivative Up is uniformly bounded as
required. Similarly, we find for the differentiation in some direction $

[l 81 - (1278l + lls = Pyl PID/(s™ Py) + (Il + [|1PyIDIPT SN[ Pyll/(s™ Py)?]

3N/sH) - [(L 4 T4 2e*)e /(1= 8) + (2 4+ 2¢)2¢) /(1 = 8)°]

IAN A

which implies that Ug||s|| is indeed uniformly bounded. Finally, we derive in the direction g

[l 90 [IPNIPsll/(s"Py) + (sl + I PyIDIPT s 27l (s™ Py)?)

g/ Nl - [e*/ (1= 8) + (e + 2¢*)e? /(1 = 6)°]

which ensures that Uy||s|| is indeed uniformly bounded.
For the DFP formula, we must impose the restriction § < 0.2 ¢~ Then we have

<
<

y's=y PPs > 5" Pl — [Py — s[|[[PTH[Isl] > (1/c = cd)lls]|* = 0.8]|s]]*/c ,
where we have used the assumed positive definiteness of P to bound
sTP7hs > ls[lP/11Pl > 1Isl? e -
As an immediate consequence, we have
y'Py > y's —y'(s— Py) > 08|/ — d]lylllls]] > (0.8/c — 82¢)]|s[|* > 0.4]|s[*/c .

The rest of the argument is almost the same as the Broyden update. We find by differentiating in
some direction P with s and y held constant

U =P—[Pyy" P+ Pyy" P)/(y" Py) — [Pyy" Pl(y" Py)/(y" Py)” ,
so that after taking norms

U] IPH I+ 20l Pyli2-5¢/ s + [ Pyl*llyl176.25¢*/ [1s]) ]

<
< 1P| [1 4 20¢* +100¢%] < || P[|(1+ 10eh)? .

10



The derivatives with respect to y and s can be bounded by multiples of ||s||~! in exactly the same

fashion. 1

Since Assumption 3 can also be verified for the BFGS update, it applies for a wide range of
methods. Now we obtain for these updating methods almost the same result as in the memory-less
case. The rather stringent restriction § < 0.2¢72 used in the proof for the DFP formula could be
avoided if other conditions were placed on y's and y* Py. This would make perfect sense in the
context of convex optimization, but we did not introduce them here because of our primary focus
is on the nonlinear equations case.

Proposition 2 Under Assumptions 1, 2, and 3 with p and & sufficiently small, the fully differen-
tiated recurrence (10) yields R-linear or R-superlinear derivative convergence:

T, (| — 2% < é..

Moreover,
R 1
lim [[| Pellflee — 2. [[]* < éu

which limits the potential growth the P} relative to the decline of the errors ||z, — x.|.

Proof. Differentiating (21), we obtain by the chain rule and the triangular inequality using (23)
NPl < S Up P Us ey + U 4+ Us 87+ Uy il
< B g 2 T Clsell + Nl /Hsell -
To bound the last two terms, we note that by (18) of Lemma 3
56l = lohp = @kll < pean + 0
< (L4 0k + come < 2pp + cony -

Similarly, we find

Yl = 1" (@1, b @hgn) = F (@, 4 2]

1 Fe(@p1, D))y — Folag, Oz || + HFt(QCkHa t) = Fy(a, 1)

1 Fe(@pr, (@ — 2| + ([ Fe (@, O (a5, — 20|
FNFe(@p415 ) — Folpgr, O]l + L(Pk+1 + pr)

colprsr + px) + (g + 1) Lprs1 + pr)

2eopi + e + e < (e + D) (e + me) -

IAN A

<
<

Adding the last two inequalities and noting that ||sg|| > pr — prs+1 > 0.9(1 — 6)py., we find that for
some cs,

(sl + Ny lD/Nsill < e+ 0e)/ P -

Now, since p; is bounded, and 7;/p;. is bounded away from zero, the first four terms in (25), and
an additional Le¢; can be subsumed into the last bound, with ¢5 growing to some ¢4 so that

Ley + | Py || < el + mi)/ pr

After multiplication by pyy1, we get

Mer1 < Ge(pr +m)  with  qp = cepryr/pe — 0.

11



Adding w > 4. times this inequality to the bound (18), we find that

Coqk
w

(ComMps1 + Whtpy1) < colqr +w)m + (coqr + Wiy )it
(come + wpir) - (come + wpir)

< max{ék—l— ,qk—l—w}.

Since the limit superior of the maximum is w, and one may choose w arbitrarily close to é,, we have
shown that the sequences {n;}; and {p }r both have a linear R-factor no greater than é,. The last
assertion follows directly from the definition of 7, in (16). N

This result applies to all standard classical secant methods and suggests that the rate at which
the derivatives z) converge is the same whether or not the Jacobian updating procedure is differen-
tiated. That this conclusion is only valid if the line- search eventually becomes inactive, so that all
later steps are of unit length. On one hand, this means that the fully differentiated, or black box,
approach is reasonably safe. On the other hand, it appears that implicitly defined derivatives can
be obtained at a much reduced cost by deactivating the Py, i.e. treating them as constants as in
the simplified updating scheme. Also, the theoretical possibility that the P/ generated in the fully
differentiated update may grow unbounded is numerically worrisome as it may lead to exponent
overflows.

4 Numerical Results and Higher Derivative Recurrences

Our very limited numerical experience confirm the theoretical results. We found only a moderate
growth of the P} for our test case, the Davidon-Fletcher-Powell (DFP) secant method. However,
there is clear evidence that the convergence of the first derivatives z) lags significantly behind
the convergence of the iterates z; themselves. In the case of secant methods this phenomenon is
much more pronounced than for Newton’s method, where the d—th derivative can be shown to
lag roughly d steps behind the functional iterate. We have also propagated higher derivatives for
secant methods and found that they converge in a staggered fashion and at about the same rate
whether or not P, is deactivated.
Our numerical experiments were conducted on the test function

Fla,t) =V, f(e,1) with f(z,1) = %(xTHHtHxH‘*) ,

where H = [1/(i + j — 1)] is the Hilbert matrix of order n, and ||z|| denotes the Euclidean norm.
Since the unique solution 2z, = 0 is independent of the parameter ¢, all derivatives z’,z”,...2{)
must also vanish, which makes monitoring their errors exceedingly simple. The approximate inverse
Hessian was initialized as Py = diag(7);=1, ., which is somewhat “smaller” than the exact inverse
H~1. Consequently, the inverse form of the DFP update takes a very long time before P, and the
resulting steps s, = — Py F(z;,t) become large enough to achieve superlinear convergence. The
starting point was always the vector of ones zy = e, and the parameter was set to t = 1.

Andreas, please check that I translated correctly. The text said: Here zn,gn and del
represent the Euclidean (Frobenius) norms of z;, — z. = ay, 2?7 F(a,t) and D, =1-PH,
respectively. Note that Dj is not exactly equal to D; since we have neglected the nonquadratic
term. The quantities xpn,gpn, and Apn represent the Fuclidean norms of the derivatives af,

F'(xg,t,z,) and P;. I translated that as:

Jow—aull ok =2l PG Ol (1Pt 1De =1 Pl P
xn Xpn gn gpn del Apn

12



In this version, I leave these as tables. Work is in progress to make graphs.
First let us consider the fully differentiated iteration without line search for n = 2.

lee = ol lleh—atl PGl (et 1Dy =1 PHI P

1.41421 0 7.32196 5.65685 1.20185 0

5.91138 5.65685 420.315 1602.43 1.37905 122897
1.28415 0.322443 5.81274 7.4073 1.37919 .126535
1.23993 0.530983 5.07422 8.79846 1.35374 353744
1.14152 0.906449 4.05979 9.46657 1.28473 451704
0.775852 1.39968 1.50164 2.30642 1.24288 523219
0.583841 1.49961 0.707141 1.90673 1.17944 .352458
0.440021 1.24741 0.275981 1.30797 1.18538 489282
0.364655 0.93575 0.124256 0.81024 1.32074 1.69699
0.317938 0.668433 0.090391 0.528703 1.51918 2.94176
0.273088 0.362568 0.080089 0.388196 1.51109 3.20875
0.218102 0.151102 0.072478 0.20315 1.30079 5. 73189
0.157636 0.304182 0.061558 0.070792 1.11790 8.48362
0.089584 0.502993 0.044328 0.231856 1.61169 10.3928
0.025795 0.439793 0.023258 0.329356 2.56209 16.5102
0.019691 0.222841 0.008383 0.196591 2.73134 24.3488
0.021733 0.342188 0.004685 0.097266 1.06296 28.8397
0.019112 0.357521 0.001751 0.068149 1.72589 23.3437
0.013577 0.263456 0.001214 0.017659 2.71993 85.2334
0.007314 0.201841 0.001688 0.023696 1.62204 37.3540
0.002504 0.075257 0.001454 0.027388 1.07995 28.0788
0.000738 0.022724 0.000829 0.021418 1.98608 41.5908
0.000852 0.015869 0.00029 0.008764 0.638348 16.6442
0.000429 0.012485 4.22336e-05 0.002265 1.00812 39.2452
9.91147e-05 0.003677 1.42962e-05 0.000317 0.515883 24.8241
7.86743e-06 0.00047 4.41258e-06  0.000169 0.338774 8.76305
5.6655e-07 1.87742e-05 4.20846e-07 2.09424e-05 0.193667 2.94516
6.65702e-08 3.48841e-06 1.13056e-08 8.30216e-07 0.093476 5.80960
1.89371e-09 1.24304e-07 1.95901e-10 9.38562e-09 0.054466 2.90143
1.39032e-11 1.24812e-09 6.57715e-12 4.52763e-10 0.024018 0.641633

As we can see, the convergence is pretty sloppy.
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Here are the results for the simplified operation.

loe — ol leh—atll POl (et 1D =1 PH|| P
1.41421 0 7.32196 5.65685 1.20185 0
5.91138 5.65685 420.315 1602.43 1.37905 0
1.28415 41.5058 5.81274 259.676 1.37919 0
1.23993 79.8816 5.07422 270.158 1.35374 0
1.14152 3.55943 4.05979 10.3051 1.28473 0
0.775852 1.41966 1.50164 2.83181 1.24288 0
0.583841 0.962748 0.707141 1.24517 1.17944 0
0.440021 0.732391 0.275981 0.663272 1.18538 0
0.364655 0.596066 0.124256 0.443747 1.32074 0
0.317938 0.499531 0.090391 0.320956 1.51918 0
0.273088 0.39534 0.080089 0.25424 1.51109 0
0.218102 0.280469 0.072478 0.209113 1.30079 0
0.157636 0.185415 0.061558 0.167374 1.11790 0
0.089584 0.102318 0.044328 0.123206 1.61169 0
0.025795 0.086137 0.023258 0.077214 2.56209 0
0.019691 0.128427 0.008383 0.04098 2.73134 0
0.021733 0.123338 0.004685 0.027106 1.06296 0
0.019112 0.107983 0.001751 0.010115 1.72589 0
0.013577 0.076062 0.001214 0.006931 2.71993 0
0.007314 0.040747 0.001688 0.009568 1.62204 0
0.002504 0.014017 0.001454 0.008199 1.07995 0
0.000738 0.004168 0.000829 0.00468 1.98608 0
0.000852 0.004811 0.00029 0.00164 638348 0
0.000429 0.002422 4.22336e-05 0.000238 1.00812 0
9.91147e-05 0.000559 1.42962e-05  8.07039e-05 515883 0
7.86743e-06 4.44117e-05 4.41258e-06 2.49092e-05 338774 0
5.6655e-07 3.1982e-06 4.20846e-07 2.3757e-06 193667 0
6.65702e-08 3.75792e-07 1.13056e-08 6.38209e-08 .093476 0
1.89371e-09 1.06901e-08 1.95901e-10 1.10587e-09 .054466 0
1.39032e-11 7.8484e-11 6.57715e-12 3.71284e-11 .024018 0

Suppose we introduce a line search that performs exactly one parabolic interpolation on the
function value at each step. Then we get the much more rapid convergence pattern, even when
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oo — 2l et — 22l PO NF (e toe)] 1Dy = 1 - PH|| P

1.73205 0.000000 12.5518 10.3923 1.66700 0.000000
1.67068 0.134673 11.4076 11.7444 1.65588 0.061689
0.882142 0.160312 2.07124 212777 1.60236 0.122752
0.546038  0.505207 1.09251 1.76371 1.57634 0.550104
0.189388  0.526785  0.215538 0.670052 1.41861 0.751283
0.132772  0.467438  0.020972 0.118908 1.45088 0.76126
0.048901 0.340127 0.011613 0.075559 1.34129 14.9435
0.026949  0.058005  0.002710 0.030825 1.28867 2.31277
0.026500  0.052905  0.000121 0.001371 1.18469 5.69642
0.026237  0.059376  0.000119 0.001903 1.27383 124.353
0.010553  0.046969  0.000037 0.000273 0.671322 487.070
0.000444  0.006700  0.000005 0.000337 0.315553 233.346
0.00001 0.001317  0.000001 0.000032 0.904784 935.704

Here the P actually show signs of blowing up, at least temporarily. Note that Proposition
Again 7?7?77 we get pretty much the same for the simplified iteration.

loe —wll o =2l [FGedll  F(ewtep)l 1Dy =1 - PH|| P
1.73205 0 12.5518 10.3923 1.667 0
1.67068 0.050909 11.4076 8.41106 1.65588 0
0.882142 0.914877 2.07124 3.3H272 1.60236 0
0.546038 1.14635 1.09251 1.81314 1.57634 0
0.189388 0.260913 0.215538 0.081441 1.41861 0
0.132772 0.1987 0.020972 0.041101 1.45088 0
0.048901 0.03018 0.011613 0.026022 1.34129 0
0.026949 0.008106 0.00271 0.001544 1.28867 0
0.0265 0.005859 0.000121 0.000594 1.18469 0
0.026237 0.00603 0.000119 0.000737 1.27383 0
0.010553 0.527305 3.07888e-05 .107082 0.671322 0
0.000444 0.169617  5.43704e-06 .047119 0.315553 0
1.01274e-05 .014605 4.55601e-07 .002665 0.904784 0
2.14482e-08 .005679 1.31503e-08 .000455 0.010328 0

This seems to work significantly worse than the fully differentiated formula.

We can also do higher derivatives! For the simplified recurrence, where P, is deactivated, the
following informal argument establishes the convergence of the higher derivatives 2U) = d/x(t)/dt’ .
Differentiating equation (6) j < m times with respect to ¢, we obtain the following linear system
for the (j + 1)-st derivative from Leibnitz’s rule:

P B (0,02 = 1, (g +Z() IR (a(t).0) x@(t)). (25)

Here we have assumed that F'(z,t) is m times jointly Lipschitz-continuously differentiable. Replac-
ing the z(9(t) by approximations igj) for: =0,1,...,7, one may interpret the right hand side as a
vector function

~PRY = PR (a7, 5))
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While this may seem a very messy expression, the residual vectors
(i+1) . . .
Fx(xk(t)vt)xk + Rk(l)v fOT’L—O,l,...,]

can be evaluated simultaneously for any given ¢ and (ig))i:oylyw]’_l_l by one forward sweep of auto-
matic differentiation [2]. The complexity of this Taylor series propagation is O(j?) times that of one
function evaluation F(z,t) if ordinary polynomial arithmetic is used. This asymptotic complexity
bound can be reduced to O(jlogj) through the use of the fast Fourier transform, but that is only
likely to pay off when j is significantly larger than 10. As a generalization of (7), one may now
iterate for y = 0,1,...,m—1land £k =0,1,...

D = < B[R0 5 + RY]

This family of linear recurrences is again of the form (7) with the same leading linear term. By
induction, one sees that if all igj) for ¢ < j converge to the correct values ("), then the Rgf) converge
to the right hand side of (25), and the 505}*” can only converge to the unique fixed point zU+" of
its recurrence. The linear R-factor is again at least 4., but the higher derivatives tend to converge
in a staggered fashion. This can be seen from the following numerical result listing the first five
derivatives of the residual vector V f(z,t) for the fully differentiated case with n = 3 and the

16



parabolic line-search.

7.83333

7.08333

6.78333

twas the gprimes
7.13467

6.43292

6.15208

twas the gprimes
0.886147
1.25420

1.38987

twas the gprimes
0.891133
0.509296
0.374261

twas the gprimes
0.164546
0.109936
0.085412

twas the gprimes
-0.008084
0.012005
0.015177

twas the gprimes
-0.01141
-0.002153
0.000161

twas the gprimes
-0.002072
-0.001456
-0.000964

twas the gprimes
6.61736e-05
-7.21583e-05
7.03952e-05
twas the gprimes
-3.33856e-05
-6.47562e-05
9.38961e-05
twas the gprimes
3.01871e-06
-2.06109e-05
2.26722e-05
twas the gprimes
4.74285e-06
-2.22328e-06
-1.45734e-06
twas the gprimes
4.3987e-07
1.00937e-09
-1.18683e-07
twas the gprimes

(@

6.85996
6.76028
6.72086

0.672907
1.29606
1.54753

1.51001
0.764193
0.496541

0.478306
0.361055
0.29972

-0.022728
0.072649
0.09135

-0.074535
-0.00544
0.011139

-0.025347
-0.014561
-0.009782

0.001204
-0.000599
-0.000268

0.001891
-9.33634e-05
0.000187

0.00024
-9.00923e-05
9.44013e-05

-0.000331
-2.8461e-05
5.71076e-05

-2.90034e-05
1.87743e-06
1.24001e-05

o

-0.962535
-0.812404
-0.753236

-0.189995
-0.117537
-0.090792

0.164555
0.021875
-0.061992

0.089422
0.299476
0.345063

-0.027573
0.18933
0.257746

-0.022343
0.06202
0.088279

-0.009128
0.026911
0.030917

0.005172
-0.010462
-0.010349

-0.033072
-0.003983
0.001207

-0.0079
1.74332e-05
0.000976

0.007024
0.000697
-0.000316

0.000314 17
0.000254
-1.18975e-05

o

0.98677
0.79177
0.715227

0.217294
0.134092
0.103094

-0.195075
0.168406
0.306359

-0.085411
0.056043
0.144632

0.088714
0.069657
0.160079

0.303165
0.015314
0.011372

0.636675
0.507209
0.401505

-0.155942
-0.137604
-0.117287

0.470508
0.06335
0.022922

0.301536
0.000638
-0.033317

0.000395
-0.034716
-0.039082

0.064775
-0.002493
-0.016062

o

-0.916888
-0.687363
-0.597693

-0.24017
-0.143875
-0.10765

-0.941908
-0.060258
0.276555

-0.59197
-0.759126
-0.762659

0.19331
-0.562832
-0.719024

-1.94998
-1.02746
-0.747106

-1.65201
-1.23151
-0.97309

-2.27729
-0.792678
-0.404242

-4.84217
-0.659946
-0.684854

-10.2752
-0.598232
0.746131

-6.43432
0.751035
1.98018

-3.00928
-0.643611
0.419384

o

0.743149
0.493916
0.397123

0.255908
0.145163
0.103067

0.018713
-0.16829
-0.224844

-1.26069
-1.79916
-2.04218

1.02341
-1.28511
-2.32696

-0.275344
1.79132
1.49802

-17.6312
-10.3558
-7.31494

-8.48942
1.88576
3.53261

29.4543
4.03583
12.1638

286.043
19.6354
-21.3334

274.870
2.71493
-44.6845

10.3549
31.7758
10.9830




Now we repeat the same calculation but this time with the P, deactivated. same first compo-
nents as before left off here
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6

6

6

twas the gprimes
4.82302

4.86433

4.88085

twas the gprimes
-0.74458
-2.04741
-2.54841

twas the gprimes
-1.74185
-0.498205
-0.072187

twas the gprimes
0.080149
0.000382
-0.014447

twas the gprimes
0.015076
-0.024026
-0.029745

twas the gprimes
0.023012
0.010335
0.006388

twas the gprimes
0.00153
0.000189
-7.9969e-05

twas the gprimes
-0.000589
-5.30096e-05
5.60423e-05
twas the gprimes
0.000731
6.89644e-05
-6.17383e-05
twas the gprimes
-0.106291
-0.010134
0.008124

twas the gprimes
0.046164
0.009385
0.000995

twas the gprimes
-0.001048
-0.001811
-0.00165

twas the gprimes
0.000322

o

-0.476248
-0.477479
-0.477971

-0.149644
0.322835
0.50425

1.88132
0.380387
-0.148079

-0.796362
-0.235109
-0.07221

-0.082498
0.102362
0.141692

-0.026744
-0.019941
-0.014289

0.001505
0.002171
0.003118

0.00128
-0.000384
0.000492

-0.001247
-0.00063
0.000673

0.15094
0.017547
0.00277

-0.070342
-0.011191
-0.008303

0.001722
0.002815
0.002772

-0.000601

o

0.014832
0.014851
0.014858

0.243524
1.43921
1.91978

-0.576298
0.224032
0.573789

0.726776
-0.26597
-0.52796

0.363468
-0.240598
-0.393884

-0.646409
-0.280996
-0.171545

-0.044115
-0.009163
-0.004485

0.013065
0.002598
-0.002736

-0.017088
-0.000428
-0.00024

2.38140
0.462909
-0.130307

-0.905865
-0.495743
-0.174044

0.0@ 507
0.056185
0.043859

-0.011861

o

-0.000152
-0.000152
-0.000152

-0.033263
-1.08683
-1.50616

-5.40806
-1.65358
-0.360719

2.13653
1.91018
1.72746

-0.195027
0.028066
0.169606

0.854433
0.081682
-0.105063

0.170653
0.153992
0.121157

0.020891
0.00451
-0.005069

-0.027953
0.000175
-0.000497

4.53559
0.184754
-0.720322

-2.1639
-0.000487
0.28883

-0.056817
-0.027472
0.204671

-0.086866

o

o

0.001018
0.247745
0.345771

12.0342
-1.23878
-6.28715

-3.35262
-2.05038
-1.75125

-2.55240
0.487509
0.878855

8.47370
5.44524
4.17312

-0.119117
-0.664591
-0.631163

-0.373877
-0.05193
0.046773

0.472549
0.037797
-0.01686

-56.3123
-22.0105
-1.09736

16.6408
23.6636
12.1396

-4.47033
-1.00815
-1.29037

0.875113




Now let’s look at the fully differentiated two-dimensional case without line-search
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5.5 4 0 0 0 0

4.83333 4 0 0 0 0

twas the gprimes

-320.917 -1200.06 -1700.89 -1077.33 -256 0
-271.435 -1061.91 -1569.33 -1034.67 -256 0

twas the gprimes

4.67786 5.44726 -1.45861 1.11283 -0.395316 -0.623963
3.45045 5.01951 -0.726664 0.177179 0.558952 -1.34465
twas the gprimes

3.26335 4.44532 -0.889732 -0.053159 0.989838 -1.51802
3.88565 7.59289 0.031227 -1.92695 3.24290 -3.28712
twas the gprimes

2.47489 6.34817 0.753541 -5.97338 10.1578 -5.59358
3.21819 7.02258 -4.10746 1.08170 12.7960 -42.4326
twas the gprimes

0.827821 2.23056 5.32941 11.3574 -281.202 -3302.63
1.25285 -0.586674 -6.81129 162.758 823.975 -1904.46
twas the gprimes

0.356472 1.83922 3.21208 -33.3711 -346.410 -1103.89
0.610718 -0.502897 -2.07225 107.693 303.251 -3036.61
twas the gprimes

0.084493 1.21808 2.10769 -43.2238 -285.768 553.030
0.262729 -0.476498 -0.920708 66.7940 181.473 -2161.95
twas the gprimes

-0.031288 0.733451 1.67876 -35.5955 -215.420 776.125
0.120252 -0.344295 -1.19784 40.9095 185.144 -1269.87
twas the gprimes

-0.067232 0.512487 1.50108 -36.0887 -206.375 1449.61
0.060419 -0.12994 -1.78263 15.5821 205.082 202.420
twas the gprimes

-0.076023 0.377545 2.81489 -26.4187 -352.445 -242.384
0.025196 0.090309 -0.753557 -6.14754 19.6118 956.143
twas the gprimes

-0.072478 0.171229 3.15421 -12.3705 -342.268 -1014.17
7.81512e-05 0.109319 0.03917 -10.9744 -44.7461 1129.44
twas the gprimes

-0.060281 -0.040077 3.26064 7.17298 -292.524 -2593.32
-0.012473 0.058355 1.13385 -6.18375 -159.940 -120.768
twas the gprimes

-0.04182 -0.224528 2.61024 28.2915 -175.017 -4286.53
-0.014698 -0.057833 1.43948 7.78921 -165.436 -1792.90
twas the gprimes

-0.021053 -0.30123 0.430609 42.0019 203.048 -4791.62
-0.009885 -0.133176 0.547738 19.9491 34.0736 -2744.82
twas the gprimes

-0.006728 -0.167877 -1.22758 12.7669 395.634 2268.76
-0.005002 -0.102301 -0.3233 10.7935 171.086 51.4143
twas the gprimes

-0.003258 -0.07252 -0.439088 21 4.29992 113.951 663.303
-0.003366 -0.064819 -0.172193 5.57870 80.0809 164.661

twas the gprimes
-0.000465 -0.044861 -0.752186 4.57146 190.366 281.806
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Here we have the simplified derivative recurrence on the same problem.
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5.5

4.83333

twas the gprimes
-320.917
-271.435

twas the gprimes
4.67786

3.45045

twas the gprimes
3.26335

3.88565

twas the gprimes
2.47489

3.21819

twas the gprimes
0.827821
1.25285

twas the gprimes
0.356472
0.610718

twas the gprimes
0.084493
0.262729

twas the gprimes
-0.031288
0.120252

twas the gprimes
-0.067232
0.060419

twas the gprimes
-0.076023
0.025196

twas the gprimes
-0.072478
7.81512e-05
twas the gprimes
-0.060281
-0.012473

twas the gprimes
-0.04182
-0.014698

twas the gprimes
-0.021053
-0.009885

twas the gprimes
-0.006728
-0.005002

twas the gprimes
-0.003258
-0.003366

twas the gprimes
-0.000465

N NYNY1 700

-1200.06
-1061.91

105.528
237.267

219.285
-157.795

8.83482
-5.30480

0.756555
-2.72888

0.499834
-1.14045

0.444293
-0.492477

0.357054
-0.263484

0.285099
-0.147414

0.251072
-0.040014

0.206519
0.032841

0.157502
0.056631

0.110328
0.054841

0.066038
0.040013

0.031365
0.026374

0.018817
0.01951

0.002712

N NYNNNOL™ A ™

-1700.89
-1569.33

2936.08
8009.74

11658.5
-1809.82

-3272.66
-10171.1

249.520
-1564.18

277.224
-530.066

240.769
-200.729

175.593
-107.532

130.544
-61.0968

110.741
-14.2995

88.5443
17.0677

66.2374
26.1979

46.5033
24.6963

28.8677
18.2375

14.5621
12.4127

8.93589
9.26797

1.28907

A oY=y
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-1077.33
-1034.67

-5961.48
182950

1.37659e4-06

555769

-487306
-256851

-26979.6
5885.69

-10109.6
4464.79

-5263.44
2868.58

-3243.15
1804.12

-2267.58
1036.68

-1868.17
197.947

-1451.07
-315.289

-1072.01
-440.133

-753.296
-405.935

-471.733
-299.520

-238.954
-206.538

-149.884
-155.548

-21.7026

A YY)

-256
-256

-208775
1.31217e+06

1.375e+4-08
9.64855e4-06

-7.3468e4-07
5.45768e+07

-1.00104e+07
1.45899e+07

-5.27303e+06
5.64325e+06

-3.53796e+06
2.48968e+06

-2.40779e+06
1.41712e4-06

-1.74953e+06
811373

-1.46968e+06
178782

-1.16432e+06
-233430

-867589
-347220

-609283
-325045

-379256
-239968

-191555
-163995

-118359
-122783

-17094.8

o1 1 =0 O

-1.14961e+06
4.88335e4-06

1.02074e+10
-4.95981e+09

-6.89382e+09
5.90549e+09

-1.13448e+09
2.13254e+09

-6.78685e+08
8.64373e4-08

-4.98388e+08
3.7449e4-08

-3.54419e+08
2.11234e+08

-2.62736e+08
1.22627e4-08

-2.2365e+4-08
2.96799e407

-1.79635e+08
-3.3957e4-07

-1.34634e+08
-5.29505e+07

-9.45131e407
-5.00814e+407

-5.85937e+07
-3.69868e+07

-2.95374e+07
-2.51191e407

-1.80585e+07
-1.87286e+07

-2.60365e+06
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Hopefully we have we learned from these numerical examples, bla, bla, bla.

5 Convergence Results for Multi-Step Contractions

Unfortunately, there are many other methods of great practical importance that are not one step
contractive in the sense that most or all of the D, have a spectral radius greater than or equal to
one. For example, this is true for any iterative method that keeps some components of z;, fixed at
each step, like cyclic reduction or any form of alternating projections. In those cases, one would
still hope that over a cycle of iterations, a significant contraction is achieved in the following sense.

Assumption 4 The preconditioners P, are chosen uniformly bounded, so that
NP+ 127 < eo <00 forallk, (26)
and there exists an induced matrix norm and a cycle length m > 0 such that
6 = Ty || Dy Dy -+ Dyr - Dy ™ < 1. (27)

We will argue at the end of this section that any method for which this condition is not met
would appear to be numerically unstable.

Proposition 3 Under Assumptions 1 and 3, the iterations (1) and (7) converge with a linear
R-factor no less than
6, = infé,, < 1

to their respective limits x, and x!,. Thus, we have

1/k

< b (28)

Timy ||o; — . " < 6., and Tmy |7, — 2|

Proof. Abbreviating 7, = z; — x. and with r; as defined in (12), we have by (13)

Thgm = (H Dk+m—j) T, + Z (H Dk+m—j) Thti—1 (29)
ji=1 =1 ji=1

over a cycle of m steps. Because of the assumed convergence of the z;, and (26), the D; are uniformly
bounded in norm by (1 + ¢y)?, so that by (27) for any ¢ and sufficiently large &, we have

IN

ez

(b €)™ 4]+ max regal] o1+ 2) !

i=1

IN

(6 &) 176l + max Iregall(1+ )™ /e (30)

Because of (13), the assumed convergence, and the uniform boundedness of the D;, the Z, grow at
most linearly. Therefore, for some constant ¢; = ¢z(m)

ksl < ezll@ell® for 0<j<m. (31)
Hence we have by (29) for fixed m

Tim g (|Zesm | /] < (6 +2)™
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which ensures m-step Q-linear convergence with limiting ratio no greater than ¢ since € may be
chosen arbitrarily small. This implies the R-linear convergence assertion for the z, by well-known
results ([9]) and by taking the infimum of 4,, over m.

For the derivatives, we obtain from (7) for the z}, = 2} — 2/ the recurrence

m m m—i

o~ _ o~ /

Lhim — HDk+m—j Ty + Z H Diym—j | Thio1 s (32)
ji=1 =1 ji=1

where 7} is as defined in (9). Since the last bound in Lemma 1 was proven without any reference
to Assumption 2, it can be used here to derive form the R-linear convergence of the z; that for
some constant cg = cg(m,€)

max [l )76 < sl + 0 (33)
Substituting this bound into the “primed” version of (30) and then dividing by (§,, + ¢)**™, we
obtain the inequality

oy povs
ol 10,
(bm +)tFm (8 + )
Summing for k =imover 1 =0, 1, ..., j — 1, we obtain

1850l /(8 + e < [JT) +des -

Since the ¢ j—th root of the right-hand side converges to one, we obtain the asserted result, namely
that the zf, converge with the same linear R-factor é, to «. 1

As we have noticed above, the z; may converge superlinearly. In those cases, the recurrence for
x4, will soon be almost exactly linear, so that one may seriously consider accelerating the derivative
convergence by Richardson extrapolation. Since we have a constructive test on the quality of these
extrapolated derivatives, it should be easy to determine the best candidate.

Finally, let us briefly examine the possibility that an iterative method of the general form
achieves convergence but that assumption (27) is never satisfied. Then the equation (30) suggests
that a small perturbation éz; = dz;, of the iterate z;, in the direction of the largest singular value of
Disvm  Deyme1 - Dpyo- Dyyq will not be damped out over an arbitrarily large number m of steps.
This would indicate that the method is numerically rather unstable. We can not make this claim
rigorously, because the perturbation ¢z, might alter the Dy,; in such a fortuitous way that it is
damped out after all. For example, it is currently not clear whether conjugate direction methods
can be interpreted in the form (1) such that (27) is satisfied. Derivative convergence has been
observed for the classical conjugate gradient method, but this experimental observation cannot be
supported by Proposition 1 and its corollaries.
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