
Digital Object Identifier (DOI) 10.1007/s10107-003-0456-9

Math. Program., Ser. A 99: 399–421 (2004)

Uwe Naumann

Optimal accumulation of Jacobian matrices by elimination
methods on the dual computational graph

Received: August 29, 2001 / Accepted: May 7, 2003
Published online: August 8, 2003 – © Springer-Verlag 2003

Abstract. The accumulation of the Jacobian matrix F ′ of a vector function F : R
n → R

m can be regarded
as a transformation of its linearized computational graph into a subgraph of the directed complete bipartite
graph Kn,m. This transformation can be performed by applying different elimination techniques that may lead
to varying costs for computing F ′.

This paper introduces face elimination as the basic technique for accumulating Jacobian matrices by
using a minimal number of arithmetic operations. Its superiority over both edge and vertex elimination meth-
ods is shown. The intention is to establish the conceptual basis for the ongoing development of algorithms for
optimizing the computation of Jacobian matrices.

Key words. Jacobian matrices – Computational graphs – Elimination techniques – Automatic differentiation

1. Introduction to accumulation of Jacobian matrices

The efficient computation of accurate derivative information for mathematical models
is central to many scientific, economic, and engineering problems. Without it the highly
desirable step from simulation to optimization often cannot be made. First-order deriva-
tives of nonlinear vector functions given as computer programs that are written in some
imperative programming language, such as C or Fortran, play an especially important
role in modern scientific computing. Automatic differentiation (AD) [4], [7], [8], [13]
allows us to compute such derivative information efficiently with machine accuracy.

The Jacobian matrix (or simply Jacobian) of a nonlinear vector function y = F(x), F :
R

n ⊇ D → R
m, evaluated at a given argument x0, is defined as follows:

(Rm×n �) F ′ = F ′(x0) =
(

∂yi

∂xj

(x0)

)
i=1,... ,m, j=1,... ,n

.

Following the standard notation as in [13], we assume the computer program that imple-
ments F to decompose into a sequence of q assignments of the values of scalar elemental
functions ϕj to unique intermediate variables vj . The code list of F is given as

(R �) vj = ϕj (vi)i≺j , (1)

where j = 1, . . . , q and p = q − m. The direct dependence of vj on vi is denoted
by i ≺ j . The notation i ≺∗ j is used if there exist k1, . . . , kν such that i ≺ k1 ≺

U. Naumann: Mathematic and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,
e-mail: naumann@mcs.anl.gov

400 U. Naumann

k2 ≺ · · · ≺ kν ≺ j . So, Pj = {i : i ≺ j} is the index set of the arguments of ϕj ,

and we denote its cardinality by |Pj |. Similarly, Sj = {i : j ≺ i} is the index set of
the |Sj | elemental functions that have vj as an argument. We distinguish between inde-
pendent ({v1−n, . . . , v0}), intermediate ({v1, . . . , vp}), and dependent ({vp+1, . . . , vq})
variables, and we set xi ≡ vi−n, i = 1, . . . , n, and yj ≡ vp+j , j = 1, . . . , m. The
computational graph (or c-graph) G = (V , E) of F is a directed acyclic graph with
V = {i : vi ∈ F } and (i, j) ∈ E if i ≺ j . Moreover, V = X ∪ Z ∪ Y, where
X = {1−n, . . . , 0}, Z = {1, . . . , p}, and Y = {p+1, . . . , q}. An edge k ≡ (i, j) ∈ E

has a source i = src(k) and a target j = tgt(k). Throughout this paper, edges are
addressed by their uniquely assigned indices and vertices as sources, or targets, of edges.
This is our main notational change from [13].

We assume G to be linearized in the sense that the local partial derivatives

cj ≡ ∂

∂vsrc(j)

ϕtgt(j)(vk)k≺tgt(j) (2)

are attached to the corresponding edges j ∈ E. We rely on the existence of jointly
continuous partial derivatives for all elemental functions ϕi, i = 1, . . . , q, on open
neighborhoods Di ⊂ R

|Pi | of their respective domains. Edges in E are numbered so
that, w.l.o.g., E ⊂ N, where N denotes the natural numbers. Parallel edges having the
same source and target are merged immediately by adding the values of the local partial
derivatives labeling them.

F ′ can be accumulated by using the forward (vector) mode of AD [36], which com-
putes Jacobian-matrix products Ẏ = F ′Ẋ by forward propagation of (sets of) tangents as
described in [13, Chapter 3]. For this purpose one simply sets Ẋ = In, where In denotes
the identity matrix in R

n×n. Similarly, the reverse (vector) mode of AD, which computes
matrix-Jacobian products, (see [18] for a discussion of its origins) can be applied to get
F ′ by setting Ȳ = Im ∈ R

m×m in X̄ = Ȳ F ′. By the chain rule and with |E| denot-
ing the number of edges in G, this approach would require the evaluation of n|E| and
m|E| fused multiply-add (fma) operations ck = ck + cj ci, where src(j) ≡ tgt(i),
src(i) ≡ src(k), and tgt(j) ≡ tgt(k), respectively (see Lemma 6). Some mod-
ern floating-point units can perform these operations in the same time as single scalar
multiplications [19]. In other words, they give the addition on top of a multiplication
“for free”. Other architectures, including Compaq Alpha, SGI and SUN Ultra SPARC
machines, do not perform fma’s but can perform two independent adds or multiplies per
clock cycle [10]. They therefore would complete one multiply-add in two clock cycles
but average two multiply-adds per cycle if they can pipeline the operations. This paper
assumes the number of fma’s as the measure of complexity. The number of fma’s is
equal to the number of scalar floating-point multiplications because the latter represents
an upper bound for the number of additions performed. The task of finding a way to
compute F ′ by using a minimal number of fma’s will be referred to as the optimal Jaco-
bian accumulation (OJA) problem. The approach taken in this paper is to consider the
accumulation of the Jacobian as a transformation of the c-graph G into G′, a subgraph
of the directed complete bipartite graph Kn,m such that the labels on the edges in G′ are
exactly the nonzero entries of F ′.

From the chain rule it follows that an entry of the Jacobian can be computed by mul-
tiplying the edge labels over all paths connecting the corresponding i ∈ X and j ∈ Y

Elimination methods on the dual computational graph 401

followed by adding these products [23]. This can be expressed as

∂vj

∂vi

=
∑

[i→j]

∏
k∈[i→j]

ck , (3)

-1 0

1

2

3

4 5

c1

c2

c4

c3

c5

c6
c7

Fig. 1. G.

where [i → j] denotes a path leading from i to j and k ∈ E

is an edge contained within [i → j]. In other words, F ′ can be
accumulated by enumerating all paths connecting minimal (in X)
with maximal (in Y) vertices in G. This paper introduces methods
for transforming G into G′. The paper is structured as follows.
In Section 2 we discuss an example motivating new elimination
techniques. In Section 3 we introduce face elimination and derive
both edge and vertex eliminations as special cases. In Section 4
we prove the superiority (in terms of fma’s) of edge over vertex
elimination and of face over edge elimination. In Section 5 we
briefly discuss algorithms for constructing near-optimal elimina-
tion sequences. In Section 6 we draw conclusions.

2. Motivating example

Consider the vector function F : R
2 → R

2 given by the follow-
ing code list:

v1 = v−1v0; v2 = sin(v1); v3 = v1v2; v4 = cos(v3); v5 = exp(v3).

Its c-graph G is shown in Figure 1 with the local partial derivatives attached to the
corresponding edges. They take the following values:

c1 = v0; c2 = v−1; c3 = v2; c4 = cos(v1); c5 = v1; c6 = − sin(v3); c7 = v5.

We are looking for an efficient way to transform G into G′, as shown in Figure 2.
According to equation (3) the Jacobian of F is given explicitly by

F ′ =
(

c1c3c6 + c1c4c5c6 c2c3c6 + c2c4c5c6
c1c3c7 + c1c4c5c7 c2c3c7 + c2c4c5c7

)
. (4)

Computing F ′ this way involves 20 fma’s. Both forward and reverse modes of
AD perform 2|E| = 14 fma’s, where n = m = 2. As F ′ is dense, seed
matrix compression techniques [31], [9] are not applicable. Sparse forward and
reverse modes [13, Chapter 6] reduce the cost of accumulating F ′ to 12 fma’s at the
expense of performing sparse vector arithmetic. The reader may wish to verify that

F ′ =
(

c6s c6t

c7s c7t

)
(5)

can be computed at a cost of only 7fma’s by preaccumulation of r = c3+c5c4, s = rc1,

and t = rc2.

402 U. Naumann

-1 0

4 5

∂v4
∂v−1

∂v4
∂v0

∂v5
∂v−1

∂v5
∂v0

Fig. 2. G′.

This paper introduces the theoretical framework for construct-
ing derivative code that implements equation (5), in general.
Undoubtedly, the fact that improvements by a factor of two
and more are possible even on this simple example is very
promising. So far, the underlying theory has been looked at
only very briefly [15], [5]. In [24] we proposed several opti-
mization methods for Jacobian code and presented numerical
results. Chapter 8 in [13] is dedicated to elimination tech-
niques and contains some of the ideas presented here. Several
specific optimization methods are currently being developed
based on the elimination techniques to be introduced [29], [35].

3. Elimination techniques

Before introducing elimination techniques, we motivate the feasibility of the general
approach in practice. The generation of efficient code for accumulating F ′ is regarded
as a compile time activity. Therefore, G must be available at compile time. However,
computer programs may contain loops with variable bounds and branches that make the
structure of G dependent on the actual argument at which F is evaluated. The structure
of G may change dynamically.

Basic blocks [1] represent the primary candidates for an accumulation of local Jaco-
bians using elimination techniques (see also [6]). Their c-graphs can be built at compile
time, and their sizes are usually small. The question is: What can we gain?

Let F be given as a basic block, and consider the computation of Ẏ = F ′Ẋ, Ẋ ∈
R

n×l . For simplicity, we assume that m = n and that l � n. Techniques for exploit-
ing this inequality are also referred to as interface contractions [5]. With the forward
vector mode of AD, the number of fma’s performed is equal to l|E|. Suppose that the
forward vector mode of AD is applied to preaccumulate F ′ by forward propagation of
In, as described in Section 2, followed by the evaluation of the matrix product F ′Ẋ. The
first preaccumulation would cost at most n|E| fma’s, and the matrix product adds n2l.
The (worst case) question is: Under which circumstances l|E| will become larger than
n2l + n|E|? The answer depends on the given problem (see also [13, Chapter 8]). For
example, if l ≥ 2n and |E| ≥ 4n2, this approach would yield savings of a factor of at
least two. Formally, for the preaccumulation to be more efficient, we need

n|E| + n2l < l|E|
n2l < |E|(l − n)

|E| >
n2l

l − n

|E| >
n2

1 − n
l

.

Elimination methods on the dual computational graph 403

That is, the more complicated the function (large |E|) or the greater the number of Jaco-
bian-vector products required (large l), the greater the savings due to preaccumulation.
Moreover, the cost of accumulating the Jacobian itself can be reduced significantly by
applying the elimination techniques, to be introduced next.

3.1. Dual computational graphs

-1 0

1 [c1] 2 [c2]

3 [c3]

4 [c4]

5 [c5]

6 [c6] 7 [c7]

8 9

Fig. 3. G̃.

All elimination techniques discussed in this paper are based
on the elimination of transitive dependences between vari-
ables in F . A variable vj depends transitively on vi via vk if
i ≺ k ≺ j . In general, there is no structural representation
for eliminating such dependences in G; that is, it cannot be
expressed by modifying either V or E. A richer data structure
is required, namely, a directed variant of the line graph of G.

For i, j ∈ E we write i ≺ j ⇔ tgt(i) = src(j). The
transitive closure of this relation between edges is also denoted
by ≺∗.

Definition 1. The dual c-graph G̃ = (Ṽ , Ẽ) of G consists
of vertices Ṽ = X̃ ∪ Z̃ ∪ Ỹ , such that X̃ ∩ Z̃ = X̃ ∩ Ỹ =
Ỹ ∩ Z̃ = ∅, and edges Ẽ = ẼX ∪ ẼZ ∪ ẼY , with ẼX ∩ ẼZ =
ẼX ∩ ẼY = ẼY ∩ ẼZ = ∅. It is defined by the following
construction:

1. Z̃ = E;
2. (i, j) ∈ ẼZ for all i, j ∈ E and i ≺ j ;
3. ∀ i ∈ X : i ∈ X̃;
4. ∀ i ∈ Y : i − p + |E| ∈ Ỹ ;
5. (i, j) ∈ ẼX for i ∈ X̃, j ∈ Z̃, and src(j) = i in G;
6. (i, j) ∈ ẼY for i ∈ Z̃, j ∈ Ỹ , and tgt(i) = j − |E| + p in G.

In other words, intermediate vertices Z̃ in G̃ are introduced for all edges in G. Two of
them are adjacent in G̃ whenever the corresponding edges are incident in G. We write
i=̂(j, k) if i ∈ Z̃ corresponds to (j, k) ∈ E. Additional minimal vertices X̃ and maximal
vertices Ỹ are required to represent the fact that two edges in G share either the same
minimal source or the same maximal target. Consequently, the vertices in G̃ are given
by

Ṽ = X̃ ∪ Z̃ ∪ Ỹ = {1 − n, . . . , 0} ∪ {1, . . . , |E|} ∪ {|E| + 1, . . . , |E| + m}.
The edge labels in G are attached to the corresponding intermediate vertices in G̃. The
precedence relation “≺” is extended to all vertices in G̃ as i ≺ j ⇔ (i, j) ∈ Ẽ.

Figure 3 shows the dual of the c-graph in Figure 1. The set of intermediate vertices
Z̃ corresponds to the edges E in the c-graph G. For example, vertex 1 ∈ Z̃ corresponds
to the edge (−1, 1) ∈ E that is labelled c1 in G (step 1 in Definition 1). There is an
edge in ẼZ connecting a vertex i ∈ Z̃ with a vertex j ∈ Z̃ if the edges corresponding
to i and j in G share a common vertex, more precisely, if i=̂(k1, k2) and j=̂(k2, k3)

for some k1, k2, k3 ∈ V . For example, the vertices 4 and 5 are connected by the edge

404 U. Naumann

(4, 5) ∈ ẼZ because the edge labeled c4 in the c-graph G, that is (1, 2) ∈ E, precedes
the edge labeled c5, that is (2, 3) ∈ E, at vertex 2 ∈ V (step 2 in Definition 1).

Two minimal vertices −1 and 0 are introduced to represent assumed edges leading
into the minimal vertices in G (step 3 in Definition 1). They are connected to the verti-
ces 1 and 2, respectively (step 5 in Definition 1). A similar action is performed for the
maximal vertices in G (steps 4 and 6 in Definition 1) leading to the vertices 8 and 9
and the edges (6, 8) and (7, 9) in G̃. This extension of the dual c-graph is required to
represent the fact that two edges emanating from minimal vertices in G can share the
same source. Consider, for example, the c-graph in Figure 4(a) and its dual in Figure 4(f).
The subgraph of the dual c-graph obtained by performing steps 1 and 2 of Definition 1
is shown in Figure 4(b). The structural property of G that the edges (0, 1) and (0, 2)

emanate from the same vertex is not represented. The same applies to the edge (1, 3)

and (2, 3) that share the same target. In other words, the graph depicted in Figure 4(b)
could as well be the dual of any of the c-graphs shown in Figure 4(c)–(e). Steps 3–6 in
Definition 1 are required to make the mapping between G and G̃ bijective.

Dual c-graphs are uniquely characterized by the following two properties.

1. All intermediate vertices belong to exactly two directed complete bipartite subgraphs
of G̃. They are minimal in one and maximal in the other.
Intermediate vertices in G are mapped onto complete bipartite subgraphs (or bicl-
iques) Kν,µ of G̃. The ν incoming edges of some i ∈ Z represent the minimal
vertices in Kν,µ. Similarly, the µ outgoing edges correspond to the maximal vertices
in Kν,µ. Obviously, each minimal vertex in Kν,µ is connected with all maximal ver-
tices because the corresponding edges are incident in G. For example, in Figure 3,
the biclique spanned by the locally minimal vertices 3 and 5 and the locally maximal
vertices 6 and 7 corresponds to vertex 3 in G.

2. Minimal vertices in G̃ belong to one directed complete bipartite subgraph, and i ∈ X̃,

and i ≺ j implies |Pj | = 1. Analogous, maximal vertices belong to a single directed
complete bipartite subgraph of G̃, and i ∈ Ỹ , and j ≺ i implies |Sj | = 1. Here, the
notations Pj and Sj are used as defined in Section 1 with the precedence relation ≺
applied to edges in G.
As a result of the construction described in Definition 1, all minimal vertices in G̃ are
also minimal in the bicliques whose maximal vertices represent the edges emanating
from the corresponding minimal vertices in G. Examples are the subgraphs induced

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

0

1 2

3

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

1 2

43

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

0

1 2

43

5

(a) (b) (c) (d) (e) (f)

Fig. 4. Motivation for definition of dual c-graph.

Elimination methods on the dual computational graph 405

by vertex −1 and vertex 1 in Figure 3, or the biclique spanned by the vertices 0, 1,
and 2 in Figure 4(f). By Definition 1, the maximal vertices in these bicliques can
have only one predecessor in G̃.
A similar argument applies to the maximal vertices in G̃.

Further consequences of the definition of dual c-graphs are the following.

Lemma 1. Let i, j ∈ Ṽ such that (i, j) ∈ Ẽ. Then �k ∈ Ṽ : i ≺∗ k ≺∗ j .

Proof. Let k ∈ Ṽ be such that i ≺ k ≺ j . Furthermore, let (a, b), (c, d), (e, f) ∈ E be
such that (a, b) =̂ i, (c, d) =̂ k, and (e, f) =̂ j . Then

i ≺ j ⇒ b = e

i ≺ k ⇒ b = c

k ≺ j ⇒ d = e.

The above implies that c = d, which represents a contradiction to the definition of G
as a directed acyclic graph. The lemma follows by induction over the length of the path
that connects i and j while containing k. ��

Lemma 2. Whenever two vertices in Ṽ share a common predecessor (successor), their
predecessor (successor) sets are identical.

Proof. Let i, j, k ∈ Ṽ be such that k ≺ i and k ≺ j . The edges corresponding to i and
j in G have the same source. Therefore any edge that is incident to either i or j must be
incident to the other. ��

Definition 2. A semicycle is defined as two vertex disjoint paths sharing the same source
and the same target.

For example, the subgraph of G̃ that is induced by the vertices 2, 3, 4, 5, and 6 in Figure 3
is a semicycle.

Lemma 3. The length of any semicycle in G̃ is greater than or equal to five.

Proof. From Lemma 1, it follows that the length of any semicycle must be at least equal
to four. However, this situation corresponds to parallel edges in G, which contradicts its
definition. A semicycle of length five in G̃ represents a triangle in G, that is, a subgraph
consisting of three vertices i, j, k ∈ V such that (i, j), (j, k), (i, k) ∈ E. ��

For example, the triangle spanned by the vertices 1, 2, and 3 in Figure 1 corresponds to
the semicycle induced by the vertices 2, 3, 4, 5, and 7 in Figure 3. Note that this mapping
is not bijective. Other related semicycles of length five in G̃ are spanned by the vertex
sets {1, 3, 4, 5, 7}, {1, 3, 4, 5, 6}, and {2, 3, 4, 5, 6}.

406 U. Naumann

3.2. Face elimination

-1 0

13
14 15 16

8 9

Fig. 5. G̃′.

The elimination of transitive dependences can be interpreted
as the elimination of edges in G̃. This modification of the dual
c-graph is also referred to as face elimination in order to distin-
guish between edge elimination in G̃ and G (see Sect. 3.3 for
edge elimination in G). Two intermediate vertices in G̃ are
adjacent if the corresponding edges are incident in G. This
property implies that the transitive dependence to be elimi-
nated does actually exist. A vertex j ∈ Ṽ is called isolated if
either Pj = ∅ or Sj = ∅.

Rule 1. Face elimination is defined for all intermediate faces
(i, j) ∈ ẼZ as follows:

1. If there exists a vertex k ∈ Ṽ such that Pk = Pi and Sk =
Sj , then set ck = ck +cj ci (absorption); else Ṽ = Ṽ ∪{k′}
with a new vertex k′ such that Pk′ = Pi and Sk′ = Sj (fill-
in) and labeled with ck′ = cj ci .

2. Remove (i, j) from Ẽ.
3. Remove i ∈ Ṽ if it is isolated. Otherwise, if there exists a vertex i′ ∈ Ṽ such that

Pi′ = Pi and Si′ = Si, then
– set ci = ci + ci′ (merge);
– remove i′.

4. Repeat Step 3 for j ∈ Ṽ .

Rule 1 is illustrated in Figure 6. The dual c-graph G̃ of Figure 3 can be transformed into
a tripartite form as shown in Figure 5 by applying face elimination successively. The
corresponding face elimination sequences are also referred to as complete. Obviously,
for the dual c-graph in Figure 3 there is a large number of different face elimination
sequences. We consider an example. Let us start with the elimination of (1, 3) ∈ Ẽ.
An absorbing vertex does not exist leading to the generation of fill-in. The new vertex
10 is connected by new edges to all successors of 3. A new edge connects the single
predecessor of 1 with 10. Vertex 10 is labeled with c10 = c3c1. Neither 1 nor 3 is isolated
or can be merged with other vertices, and we get the graph in Figure 6(a). Edge (4, 5)

is eliminated next, thus leaving both 4 and 5 isolated and resulting in their removal. We
observe that P3 � P4 and S3 = S5, leading to the generation of fill-in in the form of the
new vertex 11. Its label is c11 = c5c4. In the resulting graph, shown in Figure 6(b), we
eliminate (1, 11), leading to the removal of vertex 1 because of isolation. Absorption
takes place as P10 = P1 and S10 = S11. In other words, the fill-vertex that is generated
as a result of eliminating (1, 11) has the same predecessors and successors as vertex
10. Therefore it is absorbed and c10 = c10 + c11c1. The result is shown in Figure 6(c).
Moreover, P3 = P11 and S3 = S11. Hence, 3 and 11 can be merged, leading to the graph
in Figure 6(d), where c3 = c3 + c11 = c3 + c5c4. By eliminating (2, 3) next, only five
more face eliminations are required to transform G̃ into a tripartite form, as displayed

Elimination methods on the dual computational graph 407

-1 0

1 2

3

10 4

5

6 7

8 9

-1 0

1 2

3

10

11

6 7

8 9

-1 0

1

3

10

11

6 7

8 9

-1 0

2

3

10

6 7

8 9

(a) (b) (c) (d)

Fig. 6. Face elimination.

in Figure 5. The corresponding code for accumulating the Jacobian becomes

c10 = c3c2; c11 = c5c4; c10 = c10 + c11c1; c3 = c3 + c11; c12 = c3c2

c13 = c6c10; c14 = c7c10; c15 = c6c12; c16 = c7c12.

Fully inlining all intermediate local partial derivatives verifies that c13, . . . , c16 are, in
fact, the Jacobian entries as in (4). It remains to be shown that this graph is the dual of G′
from Figure 2. Therefore, face elimination must always lead to a result after performing
a finite number of steps. The resulting graph must be a dual directed bipartite graph, and
the labels of the intermediate vertices must be modified corresponding to the chain rule.

Lemma 4 (termination). Every complete sequence of face eliminations that can be ap-
plied to a dual c-graph is finite.

Proof. We show that the sum L over the lengths of all paths connecting minimal with
maximal vertices in G̃ is strictly monotonically decreasing under face elimination.

Consider the elimination of a face (i, j) ∈ ẼZ . If absorption takes place, then L is
decreased by the sum over all paths containing (i, j) of their respective lengths. In the
case of fill-in being generated, the length of each path through (i, j) is decreased by one.
By merging two vertices k and k′ the value of L is decreased by the sum over all paths
through k of their respective lengths. ��
Lemma 5 (structural correctness). The result of eliminating all intermediate faces in a
dual c-graph G̃ is the dual c-graph G̃′ of a bipartite c-graph G′.

Proof. We need to show that face elimination transforms any dual c-graph G̃ into a
tripartite graph such that every intermediate vertex has exactly one predecessor and one
successor. This implies that the graph is a dual directed bipartite graph and therefore
structurally equivalent to a possibly sparse rectangular matrix.

Edges connecting a minimal and a maximal vertex directly do not exist in a dual
c-graph G̃ and they cannot be generated by face elimination. Since face elimination is
defined only for edges (i, j) ∈ ẼZ (that is, i ∈ Z̃ and j ∈ Z̃) it must result in a tripartite
graph.

408 U. Naumann

Consider G̃ as derived from a c-graph G following the construction in Definition 1.
All successors of minimal vertices in G̃ have in-degree one. This remains true as long as
edges emanating from successors of minimal vertices are not eliminated. Consider the
elimination of an edge (j, k) ∈ ẼZ such that (i, j) ∈ ẼX. If the absorbing vertex for
(j, k) exists, then the removal of (j, k) (possibly leading to the removal of either j or k

or both) is the only structural modification that G̃ is subjected to. Obviously, this would
not violate the property that successors of minimal vertices have a unique predecessor.
Now, suppose that fill-in is generated as a result of eliminating (j, k). In this case i gets
a new successor that has i as its only predecessor. As above, (j, k) is removed from G̃.
Again, successors of minimal vertices have in-degree one in the resulting graph. Because
of the symmetry of face elimination, a similar argument applies to all predecessors of
maximal vertices. ��
Lemma 6 (numerical correctness). Let G be the c-graph of a vector function F, and
let G̃ be the corresponding dual c-graph. If face elimination transforms G̃ into G̃′ as
in Lemma 5, then the labels on the intermediate vertices in G̃′ are exactly the nonzero
entries of the Jacobian F ′.

Proof. For G = (V , E), where V = X ∪ Z ∪ Y, |Z| = p, and for j ∈ Y and i ∈ X,

equation (3) can be rewritten as

∂vj−|E|+p

∂vi

=
∑

[i→j]

∏
k∈[i→j]

ck, (6)

where [i → j] denotes a vertex path connecting the corresponding i ∈ X̃ with j ∈ Ỹ in
G̃. The ck are the labels of the vertices in G̃ and we define ci = cj = 1 for i ∈ X̃ and
j ∈ Ỹ . Face elimination is equivalent to performing one of the multiplications in equa-
tion (6) whereas merging two vertices in G̃ means to add their values. With the structural
changes in G̃ resulting from face elimination it is obvious that the values computed in
equation (6) are invariant. ��
The following two results ensure that merging vertices in G̃ is not a recursive procedure,
which would increase the complexity of face elimination considerably.

Lemma 7. By the elimination of (i, j) ∈ ẼZ no vertex other than either i or j becomes
mergeable.

Proof. The elimination of (i, j) results in Pj = Pj \ {i} and Si = Si \ {j}. If there is
a vertex j ′ in G̃ such that Pj ′ = Pj \ {i} and Sj ′ = Sj before the elimination of (i, j),

then j and j ′ can be merged after. A similar argument applies to i.
If the absorbing vertex k for (i, j) exists in G̃, then all vertices other than i and j

that are mergeable after the elimination of (i, j) must have been mergeable before.
Let the absorbing vertex for (i, j) not be in G̃. Fill-in is generated as k ∈ Ṽ such that

Pk = Pi and Sk = Sj . If k could be merged with some k′, then Pk = Pk′ and Sk = Sk′
and k′ would be the absorbing vertex for (i, j).

Let some successor j ′ of j become mergeable with some j ′′ as a result of inserting
k and (k, j ′) ∈ ẼZ . Then (k, j ′′) must be in ẼZ, hence implying that j ′′ ∈ Sj . Further-
more, j ′ and j ′′ must have been mergeable before the elimination of (i, j). A similar
argument applies to predecessors of k. ��

Elimination methods on the dual computational graph 409

Lemma 8. Merging two vertices in G̃ cannot result in other vertices becoming merge-
able.

Proof. Let i, j ∈ Ṽ be mergeable (that is, Pi = Pj and Si = Sj). Let i′, j ′ ∈ Ṽ become
mergeable as a result of merging i and j . W.l.o.g., let Si′ �= Sj ′ before merging i and j .
More precisely, A = Si′ ∩ Sj ′ such that Si′ = A ∪ {i} and Sj ′ = A ∪ {j}. In this case,
however, Pi contains i′ but not j ′ and Pj contains j ′, but not i′, and therefore Pi �= Pj ,

a contradiction to i and j being mergeable. ��

3.3. Edge and vertex elimination

Suppose G̃ is the dual of a c-graph G. Then the simultaneous elimination of all edges
emanating from some j ∈ Ẽ in G̃ results in a graph G̃∗, which is again a dual c-graph.
This procedure is referred to as front elimination of the edge corresponding to j in G.
Similarly, the simultaneous elimination of all edges leading into some j ∈ Ẽ in G̃ is
referred to as back elimination of j in G. Edge elimination can be defined directly on
the level of the underlying c-graph G as follows.

Rule 2 (Edge Elimination).

1. The back elimination of k = (i, j) ∈ E is performed by introducing new edges
k′ = (i′, j) ∈ E for all i′ with i′ ≺ i and i′ �≺ j . The new edge labels are set to
ck′ = ckck′′ , where k′′ = (i′, i) ∈ E. For all k′ = (i′, j) ∈ E the existing edge labels
are updated according to ck′ = ck′ + ckck′′ .

2. k = (i, j) ∈ E is front eliminated by introducing new edges k′ = (i, j ′) ∈ E for
all j ′ with j ≺ j ′ and i �≺ j ′. The new edge labels are set to ck′ = ck′′ck where
k′′ = (j, j ′) ∈ E. If k′ = (i, j ′) ∈ E, then the existing edge labels are updated
according to ck′ = ck′ + ck′′ck .

In both cases (i, j) is deleted. If this deletion leads to either i or j becoming isolated,
then the respective vertex is also removed from G together with all incident edges.

The number of fma’s involved in the front elimination of an edge (i, j) is equal to the
number of successors of j, that is, |{j ′ : j ≺ j ′}|. Analogously, the back elimination
of the same edge would cost |{i′ : i′ ≺ i}| fma’s. Edges emanating from (leading into)
minimal (maximal) vertices in G cannot be back (front) eliminated. This fact follows
immediately from the fact that only intermediate edges can be eliminated in G̃.

The elimination of a vertex in G can be formulated as a special case of edge elimi-
nation in two ways.

Rule 3 (Vertex Elimination 1). A vertex i ∈ V is eliminated from G by front elimination
of all its in-edges.

Rule 4 (Vertex Elimination 2). A vertex i ∈ V is eliminated from G by back elimination
of all its out-edges.

It is easy to verify that Rule 3 and Rule 4 are equivalent. Being a special case of edge elim-
ination, vertex elimination can be defined on the c-graph. The number of fma’s involved

410 U. Naumann

in the elimination of a vertex i is equal to |{i′ : i′ ≺ i}||{i′′ : i ≺ i′′}| and is often referred
to as the Markowitz degree of i.

Figure 7 illustrates the structural modification of G caused by edge and vertex elim-
ination. From left to right, we eliminate vertex 3 from the c-graph shown in Figure 1,
followed by the back elimination of (2, 4), the front elimination of (0, 1), and the back
elimination of (2, 5), which is equivalent to the elimination of vertex 2. The labels on
the edges are updated according to the rules above.

4. Optimal Jacobian accumulation problem

Three combinatorial optimization problems can be defined by building on the elimina-
tion techniques introduced in Section 3. They are referred to as the vertex elimination
(VE), the edge elimination (EE), and the face elimination (FE) problems. The objective
is to minimize the number of fma’s required to accumulate the Jacobian using the corre-
sponding elimination technique. FE is the most general of the three. It remains unclear,
however, whether FE ≡ OJA, where OJA refers to the optimal Jacobian accumulation
problem as introduced in Section 1.

All three elimination problems can be interpreted as shortest path problems in meta-
graphs. The vertices in Mf (Me, Mv) are defined as all graphs that can be constructed
by using face (edge, vertex) elimination starting with the original dual c-graph G̃ (or
its underlying c-graph G). G̃ is represented by the unique source of the metagraph. The

−1 0

1

4 5

2

−1 0

1

4 5

2

−1 0

1

4 5

2

−1 0

1

4 5

(a) (b) (c) (d)

Fig. 7. Vertex and Edge Elimination.

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
���
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

2 3

1

0−1

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

1

3 4

5 6

2

−1 0

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�
�
�
�
�
�

�
�
�
�
�
�

4

(a) (b) (c)

Fig. 8. Example: Metagraphs.

Elimination methods on the dual computational graph 411

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

11

1111

2

2

22

2

2
2

2

Fig. 9. Edge metagraph Me .

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�
��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
�����

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
�����

���
���
���

���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

Fig. 10. Face metagraph Mf .

412 U. Naumann

unique sink of the metagraph represents G̃′, which is equivalent to the Jacobian. Two
vertices s and t in a metagraph are adjacent in a directed sense, that is, there is an edge
(s, t) in the metagraph, if the graph represented by t can be obtained by performing a cor-
responding single elimination in the graph represented by s. All edges in the metagraph
are labeled with distances reflecting the computational cost of performing the corre-
sponding face (edge, vertex) elimination. In particular, all edges represent a distance of
one in Mf . From the definition of the elimination techniques it follows immediately that
V (Mv) ⊆ V (Me) ⊆ V (Mf), where V (G) denotes the vertex set of some graph G. Here,
V (Me) ⊆ V (Mf) means that for each vertex i in Me there is a corresponding vertex j

in Mf such that the graph associated with j is the dual of the graph associated with i.
From the algorithmic point of view, the metagraphs are of only limited practicality, since
their size grows exponentially with the size of the original c-graph.

Consider, for example, the simple c-graph in Figure 8(a). It consists of two minimal,
a single intermediate, and two maximal vertices. Its dual is depicted in Figure 8(b). The
vertex metagraph Mv turns out to be trivial, containing only the source (representing
the original c-graph) and the sink (corresponding to the bipartite c-graph that represents
the Jacobian). Both are connected by a single directed edge labeled with a cost of four (the
cost of eliminating vertex 1). Mv is shown in Figure 8(c).

The edge metagraph contains eight vertices corresponding to intermediate c-graphs
that can be constructed from the original c-graph by successive edge eliminations. It is
shown in Figure 9.Again, its source is the original c-graph, and the objective is to find the
shortest path to the sink (the bipartite c-graph). The edges are labeled with the respective
costs for front or back eliminating an edge. It is straightforward to verify that all paths
in Me have length four. In other words, any edge elimination sequence is optimal.

A similar effect can be observed for the face metagraph shown in Figure 10. The
source is the dual c-graph from Figure 8(b) and the sink is equivalent to the Jacobian.
Fourteen different intermediate graphs can be constructed by using face elimination.
Obviously, all edge labels in Mf are equal to one. Again, the length of any path in Mf

is equal to four.
For the extremely simple c-graph in Figure 8(a), vertex, edge, and face elimination

techniques are equivalent with regard to the OJA problem. The fact that Me ⊆ Mf

can be verified easily. For example, an intermediate c-graph in Figure 9 and its dual in
Figure 10 are highlighted (framed).

The problem of minimizing the fill-in regarded as the number of fill edges under
a vertex elimination strategy was shown to be NP-complete [11] by Herley [16] in an
unpublished adaption of a note by Gilbert [12] on a result by Rose and Tarjan [32] about
vertex elimination techniques for solving sparse linear systems. So far, it remains unclear
whether the same is true for edge and face elimination and whether this result can be
used as a basis for showing the NP-completeness of the OJA problem. In particular we
have the following result.

Lemma 9. A vertex elimination sequence that minimizes the fill-in does not necessarily
minimize the number of fma’s performed.

A vertex elimination sequence that minimizes the number of fma’s performed does
not necessarily minimize the fill-in.

Elimination methods on the dual computational graph 413

Proof. Consider the complete graph G = K5 = (V , E), where V = X ∪ Z ∪ Y such
that X = {0}, Z = {1, 2, 3}, and Y = {4}. The edges (i, j) ∈ E are such that i < j .
None of the six different vertex elimination sequence generates fill-in. However, it is
easy to verify that the cost of the vertex elimination sequence [1, 2, 3] is six whereas,
for example, [2, 1, 3] would involve seven fma’s.

Consider the graph on the left in Figure 12. There are two different vertex elimination
sequences which both involve 12 fma’s. Notice, that [1, 2] generates 10 fill edges, while
[2, 1] results in 11. ��

So far, no motivation has been given for introducing face and edge elimination in
addition to the conceptually much easier vertex elimination technique. The reasons are
formulated as Proposition 1 and Proposition 2. The basic ideas were presented in [27].
To prove them, we require some further results.

Branch-and-bound algorithms [3] have proved useful for solving combinatorial opti-
mization problems. We use the idea in the proof of Lemma 12. Suitable lower bounds
are crucial ingredients of this argument. In [28] we showed that the sum over all inter-
mediate vertices of their minimal Markowitz degrees is a lower bound for the solution
of the OJA problem. The minimal Markowitz degree of a vertex j ∈ V is defined as
the product |Pj ||Sj |, where Pj and Sj are minimal X-j and j -Y separating vertex sets
in G, respectively. Two other lower bounds are established below for smaller classes of
c-graphs.

Definition 3. A directed acyclic graph is called absorption-free if any two vertices are
connected by at most a single directed path.

Absorption-free graphs do not contain semicycles as defined in Definition 2. For exam-
ple, trees are absorption-free. Notice that the dual of an absorption-free c-graph is also
absorption-free. This result follows from Definition 1.

Lemma 10. The cost of vertex elimination cannot be undercut by either edge or face
elimination for c-graphs with at most one intermediate vertex.

Proof. Let Z = {j} in G, and, w.l.o.g, let G be connected. Then any pair of minimal
and maximal vertices is connected by a path containing an intermediate vertex. Con-
sequently, |Pj ||Sj | is a lower bound for the cost of accumulating the corresponding
Jacobian. This is exactly the cost of eliminating j . ��
Lemma 11. Vertex elimination is optimal for absorption-free c-graphs with two inter-
mediate vertices i and j . If (i, j) ∈ E, then the optimal vertex elimination sequence is
[i, j] if |Pi | ≤ |Sj | and [j, i] if |Pi | ≥ |Sj |. If (i, j) �∈ E, then any vertex elimination
sequence is optimal, and the minimal cost is |Pi ||Si | + |Pj ||Sj |.
Proof. If (i, j) �∈ E, then Lemma 10 can be applied separately to i and j . Let (i, j) ∈
E. To determine the optimal vertex elimination sequence and its cost, let |Pi | = ni,

|Si | = mi +1, |Pj | = nj +1, and |Sj | = mj . There are two different vertex elimination
sequences. Their respective costs yield the inequality

ni(mi + 1) + (nj + ni)mj ≤ mj(nj + 1) + (mj + mi)ni.

414 U. Naumann

Its solution is given as ni ≤ mj , which proves the second part of the lemma. The situation
is illustrated in Figure 11.

Suppose that there is an edge elimination sequence whose cost undercuts the cost
of an optimal vertex elimination sequence. The Jacobian can be partitioned into the
following three independent parts:

A =
(

∂vk

∂vl

)k∈Si\{j}

l∈Pi

, B =
(

∂vk

∂vl

)k∈Sj

l∈Pj \{i}
, C =

(
∂vk

∂vl

)k∈Sj

l∈Pi

.

Here, independent means that the costs of accumulating A, B, and C are mutually inde-
pendent. In other words, [A, B, C] represents a decomposition of the Jacobian F ′ such
that the minimal cost of accumulating F ′ is exactly the sum of the minimal costs of
accumulating A, B, and C. Obviously, this is true for any decomposition where the
corresponding subgraphs of G share at most paths of (edge-)length one.

By Lemma 10 the computation of A and B involves exactly nimi and njmj fma’s,
respectively. In the c-graph corresponding to C any edge elimination sequence that does
not yield a corresponding vertex elimination sequence would have to be a mixture of
back elimination of outedges of j and front elimination of inedges of i. The cost of such
an elimination sequence is given by

l∑
k=1

(
nk

((
k−1∑
r=1

mr

)
+ 1

)
+ mk

((
k∑

r=1

nr

)
+ 1

))
− µ, (7)

where
l∑

k=1

nk = |Pi |,
l∑

k=1

mk = |Sj |,

and

µ =
{

ml if
∑l−1

r=1 mr < |Sj |
nl if

∑l−1
r=1 mr = |Sj |

.

It is easy to verify that this value is always greater than or equal to the cost of an optimal
vertex elimination sequence. ��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������... ...

......

i

j

ni

mi

nj

mj

Fig. 11. Proof of Lemma 11.

Elimination methods on the dual computational graph 415

The expression in equation (7) describes the cost of any edge elimination sequence for
accumulating C. For example, if all inedges of i are front eliminated followed by the
back elimination of the outedges of j, then l = 1, and the cost is equal to the cost of the
vertex elimination sequence i, j , that is,

n1 + m1(n1 + 1) − m1 = |Pi |(|Sj | + 1).

Similarly, if all outedges of j are back eliminated followed by the front elimination of
the inedges of i, then l = 2, n1 = 0, and the cost is equal to the cost of the vertex
elimination sequence j, i, that is,

m1 + n2(m1 + 1) − n2 = |Sj |(|Pi | + 1).

The back elimination of some outedges of j, say m1 of them, followed by the front
elimination of all inedges of i and the back elimination of the remaining outedges of j

implies l = 2, n1 = 0, n2 = |Pi |, and a total cost of

m1 + n2(m1 + 1) + m2(n1 + n2 + 1) − m2 = m1 + |Pi |(|Sj | + 1).

Proposition 1. An optimal edge elimination sequence may involve fewer fma’s than
does an optimal vertex elimination sequence when applied to the same c-graph.

Proof. An example for which the proposition is true is presented on the left side of
Figure 12. The two possible vertex elimination sequences both require 12 fma’s. Back
elimination of edge (2, 6) before the elimination of vertices 1 and 2 results in 11 fma’s.

��

The argument leading to the construction of the example c-graph can be found in Chap-
ter 2 in [24]. Because of its shape (turn it 90 degrees clockwise) the graph on the left
side of Figure 12 is referred to as the lion graph. Recall the metagraph formulation of
the EE and VE problems. The set of all valid vertex eliminations is contained within
the set of all valid edge eliminations. Hence, the optimal vertex elimination sequence
is contained within the set of all edge elimination sequences, and thus the optimal edge
elimination sequence performs at most the same number of arithmetic operations as
the optimal vertex elimination sequence. The lion graph represents one example where
the optimal edge elimination sequence involves fewer operations than does the optimal
vertex elimination sequence.

The maximal difference over all c-graphs between the number of fma’s performed
by an optimal vertex and an optimal edge elimination sequence for the same c-graph
is referred to as vertex-edge discrepancy. Proposition 1 gives rise to the fundamen-
tal question of how large this value can become. In [24] we showed that it is equal
to 1

2(
√

2−1)
≈ 1.207 for c-graphs containing two intermediate vertices. The problem

remains open for c-graphs with more than two intermediate vertices.

Lemma 12. The cost of an optimal edge elimination sequence for the lion graph is
equal to eleven.

416 U. Naumann

Proof. Using the bounds established above, we develop a branch-and-bound argument
showing that starting with the elimination of any edge other than (2, 6) eventually leads
to an increased number of fma’s. At every single step we decide whether to continue
branching into (branch) or to disregard the subtree (bound). This decision is based on
the current lower bound λ, which is defined as the sum of the costs of the edge elimi-
nations performed so far and the values resulting from the lower bounds for the cost of
the remaining elimination.

For example, if we start with the front elimination of either (−1, 1) or (0, 1), then
this involves the evaluation of two fma’s. A lower bound on the cost of eliminating
the remaining edges is given by the minimal Markowitz degree of 1, which is equal to
two, plus the minimal Markowitz degree of 2, which is equal to eight, both after the
elimination of (−1, 1) or (0, 1). The sum of these values gives λ = 2 + 2 + 8 = 12.
This value is already larger than the best-known value for the number of fma’s, which
is equal to 11. Therefore, this subtree can be excluded from further consideration. This
argument is represented in the decision tree as follows:

– (−1, 1) or (0, 1) front ⇒ λ = 2 + 2 + 8 = 12 ([28]) ⇒ bound.

On the other side, if we start with the back elimination of (2, 3), (2, 4), or (2, 5), then
this costs one fma. A lower bound for eliminating the remaining edges is 6 + 3 = 9.
Both values add up to ten, which is below the best value known so far. Consequently, we
must descend into the subtree because we cannot eliminate the possibility that a better
solution can be found. This situation is represented as follows:

– (2, 3), (2, 4), or (2, 5) back ⇒ λ = 1 + 6 + 3 = 10 ([28]) ⇒ branch.

We assume that (2, 3) is eliminated first. Because of symmetry, similar results hold for
(2, 4) and (2, 5). The entire decision tree is as follows:

– (−1, 1) or (0, 1) front ⇒ λ = 2 + 2 + 8 = 12 ([28]) ⇒ bound.
– (1, 2) front ⇒ λ = 4 + 8 = 12 (Lemma 10) ⇒ bound.
– (1, 2) back ⇒ λ = 2 + 2 + 8 = 12 ([28]) ⇒ bound.
– (1, 6) back ⇒ λ = 2 + 2 + 8 = 12 (Lemma 11) ⇒ bound.
– (2, 3) (2, 4), or (2, 5) back ⇒ λ = 1 + 6 + 3 = 10 ([28]) ⇒ branch.

– (−1, 1) or (0, 1) front ⇒ λ = 1 + 3 + 3 + 6 = 13 ([28]) ⇒ bound.
– (1, 2) front ⇒ λ = 1 + 3 + 8 = 12 (Lemma 10) ⇒ bound.
– (1, 2) back ⇒ λ = 1 + 2 + 4 + 6 = 13 ([28]) ⇒ bound.
– (1, 6) back ⇒ λ = 1 + 2 + 4 + 6 = 13 (Lemma 11) ⇒ bound.
– (2, 4) or (2, 5) back ⇒ λ = 1 + 1 + 8 + 2 = 12 ([28]) ⇒ bound.
– (1, 3) back ⇒ λ = 1 + 2 + 4 + 3 = 10 ([28]) ⇒ branch.

• (−1, 1) or (0, 1) front ⇒ λ = 1 + 2 + 2 + 2 + 6 = 13 ([28]) ⇒ bound.
• (1, 2) front ⇒ λ = 1 + 2 + 3 + 6 = 12 (Lemma 10) ⇒ bound.
• (1, 2) back ⇒ λ = 1 + 2 + 2 + 2 + 6 = 13 ([28]) ⇒ bound.
• (1, 6) back ⇒ λ = 1 + 2 + 2 + 2 + 6 = 13 (Lemma 11) ⇒ bound.
• (2, 4) or (2, 5) back ⇒ λ = 1 + 2 + 1 + 6 + 2 = 12 ([28]) ⇒ bound.
• (2, 6) back ⇒ λ = 1 + 2 + 1 + 4 + 4 = 12 (Lemma 11) ⇒ bound.

– (2, 6) back ⇒ λ = 1 + 1 + 6 + 4 = 12 (Lemma 11) ⇒ bound.
– (2, 6) back ⇒ λ = 1 + 4 + 6 = 11 (Lemma 11) ⇒ solution.

Elimination methods on the dual computational graph 417

The solution can be obtained only by eliminating (2, 6) first. Furthermore, by Lemma 11,
the optimal elimination sequence for the remainder of the graph is given by [1, 2], result-
ing in a optimal cost of eleven fma’s. ��

Proposition 2. An optimal face elimination sequence may involve fewer fma’s than
does an optimal edge elimination sequence when applied to the same c-graph.

Proof. Consider the c-graph on the right side of Figure 12. Because of its shape it is
referred to as the bat graph (turn it upside down). We show that there is a face elimination
sequence whose cost undercuts the cost of an optimal edge elimination sequence for the
bat graph. Similarly to the proof of Lemma 11, we consider the following decomposition
of the corresponding Jacobian matrix:

A =
(

∂vk

∂vl

)k∈{4,5,6,7}

l∈{−3,−2}
, B =

(
∂vk

∂vl

)k∈{4,5,6,7}

l∈{−1,0}
.

Both A and B correspond to a lion graph and can therefore be accumulated at an optimal
cost of 11 fma’s, respectively. Consequently, the whole Jacobian can be obtained at a
cost of 22 fma’s based on the decomposition into A and B. It is easy to verify that
eliminating the two faces corresponding to the transitive dependences 1 ≺ 3 ≺ 4 and
2 ≺ 3 ≺ 7, followed by the elimination of 1 and 2 and of all the remaining faces, results
in a cost of 22 fma’s for accumulating the Jacobian. To show that the decomposition
into A and B contradicts the concept of edge elimination, we note that

– (3, 4) is back eliminated before (1, 3) in A,
– (1, 3) is back eliminated before (3, 7) in B,
– (3, 7) is back eliminated before (2, 3) in B, and
– (2, 3) is back eliminated before (3, 4) in A.

The contradiction follows immediately from this cyclic dependence.
Furthermore, we need to verify that there is no other edge elimination sequence

that could possibly yield a cost of 22 fma’sor less. Considering all possibilities for
eliminating the first edge in G, we notice that

1 0

3 4 5
6

c1 c2

c3

c4

c5

c6

c7

c8

1

3 2 1 0

21

3

4 5 6 7

c1 c2 c3 c4

c5

c6 c7

c8

c12

c10 c11
c9

Fig. 12. Lion (left) and bat (right).

418 U. Naumann

– front elimination of c1 or c2 or back elimination of c5, c6, c10, c11, or c12 increases
the cost of accumulating A by at least one, and

– front elimination of c3 or c4 or back elimination of c7, c8, c9, c10, or c11 increases
the cost of accumulating B by at least one.

Furthermore, these edge eliminations do not decrease the cost of accumulating the other
half of the Jacobian, respectively.

In summary, partitioning the bat graph into two lion graphs allows us to compute
the Jacobian at a cost of 22 fma’s. The accumulation of the two halves of the Jacobian
cannot be expressed as an edge elimination sequence in the bat graph. Any edge elim-
ination sequence is bound to increase the cost of accumulating the Jacobian by at least
one. This completes the proof. ��
Comments similar to those made in connection with the proof of Proposition 1 apply
to the preceding argument. In particular, the optimal edge elimination sequence is con-
tained within the set of all valid face elimination sequences. The bat graph represents
an example of an optimal face elimination sequence not being contained within the
set of all feasible edge elimination sequences. Proposition 2 raises questions regarding
the vertex-face and edge-face discrepancies. The search for an answer is the subject of
ongoing research. After all, Proposition 2 is the reason for introducing the concept of
dual c-graphs together with face elimination.

5. Algorithms

The idea of optimizing the computation of Jacobians by different vertex elimination
sequences in linearized c-graphs was suggested in [15]. A greedy heuristic strategy
based in the Markowitz criterion (the vertex with the lowest Markowitz degree is elimi-
nated next) adapted from the theory on sparse linear systems was explored there as well.
In [5] the same problem was regarded as a shortest path problem in the vertex metagraph
Mv and an exponential dynamic programming algorithm was discussed. Edge elimi-
nation and the corresponding vertex-edge discrepancy were proposed in [24] together
with a number of heuristic strategies for optimizing the elimination sequences. Face
elimination and the edge-face discrepancy are introduced in this paper.

A variety of test problems were considered in [24] in connection with different strat-
egies for vertex and edge elimination. In most cases the number of fma’s required for
the accumulation of the Jacobians was decreased by factors between two and ten. In
[34] these theoretical savings were shown to result in corresponding runtime savings by
generating the code for computing the Jacobian.

First improvements to the greedy Markowitz heuristic [15] were proposed in [25] in
the form of the relative Markowitz heuristic for vertex elimination. Further ideas were
presented in [24] based on global information such as the number of paths in the c-graph
or their overall length. Various new Markowitz-type heuristics for vertex, edge, and face
elimination are proposed in [2]. Chapter 8 in [13] contains an example of Markowitz
degree-based heuristics not performing well on evolutions. The performance of the Jaco-
bian codes for a Roe-flux CFD kernel generated using various heuristics was investigated
in [34].

Elimination methods on the dual computational graph 419

Jacobian matrices can be evaluated as chained products of local extended Jacobians
as described in [14]. The well-known dynamic programming algorithm for optimizing
chained products of dense matrices with different dimensions [17] can be adapted for
the sparse case at the cost of a reasonable overhead. Instead of working with integers
representing the dimensions of the respective dense factors, the sparsity pattern of all
intermediate subproducts must be computed explicitly.

Simulated annealing [22] was first applied to the problem of finding nearly optimal
vertex elimination sequences in [26]. In this case it proved to be rather straightfor-
ward to define a feasible neighborhood relation and corresponding rearrangements. The
impact of different annealing schedules based on both homogeneous and inhomogeneous
Markov chains on the convergence of the algorithm was shown with the help of numerous
test problems.A more theoretical analysis of vertex elimination in the light of logarithmic
cooling schedules for inhomogeneous Markov chains was presented in [30].

6. Summary and conclusion

The aim of this paper was to present a theoretical basis for developing optimized deriv-
ative code motivated by the potential runtime savings that could be observed using
the techniques mentioned in Section 5. Face elimination in dual computational graphs
was introduced as a technique for solving the corresponding combinatorial optimization
problem, and its superiority over edge and vertex elimination in linearized computa-
tional graphs was shown. Here, superiority is understood in terms of the number of
fused multiply-add operations performed by an optimal elimination sequence. Various
results were shown that are likely to have an important impact on the further development
of elimination algorithms.

It still remains to be seen, whether face elimination can be regarded as the most
general Jacobian accumulation procedure, that is, a sequence of multiplications and
additions starting from the elementary partial derivatives and yielding all nonzero Jaco-
bian entries. Further investigations are needed to prove this conjecture.

We see two potential fields of application for the techniques presented here and for
further algorithms to be developed on the basis of these techniques. First, the preaccu-
mulation of local Jacobians at the level of basic blocks should become a fundamental
feature of differentiation enabled compilers. Second, optimized Jacobian code can be
generated for routines within heavily used numerical libraries (e.g., BLAS [33] or the
NAG numerical library [20]) or simulation codes (e.g., MIT general circulation model
[21]). Highly efficient implementations of robust heuristics will probably be preferred
in the former case to keep the compile time minimal. More expensive methods such as
simulated annealing can be tried if the compile time is not a crucial factor.

Acknowledgements. The face elimination rule presented in this paper is the result of numerous discussions
with A. Griewank at Technical University Dresden, Germany.

We thank the referees for many helpful comments and suggestions.
This work was supported by the Mathematical, Information, and Computational Sciences Division sub-

program of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-ENG-38

420 U. Naumann

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers, Principles, Techniques and Tools. Addison-Wesley, Reading
MA, 1986

2. Albrecht, A., Gottschling, P., Naumann, U.: Markowitz-type heuristics for computing Jacobian matri-
ces efficiently. In: Proceedings of International Conference on Computational Science, Springer, LNCS.
2658, 575–584 (2003)

3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity
and Approximation. Springer, Berlin, 1999

4. Berz, M., Bischof, C., Corliss, G., Griewank, A.: Computational Differentiation: Techniques, Applica-
tions, and Tools. Proceedings Series, Philadelphia, 1996, SIAM

5. Bischof, C., Haghighat, M.: Hierarchical approaches toAutomatic Differentiation. In: [4] pp. 82–94, 1996
6. Bischof, C., Khademi, P., Boucharicha, A., Carle, A.: Efficient Computation of Gradients and Jacobians

by Dynamic Exploitation of Sparsity in Automatic Differentiation. Optim. Meth. Softw. 7, 1–39 (1997)
7. Corliss, G., Faure, C., Griewank, A., Hascoet, L., Naumann, U., editors: Automatic Differentiation of

Algorithms. From Simulation to Optimization, Springer, New York, 2002
8. Corliss, G., Griewank, A. editors: Automatic Differentiation: Theory Implementation and Application.

Proceedings Series, Philadelphia, 1991, SIAM
9. Curtis, A., Powell, M., Reid, J.: On the Estimation of Sparse Jacobian Matrices. J. Inst. Math. Appl. 13,

117–119 (1974)
10. Van der Wijngaart, R., Saphir, W.: On the Efficacy of source code optimizations for cache-based proces-

sors. Technical report, NAS, June 2000
11. Garey, M., Johnson, D.: Computers and Intractability – A Guide to the Theory of NP-completeness.

W. H. Freeman and Company, San Francisco, 1979
12. Gilbert, J.: A note on the NP-completeness of vertex elimination on directed graphs. J. Alg. Disc. Meth.

1(3), 292–294 (SIAM), September, 1980
13. Griewank, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation. Number

19 in Frontiers in Applied Mathematics. (SIAM) Philadelphia, 2000
14. Griewank, A., Naumann, U.: Accumulating Jacobians as chained sparse matrix products. Math. Program.

3(95), 555–571 2003 (Springer)
15. Griewank, A., Reese, S.: On the calculation of Jacobian matrices by the Markovitz rule. In: [8], 1991,

pp. 126–135
16. Herley, K.: A Note on the NP-completeness of optimum Jacobian accumulation by vertex elimination.

Presentation at: Theory Institute on Combinatorial Challenges in Computational Differentiation. 1993
17. Horowitz, E., Sahni, S.: Fundamentals of Computer Algorithms. Computer Science Press, Rockville,

1978
18. Iri, M.: History of Automatic Differentiation and rounding error estimation. In: [8], 1991, pp. 3–17
19. Jessani, R., Putrino, M.: Comparison of single- and dual-pass multiply-add fused floating-point units.

IEEE Trans. Comp. 47(9), 927–936 (1998)
20. NAG Numerical Libraries.http://www.nag.co.uk/numeric/numerical libraries.asp,

NAG Ltd., Oxford, UK
21. Marshall, J., Hill, C., Perelman, L., Adcroft, A.: Hydrostatic, quasi-hydrostatic and nonhydrostatic ocean

modeling. J. Geophys. Res. 102 C3(5), 733–5, 752 (1997)
22. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by

fast computing machines. J. Chem. Phys. 21, 1087–92 (1953)
23. Miller, W., Wrathall, C.: Software for Roundoff Analysis of Matrix Algorithms. Academic Press, New

York, 1980
24. Naumann, U.: Efficient Calculation of Jacobian Matrices by Optimized Application of the Chain Rule to

Computational Graphs. PhD thesis, Technical University Dresden, Feb. 1999
25. Naumann, U.: An Enhanced Markowitz rule for accumulating Jacobians efficiently. In: K. Mikula, (ed.)

ALGORITHMY’2000 Conference on Scientific Computing, Slovak University of Technology, Bratislava,
Slovakia, September 2000, pp. 320–329

26. Naumann, U.: Cheaper Jacobians by Simulated Annealing. SIAM J. Opt. 13(3), 660–674, March 2002
27. Naumann, U.: Elimination techniques for cheap jacobians. In: [7] 2002, pp. 247–253
28. Naumann, U.: Optimal Pivoting in Tangent-Linear and Adjoint Systems of Nonlinear Equations. Preprint

ANL-MCS/P944-0402, Argonne National Laboratory, 2002
29. Naumann, U.,Albrecht,A.: Combinatorial optimization methods for fast derivative code. Case for Support

EPSRC Grant GR/R38101/01, University of Hertfordshire, Hatfield, UK, 2001
30. Naumann, U., Gottschling, P.: Prospects for Simulated Annealing in Automatic Differentiation. In:

K. Steinhøfel, (ed.), SAGA 2002 Stochastic Algorithms, Foundations and Applications, volume 2264
of LNCS. Springer, Berlin, 2001

Elimination methods on the dual computational graph 421

31. Newsam, G., Ramsdell, J.: Estimation of sparse jacobian Matrices. SIAM J. Alg. Dis. Meth. 4, 404–417
(1983)

32. Rose, D., Tarjan, R.: Algorithmic aspects of vertex elimination on directed graphs. J. Appl. Math. 34(1),
176–197 (SIAM) January 1978

33. Basic Linear Algebra Subprograms. http://www.netlib.org/blas/
34. Tadjouddine, M., Forth, S., Pryce, J.: AD Tools and Prospects for Optimal AD in CFD Flux Calculations.

In: [7], 2002, pp. 255–261
35. Tadjouddine, M., Forth, S., Pryce, J., Reid, J.: performance issues for vertex elimination methods in

computing Jacobians using Automatic Differentiation. In: Proceedings of the ICCS 2000 Conference,
Volume 2330 of Springer LNCS, 2002, pp. 1077–1086

36. Wengert, R.: A Simple automatic derivative evaluation program. Comm. ACM 7, 463–464 (1964)

