
1 Cross-Derivatives

A cross-derivative of a sufficiently smooth function f : D ⊂ RN → R is a partial derivative with only
mixed derivatives, i.e. fi(x) with i ∈ {0,1}N in contrast to i ∈ NN

0 for arbitrary partial derivatives.
Restricting the multi-index in that way allows simpler addressing schemes on a computer. Use [Gri08]
as reference. This technique should lead to a significant performance improvement.

The algebraic structure that is propagated through the computational graph is the quotient

R[ε1, . . . ,εN]/〈ε2
1 , . . . ,ε2

N〉

Elements of this algebra have the general form

v = ∑
i∈{0,1}N

viε
i = v0 + εn v1

where v0 and v1 only contain the generators ε1, . . . ,εn−1. The general computational rule is that (ε j)k = 0
whenever k > 1.

The coefficients may now be addressed as a linear array where the coefficient vi is located at the
index ∑

N
k=1 ik 2k−1 corresponding to the interpretation of the tupel i as a binary bit sequence. Thus the

coefficient vectors of v0 and v1 are the upper and lover halves of the coefficient vector of v.
Now one can always split any operation along the v = (v0|v1) boundary. For instance a multiplication

v ·w = v0 ·w0 + εn(v0 ·w1 + v1 ·w0)

reduces to three multiplication of the half vectors. Nonlinear functions can be represented via their
Taylor development. Since all higher powers of εn are zero, the Taylor series reduces to the Taylor
polynomial of degree one, so one gets:

cos(v) = cos(v0)− εn sin(v0) · v1,

sin(v) = sin(v0)+ εn cos(v0) · v1;

exp(v) = exp(v0) · (1+ εn v1),

log(v) = log(v0)+ εn (v0)−1 · v1

v−1 = (v0)−1 · (1− εn (v0)−1 · v1).

Those formulas suggest recursive implementations of these operations as outlined in [Gri08].

1. Implement a tool to propagate cross-derivatives in the forward mode of AD.

2. Do a thorough speed comparison between your implemented code and exact interpolation. For
the exact interpolation you can use the ADOL-C functions hov_forward.

3. Visualize your findings in an appropriate way, e.g. with Gnuplot.

4. Write a concise technical report using LATEX including introduction, theory, implementation, ex-
periment, summary. The report should be under 10 pages.

5. Give a 10 minutes talk.

1

2 DIFFERENTIATION OF THE EXPLICIT EULER WITH ADAPTIVE STEPSIZE CONTROL

2 Differentiation of the Explicit Euler with Adaptive Stepsize Control

Let the solution trajectory φ(t, p) ∈ RN of an ODE

ẋ = f (t,x, p)
x(0) = x0(p)

where f ∈CD,1 depend on the parameter p ∈ RNp . It is desired to obtain the derivatives ∂ D

∂ pD φ(t, p). To
obtain these derivatives, use univariate Taylor propagation to differentiate the explicit Euler method

xn+1 = xn +hn f (tn +hn,xn, p) ,

where hn is the stepsize from xn to xn+1. I.e. we have

tn+1 = tn +hn

The explicit Euler derives directly from Taylor’s theorem:

x(tn +hn) = x(tn)+hn f (tn,x(tn))+
h2

n

2
f ′(η ,x(η), p), tn ≤ η ≤ tn +hn

by neglecting the remainder term. The local error is

εn+1 := xn+1− x(tn+1) =
h2

n

2
f ′(η ,x(η), p) .

Since η is unknown εn+1 has to be estimated by ε̂n+1, typically up to a certain order of hn. In practice,
one can use the following estimator of the local error

σ̂(h; tn,xn) := x1
n+1− x2

n+1

= ĉnhp+1 +O(hp+2) ,

where x1
n+1 and x2

n+1 are solutions of two methods Φ1 and Φ2 with different consistency order:

x1
n+1 = xn +hΦ

1(h; tn,xn)consistency order p

x2
n+1 = xn +hΦ

2(h; tn,xn)consistency order p+1 .

One then defines a measure of the error

En(h) := ‖σ̂(h; tn,xn)‖

and one accepts if En(h)≤ TOL. Let hk been accepted in the last step. Use the ansatz En(hn) = cnhp+1
n .

Then compute the new step size hnew as

En+1(hnew) = cn+1hnewhp+1 ≤ TOL

= γ TOL when cn = cn+1 is assumed.

The final update formula is therefore

hnew =
(

γ TOL
cn

) 1
p+1

= τ

(
TOL

En(hn)

) 1
p+1

hn ,

where γ and τ are safety factors. They are typically γ = 0.5 and τ = 0.9. For reference you can have a
look at the lecture script by Bock [?] and the Wikipedia article [WikiAdapt].

It is an open question what happens if an integrator with adaptive stepsize control is differentiated.
See Figure 2.1 for a short discussion and [Lang08] for a more detailed discussion.

2

Fig. 2.1: This is solution of the Rungke Kutta DE solver ODE45 available in Matlab which uses a Runge Kutta
method of order 4 and 5 to obtain an estimate of the local error. From the known analytical solution one knows
that amplitude of the solution and its derivative should decay exponentially. However, at t = 25 one can see that
the derivatives start to oscillate wildly.

1. Implement a tool to propagate univariate Taylor polynomials in the forward mode of AD. Start
with fixed stepsizes hn = h = const.. Then enhance your code to allow variable stepsizes. For that
look up a reliable stepsize control in the literature.

2. Derive the analytic solution of the damped harmonic oscillator ẍ = −2rẋ−ω2x, x(0) = x0 and
ẋ(0) = v0 and compare it with the approximate solutions. The parameters are p = (r,ω).

3. Visualize your findings in an appropriate way, e.g. with Gnuplot.

4. Write a concise technical report using LATEX including introduction, theory, implementation, ex-
periment, summary. The report should be under 10 pages.

5. Give a 10 minutes talk.

3 Differentiation of the Backward-Euler Method by Internal Numeric
Differentiation

Let the solution trajectory φ(t, p) ∈ RN of an ODE

ẋ = f (t,x, p)
x(0) = x0(p)

3

3 DIFFERENTIATION OF THE BACKWARD-EULER METHOD BY INTERNAL NUMERIC DIFFERENTIATION

(a) (b) (c)

Fig. 3.1: The Paris gun (aka Big Bertha) that was used in World War I to besiege Paris.

depend on the parameter p ∈ RNp . It is desired to obtain the derivatives ∂ d

∂ pd φ(t, p). To obtain these
derivatives, use univariate Taylor propagation to differentiate the backward-Euler method

xn+1 = xn +hn f (tn +hn,xn+1) ,

where hn is the stepsize from iterate xn to iterate xn+1. To compute the Taylor series of the rhs f in C++
you can use the ADOL-C routine hov_forward or PYADOLC if you use Python. You can, of course,
use any other tool that supports UTP. The backward Euler method yields a nonlinear implicit system of
equations that have to be solved. As references on internal numeric differentiation you can use [Alb05]
and [Rue99] for the theory on the differentiation of nonlinear implicit systems.

3.1 Test Case: A Shooting Problem

Assume we want to hit a point TU with a Paris Gun (c.f. 3.1). We want to know at which angle θ we
have to shoot. The problem is depicted in Figure 3.2.

The movement of the projectile is defined by a second order, nonlinear ordinary differential equation
(ODE). Formally: ẍ =

(
0
−aG

)
− 1

2m cwAρ|ẋ|ẋ

x(0) = x0 ,x(T) = r .
(3.1)

The constants are described in Table 3.1 and x(t)∈R2, ẋ(t) = d
dt x(t) denotes the position and the velocity

of the projectile. Written as first order ODE:

ż(t) =
(

ẋ
ẏ

)
=

 y(
0
−ag

)
− 1

2m Aρcw|y|y

= g(z, t) . (3.2)

The approximation zk depends on the initial values z0. The initial position (x0,x1) = (0,0) and the
speed of the projectile v0 are fixed. A variable parameter is the angle θ . In Figure 3.2 one can see the
trajectories of projectiles shot with different angles.

4

3.2 Finding The Best Angle with Newton’s Method

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
x [m]

0

10000

20000

30000

40000

50000

y
[m

]

trajectories found with Newton’s method

Fig. 3.2: The goal is to hit a point TU with a cannon located at the origin (0,0). The initial velocity is fixed at v0
and we are only free to vary the angle θ at which the projectile is ejected. In the above plot we used the bisection
method to find a good guess for the angle θ .

constant notation value unit
Earth’s gravity constant ag 9.81 m

s2

initial velocity v0 1600 m
s

air drag factor cw 0.15
density of air ρ 1.3 kg

m3

mass of projectile m 194 kg
area of projectile A π(0.105)2 m2

Tab. 3.1: The parameters we are using in our simulation. The true values have been lost during war and only
estimates are available. We adapted the values from Wikipedia [Wiki08].

3.2 Finding The Best Angle with Newton’s Method

We define our objective function as a least squares problem

0 != f (θ) := min
t
‖zθ (t)−

(
R
0

)
︸ ︷︷ ︸

= f (t,θ)

‖2
2 . (3.3)

However, this is not a least-square problem we can handle easily because of the mint . There are several
ways to reformulate the problem. One way is to perform a linear transformation on the time such that
the end time is always 1 and not the unknown time T . The transformation reads

tnew =
1
T

told⇔
d

dtold
=

dtnew

dtold

d
dtnew

=
1
T

d
dtnew

, (3.4)

5

4 NUMERICAL QUADRATURE

where tnew is the time measured by a new clock and told the time measured by the old clock. Then the
ODE can be reformulated in the following way

d
dtold

z(told; p) = g(z, told) (3.5)

1
T

d
dtnew

z(Ttnew; p) = g(z, p,Ttnew) (3.6)

d
dtnew

znew(tnew; p,T) = T g(z, p,Ttnew) (3.7)

d
dtnew

znew(tnew; p,T) = gnew(z, p,T, tnew) . (3.8)

We now obmit the subscripts new. Therefore, the reformulated ODE we have to solve reads{ d
dt z(t; p) = g(z, p, t)
z(0) = z0 ,z(1) = r

(3.9)

The objective function is

p∗ = (θ ∗,T ∗) = argnullθ ,T f (θ ,T) = argnullθ ,T z(1;(θ ,T))− r (3.10)

s.t.
{ d

dt z(t; p) = g(z, p, t)
z(0) = z0 ,z(1) = r

, (3.11)

where argnull are the arguments that make the expression zero. To solve this constrained optimization
problem, we use Newton’s method without globalization routines, i.e.,

∇ f (pk)︸ ︷︷ ︸
:=A

(pk+1− pk)︸ ︷︷ ︸
x

=− f (pk)︸ ︷︷ ︸
:=b

,

i.e., we have to solve the linear system Ax = b. For the method to converge, you need an initial guess
that is close enough the exact solution to guarantee the convergence of Newton’s method. If you want
you can also use a standard solver with guaranteed global convergence.

3.3 Your Job

1. Implement a tool to propagate univariate Taylor polynomials in the forward mode of AD. Use
fixed stepsizes, i.e. hn = h = const.

2. Use the tool to solve the shooting problem. I.e. find the parameters p such that a cannon ball hits
a predefined target.

3. Compare this to the optimization done by finite differences.

4. Visualize your findings in an appropriate way, e.g. with Gnuplot.

5. Write a concise technical report using LATEX including introduction, theory, implementation, ex-
periment, summary. The report should be under 10 pages.

6. Give a 10 minutes talk.

4 Numerical Quadrature

Similar to the AD book, second edition, p. 365. Prof. Griewank will explain the details in the exercise
class.

6

5 Edge and Vertex Elimination

1. See the papers by U. Naumann [Nau04, Nau08] and the book (Griewank & Walther, Ch. 9,10) for
details on elimination rules.

2. Implement a tool which stores a linearized computational graph for a given function at the cur-
rent evaluation point and performs Edge and Vertex eliminations accorting to the relative greedy
Markowitz strategy and the optimal pathlength reduction strategy.

3. Compare the complexity of the two heuristics with that of the Forward and Reverse Mode. Anal-
yse the dependence of Round-off error propagation on the order of accumulations.

4. Visualize your findings in an appropriate way, e.g. with Gnuplot.

5. Write a concise technical report using LATEX including introduction, theory, implementation, ex-
periment, summary. The report should be under 10 pages.

6. Give a 10 minutes talk.

References

[Gil08] Giles, M.B : Collected Matrix Derivative Results for Forward and Reverse Mode Algo-
rithmic Differentiation, Advances in Automatic Differentiation, Lecture Notes in Compu-
tational Science and Engineering (2008)

[Gri08] Griewank, A.: Cross Derivatives , unpublished

[Gay09] Gay, David M. Semiautomatic Differentiation for Efficient Gradient Computations

[Neu09] Neumaier’s Homepage http://www.mat.univie.ac.at/ neum/papers.html

[NQ] http://wj32.wordpress.com/2008/02/03/using-the-taylor-series-to-find-the-indefinite-
integral-or-antiderivative-of-xx/

[Nau04] U. Naumann, Optimal accumulation of Jacobian matrices by elimination methods on the
dual computational graph. Math. Programm., Ser. A 99 (399–421), 2004.

[Nau08] U. Naumann, Optimal Jacobian accumulation is NP-complete. Math. Programm., Ser. A
112 (427–441), 2008.

[Alb05] Albersmeyer, J. Effiziente Ableitungserzeugung in einem adaptiven BDF-Verfahren, Diplo-
marbeit, 2005

[Rue99] Rücker, G. Automatisches Differenzieren mit Anwendung in der Optimierung bei
chemischen Reaktionssystemen, Diplomarbeit, 1999

[Wiki08] http://en.wikipedia.org/wiki/Paris_gun,

[Lang08] Lang, Technical Report on Adpative Stepsize Control of ODE Integrators, included in
the repository

[WikiAdapt] http://en.wikipedia.org/wiki/Adaptive_stepsize

[] Bock, H. G.Lecture Script: Numerik 1

7

http://en.wikipedia.org/wiki/Paris_gun

	Cross-Derivatives
	Differentiation of the Explicit Euler with Adaptive Stepsize Control
	Differentiation of the Backward-Euler Method by Internal Numeric Differentiation
	Test Case: A Shooting Problem
	Finding The Best Angle with Newton's Method
	Your Job

	Numerical Quadrature
	Edge and Vertex Elimination

