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ON THE SPECTRUM OF
PERIODIC ELLIPTIC OPERATORS

JOCHEN BRUNING AND TOSHIKAZU SUNADA

§ 0. Introduction

It was observed in [Su5] that the spectrum of a periodic Schrodinger operator

on a Riemannian manifold has band structure if the transformation group acting on

the manifold satisfies the Kadison property (see below for the definition). Here band

structure means that the spectrum is a union of mutually disjoint, possibly de-

generate closed intervals, such that any compact subset of R meets only finitely

many. The purpose of this paper is to show, by a slightly different method, that

this is also true for general periodic elliptic self-adjoint operators.

Let X be a Riemannian manifold of dimension n on which a discrete group F

acts isometrically, effectively, and properly discontinuously. We assume that the

quotient space F \ X (which may have singularities) is compact. Let E be

a F-equivariant hermitian vector bundle over X, and D : C°°(E) • C°°(E) a

formally self-adjoint elliptic operator which commutes with the F-action. For short,

we call such a D a F-periodic operator. It is easy to show (see Section 1) that the

symmetric operator D with the domain C^{E) is essentially self-adjoint, so that D

has a unique self-adjoint extension in the Hilbert space L2(E) of square integrable

section of E, which we denote also by D by a slight abuse of notation.

Let Cfed(F, # ) denote the tensor product of the reduced group C*-algebra

of F with the algebra # of compact operators on a separable Hilbert space of infi-

nite dimension, and by Xir the canonical trace on C*ed(F, # ) . We define the Kadi-

son constant C (F) by

C(F) =inf {trrP ; P is a non-zero projection in C*ed(F, # ) } .

By definition, F is said to satisfy the Kadison property if C(F) > 0. It is a

conjecture proposed by Kadison that, if F is torsion free, then C(F) — 1. A
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geometric example of a discrete group with the Kadison property is the

fundamental group of a closed Riemann surface (cf. [P]).

THEOREM 1. If F has the Kadison property, then the spectrum of any F-periodic

elliptic operator has band structure.

In the case that the operator D is bounded from below, we may establish a

quantitative result on the number of intervals in the spectrum.

THEOREM 2. Suppose that D is a F-periodic elliptic operator of order p, and is

bounded from below. Let N {X) be the number of components of the spectrum of D which

intersect the interval (~ ° ° , X\. If F has the Kadison property, then

\imsnpN(A)X-n/p < C(r)"T(l + n/p) f A(x)dx, (n = dimZ),
a-*, J r\x

where the function A(x) can be evaluated explicitly in terms of the principal symbol

oD(x, £) ofD;

(0.1) A(x) = (lit)-"'1 f d% r~l\r{oD{xy f) + h)-leirdr.

In Section 6, as a byproduct of our argument, we shall establish a property of

the integrated density of states associated to a periodic elliptic operator.

§ 1. Periodic elliptic operators

Let D : C°°(E) • C°°(E) be a /^-periodic, formally self-adjoint elliptic oper-

ator. We shall prove that D with the domain C™(E) is essentially self-adjoint To

show this, it is enough to prove that the minimal domain and maximal domain of D

coincide. In the case that F acts freely on X, this is established by M. F. Atiyah

[A]. The key of his proof is that D has an almost local pseudo-differential paramet-

rix Q, which, in the case of free actions, may be constructed by lifting an almost

local parametrix on the quotient manifold F\X. Here an operator is said to be

almost local if its Schwartz kernel has support close to the diagonal. In the general

case, the constrution is carried out in the following way.

Let J7o, Uu U2, be open sets in X with Uo <= Uo
 c Ui c JJ y c U2. We

assume that Uo contains the closure of a relatively compact fundamental domain

for the .T-action. One may construct an almost local pseudo-differential operator P

and a local smooth operator H such that

PDs = s + Hs
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for s e C"(E | U) and

H(Co(E I U{)) n Co~(£ I Uo) = (0).

We select (p e Co(Uo) with

(1.1) Zfpsl,

Since

<pPZ) = cp + (pH

on Co(E), putting

ae/1

we have

From the way of constructions, the operators Q and K\ are almost local, and K\ is

smooth. It is straightforward to see that

where

which is also almost local and smooth.

§ 2. Heat kernel

It should be noted that, to prove Theorem 1, we only have to establish the

assertion for positive elliptic operators. In fact, the general case reduces to the

positive case in the following manner. Suppose that the spectrum of a self-adjoint

elliptic operator D has a cluster at a € R, in the sense that there exists a sequ-

ence {an}£i in R such that lim an — a, and am and an lie in different components

of the resolvent set of D if m =£ n. We set, with k ^ N,

V =(D-
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a'n - (an - 2 i .

Let £ be a positive number such that ^-neighborhood of a\ is contained in the re-

solvent set. Then, for every an with \ a — an\ < £, an is in the resolvent set of D',

and a'm and a'n lie in different components of the resolvent set of U for m ^ n.

This implies that the spectrum of the positive operator D' has a cluster at {a —

aO2k/22k. Thus it suffices to handle the case of positive D with order greater than

the dimension of X. This assumption considerably simplifies our argument.

Let D be a F-periodic self-adjoint positive elliptic operator on X of order p =

2k ( > n : = dimX). We denote by ®(Z)) the domain of D. The heat semigroup,

exp( — tD), is well-defined for £ > 0. It is our first purpose to give good kernel

estimates for exp( — tD), uniformly on X. We denote by d the distance function on

X, by £ * the dual bundle of E, and by E IS £ * the bundle over

I x l with fiber Ex IS £* over (x, »). •

PROPOSITION 1. Let k(t ;x,y) be the kernel function for exp(-tD), which is,

for t > 0, a smooth section of E C3 E*. Then, for T > 0 fixed, there are positive con-

stants Ci and C2 such that

I k(t ;x,y)\ E®E* < Cit'H/pexp ( - C2r
l/ip'l)d(x, y)p/ip'l))9

uniformly for t €= (0, 7] and (x, y) & X x X.

we start our construction locally near an arbitrary x0 ^ X

LEMMA 1. For any relatively compact connected open neighborhood U of XQ and

for any t>0, there is a smooth operator, Ft: L2(E) • L2(E), with a kernel func-

tion f e C°°(E El£*), such that the following is true.

1) ft depends smoothly on t, and ft(x, y) — 0 for x, y & U.

2) For T > 0 fixed, there are constants C3 — Cz(T) and C± — C\{T) such that

(2.1) I ft(x, y) I B*R* < C3r
n/pexp ( - C4d(x, y)p'<p-»r

l/{p-l)),

uniformly inO < t < T, (x, y) e JJ x JJ.

3) For )̂ e Co(X), with <p = 1 in a neighborhood of JJ, the function t I •

cpFt is continuous on [0, T] in f/î  strong topology of bounded operators of L2(E), and
lim FtS = 5 m L2(E), for all s e L2(£") tw^ supp 5 c £/.

4) For a// s ^ L2(E), the function

( 0 , T ) -
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is differentiable, and if we define

Rts : = (dt+D)(pFts,

then Rt has a kernel in C°°(E E3 E*), say rt, with smooth dependence on t > 0.

Moreover, we have the estimate

(2.2) I rt(x, y) \ E*E* < C5exp ( - C6d(x,

uniformly in t e [0, 71 and (x,y) e U x [/.
5) i?̂  and Z)<pFf arg bounded in L2(E), and

(2.3) I I ^J*c* ) + l|/?Ji»c*> <C7

fort<E [0,71 and

forte [e, 71, £ > 0.

The proof follows from [G].
To construct a global parametrix, we now choose an open connected, relative-

ly compact set [/and (p e C™(U) satisfying (1.1). Then it is readily seen that

f->0

for all s e L2(E) with supp s c at/, and that

(dt + D)o((pFt)o-1 = oRt(J-\

Moreover, since the kernel functions of o((pFt)o~l and oRto~l are
(p(a~lx)aft(a~1xf o~ly)o~l and Grt(a~1x, a~ly)o~l respectively, they satisfy the
estimates (2.1) (2.2) .

Now the global parametrix is defined by

(2.4) Fts:= Z o(cpFt)(j-
ls.

We set

Mts:= S o{cpFt)(j-
ls.

(jef

LEMMA 2. 1) The operators 3~t and 911 are continuous in L2(E) and

II 2", I *.«> + lift II ^ C

uniformly in t e [0, T].
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2) For s e L2(E), the functions 3~ts and 9lts are continuous in t e [0,T] with

= 5.

3) ^ s is differentiable in t ^ [0, 7 ] , /ias va/ties in S)(D), and satisfies the

equation

(2.5) (9, + D)STts = %s.

Proof Before the proof we remark that there is a constant Cio such that,

with cp as above,

(2.6) SII p ,s ||L2«) < Cio II 5 || mm, for s e

where >̂<r(̂ ) — (p{ox).

1) follows easily from Lemma 1, 5) and (2.6).

The estimate in 1) shows that the series (2.4) is uniformly convergent in

[0 ,7] . By Lemma 1, 3), we get 2).

It follows from Lemma 1, 4) that each term in the series (2.4) is differentiable

as a function [0,71 > L2(E), and has values in $)(D). From Lemma 1, 4) and

(2.6) we derive the estimate

C8(e)

uniformly in [e>T\ and 5 G L2(E), for all e ^ (0 ,D. Now the assertion 3) follows

easily from Lemma 1, 4) and 5). •

Proof of Proposition 1. We apply the abstract theory of evolution equations in

Banach spaces to (2.5). It is readily checked, using Lemma 2, that the assumptions

of Ch. I, Theorem 6.1 in [K] are satisfied. Thus we find for t €= [0, JT] the oper-

ator equation

(2.7) exp (~tD) =STt- f' e xP ( " (' ~
Jo

Then we define again for t e [0,7],

Jo

This clearly defines continuous families of bounded operators in L2(E), and from
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Lemma 2, 1) we deduce inductively the norm estimates

(2"8)

On the other hand, iterating (2.7) gives for N ̂  Z+

exp(-tD) = 2 (- l ) '^*^),* (-l)"+

;=0

which leads, with (2.8) and a similar estimate for the remainder, to the Neumann

series

(2.9) exp(-tD) = 2 (- D'^'fl),,

which is uniformly convergent for £ ̂  [0, T] .

We claim that (2T**#)f has kernel in C(E El £*) , for f e [0, 7 ] , with the

estimate

where

L = # {a e r ; a(supp >̂) Pi (supp (/)) ^ 0 } .

This is clear for / = 0, by the above discussion. If (2.10) is proved for some

j > 0, we find

(2.11)

J 0 J X
_w(x, y) \E®E* 2 I oRuo~l(z, y) \E®E*dzdu.

Now there are at most L terms in the sum which are different from zero, for y fix-

ed, and for each term the volume of the support in z is bounded by vol(supp cp),

which is assumed to be one for simplicity. Hence (2.11) is obvious from the induc-

tion hypothesis, an elementary inequality for exponentials (cf. Lemma 1.4.2. in [G]),

and (2.2) .

Having proved (2.10), we can use the series for the kernels to obtain the esti-

mate stated in Proposition 1.

The arguments give above also lead to the following result (cf. [G, Theorem

1.6.1]).

PROPOSITION 2. tr k(t, x, x) ~ t~n/p A(x) as t [ 0, where A(x) is the func-

tion defined by (0.1).
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§ 3. Group C*-algebras

We adopt the terminology employed in [Su5].
Let Fbe a discrete group and let C*edCO be the reduced group C*-algebra of

F. We set C?ed(/\ ft) = CfediO ® ft, where ft is the algebra of compact oper-
ators of some separable Hilbert space, say V. We can identify C?ed(/\ ft) with a
subalgebra of

W*(F,g) = {A:L2(F,V)-+L2(F,V) ;A a bounded linear operator with
Aa = oA for all a e T},

where we regard L2(F,V) as a /"-module via the right regular representation of F
on L2(F) tensored with the identity on V.

Let A e W*(f, 5?). We define the Fourier coefficient A (a) at a to be a
bounded operator of V given by

A(a)v=

where

Recall that

5Ke) =
if ( 7= 1

otherwise.

Let C0*(r, ^f) be the set o f A e W * ( / \ ^ ) with A (a) ^ ft for all a € ft

and i4(a) = 0 for all but finitely many a e T. We may identify C?ed(/\ ^ ) with

the completion of C$(F, ft) with respect to the operator norm,

LEMMA 3. Let A e W*(F, 2). Then

\\A\\<
<j<=r

Proof.

2 E E

a di d2

/T01 92 r-^n? a / 2
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<xi:\\A(dl)\\\\A(d2)\\h:\\(p(o)\\2)

' ' ©II2 . •

COROLLARY. IfA(a) ^ # for every a ^ F and if

£\\A(G)\\< 00,

then A e Ck,(/\

Proof. Let Ki <^ K2 <^ K3a • • • be a sequence of finite subsets in F with

U Kt = F. For an integer N > 0, let A* e W*(F,£) be defined by

AN{a) = { 0, e$KN.

T h e n c e C?(F,X), and \\A-AN\\-+0 as N-^ oo, so that A e C?ed(r,^).D

§ 4. Proof of Theorem 1

Let D be a positive /^-periodic elliptic operator on X of order p. Fix a re-

latively compact fundamental domain 2? in X for the /"-action, and identify

L2(E\&) with V. Then we may identify L\E) with L 2 ( r , F ) , and FF*(J\#)

with the ring of /"-equivariant bounded operators of L2(E).

We denote by || a \\ the word length of a associated with a fixed finite set of

generators of F. It is easy to see that there exist positive constants Cn and Cu

such that

(4.1) || a|| < Cn min d(ox, y) + &2.

Since F is a homomorphic image of a free group of finite rank, and a free group

has exponential growth with respect to word length, we may conclude that exist

constants Cu and Cu such that

(4.2) Ha e T ; || a|| < R} < C13 exp (C14i?).

LEMMA 4. e x p ( - D) e C*ed(r, # ) .

Let 4̂ : = exp(— D), and let k(x, y) be the kernel function for A.

The operator A (a) acting on L 2 ( £ | ^ ) has the kernel function o~lk(ox, y). In

view of Proposition 1 and (4.1) , we have

|| A(a) || < vol (SF) sup | k(ax, y) \ < Ci5 exp ( - Ci6 II o \\a),
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where we set a = p/(p—l) > 1. From this and (4.2), it follows that

Z\\A(o)\\<™,
a

and hence A e C?e<i(/\ # ) by Corollary to Lemma 3. •

The rest of proof is done in a standard manner (see[Su5]). Namely, if two

real numbers a,b with a < b lie in the resolvent set of Z), then, given a positive £,

one may find a polynomial ./>(.£) with

\\(E(b)-E(a))-p(exp(-D))\\<e,

where {£(/!)}-»<,!<oo denotes the spectral resolution for D; i.e.

D= f+~ XdE(X).
J —oo

This implies that £ (6 ) - E(a) e C?ed(/\ # ) , and thus leads to Theorem 1 (see

also the discussion in the next section) .

§ 5. Integrated densities of states

Let D be a self-adjoint /"-periodic elliptic operator bounded from below, and let

{E(X))teB. be the spectral resolution for D. Note that E(A) is of /"-trace

class [Su5 ; Lemma 2]. We set

The function #) is what we call the integrated density of states (cf. [Su6]) . We

readily check that

(5.1) (pD-aW = (pD(A + a),

and if D is positive, then

(5.2) cpDM) =(PD(*l/m).

To prove Theorem 2, let X > 0, and let d\ < a2 < ''' < an be a sequence in

the resolvent set such that ai < X and E(di+i) — E{ad is a nontrivial projection

for all i. Since 2 (E(di+i) — E(ad) < £(/!) , one has

It remains to show the following.

PROPOSITION 3.

<p(X) - Xn/P r{\ + n/p) fr A(x) dx as X T °°.
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Proof In view of (5.1) and (5.2) , we may assume that D is positive and the

order p is greater than the dimension of X.

Since

exp(-tD) = f e~adE(X),

by taking the F-trace of both sides we obtain

trrexp (-tD) = J e~adcp(X).

By using Proposition 2 in § 2, we find

tiv exp (-tD) = f tr k(t, x, x)dx ~ t~n/p f A(x)dx

as f I 0, from which the assertion follows by a well-known Tauberian

theorem. CD

§ 6. Limit formulae for densities of states

Let

be a sequence of normal subgroups in F with d acting freely on X, so that Xt =

Gt\X is a Riemannian manifold on which the factor group Ft — F/Gt acts as a

proper discontinuous isometry group. The quotient space F\Xi is naturally identi-

fied with F\X. Let TT : X • F\X and Hi : X • X{ denote the projection maps.

One may select a relatively compact fundamental domain & c X for the /^-action

such that TCt : 2F • iii(2P) is a diffeomorphism. It is easily seen that %i(?P) is a

fundamental domain in X{ for the /^-action.

We may push down the elliptic operator D onto Xi, which is a /^-periodic

elliptic operator. We denote it by A, and put

<pt(X) = tr riEt(X),

where

is the spectral resolution of D{.

THEOREM 3. Let D be a F-periodic self-adjoint elliptic operator bounded from be-

low. Suppose that D Gt = {1}. Then lim (pt(X) = (p(X) at continuity points of (p.

Proof Let k{(t;p, q) be the kernel function for exp(— tD{). Let p = Hi(x)
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and q = 7tt(y). Then

ki(t;p,q) = 2 gk(t;g-1xty)t

so that we obtain, using Proposition 1 again,

~xt d<pi(A) = t rA e x p ( - tDt)J e~x

= f tr ki(t;p,p)dp

= £ I trgk(t;g~1x,x)dx
geGi J &

= I tr k(t; x, x)dx + Z / tr gk{t \ g~lx, x)dx
geGi

> t r r ( exp( - tD)) = Je~xt dcp(A)

as i • °°. This leads to our assertion (cf. [Su]) . •

Remark. If each d has finite index in F, then

where ^i ^ X2 ̂  * * * stands for the eigenvalues of the elliptic operator D% on the

compact manifold X%. Theorem 3 is a generalization of a result in [Su6].
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Nagoya University.
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