WS 2019/2020

Marc Kegel

Exercise sheet 11

Exercise 1.

- (a) $\operatorname{Hom}(\mathbb{Z}, G)$ is isomorphic to G for any abelian group G.
- (b) Hom $(\mathbb{Z}_n, \mathbb{Z}_m)$ is isomorphic to $\mathbb{Z}_{gcd(n,m)}$.
- (c) Compute Hom(A, B) for finitely generated abelian groups A and B.
- (d) Let

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

be a short exact sequence of abelian groups and let G be another abelian group. If C is free abelian, then the dual sequence

$$0 \longrightarrow \operatorname{Hom}(C,G) \longrightarrow \operatorname{Hom}(B,G) \longrightarrow \operatorname{Hom}(A,G) \longrightarrow 0$$

is also exact.

(e) Does the dual sequence also split?

Exercise 2.

- (a) Prove Lemma 6.5 from the lecture.
- (b) Is Ext symmetric?
- (c) Compute Ext(A, B) for finitely generated abelian groups A and B.

Exercise 3.

The evaluation map induces an isomorphism

ev:
$$H^k(X;\mathbb{R}) \longrightarrow \operatorname{Hom}_{\mathbb{R}} (H_k(X;\mathbb{R}),\mathbb{R}).$$

Exercise 4.

Compute the cohomology groups with \mathbb{Z} , \mathbb{Z}_p , \mathbb{Q} and \mathbb{R} coefficients of $\mathbb{R}P^n$, $\mathbb{R}P^{\infty}$ and all closed surfaces.

Bonus exercise 1.

- (a) The short exact sequence in the universal coefficient theorem for cohomology is natural.
- (b) The short exact sequence in the universal coefficient theorem for cohomology is split.
- (c) Show that the splitting of the short exact sequence in the universal coefficient theorem for cohomology cannot be natural.
 Hint: This can be proven with similar methodes as in Exercise 1 from Sheet 10.

Bonus exercise 2.

- (a) Let G and H be \mathbb{Q} -vector spaces. Let $\varphi \colon G \to H$ be a homomorphism of abelian groups. Show that φ is also a homomorphism of \mathbb{Q} -vector spaces.
- (b) Conclude that the abelian groups \mathbb{Q} and \mathbb{Q}^2 are not isomorphic.
- (c) Show that the abelian groups \mathbb{R} and \mathbb{R}^2 are isomorphic. *Hint:* For this you will need the axiom of choice.
- (d) Conclude that there exist topological spaces X and Y such that H^k(X) is isomorphic to H^k(Y) for all k, but such that H₁(X) and H₁(Y) are **not** isomorphic. In particular, the roles of homology and cohomology in Corollary 6.6 are not symmetric. Hint: In [J. WIEGOLD, Ext(Q, Z) is the additive group of real numbers, Bull. Aust. Math. Soc. 1 (1969), 341–343] it is proven that Ext(Q, Z) is isomorphic to ℝ. Use this (without proof) together with the universal coefficient theorem for cohomology and Exercise 3 from Sheet 7 to do the exercise.

This sheet will be discussed on Friday 17.1. and should be solved by then.