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Exercise 1.

Use cellular cohomology to determine the isomorphism types of the cohomology groups of the

Klein bottle, RPn and CPn with Z2-coefficients, with Z3-coefficients and with Z-coefficients.

Exercise 2.

(a) Compute the cohomology groups with arbitrary coeffcients of Sn in two ways:

– via the long exact sequence of a pair in cohomology, and

– via the Mayer–Vietoris sequence for cohomology.

(b) Compute the cohomology groups of all closed surfaces via the Mayer–Vietoris sequence for

cohomology.

Exercise 3.

(a) Let A ⊂ X be a closed subspace that is a deformation retract of some open neighborhood U .

Then Hk(X,A;G) is isomorphic to H̃k(X/A;G) induced by the projection map X → X/A.

(b) If A is a retract of X, then Hk(X;G) is isomorphic to Hk(A;G)⊕Hk(X,A;G).

Exercise 4.

Let M and N be closed oriented n-manifolds and f : M → N a map. Then the induced map on

cohomology f∗ : Hn(N ;G)→ Hn(M ;G) is the multiplication by deg(f).

Bonus exercise 1.

Let {Ak}k∈N be a sequence of finitely generated abelian groups. We assume that A1 is free abelian.

Show that there exists a connected CW -complex X such that for any k ∈ N we have Hk(X) ∼= Ak.

Remark: In contrast to homology groups, not every sequence of abelian groups can occur as

cohomology groups of spaces. In [D. Kan and G. Whitehead, On the realizability of singular

cohomology groups, Proc. Amer. Math. Soc. 12 (1961), 24–25] it is shown that there is no space

X such that Hk(X) = 0 and Hk+1(X) ∼= Q.

It is unknown if Q can occur as cohomology group of a topological space at all.

This sheet will be discussed on Friday 24.1. and should be solved by then.


