WS 2019/2020

Marc Kegel

Topology II

Exercise sheet 13

Exercise 1.

Let X and Y be connected CW-complexes. We denote by $p_X \colon X \lor Y \to X$ and $p_Y \colon X \lor Y \to Y$ the projection maps.

- (a) Show that $p_X^* \oplus p_Y^* : H^k(X; R) \oplus H^k(Y; R) \to H^k(X \lor Y; R)$ is an isomorphism for all $k \in \mathbb{N}$.
- (b) The cup product $p_X^*(\alpha) \cup p_Y^*(\beta)$ is vanishing for all α and β of non-trivial degree.
- (c) Compute the cup product on the cohomology $H^*(\Sigma_2)$ of the genus 2 surface Σ_2 . *Hint:* Consider maps $\Sigma_2 \to T^2$ and $\Sigma_2 \to T^2 \vee T^2$ and use the calculation of the cup product of T^2 from the lecture.

Bonus: What is the cup product of a general genus-g surface Σ_q ?

Exercise 2.

We consider the ideal I in the polynomial ring $\mathbb{Z}[x_1, \ldots, x_n]$ generated by x_i^2 and $x_i x_j + x_j x_i$ for all $i, j = 1, \ldots, n$. The **exterior algebra** $\Lambda[x_1, \ldots, x_n]$ is defined to be $\mathbb{Z}[x_1, \ldots, x_n]/I$, where the product is usually denote by \wedge and deg $(x_j) := 1$.

(a) $\Lambda[x_1, \ldots, x_n]$ is a free abelian group of rank 2^n where a basis is given by

$$\{x_{k_1} \wedge \cdots \wedge x_{k_l} | k_1 < \cdots < k_l\}.$$

- (b) $\Lambda[x_1, \ldots, x_n]$ is isomorphic to $\Lambda[x_1, \ldots, x_{n-1}] \otimes \mathbb{Z}[x_n]/(x_n^2)$, where deg $(x_n) := 1$.
- (c) The cohomology ring of the *n*-torus $H^*(T^n)$ is isomorphic to $\Lambda[x_1, \ldots, x_n]$.
- (d) Show that

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0,$$

by computing the Euler characteristic $\chi(T^n)$ via the alternating ranks of its cohomology groups (using the universal coefficient theorem) and directly via a cell structure of T^n .

Exercise 3.

- (a) Show that $\mathbb{R}P^3$ and $\mathbb{R}P^2 \vee S^3$ have isomorphic homology and cohomology groups but different cohomology rings and thus are not homotopy equivalent.
- (b) Use the cup product to show that there is no map $\mathbb{R}P^n \to \mathbb{R}P^m$ inducing a nontrivial map on first cohomology with \mathbb{Z}_2 -coefficients if n > m.
- (c) Deduce from (b) the Borsuk–Ulam theorem.

Exercise 4.

- (a) For every integer $k \in \mathbb{Z}$ there exists a map $T^2 \to T^2$ of degree k. Hint: In Exercise 2 from Sheet 7 we have constructed maps $S^n \to S^n$ of arbitrary degree.
- (b) Now we consider a general genus g surface Σ_g with $g \ge 2$. Construct maps $\Sigma_g \to \Sigma_g$ with degree 0, 1 and -1.
- (c) Any map $\Sigma_g \to \Sigma_g$ of non-vanishing degree 0 induces a surjection on fundamental groups. *Hint:* Lift the map to a suitable covering of Σ_g , deduce from the non-vanishing of the degree that this covering has to be finite and use the behavior of the Euler characteristic under finite coverings.
- (d) Deduce that any map Σ₂ → Σ₂ has degree 0, 1 or -1.
 Hint: Use (c) together with the Hurewicz homomorphism and the cup product structure of Σ₂ from Exercise 1 (c).

Bonus: Show the statement from part (d) for arbitrary genus $g \ge 2$ using the bonus part from Exercise 1.

Bonus exercise.

Let X be a CW-complex. The map

$$H_k(X) \times H_l(X) \xrightarrow{\times} H_{k+l}(X \times X) \xrightarrow{\operatorname{pr}} H_{k+l}(X)$$

is trivial, where \times denotes the cross product and pr denotes the projection to one of the X-factors.

This sheet will be discussed on Friday 31.1. and should be solved by then.