Topology II

Exercise sheet 2

Exercise 1.

Let X be a path-connected space and denote by $C X$ its cone. Show that

$$
\pi_{k}(C X, X) \cong \pi_{k-1}(X)
$$

and construct for a given finitely presented group G a pair of path-connected spaces (Y, A) with $\pi_{2}(Y, A) \cong G$.

Exercise 2.

(a) The Klein bottle $\mathbb{R} P^{2} \# \mathbb{R} P^{2}$ carries the structure of an S^{1}-bundle over S^{1}.
(b) We identify $S^{2 n+1}$ with the unit sphere in \mathbb{C}^{n+1}. The map

$$
\begin{aligned}
p: S^{2 n+1} & \longrightarrow \mathbb{C} P^{n} \\
\left(z_{0}, \cdots, z_{n}\right) & \longrightarrow\left[z_{0}: \cdots: z_{n}\right]
\end{aligned}
$$

is an S^{1}-bundle.
(c) We denote by \mathbb{H} the quaternions and define the quaternionic projective spaces $\mathbb{H} P^{n}$ as

$$
\mathbb{H} P^{n}:=\left(\mathbb{H}^{n+1} \backslash\{0\}\right) / \sim,
$$

where $u \sim v$ if and only if there exists an $h \in \mathbb{H} \backslash\{0\}$ such that $v=h w$. Verify that $\mathbb{H} P^{n}$ is a well-defined closed oriented manifold of dimension $4 n$ and show that $\mathbb{H} P^{1}$ is homeomorphic to S^{4}.
(d) We identify $S^{4 n+3}$ with the unit sphere in \mathbb{H}^{n+1}. The map

$$
\begin{aligned}
p: S^{4 n+1} & \longrightarrow \mathbb{H} P^{n} \\
\left(h_{0}, \cdots, h_{n}\right) & \longrightarrow\left[h_{0}: \cdots: h_{n}\right]
\end{aligned}
$$

is an S^{3}-bundle.
(e) What conclusion do we get from the above bundles about the homotopy groups of these spaces?

Exercise 3.

Let $X_{1} \subset X_{2} \subset X_{3} \subset \cdots$ be an infinite sequence of inclusions of topological spaces. We define the limit

$$
X_{\infty}:=\underset{\longrightarrow}{\lim } X_{i}:=\bigcup_{i \in \mathbb{N}} X_{i},
$$

where a set U in X_{∞} is called open if $U \cap X_{i}$ is open in X_{i} for all $i \in \mathbb{N}$.
If we apply the above construction to the sequence $S^{0} \subset S^{1} \subset S^{2} \subset \cdots$ we get the space S^{∞} and from the sequence $\mathbb{C} P^{1} \subset \mathbb{C} P^{2} \subset \cdots$ we get the spaces and $\mathbb{C} P^{\infty}$.
(a) $\pi_{k}\left(S^{\infty}\right)=0$ for all $k \geq 1$.
(b) Define an S^{1}-bundle $p: S^{\infty} \rightarrow \mathbb{C} P^{\infty}$ in analogy to Exercise $2(b)$.
(c) Compute from the associated long exact sequence the homotopy groups of $\mathbb{C} P^{\infty}$ and conclude that S^{2} and $S^{3} \times \mathbb{C} P^{\infty}$ have isomorphic homotopy groups.
(d) Let Σ_{g} denote the closed oriented surface of genus $g \geq 2$. Compute all homotopy groups of Σ_{g} by constructing its universal cover.
Hint: Write Σ_{g} as a $4 g$-gon Q with edges appropriately identified. Then construct the universal cover $\widetilde{\Sigma_{g}}$ by a limit of nested disks $D_{1} \subset D_{2} \subset D_{3} \subset \cdots$, where D_{1} is a single copy of Q and D_{i} is constructed from D_{i-1} by attaching additional copies of Q to D_{i-1} appropriately.

