WS 2019/2020

Exercise sheet 8

Exercise 1.

- (a) Let X be a connected 1-dimensional CW-complex. Show $\pi_n(X) = 0$ for all $n \ge 2$.
- (b) Compute all homotopy groups of surfaces Σ_g of genus $g \ge 1$ by applying Hurewitcz's theorem to its universal covering.

Bonus: Let F be a surface (not necessarily compact) with infinite fundamental group. Compute its higher homotopy groups.

Exercise 2.

Compute the second homotopy groups of $\mathbb{C}P^n$ and $S^1 \vee S^2$.

Exercise 3.

Let $f: (S^n, N) \to (S^n, N)$ be a homeomorphism of S^n which preserves the north pole N. Which element represents f in $\pi_n(S^n, N)$?

Exercise 4.

A connected topological space X with only one non-vanishing homotopy group $\pi_n(X) \cong G$ is called **Eilenberg–MacLane space** K(G, n).

(a) Construct an Eilenberg–MacLane space for arbitrary G and n (assuming G to be abelian if $n \ge 1$).

Hint: It may be helpful to have a look at Exercise 3 from Sheet 7.

(b) Let G_1, G_2, \ldots be a (possible infinite) sequence of (not necessarily finitely presented) groups (abelian for $n \neq 1$). Construct a connected *CW*-complex X with homotopy groups

$$\pi_k(X) \cong G_k$$

Bonus: When is such a space unique up to homotopy?