Topology of 3-Manifolds

Exercise sheet 4

Exercise 1.

Let M be a connected closed orientable 3-manifold presented by a Heegaard diagram.
(a) Conduct a presentation of the first homology group $H_{1}(M ; \mathbb{Z})$ only depending on the homological information of the Heegaard diagram.
(b) Describe a presentation of the fundamental group of M.
(c) Compute the fundamental group and homology groups of the lens spaces $L(p, q)$ from their Heegaard diagrams. What are the higher homotopy groups of lens spaces?

Exercise 2.

Let M and N be two connected, smooth, oriented, closed n-manifolds. The connected sum $M \# N$ is the closed, oriented n-manifold defined as follows. Choose embeddings $i_{M}: D^{n} \rightarrow M$ and $i_{N}: D^{n} \rightarrow N$, where i_{M} preserves the orientation and i_{N} reverses the orientation. The connected sum is obtained from

$$
\left(M \backslash i_{M}(0)\right)+\left(N \backslash i_{N}(0)\right)
$$

by identifying points $i_{M}(t p)$ with points $i_{N}((1-t) p)$ for $p \in S^{n-1}$ and $0<t<1$.
(a) It is possible to show that this is a well-defined operation. (This uses methods from differential topology and is not your task.) What would you have to show for it?
(b) Let M and N be two connected, smooth, compact, oriented n-manifolds with non-empty connected boundary. The boundary connected sum $M \nvdash N$ is obtained from M and N by attaching an 1-handle to the boundary of M and N such that the resulting manifold is oriented and connected. Show that this is well-defined and that we have $\partial(M \natural N)=\partial M \# \partial N$.
(c) Show that the Heegaard genus is sub-additive under connected sum, i.e. show that

$$
g(M \# N) \leq g(M)+g(N)
$$

holds. To do this, figure out how to get a Heegaard diagram of $M \# N$ from Heegaard diagrams of M and N.

Remark: From Haken's lemma it follows even that $g(M \# N)=g(M)+g(N)$ holds. Another conclusion from Haken's lemmma is the existence of the prim decomposition of 3-manifolds, i.e. every closed orientable 3-manifold can (uniquely up to reordering and addition of S^{3}-factors) be written as

$$
M=M_{1} \# \cdots \# M_{k}
$$

where the M_{i} cannot be further decomposed in non-trivial connected sums. For a closed discussion of this see for example L. Struth: Hakens Lemma, available online at https://www2.mathematik.hu-berlin.de/~kegemarc/Kirby/Hausarbeit\ Lennart\ Struth. pdf

Exercise 3.

(a) The Heegaard genus of T^{3} is 3 .

Hint: Consider the first homology or the fundamental group of T^{3}.
(b) A bit more general, construct for any natural number g a 3-manifold with Heegaard genus g
(c) The Heegaard genus of $\Sigma_{g} \times S^{1}$ is equal to $2 g+1$.

Bonus: The Heegaard genus of a surface bundle of a surface Σ_{g} of genus g over S^{1} is equal to $2 g+1$. Where a surface bundle over S^{1} is defined as follows. We start with a surface Σ_{g} of genus g and a diffeomorphism $\phi: \Sigma_{g} \rightarrow \Sigma_{g}$. Then the surface bundle over S^{1} with monodromy ϕ is defined as the quotient space $\Sigma \times I / \sim$ where $(p, 1) \sim(\phi(p), 0)$.

Exercise 4.

Which 3-manifold is presented by the following planar Heegaard diagram?

Abbildung 1: The attaching disks of the 1-handles are pairwise identified via a reflection along the horizontal middle line in this planar Heegaard diagram.

Bonus exercise.

Which conditions does a system of simple closed curves on Σ_{g} has to fulfill to arise as a Heegaard diagram of a closed 3-manifold?

This sheet will be discussed in the exercise session on 12.6. and should be solved by then.

